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How Forward-Looking is Optimal Monetary

Policy?

We calculate optimal monetary policy rules for several variants of a simple
optimizing model of the monetary transmission mechanism with sticky
prices and/or wages. We show that robustly optimal rules can be represented
by interest-rate feedback rules that generalize the celebrated proposal of
Taylor (1993). Optimal rules, however, require that the current interest-
rate operating target depend positively on the recent past level of the
operating target, and its recent rate of increase, in a way that is characteristicof
estimated central bank reaction functions, but not of Taylor’s proposal. We
furthermore find that a robustly optimal policy rule is almost inevitably an
implicit rule that requires the central bank to use a structural model to
project the economy’s evolution under the contemplated policy action.
However, calibrated examples suggest that optimal rules place less weight
on projections of inflation or output many quarters in the future than do
rules often discussed in the literature on inflation targeting, or in the current
practice of inflation-forecast targeting central banks.

Both positive and normative accounts of monetary
policy are often expressed in terms of systematic rules for determining the central
bank’s operating target for a short-term nominal interest rate in the light of current
macroeconomic conditions, especially following the widely discussed proposal of
Taylor (1993). Empirically estimated central bank reaction functions are typically
similar in form to the Taylor rule, but incorporate additional dynamics. For example,
estimated reaction functions, such as those of Judd and Rudebusch (1998), Clarida,
Gali, and Gertler (2000), or Nelson (2001), frequently imply that one or more recent
past levels of the interest-rate target are important determinants of its current value,
along with macroeconomic indicators such as an inflation rate or a measure of
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the output gap. This implies that the bank’s interest-rate target at any given time
depends on past conditions as well as those measured at that time. Furthermore,
some estimated reaction functions, such as those of Clarida et al. and Nelson just
mentioned, imply that the central bank responds to forecasts of future inflation and/
or output rather than to the current values of those variables, as proposed by Taylor.
Indeed, the representations of policy incorporated into the econometric models used
by some central banks for policy simulations imply that the bank implements a
forward-looking Taylor rule, perhaps with a forecast horizon as far as two years in
the future.1 Furthermore, the official explanations that inflation-forecast targeting
central banks offer for their decisions, such as in the Inflation Reports of the Bank
of England, typically emphasize inflation forecasts with a horizon of that length.2

This paper considers the optimal choice of an interest-rate rule as a basis for the
conduct of monetary policy. We shall be particularly concerned with the question
of the extent to which it is desirable for the policy rule to be forward looking (as
has been emphasized in particular by the literature on inflation targeting), as opposed
to seeking to establish a purely contemporaneous relation, as in Taylor’s proposal,
or even a backward-looking relation of the kind indicated by many econometrically
estimated reaction functions.

The question has been extensively discussed in recent years. However, most of
the recent literature assumes some low-dimensional parametric family of policy
rules, and then optimizes over the coefficients of the rule, using an economic model
to compute the equilibrium associated with each possible set of parameters.3 A
characteristic weakness of such work,4 in our view, is that the conclusions reached
about the optimal values of certain parameters are likely to be strongly influenced by
the parametric family of rules considered, i.e., by which other kinds of feedback
are assumed not to be possible.

Hence, we take another approach here, closer to that usually taken in the literature
on optimal fiscal policy. We first characterize the optimal state-contingent evolution of
the economy, optimizing over the set of stochastic processes consistent with the
structural equations that define rational-expectations equilibrium, and then derive a
policy rule that can implement the desired equilibrium. In order for the policy rule
to “implement” the equilibrium, we not only mean that it must be consistent with
it but also that the rule (in conjunction with the structural relations) must determine
a unique nonexplosive rational-expectations equilibrium. This means that it does
not suffice to characterize optimal policy by computing the state-contingent instru-
ment path associated with the optimal equilibrium.5 Instead, the optimal policy
rule must be described by a relation between endogenous variables that the central
bank is committed to bring about, in the spirit of the Taylor rule.

Of course, once we characterize policy by a relation among endogenous variables,
there will be many such rules that are each consistent with the desired equilibrium.
We therefore obtain a more precise policy recommendation by demanding that our
optimal policy rule be robustly optimal in the sense discussed in Giannoni and
Woodford (2002, section 4): we demand that the rule determine an optimal equilib-
rium regardless of the assumed statistical properties of the exogenous disturbances.
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Such robustness is highly desirable, as it greatly increases the plausibility of a central
bank’s being willing to commit itself to conduct policy in accordance with the rule.
In practice, economies are affected by a large number of different types of distur-
bances that differ in their expected degree of persistence, the degree to which
their effects are expected to be delayed, and so on; and central banks always have
a great deal of information about the specific disturbances that have recently hit
the economy, even if it would be hard to enumerate all of the possible disturbances
in advance. A rule with a separate proviso dealing with each of the types of
shocks that could ever occur would not be practical to discuss; but a rule that is
optimal only on the assumption that no disturbances will ever occur other than
those of a few “typical” types is not one that any central bank is likely to commit
itself to follow. A robustly optimal rule eliminates this practical difficulty with the
notion of commitment to a policy rule.

The requirement of robust optimality is especially important for clarification of
the advantages of forward-looking rules. In the context of a given specification
of the statistical properties of the disturbances, and the associated optimal equilib-
rium, we may find a forward-looking policy rule that is consistent with the equi-
librium; but there will necessarily also be a rule that makes no reference to
expectations (and that may instead depend on lagged endogenous variables) that
is equally consistent with the optimal equilibrium, obtained by replacing the
expectation terms in the policy rule by the functions of current and lagged variables
that represent rational forecasts in the context of this equilibrium. It is only if we
ask whether the same policy continues to be optimal when we vary the statistical
properties of the disturbances that we can hope to find an advantage of one representa-
tion of the policy rule over the other.

In a previous paper (Giannoni and Woodford 2002), we have expounded a general
approach to the design of robustly optimal policy rules, in the context of a fairly
general linear–quadratic policy problem. Here we consider the implications of our
approach in the context of a particular (admittedly stylized) model of the monetary
transmission mechanism, or rather a group of related variant models,6 giving particu-
lar attention to the degree to which robustly optimal rules are forward- or back-
ward looking.

1. A ROBUSTLY OPTIMAL RULE FOR A SIMPLE FORWARD-LOOKING
MODEL

We first illustrate our method of constructing robustly optimal policy rules in the
context of a basic optimizing model of the monetary transmission mechanism that
has also been used for the analysis of optimal monetary policy in papers such as
Woodford (1999), Clarida, Gali, and Gertler (1999), and Giannoni (2001).7 The
model may be reduced to two structural equations

xt � Etxt�1 � σ(it � Etπt�1 � rn
t ) (1)

πt � κxt � βEtπt�1 � ut (2)
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for the determination of the inflation rate πt and the output gap xt, given the central
bank’s control of its short-term nominal interest-rate instrument it and the evolution
of the composite exogenous disturbances rn

t and ut. Here the output gap is defined
relative to an exogenously varying natural rate of output, chosen to correspond to
the gap that belongs among the target variables in the central bank’s loss function.
The “cost-push shock” ut then represents exogenous variation in the gap between the
flexible price equilibrium level of output and this natural rate, due for example to
time-varying distortions that alter the degree of inefficiency of the flexible price
equilibrium.8 The microfoundations for this model imply that σ, κ � 0, and that
0 � β � 1. The unconditional expectation of the natural rate of interest process is
given by E(rn) � r̄ ≡ �log β � 0 , while the cost-push disturbance is normalized to
have an unconditional expectation E(u) � 0. Otherwise, our theoretical assumptions
place no a priori restrictions upon the statistical properties of the disturbance pro-
cesses, and we shall be interested in policy rules that are optimal in the case of a
general specification of the additive disturbance processes of the form discussed in
Giannoni and Woodford (2002, section 4).

The assumed objective of monetary policy is to minimize the expected value of
a loss criterion of the form

W � E0{�∞

t�0
βtLt} , (3)

where the discount factor β is the same as in Constraint (2), and the loss each period
is given by

Lt � π2
t � λx(xt � x*)2 � λi(it � i*)2 , (4)

for certain optimal levels x*, i* ≥ 0 of the output gap and the nominal interest rate,
and certain weights λx, λi � 0. A welfare-theoretic justification is given for this
form of loss function in Woodford (2003, chapter 6), where the parameters are
related to those of the of the structural model.9 However, our conclusions below
are presented in terms of the parameters of the Loss function (4), and are applicable
in the case of any loss function of this general form, whether the weights and target
values are the ones that can be justified on welfare-theoretic grounds or not. In the
numerical results presented below, the model parameters are calibrated as in Wood-
ford (1999). (For convenience, the parameters are reported in Table 1 below.)

As in Woodford (1999), the state-contingent plan that minimizes the Objective
(3)–(4) subject to Constraints (1) and (2) satisfies the first-order conditions

πt � β�1σΞ1t�1 � Ξ2t � Ξ2t�1 � 0 , (5)

λx(xt � x*) � Ξ1t � β�1Ξ1t�1 � κΞ2t � 0 , (6)
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TABLE 1

Calibrated Parameter Values for the Basic Neo-Wicksellian Model

Structural Parameters
β 0.99
σ–1 0.16
κ 0.024

Shock Processes
ρ(r̂n), ρ(u) 0.35

Loss Function
λx 0.048
λi 0.236

λi(it � i*) � σΞ1t � 0 , (7)

for each date t ≥ 0,10 together with the initial conditions

Ξ1,�1 � Ξ2,�1 � 0 . (8)

(Here Ξ1t and Ξ2t are the Lagrange multipliers associated with Constraint (1) and (2),
respectively.) In the case that a bounded optimal plan exists, it can be described by
equations for πt, xt, it, Ξ1t, and Ξ2t as linear functions of Ξ1,t–1 and Ξ2,t–1 together
with the current and expected future values of the exogenous disturbances; these
linear equations with constant coefficients apply in all periods t ≥ 0, starting from
the initial Condition (8).

It follows from these first-order conditions that in the case of an optimal commit-
ment that has been in force since at least period t – 2, it is possible to infer the
values of Ξ1,t–1 and Ξ2,t–1 from the values that have been observed for xt–1, it–1, and
it–2. Specifically, one can infer the value of Ξ1,t–1 from the value of it–1 using Equation
(7), and similarly, the value of Ξ1,t–2 from the value of it–2. Then substituting these
values into Equation (6) for period t – 1, one can also infer the value of Ξ2,t–1 from
the value of xt–1. One can, of course, similarly solve for the period t Lagrange
multipliers as functions of xt, it, and it–1. Using these expressions to substitute out
the Lagrange multipliers in Equation (5), one obtains a linear relation among the
endogenous variables πt, xt, xt–1, it, it–1, and it–2 that must hold in any period t ≥ 2.
Thus, this provides a candidate policy rule that is consistent with the optimal state-
contingent plan.

Because the relation in question involves a nonzero coefficient on it, it can be
expressed as an implicit instrument rule of the form

it � (1 � ρ1)i* � ρ1it�1 � ρ2∆it�1 � φππt � φx∆xt �4 , (9)

where

ρ1 � 1 �
κσ
β

� 1, ρ2 � β�1 � 1 , (10)

φπ �
κσ
λi

� 0, φx �
4σλx

λi
� 0 . (11)



1430 : MONEY, CREDIT, AND BANKING

We can furthermore show (see Appendix for proof) that commitment to this rule
implies a determinate equilibrium.

Proposition 1: Suppose that a bounded optimal state-contingent plan exists.
Then in the case of any parameter values σ, κ, λx, λi � 0 and 0 � β � 1, a
commitment to the rule described by Rule (9) and Equations (10) and (11) implies
a determinate rational-expectations equilibrium.

The equilibrium determined by commitment to this rule from date t � 0 onward
corresponds to the unique bounded solution to Equations (5)–(7) when the initial
Condition (8) is replaced by the values of Ξ1,–1 and Ξ2,–1 that would be inferred
from the historical values of x–1, i–1, and i–2 under the reasoning described above.

It follows that the equilibrium determined by commitment to the time-invariant
instrument Rule (9) involves the same responses to random shocks in periods t ≥
0 as under the optimal commitment. This is thus an example of an instrument rule
that is optimal from a timeless perspective, in the sense defined in Giannoni and
Woodford (2002, section 3). Note that we could instead implement precisely the
optimal once-and-for-all commitment from date t � 0 onward (the bounded solution
to Equations (5)–(7) with initial Condition (8)) by committing to Rule (9) in all
periods t ≥ 2, but to a modified version of the rule in periods t � 0 and 1. But this
would be a non-time-invariant rule (policy would depend upon the date relative to
the date at which the commitment had been made), and the preferability of this
alternative equilibrium, from the standpoint of expected welfare looking forward
from date t � 0, would result from the alternative policy’s optimal exploitation of
prior expectations that are already given in that period. Choice of a rule that is
optimal from a timeless perspective requires us to instead commit to set the interest
rate according to the time-invariant Rule (9) in all periods.

