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Abstract

This paper proposes an econometric procedure that allows the estimation of the pricing kernel
without either any assumptions about the investors preferences or the use of the consumption data.
We propose a model of equity price dynamics that allows for (i) simultaneous consideration of
multiple stock prices, (ii) analytical formulas for derivatives such as futures, options and bonds,
and (iii) a realistic description of all of these assets. The analytical speci�cation of the model
allows us to infer the dynamics of the pricing kernel. The model, calibrated to a comprehensive
dataset including the S&P 500 index, individual equities, T-bills and gold futures, yields the
conditional �lter of the unobservable pricing kernel. As a result we obtain the estimate of the
kernel that is positive almost surely (i.e. precludes arbitrage), consistent with the equity risk
premium, the risk-free discounting, and with the observed asset prices by construction. The
pricing kernel estimate involves a highly nonlinear function of the contemporaneous and lagged
returns on the S&P 500 index. This contradicts typical implementations of CAPM that use a
linear function of the market proxy return as the pricing kernel. Hence, the S&P 500 index
does not have to coincide with the market portfolio if it is used in conjunction with nonlinear
asset pricing models. We also �nd that our best estimate of the pricing kernel is not consistent
with the standard time-separable utilities, but potentially could be cast into the stochastic habit
formation framework of Campbell and Cochrane (J. Political Economy 107 (1999) 205).
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1. Introduction

Estimating the pricing kernel (PK), or stochastic discount factor, is of paramount
importance to �nancial economics. Beginning with the seminal work of Hansen and
Singleton (1982), scores of papers have re�ned and tested this link between consump-
tion data and asset prices.
This paper proposes an alternative methodology for estimating the PK directly from

observed asset prices that avoids potentially noisy and infrequently observed consump-
tion. Our approach is based on no-arbitrage, and it di�ers from previous work, which
focuses on the state-price density (SPD), because it uses multiple assets, therefore,
allowing the recovery of the PK itself. 1

Following Garman (1976), we specify a continuous-time parametric model of asset
prices. The �rst stage of the methodology involves estimating the parameters using
�xed income, commodities futures, and equity data. The second stage assumes that
the PK is unobservable and backs it out from the estimated model given di�erent
combinations of the assets used at the �rst stage (reverse engineering).
Unlike the equilibrium-based approach, our approach ensures that the PK is inher-

ently consistent—risk premia, and interest rate puzzles are absent. All the problems can
be explained by the model misspeci�cation that can be identi�ed via econometric tests.
The disadvantage is that, like all other no-arbitrage strategies, it lacks economic foun-
dation. However, since daily consumption data are not available, an equilibrium-based
theory would not be testable. The best we can hope for is to see whether the inferred
PK can be potentially conformable to the ones designed for monthly cross-sections.
There are a number of extant methods for estimating the SPD that avoid the use

of the consumption data (A��t-Sahalia and Lo, 1998; Jackwerth and Rubinstein, 1996;
Rosenberg and Engle, 2002, among others). Though di�erent methods are proposed,
the common thread to this work is the selection of the same set of assets to be priced
by the kernel, namely the S&P 500 index and options on the index. These methods
are designed to handle single assets because they rely on the estimation of SPD, and
generalizations to multiple assets are not obvious.
Moreover, the estimation procedures all involve nonparametric methods to various

degrees. Nonparametric methods are capable of accurate representing the data, but
valid inference using the asymptotic properties of the estimators requires more data
than is typically available for this type of empirical study. While this approach may
still be suitable for the unconditional estimation of the PK, it is hardly appropriate for
estimating its dynamic conditional behavior.
The estimation of the multiple-asset continuous time models has so far received lim-

ited attention because empirically plausible speci�cations involve at least two factors,
including latent ones. This complicates the empirical implementation considerably and
was until recently not practically feasible. The examples of some early work on the
subject are Longsta� (1989), who studied the e�ects of time aggregation on the em-
pirical implications of the CAPM, and Ho et al. (1996) who estimated a continuous
time model involving eight asset returns.

1 SPD is equal to the PK multiplied by the probability density of an individual asset returns distribution.
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The choice of assets used for estimating the PK at the second stage of the procedure
is critical for pricing out of sample. To appraise the performance of the kernel estimated
based on di�erent combinations of assets, we use an approach introduced in Hansen
and Jagannathan (1997).
Using multiple assets taken simultaneously sharpen the estimates of the common

parameters pertaining to the dynamics of the PK. We �nd that the best PK can be
described as a complicated non-linear function that depends on the contemporaneous
and lagged returns of the S&P 500 index. 2 Since this function nests the CAPM model,
we conclude that CAPM can be interpreted as the �rst order approximation to the true
PK. Alternatively, in the light of the Roll (1977) critique, this non-linear function of the
observable S&P 500 returns approximates a linear function of the unobservable market
portfolio. Our best estimate of the PK is not consistent with a class of time-separable
utilities; however, it can potentially be explained in the framework of stochastic habit
formation model of Campbell and Cochrane (1999).

The paper is organized as follows. Section 2 presents and motivates the model we
consider and derives the dynamics of the PK. We also brie�y discuss the literature
related to our approach. Section 3 describes the data, outlines the estimation strategy
and results, while Section 4 evaluates the obtained estimates of the PK. The last section
concludes and technical material is provided in several appendices.

2. The model

2.1. Speci�cation

The typical asset pricing setup involves the speci�cation of a model of asset prices
under the objective probability measure and a model of the PK. These two components
completely determine the pricing framework and a mapping to the risk-neutral measure
via the prices of risk in particular. We, however, want to emphasize that we infer the
law of the PK dynamics from the asset prices. Therefore, we start the discussion of our
theoretical framework with the speci�cation of the assets behavior under the objective
and risk-neutral measures. This approach allows us to determine the PK.
We adopt the following system of stochastic di�erential equations (SDE) to specify

the dynamics of the asset i’s price Si(t):
dSi(t)
Si(t)

= (r0 + �iU2(t)) dt + �i
√
1− �2

√
U2(t) dW1(t)

+ �i�
√
U2(t) dW2(t) + �i

√
V i(t) dZi(t); (1)

dU2(t) = (�− �U2(t)) dt +
√
U2(t) dW2(t); (2)

dV i(t) = (�i − –iV i(t)) dt +
√
V i(t) dWi(t): (3)

Eq. (1) implies that the stock-price process Si(t) follows a geometric Brownian motion
with the drift r0+�iU2(t) and a two-component stochastic variance �i2U2(t)+�i2V i(t).

2 These �ndings parallel the work of Bansal and Viswanathan (1993), who directly specify the pricing
kernel as a non-linear function of the contemporaneous monthly market returns.
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The factor U2(t) is common to all assets and determines the dynamics of the drift (pre-
dictability property) as well as the variance. Eq. (2) states that U2 follows a square-root
mean-reverting process with the long-run mean �=� and the speed of adjustment �.
V i(t), the component which determines the asset-speci�c variance, follows a similar
process with the dynamics described by �i=–i and –i, respectively. Finally, instead of
considering the process for Si, we will study Ui

1=log Si. Using Itô’s lemma we replace
(1) with:

dUi
1(t) = [r0 + �iU2(t)− 1

2 �
i2U2(t)− 1

2 �
i2V i(t)] dt + �i

√
1− �2

√
U2(t) dW1(t)

+ �i�
√
U2(t) dW2(t) + �i

√
V i(t) dZi(t): (4)

This speci�cation modi�es the Heston (1993) model in two directions. First, we have a
stochastic drift in the fundamental process (1) rather than a constant to allow for auto-
correlation in asset returns. Second, we add an idiosyncratic component

√
V i(t) dZi(t),

a variation in return attributable to speci�c asset characteristics. In other words, we
assume that W1(t) and W2(t) represent the systematic shocks which do not span the
whole security space, i.e. we have an incomplete market setup. We assume all
the Wiener processes to be independent and we model the leverage e�ect between
the systematic factors via �.