The Rule (9) has the additional advantage of being robustly optimal, in the sense
defined in Giannoni and Woodford (2002, section 4). We note that our derivation
of the optimal rule has required no hypotheses about the nature of the disturbance
processes {rn

t ,ut} , except that they are exogenously given and that they are bounded.
In fact, the rule is optimal regardless of their nature; commitment to this rule implies
the optimal impulse responses displayed in Woodford (1999) in the case of the
particular disturbance processes assumed in the numerical illustrations there, but it
equally implies optimal responses in the case of any other types of disturbances to
the natural rate of interest and/or “cost-push shocks”—disturbances that may be
anticipated some quarters in advance, disturbances the effects of which do not die out
monotonically with time, and so on.11 Indeed, one may assume that both of the
disturbances rn

t and ut in Constraints (1) and (2) are composite disturbances of
the general form discussed in Giannoni and Woodford (2002, section 4), and Rule
(9) remains an optimal rule. This robustness of the rule is a strong advantage
from the point of view of its adoption as a practical guide to the conduct of
monetary policy.

The optimal Rule (9) has a number of important similarities to the Taylor rule.
Like the Taylor rule, Rule (9) is an example of a direct, implicit instrument
rule. The rule is also similar to Taylor’s recommendation in that the contemporaneous
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effect of an increase in either inflation or the output gap upon the federal funds rate
operating target is positive (φπ, φx � 0); and the rule satisfies the “Taylor princi-
ple,” given that φπ � 0 and ρ1 � 1.12 However, this optimal rule involves additional
history dependence, owing to the nonzero weights on the lagged funds rate, the
lagged rate of increase in the funds rate, and the lagged output gap.13 And the optimal
degree of history dependence is nontrivial: the optimal values of ρ1 and ρ2 are both
necessarily greater than one, while the optimal coefficient on xt–1 is as large (in
absolute value) as the coefficient on xt. It is particularly worth noting that the optimal
rule implies not only intrinsic inertia in the dynamics of the funds rate—a transitory
deviation of the inflation rate from its average value increases the funds rate not
only in the current quarter, but in subsequent quarters as well—but is actually
superinertial: the implied dynamics for the funds rate are explosive, if the initial
overshooting of the long-run average inflation rate is not offset by a subsequent
undershooting (as actually always happens, in equilibrium). In this respect this
optimal rule is similar to those found to be optimal in the numerical analysis by
Rotemberg and Woodford (1999) of a more complicated empirical version of the
model.

In the case of the calibrated parameter values in Table 1, the coefficients of the
optimal instrument rule are given by ρ1 � 1.15, ρ2 � 1.01, φπ � 0.64, and φx �
0.33. These may be compared with the coefficients of the Fed reaction function of
similar form estimated by Judd and Rudebusch (1998) for the Greenspan period:
ρ1 � 0.73, ρ2 � 0.43, φπ � 0.42, and φx � 0.30, except that in this empirical
reaction function φx represents the reaction to the current quarter’s level of the output
gap, rather than its first difference.14 (Interestingly, they find that an equation with
feedback from the first difference of the output gap, rather than its level, fits best
during an earlier period of Fed policy, under Paul Volcker’s chairmanship.) The
signs of the coefficients of the optimal rule agree with those characterizing actual
policy; in particular, the estimated reaction function includes substantial positive
coefficients ρ1 and ρ2, though these are still not as large as the optimal values. Thus,
the way in which actual Fed policy is more complex than adherence to a simple
Taylor rule can largely be justified as movement in the direction of optimal policy,
according to the simple model of the transmission mechanism assumed here.

We find that in the case of this simple model at least, it is not necessary for the
central bank’s operating target for the overnight interest rate to respond to forecasts
of the future evolution of inflation or of the output gap in order for policy to be
fully optimal—and not just optimal in the case of particular assumed stochastic
processes for the disturbances, but robustly optimal.15 Thus, the mere fact that the
central bank may sometimes have information about future disturbances, that are not
in any way disturbing demand or supply conditions yet, is not a reason for feedback
from current and past values of the target variables to be insufficient as a basis for
optimal policy. This does not mean that it may not be desirable for monetary
policy to restrain spending and/or price increases even before the anticipated real
disturbances actually take effect. But in the context of a forward-looking model of
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private sector behavior, a commitment to respond to fluctuations in the target vari-
ables only contemporaneously and later does not preclude effective preemptive
constraint of that kind. First of all, such a policy may well mean that the central
bank does adjust its policy instrument immediately in response to the news, insofar
as forward-looking private sector behavior may result in an immediate effect of the
news upon current inflation and output.16 And more importantly, in the presence of
forward-looking private sector behavior, the central bank mainly affects the economy
through changes in expectations about the future path of its instrument in any event;
a predictable adjustment of interest rates later, once the disturbances substantially
affect inflation and output, should be just as effective in restraining private sector
spending and pricing decisions as a preemptive increase in overnight interest
rates immediately.

At the same time, it is important to note that the optimal Rule (9), while not
“forecast-based” in the sense in which this term is usually understood, does depend
upon projections of inflation and output in the same quarter as the one for which
the operating target is being set. Thus, the rule is not an explicit instrument rule in the
sense of Svensson and Woodford (2004). And this implicit character (a feature that
it shares with the Taylor rule) is crucial to the optimality of the rule, at least if we
wish to find an optimal rule that is also a direct rule (specifying feedback only from
the target variables). Optimal policy must generally involve an immediate adjustment
of the short-term nominal interest rate in response to shocks, as shown in Woodford
(1999);17 and so unless the rule is to be specified in terms of the central bank’s
response to particular shocks, it will have to specify a contemporaneous response
to fluctuations in the target variables, and not simply a lagged response. Thus,
implementation of such a rule will involve judgment of some sophistication about
current conditions; it cannot be implemented mechanically on the basis of a small
number of publicly available statistics.

2. OPTIMAL RULES FOR A MODEL WITH INFLATION INERTIA

The basic model considered above is often criticized as being excessively forward
looking, particularly in its neglect of any sources of intrinsic inertia in the dynamics
of inflation. It might be suspected that this feature of the model is responsible
for our strong conclusion above, according to which a robustly optimal policy
rule need involve no dependence upon forecasts of the target variables beyond the
current period. In Svensson’s (1997) classic argument for the optimality of inflation-
forecast targeting, it is the existence of lags in the effect of monetary policy
on inflation that causes the optimal rule to involve a target criterion for a forecast, with
the optimal forecast horizon coinciding with the length of the policy-transmission lag.
It might reasonably be suspected that forecasts are not necessary in our analysis
above because our simple model includes no lags in the effects of policy.

Here we take up this question by extending our analysis to the case of a model
that incorporates inflation inertia through a device proposed by Christiano, Eichen-
baum, and Evans (2001).18 In this extension of our basic model, prices are not held
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constant between the dates at which they are reoptimized, but instead are automati-
cally adjusted on the basis of the most recent quarter’s increase in the aggregate
price index, by a percentage that is a fraction γ of the percentage increase in the index.
As shown in Woodford (2003, chapter 3), the aggregate supply Relation (2) then
takes the more general form

πt � γπt�1 � κxt � βEt(πt�1 � γπt) � ut , (12)

where the coefficient κ and the disturbance ut are defined as before. For γ substantially
greater than zero, this makes past inflation an important determinant of current
inflation, along with current and expected future output gaps and cost-push shocks; if
γ is close enough to one, even a monetary disturbance that has only a transitory
effect on real activity can have a much longer-lasting effect on inflation.

The aggregate-demand side of our model remains as before, and our model can
accordingly be summarized by the two structural Equations (1) and (12), together
with exogenous stochastic processes for the disturbances {rn

t ,ut}. As shown in
Woodford (2003, chapter 6), the change in our assumptions about pricing behavior
implies a corresponding change in the appropriate welfare-theoretic stabilization
objective for monetary policy. This is once again a discounted criterion of the Form
(3), but the period loss function becomes

Lt � (πt � γπt�1)2 � λx(xt � x*)2 � λi(it � i*)2 . (13)

We wish to consider policies that minimize the criterion defined by Equations (3)
and (13), subject to the constraints imposed by the structural Equations (1) and
(12), for arbitrary values of the indexation parameter 0 ≤ γ ≤ 1.19

In the case of this generalization of our policy problem, the first-order Condition
(5) becomes instead

πqd
t � βγEtπqd

t�1 � β�1σΞ1t�1 � βγEtΞ2,t�1

� (1 � βγ)Ξ2t � Ξ2t�1 � 0 , (14)

where

πqd
t ≡ πt � γπt�1 (15)

is the quasi-differenced inflation rate that appears in both the aggregate supply
Relation (12) and the Loss function (13). Conditions (6) and (7) remain as before,
and this system of three equations, together with initial Condition (8) and an initial
condition for π–1, continues to define the optimal once-and-for-all commitment to
apply from date t � 0 onward.

As above, we can use Conditions (6) and (7) to substitute for Ξ1t and Ξ2t in
Equation (14), obtaining an Euler equation of the form

Et[A(L)(it�1 � i*)] � �ft (16)

for the optimal evolution of the target variables. Here A(L) is a cubic lag polynomial
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A(L) ≡ βγ � (1 � γ � βγ)L � (1 � γ � β�1(1 � κσ))L2 � β�1L3 , (17)

while the term ft is a function of the observed and expected future paths of the
target variables, defined by

ft ≡ q̃t � βγEtq̃t�1 , (18)

q̃t ≡ κσ
λi

[πqd
t �

λx

κ
∆xt] . (19)

By an argument directly analogous to the proof of Proposition 1, we can show
that if a bounded optimal state-contingent plan exists, the system obtained by
adjoining Equation (16) to the structural Equations (1) and (12) implies a determinate
rational-expectations equilibrium, in which the responses to exogenous disturbances
are the same as under the optimal commitment. (The only difference between
this equilibrium and the optimal once-and-for-all commitment just defined relates to
the initial conditions, as in our earlier discussion, and once again this difference
is irrelevant to the design of a policy rule that is optimal from a timeless perspective.)
Hence, we could regard Equation (16) as implicitly defining a policy rule, and the
rule would once again be robustly optimal. In the limiting case that γ � 0, Equation
(16) ceases to involve any dependence upon Etit�1, and the proposed rule would
coincide with the optimal instrument Rule (9) discussed above.

However, Equation (16) is an even less explicit expression for the central bank’s
interest-rate policy than the implicit instrument rules considered earlier, for (when
γ � 0) it defines it only as a function of Etit�1. This means that the central bank
defines the way in which it is committed to set its instrument only as a function of
the way that it expects to act further in the future. This failure to express the rule
in “closed form” is especially undesirable from the point of view of our question
about the optimal forecast horizon for a monetary policy rule. Expression (16)
involves no conditional expectations for variables at dates more than one period in
the future. However, this does not really mean that the central bank’s forecasts for
later dates are irrelevant when setting it. For this “rule” directs the bank to set it as
a function of its forecast of it�1, and (if the same rule is expected to be used to set
it�1) the bank’s forecast at t of it�1 should involve its forecast at t of q̃t�2. It should
also involve its forecast of it�2, and hence (by similar reasoning) its forecast of
q̃t�3, and so on. Hence, it is more revealing to describe the proposed policy rule in
a form that eliminates any reference to the future path of interest rates themselves, and
instead refers only to the bank’s projections of the future paths of inflation and the
output gap.20

To obtain an equivalent policy rule of the desired form, we need to partially
“solve forward” Equation (16). This requires factorization of the lag polynomial as

A(L) ≡ βγ(1 � λ1L)(1 � λ2L)(1 � λ3L) . (20)

We note the following properties of the roots of the associated characteristic
equation.
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Proposition 2: Suppose that σ, κ � 0, 0 � β � 1, and 0 � γ ≤ 1. Then in the
Factorization (20) of the polynomial defined in Equation (17), there is necessarily
one real root 0 � λ1 � 1, and two roots outside the unit circle. The latter two roots
are either two real roots λ3 ≥ λ2 � 1, or a complex pair λ2, λ3 of roots with real
part greater than 1. Three real roots necessarily exist for all small enough γ � 0,
while a complex pair necessarily exists for all γ close enough to 1.