In order to characterize the PK we need to make assumptions about the distribution
of the process under the risk-neutral measure. Since we are in an incomplete market
setting, the equivalent martingale measure is not unique. However, there are consid-
erations which help us identify the risk-neutral measure speci�cation. In particular,
since there is no risk-premium, the drift in (1) becomes equal to the risk-free interest
rate that we model as r0 + r1U2. 3 ; 4 Furthermore, we want the risk-neutral version of√
V i(t) dZi(t) to remain a martingale in order to preserve our structure. This speci�-

cation implies that the risk premium on this term is equal to zero and, therefore, we
can view it as an idiosyncratic noise. 5 Given these considerations, we assume that the
market prices of risk is �j(t) ≡ �j

√
U2(t) for Wj(t) and zero for Zi(t) and Wi(t). It

means that, according to the Girsanov theorem, the systematic factors W ∗
j under the

risk-neutral measure P∗ are related to the actual systematic factors as follows:

W ∗
j (t) =Wj(t) +

∫ t

0
�j(s) ds; j = 1; 2: (5)

Therefore, the stock-return dynamics under the risk-neutral measure P∗ evolve accord-
ing to

dUi
1(t) = [r0 + r1U2(t)− 1

2 �
i2U2(t)− 1

2 �
i2V i(t)] dt

3 This risk-free rate speci�cation is along the lines of the translated CIR model considered in Pearson and
Sun (1994). We will comment on the realism of the model in Section 4.3.2.

4 This is an important di�erence with respect to the Heston model. Our speci�cation with state varying
drift implies that if U2(t) = 0, i.e. we have no uncertainty, the required rate of return becomes equal to
the risk-free interest rate that becomes equal to r0. This is impossible in the constant drift speci�cation
in Heston (1993), since there are arbitrage opportunities in this case (see Chernov and Ghysels, 2000 for
further details).

5 This follows from the Kunita–Watanabe formula. Details are available in Chernov (2000).
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+ �i
√
1− �2

√
U2(t) dW ∗

1 (t) + �i�
√
U2(t) dW ∗

2 (t)

+ �i
√
V i(t) dZi(t); (6)

dU2(t) = (�− �∗U2(t)) dt +
√
U2(t) dW ∗

2 (t); (7)

dV i(t) = (�i − –iV i(t)) dt +
√
V i(t) dWi(t); (8)

where we used the following notations:

r1 = �i − �1�i
√
1− �2 − �2�i�; (9)

�∗ = � + �2: (10)

Now we can establish the mapping between P and P∗. The Radon–Nikodym derivative
(RND) is computed as follows:

dP∗

dP
(t; 	) = exp

{
− (�21 + �22)

2

∫ t+	

t
U2(s) ds

−�1

∫ t+	

t

√
U2(s) dW1(s)− �2

∫ t+	

t

√
U2(s) dW2(s)

}
(11)

and any asset price at time t can be computed as


(t) = Et

(
e−

∫ t+	
t (r0+r1U2(s)) ds dP

∗

dP
(t; 	)�(t + 	)

)
= Et

(
�(t + 	)
�(t)

�(t + 	)
)

(12)

where the asset’s payo� at time t + 	 is equal to �(t + 	) and �(t) is the PK. 6

The discrete-time models often refer to the quantity m(t + 	) = �(t + 	)=�(t) as the
PK. We will use this notation when we work in discrete time at the estimation stage.
Eqs. (11) and (12) yield the dynamics of the PK

d�(t)
�(t)

=−(r0 + r1U2(t)) dt − �1
√
U2(t) dW1(t)− �2

√
U2(t) dW2(t): (13)

We should note here that the PK is, indeed, determined by the systematic factors
only—this is an assumption underlying the initial speci�cation. �(t) is, however, not
the only PK possible. Any PK �′(t), which satis�es

d�′(t)
�′(t)