(See proof in the Appendix.) We use the conventions in the statement of this
proposition in referring to the distinct roots in what follows. It is also useful to
rewrite Equation (16) as

Et[A(L)ı̂t�1] � �f̂t , (21)

where hats denote the deviations of the original variables from the long-run average
values implied by the policy rule (Equation 16), or equivalently, by the optimal com-
mitment.

In the case that three real roots exist, the existence of two distinct roots greater
than one allows us two distinct ways of “solving forward,” resulting in two alterna-
tive relations,

(1 � λ1L)(1 � λ2L)ı̂t � (βγλ3)�1Et[(1 � λ�1
3 L�1)�1f̂t] , (22)

or

(1 � λ1L)(1 � λ3L)ı̂t � (βγλ2)�1Et[(1 � λ�1
2 L�1)�1f̂t] . (23)

We can also derive other relations of the same form by taking linear combinations
of these ones. Of special interest is the relation

(1 � λ1L)(1 �
λ2 � λ3

2
L)ı̂t �

1

2
(βγλ3)�1Et[(1 � λ�1

3 L�1)�1f̂t]

�
1

2
(βγλ2)�1Et[(1 � λ�1

2 L�1)�1f̂t] . (24)

Here Relations (22) and (23) are defined (with real-valued coefficients) only in the
case that three real roots exist, while Relation (24) can also be derived (and has
real coefficients on all leads and lags) in the case that λ2, λ3 are a complex pair.
Because |λ2|, |λ3| � 1, the right-hand side of each of these expressions is well
defined and describes a bounded stochastic process in the case of any bounded
process {f̂t}. (In what follows, we shall refer to the three possible expressions for
an optimal instrument rule presented in Relations (22)–(24) as Rule I, Rule II, and
Rule III, respectively.)

Each of the Relations (22)–(24) can be solved for ı̂t as a function of two of its
own lags and expectations at date t regarding current and future values of f̂t. These
can thus be interpreted as implicit instrument rules, each of which now avoids any
direct reference to the planned future path of the central bank’s instrument (though
assumptions about future monetary policy will be implicit in the inflation and output-
gap forecasts). Each of these policy rules is equivalent to Equation (16) and they
are accordingly equivalent to one another, in the following sense.
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Proposition 3: Under the assumptions of Proposition 2, and in the case that the
Factorization (20) involves three real roots, a pair of bounded processes {ı̂t, f̂t}
satisfy any of the Relations (22), (23), or (24) at all dates t ≥ t0 if and only
they satisfy Equation (21) at all of those same dates. In the case that a complex
pair exists, Relation (24) is again equivalent to Equation (21), in the same sense.

(See proof in Appendix.) Each of the rules thus represents a feasible specification
of monetary policy in the case that its coefficients are real valued, and when this
is true it implies equilibrium responses to real disturbances that are those associated
with an optimal commitment. Accordingly, each represents an optimal policy rule
from a timeless perspective. (Note that although the coefficients differ, these are not
really different policies. Proposition 3 implies that they involve identical actions, if
the bank expects to follow one of them indefinitely, regardless of the model of the
economy used to form the conditional forecasts.)

In the case that three real roots exist, we have a choice of representations of
optimal policy in terms of an instrument rule, and this time we cannot choose among
them on grounds of simplicity. But Rule I seems particularly appealing in this case.
This is the rule (among our three possibilities, or any other linear combinations of
these) that puts the least weight on forecasts far in the future. It is proper to ask at
what rate the weights on forecasts shrink with the forecast horizon, under the
assumption that these shrink as fast as possible consistent with robust optimality of
the policy rule, if we wish to determine how much forecast dependence is necessary
for robust optimality.21 This choice is also uniquely desirable in the sense that it
remains well defined in the limit as γ approaches zero. In this limit, Rule I reduces to

(1 � λ1L)(1 � λ2L)ı̂t � f̂t ,

which is the optimal instrument Rule (9) derived earlier.22 Instead, in the case of
any of the other rules, the coefficients on lagged interest rates become unboundedly
large as γ approaches zero. Thus Rule I is clearly the preferable specification of
policy in the case of small γ. The desire for a rule that varies continuously with γ,
so that uncertainty about the precise value of γ will not imply any great uncertainty
about how to proceed, then make Rule I an appealing choice over the entire range
of γ for which it is defined.

One might think that the same continuity argument could instead be used to argue
for the choice of Rule III in all cases, since this is the only one of our optimal
instrument rules that continues to be defined for high values of γ. Yet the instruction
to follow Rule I if three real roots exist, but Rule III if there is a complex pair, is
also a specification that makes all coefficients of the policy rule continuous functions of
γ. The reason is that as γ passes through a critical value γ̄ at which the real roots
of the characteristic equation bifurcate, the two larger real roots, λ2 and λ3, come
to exactly equal one another. When γ̄ is approached from the other direction,
the imaginary parts of the complex roots λ2 and λ3 approach zero; at the bifurca-
tion point their common real value is the repeated real root obtained as the common
limit of the two real roots from the other direction. Hence, when γ � γ̄ , Rules I,
II, and III are all identical. There is thus no ambiguity about whether Rule I or
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Rule III should be applied in this case, and no discontinuity in the coefficients of
the recommended rule as γ approaches γ̄ from either direction. At the same time,
this proposal results in a rule that remains well defined as γ approaches zero, and
for small γ � 0 results in a rule that is very close to the one previously recommended for
an economy with no inflation inertia.

Each of the Rules I, II, and III can be written in the form

it � (1 � ρ1)i* � ρ1it�1 � ρ2∆it�1 � φπFt(π)

�
φx

4
Ft(x) � θππt�1 �

θx

4
xt�1 , (25)

where we have added the constant terms again to indicate the desired level of interest
rates (and not just the interest rate relative to its long-run average level), and where

Ft(z) ≡ �
∞

j�0
αz,jEtzt�j denotes a linear combination of forecasts of the variable z at

various future horizons, with weights {αz,j} normalized to sum to one. This form
of rule generalizes the Specification (9) that suffices in the case γ � 0 in two
respects: the interest-rate operating target it now depends upon lagged inflation in
addition to the lagged variables that mattered before, and it now depends upon forecasts
of inflation and the output gap in future periods, and not simply upon the projections of
those variables for the current period.

Except in these respects, the coefficients are qualitatively similar to those in Rule
(9), as indicated by the following proposition.

Proposition 4: Under the assumptions of Proposition 2, and a loss function with
λx, λi � 0, each of Rules I, II, and III has a representation of the Form (25) for
all values of γ for which the rule is well defined, and in this representation,

ρ1 � 1, ρ2 � 0 ,

0 � θπ ≤ φπ ,

and

0 � θx � φx .

Furthermore, for given values of the other parameters, as γ → 0 (for Rule I) the
coefficient θπ approaches zero, though φπ approaches a positive limit; while as γ → 1
(for Rule III) the coefficients θπ and φπ approach the same positive limit.

(The proof is again in the Appendix.) It is especially noteworthy that once again
the optimal instrument rule is superinertial. We also note that once again what
should matter is the projected output gap relative to the previous quarter’s output gap,
rather than the absolute level of the projected gap; and once again interest rates
should be increased if the gap is projected to rise. Once again a higher projected
inflation rate implies that the interest rate should be increased; but now the degree to
which this is true is lower if recent inflation has been high, and in the extreme case
γ � 1, it is only the projected inflation rate relative to the previous quarter’s rate that
should matter.
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The numerical values of these coefficients are plotted, for alternative values of
γ ranging between zero and one, in the various panels of Figure 1, where the assumed
values for the other parameters are as in Table 1. For all values γ � γ̄ � 0.35, there
are three real roots, and for each value of γ the three values corresponding to Rules
I, II, and III are each plotted; for γ � γ̄ , only Rule III is defined. An interesting
feature of these plots is that if one considers the coefficients associated with Rule
I for γ ≤ γ̄ and Rule III for γ ≥ γ̄ , one observes that the magnitude of each of
the coefficients remains roughly the same, regardless of the assumed value of γ.
(The exception is θπ, which approaches zero for small γ, but becomes a substantial
positive coefficient for large γ, as indicated by Proposition 4.)

Fig. 1. Coefficients of the optimal instrument Rule (25) as functions of γ
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The panels of Figure 2 similarly plot the relative weights αz,j/αz,0 for different
horizons j of the inflation and output-gap forecasts to which the optimal instrument rule
refers,23 for each of several different possible values of γ. (The weights associated
with Rule I are plotted in the case of values γ � γ̄ and those associated with Rule
III in the case of values γ � γ̄.) Here we observe that in this case the forecasts Ft(z)
are not actually weighted averages of forecasts at different horizons, because the
weights are not all nonnegative. Thus while in the presence of inflation inertia,
the optimal instrument rule is to some extent forecast based, the optimal responses to
forecasts of future inflation and output gaps are not of the sort generally assumed
in forward-looking variants of the Taylor rule. In the case of high γ, a higher
forecasted inflation rate (or output gap) in any of the next several quarters implies,
for given past and projected current conditions, that a lower current interest rate
is appropriate. According to the optimal rule, a higher current inflation rate should
be tolerated in the case that high inflation is forecast for the next several quarters.
This is because (in an economy with γ near one) it is sudden changes in the inflation
rate that creates the greatest distortions in the economy, by making automatic
adjustment of prices in response to lagged inflation a poor rule of thumb.

Fig. 2. Relative weights on forecasts at different horizons in the optimal Rule (25)
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In addition to this difference from the conventional wisdom with respect to the
sign with which forecasts should affect policy, one notes that under the optimal
rule it is only forecasts regarding the near future that matter much at all. Even if
we consider only the weights put on forecasts for j ≥ 1 quarters in the future, the
mean future horizon of these forecasts, defined by

�
j≥1

αz,j j��
j≥1

αz,j

is equal to only 2.2 quarters in the case of our calibrated example with γ � 1. Thus,
forecasts other than for the first year following the current quarter matter little under
the optimal policy. Even more notably, none of the projections beyond the current
quarter should receive too great a weight; in our example, the sum of the relative
weights on all future quarters,

�
j�0

αz,j�αz,0 ,

is equal to only 0.39 even in the extreme case γ � 1, while this fraction falls to
zero for small γ. Thus, while a robustly optimal direct instrument rule does have
to be forecast based in the presence of inflation inertia, the degree to which forecasts
matter under the optimal policy rule is still relatively small. Instead, a strong response
to projections of inflation and the output gap for the current period, as called for
by the Taylor rule, continues to be the crucial element of optimal policy.

3. OPTIMAL POLICY WHEN WAGES ARE ALSO STICKY

As discussed in Woodford (2003, chapter 3), a more realistic model will allow
for sticky wages as well as prices. It is argued in this that estimated impulse responses
to an identified monetary policy shock are best fit by a model under which wages and
prices are roughly equally sticky, so that wages and prices respond to a similar
extent (and with similar speed) to a monetary disturbance. Allowing for wages as
well as prices to be sticky also creates a further reason for a lagged endogenous variable
to matter for inflation determination. For the level of the real wage will be sticky
in such a model, and this gradually changing variable is an important determinant
of inflation, as a result of its consequences for the real marginal cost of production. The
stickiness of wages as well as prices is thus another source of inertia in inflation
determination and as such might be expected to justify a more forward-looking
policy rule.

Here we consider how the form of an optimal policy rule changes in the case
that wages and prices are both sticky to a similar extent. We assume a structural
model with monopolistic competition among the suppliers of differentiated types
of labor and Calvo-style staggering of wage adjustment, as in Erceg, Henderson,
and Levin (2000), and utility-based stabilization objectives similar to the ones
derived by these authors.24 For the sake of brevity, we proceed directly to the case
of a model that generalizes theirs, discussed in Woodford (2003, chapter 3), in



MARC P. GIANNONI AND MICHAEL WOODFORD : 1441

which both wages and prices are partially indexed to lagged inflation in the way
that prices are indexed in the previous section.

The structural equations of our model are25

πt � γpπt�1 � κp(xt � ut) � ξp(ŵt � ŵn
t ) � βEt[πt�1 � γpπt] , (26)

πwt � γwπt�1 � κw(xt � ut) � ξw(ŵn
t � ŵt) � βEt[πw,t�1 � γwπt] , (27)

together with the intertemporal IS relation Equation (1). Here πwt represents nominal
wage inflation, ŵt is the deviation of the log real wage from its steady-state
level, ŵn

t represents the log deviation of the “natural real wage”—i.e., the equilibrium
real wage in the case of complete wage and price flexibility—from its steady-state
level, and the coefficients ξp, ξw, κp, κw are all positive. The coefficients 0 ≤ γp ≤
1 and 0 ≤ γw ≤ 1 indicate the degree of indexation of prices and wages, respectively,
to the lagged price index, analogous to the indexation of prices in the model of
Section 2. (The model of Erceg, Henderson, and Levin (2000) corresponds to the
special case in which γw � γp � 0.)

Under the microeconomic foundations for these relations discussed in Woodford
(2003, chapter 3), the appropriate welfare-theoretic stabilization objective is a dis-
counted criterion of Form (3), with a period loss function of the form26

Lt � λp(πt � γpπt�1)2 � λw(πwt � γwπt�1)2

� λx(xt � x*)2 � λi(it � i*)2 . (28)

We wish to consider policies that minimize the criterion defined by Equations (3)
and (28), subject to the constraints imposed by the structural Equations (1), (26),
and (27).

Using the same Lagrangian method as before to characterize optimal policy, we
obtain a set of first-order conditions

λp[(πt � γpπt�1) � βγpEt(πt�1 � γpπt)]

� λwβγwEt(πw,t�1 � γwπt) � β�1σΞ1,t�1

� βγpEt(Ξ2,t�1 � Ξ2t) � (Ξ2t � Ξ2,t�1)

� βγwEt(Ξ3,t�1 � Ξ3t) � Ξ4t � 0 , (29)

λw(πwt � γwπt�1) � (Ξ3t � Ξ3,t�1) � Ξ4t � 0 , (30)

λx(xt � x*) � Ξ1t � β�1Ξ1,t�1 � κpΞ2t � κwΞ3t � 0 , (31)

λi(it � i*) � σΞ1t � 0 , (32)

ξpΞ2t � ξwΞ3t � Ξ4t � βEtΞ4,t�1 � 0 , (33)

where Ξ1t, Ξ2t, Ξ3t are the Lagrange multipliers associated with Constraints (1),
(26), and (27) respectively, and Ξ4t is the multiplier associated with the constraint
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ŵt � ŵt�1 � πwt � πt .

A case in which these equations are especially easy to interpret is the special
case mentioned earlier, in which κw � κp � κ (so that wages and prices are sticky
to a similar degree) and γw � γp � γ (so that wages and prices are indexed to lagged
inflation to the same degree). In this case, we can add Equation (29) to Equation
(30), use Equation (31) to substitute for Ξ2t � Ξ3t and Equation (32) to substitute
for Ξ1t, and finally obtain

(λpπt � λwπwt � γπt�1) � βγEt(λpπt�1 � λwπw,t�1 � γπt)

�
λi

κσ
(∆it � β�1∆it�1) � βγEt[ λi

κσ
(∆it�1 � β�1∆it)]

�
λi

β
(it�1 � i*) �

λx

κ
(∆xt � βγEt∆xt�1) .

This is again an Euler equation of the Form (16), where again A(L) is defined by
Equation (17) and ft is defined by Equations (18) and (19); the only difference is
that in the last of these equations, πqd

t is now defined as

πqd
t ≡ λpπt � λwπwt � γπt�1 (34)

rather than as in Equation (15). It follows that optimal policy rules are of essentially
the same form as for the model with only sticky prices, except that terms that
previously involved only price inflation will now involve both wage and price
inflation.

In the case that γ � 0 (the model of Erceg, Henderson, and Levin, 2000), we
obtain an especially simple result. The optimal instrument rule is again of the Form
(9), except that instead of responding to current and lagged price inflation πt, the
rule prescribes a response (with the same coefficients as before) to a weighted
average of wage and price inflation,

π̄t ≡ λpπt � λwπwt .

For the calibrated parameter values suggested in Table 2 below, this index involves
equal weights on wage and price inflation.

It is worth noting that we obtain different coefficients here for the optimal policy
rule than in Section 2 only because the welfare-theoretic loss function is different
in the case that wages as well as prices are sticky. If instead of Equation (28) we
were to assume a loss function of the Form (4) with arbitrary weights—a common
assumption in non-welfare-theoretic analyses of monetary policy rules—we would
again have obtained precisely the same optimal policy rules as in Section 2. (This
can be seen from the fact that Equation (34) reduces to Equation (15) if λw � 0.)
Thus, sticky wages need not imply any difference in the nature of the tradeoff
between inflation and output-gap stabilization available to the central bank; the main
significance of wage stickiness is that it makes wage stabilization an appropriate
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TABLE 2

Parameter Values in a Calibrated Model with Sticky Wages and Prices

Structural Parameters
αw 0.66
αp 0.62
β 0.99
σ–1 0.16
ωw 0.28
ωp 0.43
θwφ–1, θp 7.88
ξw, ξp 0.055
κw, κp 0.024

Loss Function
λw, λp 0.50
λx 0.048
λi 0.236

objective for policy, with consequences for the form of inflation index that belongs
in an optimal policy rule.

In the case of indexation to lagged inflation, the roots of the lag polynomial
A(L) are the same as in the previous section, yielding the same forms as before for
alternative optimal policy rules. (The three optimal instrument rules are each defined
for the same values of γ as above; the unique optimal targeting rule is again defined for
all γ.) Each of the three optimal instrument rules can be written in the form

it � (1 � ρ1)i* � ρ1it�1 � ρ2∆it�1 � φpFt(π) � φwFt(πw)

�
φx

4
Ft(x) � θππt�1 �

θx

4
xt�1 , (35)

where the coefficients ρ1, ρ2, φx, θπ, and θx and the coefficients {αz,j} are all the
same functions of the model parameters as in Equation (25), for each of the three rules.
The coefficients multiplying the price and wage inflation forecasts satisfy

φp � φw � φπ ,

and

φpαp,j � φwαw,j � φπαπ,j

for each j ≥ 0, where φπ and the {απ,j} are the coefficients multiplying the inflation
forecasts in Equation (25). Thus, if wages and prices are forecasted to increase at
the same rate, the effect of these inflation forecasts on the desired interest-rate setting
is the same as before. However, if the wage and price inflation forecasts differ,
optimal policy now depends on the wage inflation forecast as well.

When γ � 0, the optimal rule no longer involves only projections of a single-
weighted average of wage and price inflation; this is because both wages and prices
are (by assumption) indexed only to lagged price inflation, and not to lagged wage
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inflation. The difference in the optimal responses to wage inflation as opposed to
price inflation is illustrated in Figures 3 and 4 for a calibrated example, with parameter
values displayed in Table 2. Here we assume that ξw�ξp, κw�κp, and θwφ–1�
θp. The values assumed for β, σ, θp, and κp are taken from the estimates of the IS
equation and price inflation equation by Rotemberg and Woodford (1997);27 the
value of ξp is instead taken from the inflation equation estimated by Sbordone (2002),
which relates inflation to real marginal cost rather than to the output gap.28 The
values of αw, αp, ωw, and ωp implied by these estimates are also shown in the table,29

as are the implied coefficients λw, λp, and λx of the welfare-theoretic loss function.
Note that wage inflation and price inflation receive equal weight, and that the relative
weight on output-gap stabilization is the same as in Table 1. We also assume the
same relative weight λi on interest-rate stabilization as in the calibration above of
the flexible-wage model.30

Figure 3 shows the value of the coefficients φp and φw in the optimal instrument
Rule (35), for alternative values of γ ranging between zero and one. (Again the
values are shown for each of Rules I, II, and III in the cases where these exist;
the minimally inertial rule corresponds to Rule I for low values of γ and Rule III
for high values.) Similarly, Figure 4 shows the relative weights on the inflation and
output-gap forecasts at different horizons in the optimal rule.

We note that for moderate positive values of γ, it continues to be the case that
the coefficients on the price-inflation forecasts are quite similar to those on the
wage-inflation forecasts; essentially, the coefficient φπ shown in Figure 1 is split
roughly equally between the coefficients φp and φw, while the relative weights on
forecasts at different horizons remain similar to those shown in Figure 2. Thus, it
is not too bad an approximation to optimal policy to choose the same rule as the
one described in Section 2, but to respond to forecasts of an index that is an (roughly
equally weighted) average of wage and price inflation. For larger values of γ,
however, the optimal responses to forecasts of wage and price inflation are substan-
tially different. The optimal value of φp remains positive, and similar in magnitude to

Fig. 3. Coefficients of the optimal instrument Rule (35) as functions of γ. Coefficients not shown are the same as
in Figure 1
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Fig. 4. Relative weights on forecasts at different horizons in the optimal Rule (35)

the previous coefficient φπ, while the optimal value of φw falls to zero as γ approaches
one. This does not mean that it ceases to be optimal to respond to forecasts of wage
inflation, only that the sum of the weights at different horizons is zero;31 that is,
when γ � 1 the rule prescribes a response only to the forecasted rate of acceleration
of wage inflation, rather than the rate of wage inflation itself (given the expected
rate of price inflation). Specifically, the optimal rule prescribes a negative response
to expected deceleration of wage inflation over the next three quarters relative to
the current rate of wage inflation; it also prescribes a (weaker) positive response
to expected acceleration of wage inflation farther in the future.

Despite these complications, we note that it continues to be the case that optimal
policy depends very little on inflation forecasts (either for wages or prices) farther
in the future than the coming year, even in the case that there is substantial inflation
inertia in both wages and prices. And even with regard to forecasts for the coming
year, current interest rates should respond most strongly (and in particular, most
positively) to projected wage and price inflation in the current quarter, rather than
to forecasted inflation later in the year. Thus, there is once again little support
for the kinds of forward-looking rules that are sometimes offered as descriptions of
the behavior of current inflation-targeting central banks.
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4. DELAYS IN THE EFFECTS OF MONETARY POLICY

Empirical models such as those of Rotemberg and Woodford (1997), Amato and
Laubach (2003), Christiano, Eichenbaum, and Evans (2001), Altig et al. (2002), or
Boivin and Giannoni (2003) differ from the simple models discussed above in that
both output and inflation are predetermined, so that neither is immediately affected by
an unexpected change in policy. Once again, this is not simply an element the
inclusion of which will increase the realism of our model, but one that might
be expected to provide stronger justification for forecast-based monetary policy.
Here we consider the consequences for optimal policy of allowing for such delays
in the effect of policy, modeled in the way described in Woodford (2003, chapter
4, section 4).

Let us consider a model with flexible wages, but sticky prices indexed to lagged
inflation, as in Section 2, but now assuming that both price changes and aggregate
private demand are predetermined d periods in advance, for some d ≥ 0. For
simplicity, let us suppose that the efficient level of output is also known d periods
in advance, so that the output gap is also a predetermined variable.32 In this case,
the structural equations of our model are

xt � Et�dxt�1 � σEt�d(it � πt�1 � rn
t ) , (36)

πt � γπt�1 � κEt�dxt � βEt�d(πt�1 � γπt) � Et�dut . (37)

The welfare-theoretic loss function continues to be given by Equations (3) and
(13). The Lagrangian associated with our policy problem is then of the form

L � E0�
∞

t�0
βt{1

2
(πqd

t )2 �
λx

2
(xt � x*)2 �

λi

2
(it � i*)2

� Ξ1,t�d [xt � Et�dxt�1 � σEt�d (it � πt�1 � rn
t )]

� Ξ2,t�d[πqd
t � κEt�dπqd

t�1 � Et�dut]} ,

where πqd
t again denotes the quasi-differenced inflation rate (Equation 15). Here we

write Ξ1,t–d, Ξ2,t–d for the multipliers associated with Constraints (36) and (37),
respectively, to indicate that each multiplier is determined at date t – d, given that
there is one such constraint for each possible state of the world at date t – d.

Using the law of iterated expectations, the Lagrangian can equivalently be writ-
ten as

L � E0�
∞

t�d
βt{1

2
(πqd

t )2 �
λx

2
(xt � x*)2 �

λi

2
(it � i*)2

� Ξ1,t�d[xt � xt�1 � σ(it � πt�1)] � Ξ2,t�d[πqd
t � κπqd

t�1]}
�

λi

2
E0�

d�1

t�0
βt(it � i*)2 , (38)
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dropping terms that are independent of policy. The first-order conditions that charac-
terize an optimal once-and-for-all commitment as of date zero are given by

πqd
t � βγEt�dπqd

t�1 � β�1σΞ1,t�d�1 � βγEt�dΞ2,t�d�1

� (1 � βγ)Ξ2,t�d � Ξ2,t�d�1 � 0 (39)

together with Conditions (6) and (7), but with Ξi,t–d substituted for Ξit (for i � 1,2)
in the latter equations. Each of the first-order conditions just listed holds for each
t ≥ d. In addition, πd–1 is given as an initial condition, the initial lagged Lagrange
multipliers satisfy Condition (8), and one has additional first-order conditions

it � i*

for the interest rate in periods t � 0, …, d � 1. Note, however, that these last condi-
tions, that relate only to the first few periods following the adoption of the optimal
commitment, are irrelevant to the characterization of optimal policy from a time-
less perspective.