=
d�(t)
�(t)

+ dL(t) (14)

where L(t) is orthogonal to the space of assets payo�s, will price assets the same way
as �(t). Hence, we obtain the minimum variance estimate of the PK. On the other

6 Note that under such a setup the Novikov condition is satis�ed if U2(t) is bounded. The properties of
the square-root process (see Chernov, 2000 for details) imply that we can bound U2(t) on any �nite time
interval. Hence the RND is a martingale, and we can use the Girsanov theorem about measure transformation.
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hand, if we omitted a systematic factor in the speci�cation then the kernel’s variance
will be too small.
To understand the PK estimation challenge better, note that, while the objective

measure parameters can be estimated from the assets return series, we have to use
derivatives data to estimate �1 and �2. 7 The knowledge of the relevant parameters is
not enough to obtain the value of � at each date t. In particular we can not solve the
SDE analytically and even if we could do so, it would depend on the unobservable
factor U2.

2.2. Discussion

It will be useful to discuss some of the properties of � before we proceed with the
estimation. According to Harrison and Pliska (1981), the existence of the equivalent
martingale measure (which follows from our model construction) implies no arbitrage.
Certain properties of the PK are satis�ed automatically because of this feature of our
model, while alternative approaches to its construction often require additional restric-
tions. In particular, � is positive almost surely. This follows from no arbitrage or can
be shown formally based on the representation in (12). Furthermore, (13) implies

Et

(
d�(t)
�(t)

)
=−(r0 + r1U2(t)) dt ≡ −r(t) dt (15)

and (together with (1) and (9)):

Et

(
dSi(t)
Si(t)

)
= (r0 + �iU2(t)) dt = r(t) dt − Covt

(
dSi(t)
Si(t)

;
d�(t)
�(t)

)
: (16)

Hence asset pricing inconsistencies such as the risk-premium or risk-free rate puzzles
are not a concern.
Indeed, Eqs. (15) and (16) work as restrictions on the PK model at the estimation

stage. This contrasts the equilibrium based approach, where the terms involving � (or
marginal utility in that case) are estimated based on the utility function and the use
of consumption data, while the remaining components are estimated from the observed
asset prices. Matching the data in such a way leads to the equity premium puzzle
(Mehra and Prescott, 1985). This controversy makes it hard to detect the source of
the problem, i.e. whether it is related to the utility function or the quality of the
consumption data. However, in our case the discrepancy between the observed and
modeled returns can be attributed only to the asset returns model misspeci�cation.
In addition to these features, our approach separates the PK from the physical dis-

tribution of a particular asset. Let us expand the expression in (12) to illustrate this
point:


(t) = Et

(
�(t + 	)
�(t)

�(t + 	)
)

7 The derivative pricing formulas for the model are derived in Appendix A.
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=
∫

�(t + 	)
�(t + 	)
�(t)

pdf{�(t + 	)} d�(t + 	)

=
∫

�(t + 	)SPD{�(t + 	)} d�(t + 	); (17)

where pdf stands for the probability density function of the asset and SPD stands for
the state price density of the same asset. A��t-Sahalia and Lo (1998) and Jackwerth
and Rubinstein (1996) develop their methodology to estimate SPD. The drawback of
such an approach is that if the SPD is estimated from one asset, say S&P 500, it is
not possible to use the results to value options on, say National Semiconductor. One
would have to go through the full estimation cycle again to obtain results for the latter
asset. Our approach allows to keep information about preferences contained in � from
one set of estimation results and apply it to a new task. All we have to do is estimate
the physical pdf of the new asset. Rosenberg and Engle (2002) use representations in
(17) to estimate the PK as the ratio of SPD to pdf. Therefore, they can not integrate
information from di�erent securities markets, as we do, since these two functions are
estimated separately from the S&P 500 options and returns data respectively.