As above, we can use Conditions (6) and (7) to substitute for Ξ1,t–d and Ξ2,t–d in
Equation (39), obtaining an Euler equation of the form

A1(L)(it � i*) � βγEt�d(it�1 � i*) � �Et�d ft , (40)

where A1(L) is the quadratic lag polynomial such that

A(L) � βγ � LA1(L)

is the polynomial defined in Equation (17), and ft is again defined in Equations (18)
and (19). It follows from this that under a policy that is optimal from a timeless
perspective, it depends solely on public information at date t – d. Hence, in the case
of structural equations of this kind, there would be no change in the character
of optimal policy were one to impose the constraint that the interest-rate operating
target must be chosen in advance, as proposed for example by McCallum and
Nelson (1999).

Taking the expectation of Equation (40) conditional upon information at date
t – d, one obtains

Et�d[A(L)(it�1 � i*)] � �Et�dft ,

which is identical to Equation (16) except for the conditioning information set.
The same manipulations as before can then be used to derive the same form of
representations for optimal policy, with the change in the conditioning information
set for expectations. There are once again the three possible forms for an optimal
instrument rule discussed in Section 2 above, and each exists for the same values
of γ as before. Each of the three rules is of the form
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it � (1 � ρ1)i* � ρ1it�1 � ρ2∆it�1 � φπEt�dFt(π)

�
φx

4
Et�dFt(x) � θππt�1 �

θx

4
xt�1 , (41)

where the coefficients are exactly the same functions of the model parameters as
in Equation (25). Thus, the optimal policy rules are of exactly the same form
as before, except that now the period t interest rate should be chosen in period t –
d, and on the basis of the inflation and output-gap projections that are available at
that earlier date. The projections, however, should be for the same time periods
as before.

In the case that γ � 0 (our baseline model, with a standard “New Keynesian
Phillips curve,” except for the d – period delays), the projections in Equation (41)
again are only for inflation and the output gap in period t. Since both of these
variables are known at date t – d, according to our model, the optimal instrument
rule is once again of the Form (9), with coefficients given in Equations (10) and
(11). Thus, in this case there is no change at all in the optimal policy rule. It remains
true that the delays imply that it is optimal for nominal interest rates to be perfectly
forecastable d periods in advance. However, this principle does not imply that a rule
that prescribes a response to contemporaneous inflation and output-gap variations, as
under the Taylor rule, is therefore suboptimal. For under our assumptions, inflation
and the output gap are themselves completely forecastable d periods in advance.
This example shows that an optimal policy rule need not be at all forward looking,
even in the case that the effects of monetary policy are entirely delayed.

Of course, even if there are no effects of a change in monetary policy until
d periods later, it need not follow that inflation and the output gap are completely
predetermined. Only the components of these variables that are affected by mone-
tary policy need to be predetermined. In a more complex model, we may assume that
the forecastable components of inflation and the output gap, Et–dπt and Et–dxt, satisfy
Equations (36) and (37), while the observed variables are equal to these forecastable
components plus exogenous disturbance terms.33 In this case, both Equations (36)
and (37) should include additional unforecastable disturbance terms, as in the model
discussed in Svensson and Woodford (2004). In this case, the Lagrangian Equation
(38) is still correct, up to terms that are independent of policy, and the same first-
order conditions continue to apply. The optimal policy rules just derived continue
to be correct, except that the central bank should respond only to variation in
the forecastable components of inflation and the output gap. For example, the optimal
instrument rule takes the form

it � (1 � ρ1)i* � ρ1it�1 � ρ2∆it�1 � φπEt�dFt(π)

�
φx

4
Et�dFt(x) � θπEt�d�1πt�1 �

θx

4
Et�dxt�1
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instead of Equation (41), and even when γ � 0 the central bank should respond to
forecasts of inflation and output d periods in advance, rather than to current inflation
and output.

We find that our previous conclusions about the character of optimal policy remain
largely intact, even when we allow for delays in the effect of monetary policy.
An optimal instrument rule still involves interest-rate inertia to exactly the same
degree as was determined earlier; in particular, the optimal rule is superinertial for
all possible values of the parameters. We also find once again that optimal policy
is only modestly forward looking. If the components of inflation and the output gap
that are affected by monetary policy are determined d periods in advance, it follows that
policy should respond only to forecasts of inflation and the output gap d or
more periods in the future. However, the interest rate in any given period should be
set (d periods earlier) on the basis of the projected inflation rate and output gap for
the period in which the interest rate applies and periods immediately thereafter; and
even when the degree of inflation inertia is substantial, interest rates should be
based mainly on projections for that period and a few months farther in the
future. There continues to be little support for the idea that primary emphasis should
be placed on inflation forecasts for a period one to two years later than the period for
which the interest rate is set.

5. CONCLUSIONS

We have shown that robustly optimal policy rules can be constructed for each of
a variety of simple forward-looking models of the monetary transmission mechanism.
Our results allow us some tentative conclusions about the desirability the kind of
delayed response of the level of nominal interest rates to changes in inflation and
output that is implied by many estimated central bank reaction functions. Even in our
baseline model, which posits an extremely simple dynamic structure, our optimal
policy rules involve substantial history dependence of a kind not present in simple
proposals such as the Taylor rule. In addition to the fact that policy should respond
to the projected change in the output gap rather than its level, which makes the
recent past level of the output gap relevant for current policy, we find that past
nominal interest rates should affect the current policy setting. Specifically, our
optimal instrument Rule (9) implies that, for any given inflation and output-gap
projections, interest rates should be higher than they otherwise would be if (1)
interest rates have recently been higher than average or (2) interest rates have recently
been rising. Thus, the optimal rules incorporate both the interest-rate persistence (a
positive effect of it–1 on the choice of it) and interest-rate momentum (a positive
effect of ∆it–1 on the choice of ∆it) that characterize the actual Fed reaction functions
estimated by Judd and Rudebusch (1998).

We have also explored the degree to which optimal rules should make policy a
function of projections of inflation and/or output many quarters in the future. In our
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baseline model, it is possible to formulate a robustly optimal policy rule (the implicit
instrument Rule (9) that involves no projections farther in the future than the period
for which the nominal interest-rate operating target is being set. Perhaps surprisingly,
this rule is optimal regardless of what we may assume about the availability of
advance information about future disturbances. Of course, this strong result depends
on the purely forward-looking character of that simple model of inflation and output
determination. But even when we allow for a high degree of inflation inertia, in
Section 2, we find that an optimal policy rule depends much more on the projected
inflation rate and output gap in the quarter for which policy is being set that on the
projections for any later horizons. And while projections for later quarters do matter
to some extent if the degree of inflation inertia is sufficiently great, projections
farther than a year in the future matter little even in this case. Thus, we find little
justification for a policy that gives primary attention to the inflation forecast at a
horizon two years in the future, as is true of the inflation-forecast targeting currently
practiced by central banks such as the Bank of England.

It is important nonetheless to stress that our results do not justify a purely
backward-looking approach to the conduct of policy. In all of the cases considered,
our optimal rules are implicit rules, which is to say that they specify a criterion that
must be satisfied by the central bank’s projections of inflation and output given its
policy. The criterion in question involves variables, the values of which depend on
the current policy action that is chosen; hence, they must be projected using a model
of the monetary transmission mechanism, rather than simply being measured. It is
true that optimal policy could also be described by an explicit (purely backward-
looking) instrument rule, specifying the instrument setting as a function of current
exogenous disturbances and past (or at any rate predetermined) state variables,
that need to be simply measured. But such a representation of optimal policy would
not be robust to changes in the assumed character of the disturbance processes,
unlike the implicit rules derived here. Hence, we would argue that the use of a
quantitative model, that can be used to project the effects of prospective policy
settings, is essential to the optimal conduct of monetary policy. And in a model
that takes account of forward-looking private sector behavior, projections for the
current quarter cannot generally be made without forecasting the economy’s sub-
sequent evolution as well.

Furthermore, in the case that spending and pricing decisions are predetermined,
as assumed in empirical models such as those of Rotemberg and Woodford (1997),
Christiano, Eichenbaum, and Evans (2001), Altig et al. (2002), or Boivin and
Giannoni (2003), the optimal policy is one under which the interest-operating target
is chosen d periods in advance, on the basis of projections of inflation and output for
the period for which the interest rate is being chosen (if not projections farther in the
future as well). In this case, policy decisions necessarily will depend crucially on
projections of conditions at least d periods in the future. However, the lag d by
which spending or pricing decisions are predetermined is not plausibly longer than
one or two quarters. And even in this case, no justification is provided for basing
the interest-rate operating target for a given period on forecasts regarding points
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in time that are much more distant than the period for which the interest-rate
decision is being made. Hence, our results provide little support for the desirability
of basing interest-rate decisions primarily on forecasts of conditions as long as two
years in the future.

APPENDIX A: PROOFS OF PROPOSITIONS

We begin by establishing a technical lemma required in the proof of Proposition 1.

Lemma 1: For any real coefficients A0, A1, A2, A3, we have

A3z
3 � A2z

2 � A1z � A0 � A3(B0 � B1ζ � ζ3) ,

where

ζ � z �
A2

3A3
,

B0 �
27A0A

2
3 � 2A3

2 � 9A3A2A1

27A3
3

,

and

B1 �
3A3A1 � A2

2

3A2
3

.

Proof: A3(B0 � B1ζ � ζ3)

� A3(ζ3 �
1

3

3A3A1 � A2
2

A2
3

ζ �
1

27

27A0A
2
3 � 2A3

2 � 9A3A2A1

A3
3

)
� A3((z �

1

3

A2

A3
)
3

�
1

3

3A3A1 � A2
2

A2
3

(z �
1

3

A2

A3
)

�
1

27

27A0A
2
3 � 2A3

2 � 9A3A2A1

A3
3

)
� A3z

3 � A2z
2 � (13 A2

2

A3
�

1

3

3A3A1 � A2
2

A3
)z �

1

27

A3
2

A2
3

�
1

27

27A0A
2
3 � 2A3

2 � 9A3A2A1

A2
3

�
1

9

3A3A1 � A2
2

A2
3

A2

� A3z
3 � A2z

2 � A1z � A0. ■
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A1. Proposition 1

Proposition 1: Suppose that a bounded optimal state-contingent plan exists.
Then in the case of any parameter values σ, κ, λx, λi � 0 and 0 � β � 1, a
commitment to the rule described by Rule (9) and Equations (10) and (11) implies
a determinate rational-expectations equilibrium.

Proof: The system of equations given by the structural Equations (1), (2), and
the policy Rule (9) and Equations (10) and (11) can be written in matrix form as

Ī [ Zt�1

Etzt�1

Etit�1
] � [ 0

�φ̄] � Ā [Zt

zt

it
] � C̄st , (A1)

where zt ≡ [πt,xt]′ , Zt ≡ [xt�1,it�1,it�2]′ , st ≡ [rn
t ,ut]′ , and

Ī � [1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 σ 1 0
0 0 0 β 0 0
0 0 0 0 0 0

] ,

Ā � [ 0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 σ
0 0 0 1 �κ 0

�
σλx

λi
1 �

κσ
β

� β�1 �β�1 κσ
λi

σλx

λi
�1] .

Equilibrium is determinate if the characteristic polynomial det[Ā � µĪ] has exactly
nZ � 3 roots such that |µ| � 1. Recall that if there are fewer such roots, there is
no bounded solution at all. Since Rule (9) and Equations (10) and (11) are derived
from the first-order Conditions (5)–(7), it must be consistent with the optimal state-
contingent plan. Because we assume that a bounded optimal state-contingent plan
exists, it must be the case that det[Ā � µĪ] admits at least three roots inside the
unit circle.

Note that we can rewrite the characteristic polynomial as

det[Ā � µĪ] � �p(µ)βµ , (A2)

where

p(µ) ≡ µ4 � aµ3 � bµ2 � aβ�1µ � β�2 (A3)

and
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a � 2
1 � β � σκ

β
�

σ2λx

λi
,

b �
1 � 2κβσ � 2σκ � σ2κ2 � 4β � β2

β2
� σ2(1 � β)λx � κ2

βλi
.

We can furthermore express p(µ) as

p(µ) � (µ � µ1)(µ � µ2)(µ � µ3)(µ � µ4) ,

where, because of the symmetry in Equation (A3), the four roots µi satisfy

µ1 � (βµ2)�1 and µ3 � (βµ4)�1. (A4)

Because det[Ā � µĪ] admits at least three roots inside the unit circle, Equations
(A2) and (A3) imply that p(µ) admits either two, three, or four roots inside the unit
circle. Let us consider each case in turn.

1. Let us suppose first, as a way of contradiction, that all four roots of p(µ) are
inside the unit circle. Then |µ1| � 1 by assumption. However, Equation (A4)
implies |βµ2| � 1 , and thus |µ2| � 1, which contradicts the assumption that
all four roots are inside the unit circle.

2. Let us suppose next that p(µ) has three roots inside the unit circle. If
|µ1| � 1, then Equation (A4) implies again |µ2| � 1. It follows that the re-
maining two roots µ3 and µ4 must be inside the unit circle. But this is
impossible, as |µ3| � 1 implies |µ4| � 1. Inversely, if |µ1| � 1, then the three
remaining roots must be inside the unit circle. Again, this is impossible as
|µ3| � 1 implies |µ4| � 1.

It follows that p(µ) must have exactly two roots inside the unit circle, and thus
that the equilibrium is determinate.

A2. Proposition 2

Proposition 2: Suppose that σ, κ � 0, 0 � β � 1, and 0 � γ ≤ 1. Then in
the factorization

A(L) � βγ(1 � λ1L)(1 � λ2L)(1 � λ3L) (A5)

of the polynomial

A(L) ≡ βγ � (1 � γ � βγ)L � (1 � γ � β�1(1 � κσ))L2 � β�1L3 , (A6)

there is necessarily one real root 0 � λ1 � 1, and two roots outside the unit circle.
The latter two roots are either two real roots λ3 ≥ λ2 � 1, or a complex pair λ2,
λ3 with real part greater than 1. Three real roots necessarily exist for all small
enough γ � 0, while a complex pair necessarily exists for all γ close enough to 1.
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Proof: Consider the following properties of the Polynomial (A6):

A(z) � 0, ∀z ≤ 0 A′(z) � 0, ∀z ≤ 0
A(β) � βκσ � 0 A′(β) � (1 � β)(1 � γ) � 2κσ � 0

A(1) � β�1κσ � 0
A( �∞) � �∞

.

From this, we know that for all z ≤ 0, A(z) is positive and decreasing. As z is
raised from 0 to β, A(z) continues to decrease, reaches a minimum (where A(z) may
be positive or negative), and starts increasing as z approaches β. The polynomial
A(z) is positive for z � 1, but decreases again and tends to be –∞, as z becomes
larger and larger. It follows that A(z) admits one real root z1 � 1 and either two
real roots 0 � z3 ≤ z2 � 1 or a pair of complex roots z2, z3.

Thus, A(L) can be written as

A(L) � β�1(z1 � L)(z2 � L)(z3 � L)

� β�1λ�1
1 λ�1

2 λ�1
3 (1 � λ1L)(1 � λ2L)(1 � λ3L)

�
1

βλ1λ2λ3
�

λ1 � λ2 � λ3

βλ1λ2λ3
L �

λ1λ2 � (λ1 � λ2)λ3

βλ1λ2λ3
L2 � β�1L3 , (A7)

where λj ≡ z�1
j for j � 1, 2, 3. Comparing the first terms of Equations (A7) and

(A6), we note that

(βλ1λ2λ3)�1 � βγ , (A8)

so that the polynomial A(L) can be factorized as in Equation (A5), where 0 � λ1 �
1 and λ2, λ3 are either two real roots satisfying 1 � λ2 ≤ λ3, or a pair of complex roots.

We now show that in the case that λ2, λ3 form a pair of complex roots, their
common real part is greater than 1. Comparing the second term of Equation (A7)
with the corresponding term in Equation (A6), and using Equation (A8), we note that

βγ(λ1 � λ2 � λ3) � 1 � γ � βγ . (A9)

Furthermore, as βγλ1 � 1, we have

βγλ1 � 1 � γ � βγ(λ2 � λ3 � 1) � 1 .

This implies

� βγ(λ2 � λ3 � 1) � �γ ,

and thus

λ2 � λ3 � 1 � β�1 � 2 .

Therefore

Reλ2 � Reλ3 �
λ2 � λ3

2
� 1 .

It follows that the moduli |λ2| � |λ3| � 1.
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We now show that three real roots λ1, λ2, λ3 necessarily exist for all small enough
γ � 0, while a complex pair λ2, λ3 necessarily exists for all γ close enough to 1.
First note that each λj, for j � 1, 2, 3, is real if and only if the solution zj ≡ λ�1

j of
the equation

A(z) ≡ A0 � A1z � A2z
2 � A3z

3 � 0

is real, where

A0 � βγ ,

A1 � �(1 � γ � βγ) ,

A2 � 1 � γ � β�1(1 � κσ) ,

and

A3 � �β�1 .

Furthermore, since

A(z) � A3(B0 � B1ζ � ζ3) ,

where

ζ � z �
A2

3A3

and

B0 �
27A0A

2
3 � 2A3

2 � 9A3A2A1

27A3
3

,

B1 �
3A3A1 � A2

2

3A2
3

are real coefficients, each λj is real if and only the corresponding solution ζj of
the equation

B0 � B1ζ � ζ3 � 0

is real (see Lemma 1). From Cardano’s formulas for the roots of a cubic equation,
we know that this equation admits:

1. three different real roots if ∆ ≡ 27B2
0 � 4B3

1 � 0 ,
2. three real roots, at least two of which are equal, if ∆ � 0,
3. one real root and two complex roots if ∆ � 0.
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Expressing ∆ as a function of γ, we have:

∆(γ) � 27B2
0 � 4B3

1 � A�4
3 (27A2

0A
2
3 � 4A0A

3
2 � 18A0A3A2A1 � A2

2A
2
1 � 4A3A

3
1)

� �β4(1 � β)2γ4 � 2β3((1 � β2 � 4β)κσ � (1 � β)(1 � β)2)γ3

� β2(κ2σ2(1 � 10β � β2) � 2κσ(1 � β)(1 � β � β2)

� (1 � 4β � β2)(1 � β)2)γ2 � β2(4κ3σ3 � 10(1 � β)κ2σ2

� 4(2 � 2β2 � β)κσ � 2(1 � β)(1 � β)2)γ

� β2(2βκσ � κ2σ2 � 2κσ � (1 � β)2) ,

which is a fourth-order polynomial in γ. Note that ∆(γ) is a continuous function of
γ that admits at most four real roots and has the following properties:

∆( �∞) � �∞

∆(0) � �β2(2βκσ � κ2σ2 � 2κσ � (1 � β)2) � 0

∆(1) � β2κσ(4κ2σ2 � (8 � 20β � β2)κσ � 4(1 � β)3) � 0

∆(�∞) � � ∞ .

It follows that ∆(γ) admits either one or three roots between 0 and 1. Furthermore,
∆ � 0 for γ � 0 small enough, and ∆ � 0 for all γ close enough to 1. Thus,
three real roots necessarily exist for all small enough γ � 0, while a complex pair
necessarily exists for all γ close enough to 1.

A3. Proposition 3

Proposition 3: Under the assumptions of Proposition 2, and in the case that
the Factorization (20) involves three real roots, a pair of bounded processes
{ı̂t,f̂t} satisfies any of the equations

(1 � λ1L)(1 � λ2L)ı̂t � (βγλ3)
�1

Et[(1 � λ�1
3 L�1)�1f̂t] , (A10)

(1 � λ1L)(1 � λ3L)ı̂t � (βγλ2)�1Et[(1 � λ�1
2 L�1)�1f̂t] , (A11)

or

(1 � λ1L)(1 �
λ2 � λ3

2
L)ı̂t �

1

2
(βγλ3)�1Et[(1 � λ�1

3 L�1)�1f̂t]

�
1

2
(βγλ2)�1Et[(1 � λ�1

2 L�1)�1f̂t] (A12)

at all dates t ≥ t0 if and only they satisfy
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Et[A(L)ı̂t�1] � �f̂t (A13)

at all of those same dates. In the case that a complex pair exists, Equation (A12)
is again equivalent to Equation (A13) in the same sense.

Proof: Proposition 2 guarantees that the roots λ1, λ2, λ3 in Factorization (20)
are either real and satisfy 0 � λ1 � 1 � λ2 ≤ λ3 or 0 � λ1 � 1, and λ2, λ3 are
complex conjugates that lie outside the unit circle. Consider first the case in which
λ1, λ2, λ3 are real.

Rule I. We now show that Equation (A13) implies Equation (A10). Using Factor-
ization (20) to substitute for A(L) and expanding the left-hand side of Equation
(A13), we obtain

βγEt[(1 � λ1L)(1 � λ2L)ı̂t�1 � (1 � λ1L)(1 � λ2L)λ3ı̂t] � �f̂t

or

(1 � λ1L)(1 � λ2L)ı̂t � (βγλ3)�1 f̂t � λ�1
3 Et[(1 � λ1L)(1 � λ2L)ı̂t�1] .

Substituting recursively for (1 � λ1L)(1 � λ2L)ı̂t�j on the right-hand side, we obtain

(1 � λ1L)(1 � λ2L)ı̂t � (βγλ3)�1Et[�∞

j�0
λ�j

3 f̂t�j]
� (βγλ3)�1Et[(1 � λ�1

3 L�1)�1 f̂t] ,

which corresponds to Equation (A10).
We now show that Equation (A10) implies Equation (A13). Since Equation (A10)

holds for all t ≥ t0, Equation (A10) implies

(1 � λ1L)(1 � λ2L)ı̂t�1 � (βγλ3)�1Et�1[(1 � λ�1
3 L�1)�1 f̂t�1] .

Multiplying by βγ(1 � λ3L), and taking expectations at date t on both sides, and
using Factorization (20), we obtain

Et[A(L)ı̂t�1] � λ�1
3 Et[(1 � λ3L)(1 � λ�1

3 L�1)�1 f̂t�1]
� Et[(1 � λ�1

3 L�1)(1 � λ�1
3 L�1)�1Lf̂t�1]

� �Et[Lf̂t�1] � � f̂t

which corresponds to Equation (A13).
Rule II. To show that a pair of bounded processes {ı̂t,f̂t} satisfies Equation (A11)

at all dates if and only they satisfy Equation (A13) at all dates, we simply need to
repeat the above steps, replacing λ2 with λ3 and vice versa.

Rule III. Let us now allow λ2, λ3 to be either real values, or complex conjugates,
lying outside the unit circle. Since Equation (A13) implies both Equations (A10)
and (A11), we know that Equation (A13) implies
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(1 � λ1L)[(1 � λ2L) � (1 � λ3L)
2 ]ı̂t �

1

2
(βγλ3)�1Et[(1 � λ�1

3 L�1)�1f̂t]

�
1

2
(βγλ2)�1Et[(1 � λ�1

2 L�1)�1f̂t] ,

which is obtained by summing Equations (A10) and (A11) on both sides and dividing
by 2. Thus, Equation (A13) implies Equation (A12).

We now show that Equation (A12) implies Equation (A13). Since Equation (A12)
holds for all t ≥ t0, Equation (A12) implies

(1 � λ1L)(1 �
λ2 � λ3

2
L)ı̂t�2 � (2βγλ3)�1Et�2[(1 � λ�1

3 L�1)�1f̂t�2]

� (2βγλ2)
�1

Et�2[(1 � λ�1
2 L�1)�1f̂t�2] .

Multiplying by βγ(1 � λ2L)(1 � λ3L), and taking expectations at date t on both
sides, and using Factorization (20), we obtain

Et[A(L)(1 �
λ2 � λ3

2
L) ı̂t�2]

�
1

2λ3
Et[(1 � λ2L)(1 � λ3L)(1 � λ�1

3 L�1)�1f̂t�2]

�
1

2λ2
Et[(1 � λ2L)(1 � λ3L)(1 � λ�1

2 L�1)�1f̂t�2]

� �
1

2
Et[(1 � λ2L)f̂t�1] �

1

2
Et[(1 � λ3L)f̂t�1]

� �Et[(1 �
λ2 � λ3

2
L) f̂t�1] .

It follows that

�Et [A(L)(1 �
2

λ2 � λ3
L�1)Lı̂t�2] � Et[(1 �

2

λ2 � λ3
L�1)Lf̂t�1] ,

and hence that

Et[A(L)(1 � αL�1)ı̂t�1] � vt ,

where 0 ≤ α ≡ (2λ2 � λ3) � 1 and vt ≡ �Et[(1 � αL�1)f̂t]. This implies furthermore

Et[A(L)ı̂t�1] � αEt[A(L)ı̂t�2] � vt

� Et[�∞

j�0
αjvt�j] � Et[(1 � αL�1)�1vt] � � f̂t ,

which corresponds to Equation (A13).
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A4. Proposition 4

Proposition 4: Under the assumptions of Proposition 2, and a loss function
with λx, λi � 0, each of the Rules I, II, and III has a representation of the form

it � (1 � ρ1)i* � ρ1it�1 � ρ2∆it�1 � φπFt(π) �
φx

4
Ft(x)

� θππt�1 �
θx

4
xt�1 (A14)

for all values of γ for which the rule is well defined, and in this representation

ρ1 � 1, ρ2 � 0 ,

0 � θπ ≤ φπ ,

and

0 � θx � φx .