3. Data

In principle, if we use the data on the universe of all traded assets, we can get a
very accurate estimate of the PK. Since it is computationally infeasible to use all the
data for estimation, we have to pick some assets that would still give a reasonable
kernel value. We made the following selection:

i = 0: S&P 500 index.
i = 1: Gold futures (COMEX ticker GC).
i = 2: “Potomac Electric Power Co” stock (NYSE ticker POM).
i = 3: “National Semiconductor” stock (NYSE ticker NSM).

The series i=0 should be able to capture the dynamics of the systematic factors very
well. The series i = 1–3 are intended to represent assets which have behavior fairly
di�erent from the market. 8 In other words, we want these assets to have variability
di�erent from that of the market. Note that the gold futures data play a dual role here.
On the one hand, they represent an asset that is typically negatively correlated with
the market. On the other hand, GC is a derivative contract, hence it should facilitate
estimation of the parameters related to preferences and prices of risk �j in particular. 9

Our decomposition into the factors and idiosyncratic components should clearly play
out here. Since, we will value all the assets simultaneously, the inclusion of such series
should improve the quality of the PK. It is likely that two factors are not enough to
describe the behavior of asset prices. Hence, considering such a speci�cation along

8 They represent the commodities, electric utilities industry and semiconductor industry respectively.
9 The details are presented in Appendix B.
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with such assets, we can attenuate the e�ects of the particular factors by combining
all others together in the idiosyncratic term.
Our theoretical framework allows us to consider �xed-income securities simultane-

ously with the equities because the interest rate speci�cation is coherent with proba-
bility measure transformation. Hence, the same PK can be applied to all assets. This
is important not only because bond prices are related to the interest rate, one of the
most important macro variables, but also because our speci�cation of the short interest
rate involves one of the common variables (U2). We consider the 3-month T-bill daily
prices in order to facilitate the estimation of the short rate parameters and the dynamics
of U2 (we will refer to these series as asset i = 4).

Since we do not explicitly model a possibility of extreme movements, we consider
exclusively the post 1987 crash period. Schwert (1990) provides evidence that the
crash e�ects died out by March 1988. Hence we initiate the sample on March 1, 1988.
Our sample extends to August 29, 1997, and covers nine and a half years, or 2353
daily observations. Series 0 are provided by CBOE. Series 2 and 3 come from CRSP,
series 1 are provided by COMEX. Series 4 are obtained from the FRED database at
the Federal Reserve Bank of St. Louis. The data represent activity in several di�erent
markets, which close at di�erent times: series 1 are obtained at 2:30 pm, series 4—at
3:30 pm, series 0, 2, 3 are recorded at 4 pm. Thus we have a non-simultaneous price
problem observed in Harvey and Whaley (1991). We will address this issue at the
estimation stage (see Section 4.1).
Finally, additional options data was used for the model evaluation purposes. The

details are provided in Appendix B.
Let us now take a �rst look at the constructed dataset. Fig. 1 reports the initial

series. Panels (a) and (f) show a familiar plot of the S&P 500 level and log-returns
respectively. Panel (b) reports the GC prices (series 1). The next panel in the Fig. 1
shows the prices of POM (series 2). We di�erence the series to obtain a stationary
object (panel (h) reports the log-returns). Panels (d) and (i) report analogous informa-
tion for NSM (series 3). Fig. 1, panel (e) reports the yields on the 3-month T-bills.
We do not di�erence these series because US T-bill yields are treated as stationary in
most empirical work of this kind. 10

The second column of panels in the Fig. 1 shows returns of the series 0–3. One
can see that they have quite di�erent degrees of variability among each other. The
assets, sample standard deviations and correlations are reported in Table 1. The standard
deviations are quite di�erent indicating various degrees of the idiosyncratic noise. The
correlation coe�cients re�ect the usual �ndings: gold is negatively correlated with the
market while stocks have positive correlation.
Our model is capable of generating this relationship. If �i¿ 0, i=0; 2; 3, then, since

corr(dUi
1; dU

j
1) =

�i�jU2√
(�i2U2 + �i2V i)(�j2U2 + �j2V j)

dt (18)