Furthermore, for given values of the other parameters, as γ → 0 (for Rule I) the
coefficient θπ approaches zero, though φπ approaches a positive limit; while as
γ → 1 (for Rule III) the coefficients θπ and φπ approach the same limit.

Proof: Proposition 2 guarantees that the roots λ1, λ2, λ3 in the Factorization (20)
are either real and satisfy 0 � λ1 � 1 � λ2 ≤ λ3, or 0 � λ1 � 1, and λ2, λ3 are
complex conjugates that lie outside the unit circle. Consider first the case in which
λ1, λ2, λ3 are real, so that both Rule I and Rule II are well defined.

Rule I. First note that the Rule I, i.e., Relation (22) can be rewritten as

ı̂t � ρ1ı̂t�1 � ρ2∆ı̂t�1 � (βγλ3)�1vt , (A15)

where

ρ1 � 1 � (λ2 � 1)(1 � λ1) � 1 ,

ρ2 � λ1λ2 � 0 ,

and

vt ≡ Et[(1 � λ�1
3 L�1)�1f̂t] � Et[�∞

j�0
λ

�j
3 f̂t�j] .

Since Et f̂t�j is given by

Et f̂t�j �
κσ
λi

Et(q̂t�j � βγq̂t�j�1)

�
κσ
λi

Et[�γπ̂t�j�1 � (1 � βγ2)π̂t�j � βγπ̂t�j�1]

�
λxσ
λi

Et[�x̂t�j�1 � (1 � βγ)x̂t�j � βγx̂t�j�1] ,
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we have

vt �
κσ
λi

Et[�∞

j � 0
λ�j

3 ( �γπ̂t�j�1 � (1 � βγ2)π̂t�j � βγπ̂t�j�1)]
�

λxσ
λi

Et[�∞

j � 0
λ�j

3 ( �x̂t�j�1 � (1 � βγ)x̂t�j � βγx̂t�j�1)]
�

κσ
λi

�
∞

j��1
α̃π,jEtπ̂t�j �

λxσ
λi

�
∞

j��1
αx,jEtx̂t�j ,

where

α̃π,�1 � �γ , (A16)

α̃π,0 � 1 � βγ2 � λ�1
3 γ , (A17)

α̃π,j � � λ�j�1
3 βγ � λ�j

3 (1 � βγ2) � λ�j�1
3 γ, ∀j ≥ 1 , (A18)

and

αx,�1 � �1 , (A19)

αx,0 � 1 � βγ � λ�1
3 , (A20)

αx,j � �λ�j�1
3 βγ � λ�j

3 (1 � βγ) � λ�j�1
3 , ∀j ≥ 1 . (A21)

The variable vt can furthermore be written as

vt �
κσ
λi

Sπ�
∞

j�0
απ,j Etπ̂t�j �

λxσ
λi

�
∞

j�0
αx,jEtx̂t�j �

κσγ
λi

π̂t�1 �
λxσ
λi

x̂t�1 , (A22)

where

Sπ � �
∞

j�0
α̃π,j

� �(0 � λ�0
3 � λ�1

3 � λ�2
3 � …)βγ � (λ�0

3 � λ�1
3 � λ�2

3 � …)(1 � βγ2)
� (λ�1

3 � λ�2
3 � …)γ � (1 � λ�1

3 )�1(1 � βγ2 � βγ � λ�1
3 γ)

and

απ,j �
α̃π,j

Sπ
, ∀j ≥ 0 .

Note that the coefficients απ,j satisfy

�
∞

j�0
απ,j � S�1

π �
∞

j�0
α̃π,j � 1 ,

and the coefficients αx,j satisfy
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�
∞

j�0
αx,j � �(λ�0

3 � λ�1
3 � λ�2

3 � …)βγ � (λ�0
3 � λ�1

3 � λ�2
3 � …)(1 � βγ)

� (λ�1
3 � λ�2

3 � …) � (1 � λ�1
3 )�1(1 � λ�1

3 ) � 1 .

Combining Equation (A15) and Equation (A22), we can rewrite Rule I as

ı̂t � ρ1ı̂t�1 � ρ2∆ı̂t�1 � φπFt(π̂) �
φx

4
Ft(x̂) � θππ̂t�1 �

θx

4
x̂t�1 , (A23)

where

φπ � (βγλ3)�1κσ
λi

Sπ �
κσ
λiβ

1 � βγ2 � βγ � λ�1
3 γ

λ3γ(1 � λ�1
3 )

,

θπ � (βγλ3)�1κσγ
λi

�
κσ

λiβλ3
� 0 ,

and

φx � θx �
4λxσ

λiβγλ3
� 0 .

Note furthermore that

φπ � θπ
λ3 � βγ2λ3 � βγλ3 � γ

γ(λ3 � 1)
� θπ(1 �

(1 � γ)(1 � βγ)
γ(1 � λ�1

3 ) ) ≥ θπ . (A24)

Recalling that ẑt ≡ zt � z̄ for any variable z, and that φx � θx, we can rewrite
Equation (A23) as

it � (1 � ρ1)ı̄ � (φπ � θπ)π̄ � ρ1it�1 � ρ2∆it�1 � φπFt(π)

�
φx

4
Ft(x) � θππt�1 �

θx

4
xt�1 . (A25)

We know from Proposition 3 that Equation (21) holds, and thus that Equation (16)
holds. In the steady state, Equation (16) reduces to

A(L)(ī � i*) � �f̄ ,

where

f̄ �
κσ
λi

(1 � βγ)q̄ �
κσ
λi

(1 � βγ)(1 � γ)π̄ .

It follows from Factorization (20) that

(1 � λ1)(1 � λ2)i* � (1 � λ1)(1 � λ2)ı̄ �
κσ
λi

(1 � γ)(1 � βγ)
βγ(1 � λ3)

π̄ . (A26)
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Given that

(1 � λ1)(1 � λ2) � 1 � ρ1

and given that Equation (A24) implies

κσ
λi

(1 � γ)(1 � βγ)
βγ(1 � λ3)

� �(φπ � θπ) ,

we can rewrite Equation (A26) as

(1 � ρ1)i* � (1 � ρ1)ı̄ � (φπ � θπ)π̄ .

Combining this with Equation (A25) yields Equation (A14).
As γ approaches 0, we have λ�1

3 → 0 and λ3γ → β�1. It follows that

lim
γ→0

φπ � lim
γ→0

κσ
λiβ

1 � βγ2 � βγ � λ�1
3 γ

λ3γ(1 � λ�1
3 )

�
κσ
λi

� 0 ,

lim
γ→0

θπ � lim
γ→0

κσ
λiβ

λ�1
3 � 0 ,

and

lim
γ→0

φx � lim
γ→0

θx � lim
γ→0

4λxσ
λiβγλ3

�
4λxσ

λi
� 0 .

Rule II. Following the same development as for Rule I, but replacing λ2 with λ3

and vice versa, we can show that Relation (23) can also be written as in Equation
(A14), but where

ρ1 � 1 � (λ3 � 1)(1 � λ1) � 1 ,

ρ2 � λ1λ3 � 0 ,

θπ �
κσ

λiβλ2
� 0 ,

φπ � θπ(1 �
(1 � γ)(1 � βγ)

γ(1 � λ�1
2 ) ) ≥ θπ ,

and

φx � θx �
4λxσ

λiβγλ2
� 0 .

Rule III. We now allow the roots λ2 and λ3 to be either real or complex. Recall
from the proof of Proposition 2 that (λ2 � λ3)�2 is real and is greater than 1. Using
this, Rule III (Equation 24) can be rewritten, for all values of γ � (0, 1], as
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ı̂t � ρ1ı̂t�1 � ρ2∆ı̂t�1 �
1

2
(βγλ3)�1vI

t �
1

2
(βγλ2)�1vII

t , (A27)

where ρ1 and ρ2 are now given by

ρ1 � λ1 �
λ2 � λ3

2
� λ1

λ2 � λ3

2
� 1 � (λ2 � λ3

2
� 1)(1 � λ1) � 1 , (A28)

ρ2 � λ1
λ2 � λ3

2
� 0 , (A29)

and

vI
t ≡ Et[(1 � λ�1

3 L�1)�1f̂t]
�

κσ
λi

�
∞

j��1
α̃I

π,jEtπ̂t�j �
λxσ
λi

�
∞

j��1
αI

x,jEtx̂t�j , (A30)

vII
t ≡ Et[(1 � λ�1

2 L�1)�1f̂t]
�

κσ
λi

�
∞

j��1
α̃II

π,jEtπ̂t�j �
λxσ
λi

�
∞

j��1
α̃II

x,jEtx̂t�j , (A31)

and where α̃I
π,j and αI

x,j are defined in Equations (A16)–(A21) for all j ≥ 1, α̃II
π,j and

αII
x,j are defined in the same way except that λ3 is replaced with λ2. Using Equations

(A30) and (A31), Equation (A27) can furthermore be written as

ı̂t � ρ1ı̂t�1 � ρ2∆ı̂t�1 �
κσ

λiβγ
Sπ

2 �
∞

j�0
απ,jEtπ̂t�j

�
λxσ
λiβγ

Sx

2�
∞

j�0
αx,jEtx̂t�j �

κσ
λiβ

λ�1
2 � λ�1

3

2
π̂t�1 �

λxσ
λiβγ

λ�1
2 � λ�1

3

2
x̂t�1 , (A32)

where

Sπ � �
∞

j�0
(λ�1

3 α̃I
π,j � λ�1

2 α̃II
π,j) ,

Sx � �
∞

j�0
(λ�1

3 αI
x,j � λ�1

2 αII
x,j) � λ�1

2 � λ�1
3 ,

απ,j � S�1
π (λ�1

3 α̃I
π,j � λ�1

2 α̃II
π,j) ,

αx,j � S�1
x (λ�1

3 αI
x,j � λ�1

2 αII
x,j) ,

and where

�
∞

j�0
απ,j � �

∞

j�0
αx,j � 1 .

Equation (A32) is of the Form (A23), where ρ1 and ρ2 are defined in Equations
(A28), (A29), and
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φπ �
κσ

λiβγ
Sπ

2
, (A33)

θπ �
κσ
λiβ

λ�1
2 � λ�1

3

2
� 0 , (A34)

φx � θx �
4λxσ
λiβγ

λ�1
2 � λ�1

3

2
� 0 . (A35)

(Note that if λ2 and λ3 are complex conjugates, then λ�1
2 � λ�1

3 � (λ2 �
λ3)/(λ2λ3) is real.) Note furthermore that for all γ � (0, 1], the coefficient φπ satisfies

φπ �
κσ
λiβ(λ�1

3

2

1 � βγ2 � βγ � λ�1
3 γ

γ(1 � λ�1
3 )

�
λ�1

2

2

1 � βγ2 � βγ � λ�1
2 γ

γ(1 � λ�1
2 ) )

�
κσ
λiβ(λ�1

3

2 (1 �
(1 � γ)(1 � βγ)

γ(1 � λ�1
3 ) ) �

λ�1
2

2 (1 �
(1 � γ)(1 � βγ)

γ(1 � λ�1
2 ) ))

� θπ �
κσ

λiβγ
(1 � γ)(1 � βγ)
(1 � λ2)(1 � λ3)(1 �

λ2 � λ3

2 ) ≥ θπ . (A36)

As for Rule I, we can rewrite Equation (A23) as in Equation (A25), but where the
coefficients are given in Equations (A28), (A29), and (A33)–(A35). Again, we know
from Proposition 3 that Equation (16) holds, and thus that Equation (A26) holds.
Multiplying Equation (A26) on both sides by (1 � λ2)�1(1 � (λ2 � λ3)/2) , we
obtain

(1 � λ1)(1 �
λ2 � λ3

2 )i* � (1 � λ1)(1 �
λ2 � λ3

2 )ı̄
�

κσ
λi

(1 � γ)(1 � βγ)
βγ(1 � λ2)(1 � λ3)(1 �

λ2 � λ3

2 )π̄ . (A37)

Since Equations (A28) and (A36) imply

(1 � λ1)(1 �
λ2 � λ3

2 ) � 1 � ρ1 ,

κσ
λiβγ

(1 � γ)(1 � βγ)
(1 � λ2)(1 � λ3)(1 �

λ2 � λ3

2 ) � �(φπ � θπ) ,

we can rewrite Equation (A37) as

(1 � ρ1)i* � (1 � ρ1)ı̄ � (φπ � θπ)π̄ .

Combining this with Equation (A25) yields Equation (A14).
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Finally, in the limit, as γ � 1, we have

φπ �
κσ
λiβ

λ�1
2 � λ�1

3

2
� θπ .

NOTES

1. See, e.g., Coletti et al. (1996) and Black et al. (1997).
2. See, e.g., Vickers (1998).
3. Examples of studies of this kind that analyze forecast-based policy rules include Batini and

Haldane (1999), Levin, Wieland, and Williams (2003), and Batini and Pearlman (2002).
4. This includes our own previous studies, such as Rotemberg and Woodford (1999).
5. In the context of the model of Section 2 below, any specification of the path of the central

bank’s nominal interest-rate instrument as a function solely of the history of exogenous disturbances
implies indeterminacy of equilibrium, as shown in Woodford (2003, chapter 4). This problem with
exogenous specifications of an interest-rate path is common to many optimizing models of the monetary
transmission mechanism, and occurs for essentially the same reason as in the classic analysis of Sargent
and Wallace (1975).

6. While the general approach to the construction of robustly optimal policy rules used here is the
same as that discussed in the companion paper, the derivations presented here are self-contained and do
not rely upon any of the results for the general linear-quadratic problem presented in the earlier paper.
It is our hope that a self-contained exposition of the relevant calculations for these simple models will
serve to increase insight into the method, in addition to delivering results of interest with regard to these
particular models.

7. The microeconomic foundations of the structural relations assumed here are expounded in Wood-
ford (2003, chapters 3 and 4).

8. See Woodford (2003, chapter 6) for discussion of the welfare-relevant output gap and of the
nature of “cost-push shocks.”

9. The assumption here of a concern for interest-rate stabilization deserves particular comment.
This may be justified in either of two ways. First, transaction frictions of the sort that account for a
demand for the monetary base despite the fact that it earns no interest result in a welfare loss that is
(to second order) proportional to the squared differential between the interest available on other assets and
that earned on the monetary base); in this case, i* � 0 and λi can be calibrated based on an estimated money
demand function. Alternatively, a quadratic penalty on interest-rate variations can approximate (within
a linear-quadratic framework) the effects of the requirement that nominal interest rates never be negative;
in this case, i* may be slightly higher than the rate of time preference (the nominal interest rate consistent
with a zero-inflation steady state), and the size of λi depends on the frequency and extent to which the
natural rate of interest is sometimes negative. In Woodford (1999) and below, λi is calibrated on the latter
ground, using the natural-rate process estimated in Rotemberg and Woodford (1999).

10. In terms of the notation of Giannoni and Woodford (2002, section 5), we assume here that t0 � 0.
11. This is a substantial advantage of this instrument rule over the one proposed in Woodford (1999),

which expresses the federal funds rate as a function of the lagged funds rate, the lagged rate of increase
in the funds rate, the current inflation rate, and the previous quarter’s inflation rate. This rule would also
be consistent with optimal responses to real disturbances, but only if (as assumed in the earlier calculation)
all disturbances perturb the natural rate of interest in a way that can be described by an AR(1) process
with a single specified coefficient of serial correlation, and have no effect on the natural rate of output
that is different than the effect on the efficient rate of output (i.e., there are no cost-push shocks). In this
special case, however, the rule discussed earlier has the advantage that its implementation requires no
information on the part of the central bank other than an accurate measure of inflation (including an
accurate projection of period t inflation at the time that the period t funds rate is set).

12. See the discussion in Woodford (2003, chapter 4, section 2.2) of the generalization of this principle
to the case of policy rules with interest-rate inertia.

13. It might appear that the history dependence of optimal policy here depends critically on our
assumption of a loss function with λi � 0. But Eggertsson and Woodford (2003) consider the optimal
nonlinear policy rule for a cashless economy, from the point of view of an objective that assigns no
penalty to interest-rate variations, and instead impose the zero bound on nominal interest rates as a
nonlinear constraint each period. They again find that the optimal policy rule is history dependent;
acceptable inflation and output-gap projections depend on whether the zero bound has been a binding
constraint in previous quarters. Aoki (2002) similarly assigns no penalty to interest-rate variations, but
assumes that the central bank has incomplete information about the current state of the economy when
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setting its interest-rate operating target. Here again, the optimal policy rule is history dependent; optimal
policy involves a commitment to respond later when the central bank learns of errors in its past estimates,
even with regard to state variables that no longer matter for inflation or output determination. As long
as there is some reason why the central bank cannot completely achieve its stabilization objectives
independently in each period, optimal policy is history dependent.

14. It should also be noted that the output-gap measure used in Judd and Rudebusch’s empirical
analysis, while a plausible measure of what the Fed is likely to have responded to, may not correspond
to the welfare-relevant output gap indicated by the variable xt in the optimal Rule (9). In addition, φπ
indicates response to the most recent four-quarter growth in the GDP deflator, rather than an annualized
inflation rate over the past quarter alone.

15. Here it may be noted that Rule (9) is not a uniquely optimal policy rule; it is not even the only
rule that is robustly optimal in the sense that we discuss here. In Giannoni and Woodford (2004, section
1.3), we discuss an alternative rule, a pure targeting rule (i.e., a criterion that the projected paths of
inflation and the output gap must fulfill at all times, that does not involve the current instrument setting)
that is equivalent to Rule (9) in the sense that nonexplosive paths for inflation, the output gap, and the
nominal interest rate will be projected to satisfy the target criterion at all times if and only if they
are projected to satisfy Rule (9) at all times. This alternative representation of optimal policy, unlike
Rule (9), involves forecasts of inflation and the output gap in quarters beyond the one for which policy
is currently being chosen. However, even in this case, the relevant forecasts do not look too far into the
future; the greatest weight is placed on the projection for the current quarter, and in the case of the parameter
values given in Table 1, the mean forecast horizon is only 2.1 quarters in the future. Perhaps more to
the point, it is not necessary to represent the policy rule in even such a forward-looking form as that,
in order to have a robustly optimal policy rule; for Rule (9) is one possible representation of the optimal rule.

16. This is obviously not the case if, as more realistic models often assume, there are delays in the
effect of any new information on prices and spending. But in this case, it is probably not desirable for
overnight interest rates to respond immediately to news, either; see Section 4 below.

17. This is not true if there are delays in the effects of shocks upon inflation and output, as discussed
in Section 4 below. But in that case, even the delayed effect upon the central bank’s instrument that is
required by optimal policy cannot be implemented on the basis only of lagged observations of the target
variables, because of the delay with which shocks affect these variables.

18. Christiano et al. assume complete indexation of prices to the previous quarter’s aggregate price
index, while we allow for partial indexation, measured by a coefficient γ, following Smets and Wouters
(2003). Christiano et al. also assume that wages as well as prices are sticky, and that wages are also
indexed to the lagged price index, as in the model discussed in Section 3. Here we continue, as in the
previous section, to assume flexible wages, some other form of efficient contracting in the labor market,
or direct supply of output by “yeoman farmers.” The same kind of indexation is also assumed in Altig
et al. (2002).

19. An alternative way of modeling inflation inertia would be to assume the existence of backward-
looking “rule of thumb” price setters, as in Gali and Gertler (1999). This leads to a modification of the
aggregate supply relation that is similar, though not quite identical, to Equation (12). Steinsson (2000) and
Amato and Laubach (2001) derive welfare-theoretic loss functions for this model, and find that the loss
each period is a quadratic function of both πt and πt–1 that is similar, though again not identical, to our
Loss function (13). Hence, we conjecture that similar conclusions as to the degree to which optimal
policy is forward looking would be obtained using the Gali–Gertler model, though we do not take this
up here.

20. A rule expressed in this way will also conform better to the evident preference of central banks
to justify their monetary policy decisions to the public in terms of their projections for the future paths of
inflation and output, rather than in terms of their assumptions about the future path of interest rates.
Public communications such as the Bank of England’s Inflation Report put projections for both inflation
and output at center stage, while being careful not to express any opinion whatsoever about the likely
path of interest rates over the period under discussion. The forecast-based rules proposed below still
refer to forecast paths conditional upon intended policy, rather than upon “constant-interest-rate” forecasts,
and so it will not be possible to implement these rules without taking a stand (at least for internal
purposes) on the likely future path of interest rates. But the rules make it possible to discuss the way
in which the current instrument setting is required by the bank’s inflation and output projections, without
also discussing the interest-rate path that is implicit in those projections, and to this extent they require
a less radical modification of current procedures.

21. This proposed selection principle also chooses the rule that results in the least intrinsic inertia
in the implied interest-rate dynamics; this selection is appropriate if we wish to establish the extent to
which the optimal interest-rate rule is necessarily inertial.

22. Note that as γ → 0, λ3→ �∞, while γλ3 → β–1.
23. Here we plot the relative weights, rather than the absolute weights, because this makes visual

comparison between the degree of forecast dependence of optimal policy in the different cases easier.
The absolute weights can be recovered by integrating the plots shown here, since the relative weights
in each case must sum to 1/αz,0.
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24. The loss function assumed here is derived in Woodford (2003, chapter 6). Our loss function
differs slightly from the one derived by Erceg et al., even for the case that they treat, because they do
not take account of the discounting of utility in the way that we do.

25. Here we have rewritten log Yt � log Yn
t as xt � ut, where as in our basic model, xt is the gap

between actual and efficient output and ut represents inefficient variation in the natural rate of output.
26. The welfare-theoretic loss function for this model when γw � γp � 0 and there is no penalty for

interest-rate variability is derived in Woodford (2003, chapter 6, section 4.4). When γw, γp � 0, the
relation of wage and price dispersion to wage and price inflation changes in the way discussed in
Woodford (2003, chapter 6, section 2.2), resulting in the modification indicated here of the first two
terms of the loss function. The justification for the final term is the same as in the flexible-wage
model above.

27. Note that if κw � κp, as assumed here, then the real wage is unaffected by monetary policy, as
discussed in Woodford (2003, chapter 3, section 4.2). In this case the Rotemberg–Woodford inflation
equation is correctly specified even when wages are sticky (though their welfare analysis would not be
correct), and their parameter “κ” corresponds to κp here.

28. Note that Sbordone’s inflation equation is equally valid regardless of whether wages are sticky
or not.

29. Even though our parameter values have been taken from two different studies using different
data sets, the implied values of these parameters are reasonable and not too different from the estimates
of Amato and Laubach (2003); see, for example, table 4.2 of Woodford (2003).

30. If λi resulted solely from the existence of transactions frictions, as discussed in Woodford (2003,
chapter 6, section 4.1), the same calibrated value would be appropriate regardless of the assumed degree
of wage stickiness. In the case that λi is chosen to reflect the advantages of lower interest-rate variability
as a result of the zero bound, as in Woodford (1999), then the appropriate value would depend on
the assumed variance of disturbances. In this case, the appropriate value is not independent of whether
we assume wages to be sticky, because the other stabilization objectives are not the same in this case;
but we do not here consider the degree to which the appropriate value of λi should change.

31. This explains why we plot relative weights rather than the weights αw,j in Figure 4. If we normalize
the αw,j to sum to one, then the weights are undefined in the limiting case γ � 1. Nonetheless,
the relative weights have well-defined limiting values, shown in the figure. The coefficients multiplying
any given forecast of wage inflation—i.e., the products φwαw,j—also remain well defined, so there is a
well-defined optimal policy rule in this case.

32. Alternatively, in Equations (36) and (37) we may interpret xt to mean Ŷt � Et�dŶ
e
t . In this case,

the loss function given by Equations (3) and (13) is still correct, up to terms (involving the component
of Ŷe

t that is not forecastable d periods in advance) that are independent of policy.
33. An IS relation of this form is presented in Woodford (2003, chapter 4, section 4.1), where the

additional disturbance results from the unforecastable components of government purchases and/or
the efficient level of output. In the case of inflation, one might suppose that wholesale prices are
determined d periods in advance, and satisfy Equation (37), while the retail price of each good is equal
to the wholesale price plus an exogenous markup, which markup need not be forecastable in advance.
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