10 Note that we do not use the observed yields to proxy for the risk-free interest rate. It is modeled as an
unobserved factor r0 + r1U2.
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Fig. 1. The data. On this �gure we plot the original data series. Panels (a)–(d) show the level of the S&P
500, the futures prices on the gold futures with the shortest possible expiration, prices of POM and prices
of NSM respectively. Panels (f)–(i) depict respective returns series. Panel (e) shows bank discount yields
on 3-month T-bills. The vertical dashed line separates the estimation and evaluation samples.
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Table 1
Asset returns correlation matrix We report the annualized standard deviation of the assets’ returns (the
diagonal elements) and their correlations (o�-diagonal elements). The numbers 0, 1, 2, 3 stand for S&P 500,
GC, POM and NSM respectively (further details are provided in Section 2). We also report unconditional
betas under the assumption that series 0 represent the market portfolio.

Series 0 1 2 3 �

0 12.67 −0.19 0.31 0.34 1.00
1 11.86 −0.09 −0.06 −0.21
2 17.54 0.07 0.43
3 49.76 1.35

the correlation between stocks will be positive. On the other hand, if we denote the
futures price by F(U 1

1 ; 	) and apply Itô’s lemma, then we �nd for i �= 1

corr(dF(·); dUi
1) =

(�19F=9U 1
1 + �9F=9U2)�iU2√

(1=dt)Var(dF(·))(�i2U2 + �i2V i)
dt

=
(�1 + �Au|’=0

)�iF(·)U2√
(1=dt)Var(dF(·))(�i2U2 + �i2V i)

dt (19)

This expression may be negative for any sign of �1. 11

We also report the unconditional betas of the series (assuming series 0 is a proxy
for the market portfolio) in the last column of Table 1. These values also indicate
that the dataset represents assets with quite di�erent features. Overall, it seems that the
selected data indeed provides a reasonable set for the PK estimation.

4. Estimating the pricing kernel

4.1. Simulated method of moments

Before we can proceed with the PK estimation, we have to know the parameter
values in our models (2)–(10). The parameter vector 
 is equal to (r0; r1; �1; �2; �; �; �;
{�i; �i; �i; –i}ni=0)

�. Note that �i and �∗ can be uniquely determined from 
, (9), and
(10). We also assume that the S&P 500 index is fully diversi�ed, i.e. �0 ≡ 0 and we
do not have to estimate �0 and –0. 12 The number of di�erent assets, n+1, considered
here is 4 (series i=0–3 in Section 3). Thus, we have to estimate 7+4(n+1)−3=20
parameters.
Econometrically our model has all problems one could think of: no analytical expres-

sion for the likelihood function, latent state variables, non-synchronous data. Therefore,
we rely on the simulated method of moments (SMM) of Du�e and Singleton (1993) as

11 The last expression was obtained based on the results of Appendix A.
12 Evidence in support of this assumption can be found in Chernov (2000).
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the estimation method. 13 The preferred procedure in this class is the e�cient method
of moments (EMM) of Gallant and Tauchen (1996). The moments are constructed
based on the score vector of an auxiliary model that asymptotically provides the true
probability density of the data. In this case, the e�ciency of EMM is close to that of
maximum likelihood. If we are to implement this method in the present setup, how-
ever, we would have to estimate an auxiliary joint density of the �ve series under
consideration. This is computationally infeasible for the current state of technology.
Therefore, we will have to resort to a less e�cient moment conditions.
Let us denote the �ve returns series that we use for estimation by rit , i=0–4. Then

we will construct moment conditions based on the following moments:

E(|rit |), i = 0–4
E(ritrjt), i = 0–4, j = 0–4
E(ritrit−1), i = 0–4
E(r2itr

2
it−1), i = 0–4

E(r20tr0t−1)

This list amounts to 5+15+5+5+1=31 individual moments. Our moments selection
seems to represent a required minimum. We study the �rst and second moments, the
cross-sectional variation which is captured by covariances between the series, and the
intertemporal dynamics that are described by the autocovariances of the returns and
their squares. The conditions based on the T-bill bank discount rate serve to identify
the parameters related exclusively to the interest rate r0 and r1 and the parameters
common with U2, namely � and �. If we combine these moments with the conditions
involving the absolute values of returns on the individual assets (i=0–3), their second
moments and the dynamics of the second moments we will be able to identify the
three asset-speci�c parameters �i, �i and –i. The last asset-speci�c parameter �i can
be identi�ed by adding the moment conditions based on the returns autocovariances.
The parameters related to the market prices of risk �1 and �2 are identi�ed from the
moments based on the T-bill and the gold futures data. Finally, the correlation coe�-
cient � can be identi�ed via the last moment that measures the changes in volatility in
response to the change in the asset. Hence, we limit ourselves to the above minimal
setup. 14

It is clear that the selected moments do not span the entire distribution implied by
the model. Hence, the estimation would be asymptotically more e�cient if a larger
set of moment conditions were used. There are two main considerations against this.
Firstly, some moment conditions may force the model to �t features of the data that
are not plausible within the framework of the model, i.e. the model is misspeci�ed. 15

13 The alternative strategies based on the characteristic function (Chacko and Viceira, 2003; Jiang and
Knight, 2002; or Singleton, 2001), or GMM (Pan, 2002) are not applicable for at least one of the three
reasons.
14 Andersen and SHrensen (1996) and Ho et al. (1996) use similar moments in a Monte-Carlo study and

eight-asset application respectively.
15 Chernov et al. (2003) show within the EMM framework that a stochastic volatility model without jumps

is forced to match the tails of the distribution. As a result, the estimated parameters values are unreasonable.
Namely the stochastic volatility factor wildly varies from to day contradicting the actual volatility behavior.
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So, in practice, one would want to emphasize the moments which could be generated
by a particular model. Secondly, Andersen and SHrensen (1996) �nd that adding extra
moments beyond a certain set provides little additional information in �nite samples.
Our experimentation ranging from a just-identi�ed system to 46 moments involving
higher order and longer lags moments con�rm this. Part of the reason, is that the
objective function becomes so complicated that numerical convergence is harder to
obtain. We also performed an additional check of our estimation strategy using the
S&P 500 and T-bill series (r0 and r4). We estimated the sub-model corresponding
to these series via the approximate maximum likelihood of Du�e et al. (2002). The
obtained parameters are in line with the one obtained from our SMM estimation of the
larger model. 16

While the SMM procedure is very intuitive in theory, several important issues should
be considered during the practical implementation. Most of them are related to the con-
struction of the weighting matrix and identi�cation. We used the diagonal continuously
updated matrix. 17 Such a weighting matrix provides a substantially greater numerical
stability as opposed to the optimal weighting matrix. This stability comes at a price of
larger standard errors. We also veri�ed the local identi�ability of all the parameters of
the model by establishing that the matrix of derivatives has full rank.
There are several issues speci�c to the simulated estimation that we would like to

address here. In order to construct the above analytical moments we have to simu-
late observations from the process (2)–(4). We adopt the Euler-Maruyama order 0.5
strong discretization scheme (see Kloeden and Platen, 1995). The fact that we have to
simulate allows us to incorporate the non-synchronous feature of the dataset into the
estimation strategy. Namely, we simulate data points at intradaily increments to rem-
edy this problem. We have four simulated observations within a day and we assume
that one 8-hour business day is equal to �t = 1=250 on the yearly time scale. Each
time increment will be two times smaller than the previous one, and the �rst one in
the new day will be reset back to the initial value, �t = 1=4 · �t or 2 h. Then, we
simulate observations at t1 = 12 : 30 pm + �t, t2 = t1 + 1=2 · �t, t3 = t2 + 1=4 · �t, and
t4 = t3 + 1=8 · �t. This corresponds to 2:30 pm (the GC prices are reported), 3:30 pm
(the T-bill yields are reported), 4:00 pm (the stock market prices are reported) and
4:15 pm (the index options prices are reported). Then we will take those observa-
tions, which correspond to the actual observation time as the end-of-the-day simulated
prices.
Since the companies in the S&P 500 index pay dividends we have to take them

into an account in our simulation procedure. While the historical data on the dividends
is available and we could adjust the observed index level by the dividends, it is not
feasible to do so with the simulated observations. Simulations are close to the real
market conditions in the sense that dividends distributions are unexpected. Therefore,
we assume a continuously compounded distribution rate that could be simulated. We
assume a dividend rate of 2%, which is consistent with historical data.

16 These results are available in Appendix D.
17 Please refer to Den Haan and Levin (1997), Hall (2000), Hansen et al. (1996) for general treatment

and to Chernov (2000) for the details of this particular application.
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4.2. Reprojection

Having estimated the model parameters we are ready to proceed with the PK estima-
tion. Note from (13) that the PK value depends on the realizations of an unobservable
factor U2. Hence we face a �ltering problem. We use the reprojection methodology
of Gallant and Tauchen (1998) to solve it. Denote the vector of contemporaneous
and lagged observed variables by x(t) and the vector of contemporaneous unobserved
variables by y(t). The problem at hand can be characterized as �nding

ỹ(t) = E(y(t)|x(t)) =
∫

yp(y|x(t); 
) dy: (20)

In other words, we have to know the conditional probability density of y(t). If we
knew the analytical form of this density implied by the system dynamics, we could
estimate it by p̂(y(t)|x(t)) = p(y(t)|x(t); 
̂). But this analytical form is not available
in our case. Therefore, we estimate this density as p̂(y(t)|x(t))=fK (ŷ(t)|x̂(t)), where
ŷ(t); x̂(t) are simulated from our system with parameters set equal to 
̂ and fK is the
SNP density of Gallant and Tauchen (1989). 18

The main idea behind the SNP model is to describe the observed time series as
a VAR(Mu)-GARCH(Ma;Mg) model with the error terms described nonparametrically
rather than by a normal or t distribution. The error term is represented by a combination
of the Hermite polynomials. These polynomials are known to form an orthogonal basis
in the space of squared integrable functions de�ned on the real line. Hence, we can
represent any function by taking a linear combination of a su�cient number of such
polynomials. Since they are equal to Hn(x)e−x2=2, where Hn(x) is a regular polynomial,
one can interpret such a model for errors as a normal density augmented by polynomials
to allow for various departures from normality. H (Kz; Kx;Mp) denotes the polynomial
part of the SNP model with power Kz whose coe�cients are themselves polynomial
functions of degree Kx in Mp lags of the time series we are modeling.
Since we use this modeling technique for the reprojection of the latent PK, the ob-

served time series act as exogenous variables. Therefore, the reprojection SNP model
will have no autoregressive part: VR(Mu)-H (Kz; Kx;Mp). 19 It means, that all the het-
eroscedasticity in the data will have to be explained by the polynomial component.
Hence we expect to see a parameterization which is much more rich than is typically
encountered in the regular SNP.
Note that the above outline does not specify which observables, x(t), should be used

for reprojection. It means, that in essence, we can consider several di�erent information
sets. We use the following choice of x(t): (i) S&P 500, (ii) S&P 500 and GC, (iii) S&P
500 and T-bill rate, (iv) T-bill rate. This seems to be an arbitrary choice of conditioning
variables. However, it is similar in this respect to the choice of instrumental variables
proxying for the information set in the GMM estimation of asset pricing models. The
particular choice is dictated by the following considerations. We do not want to use

18 See, for instance, Gallant and Tauchen (1998) for an intuitive description and examples of implementa-
tion.
19 The notation VR instead of VAR emphasizes that we consider vector regression rather than autoregres-

sion.
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more than two series in order to have a computationally feasible SNP density, fK (·).
Given this limitation, the four choices seem to be the most informative of the economic
conditions and, hence, should facilitate the PK estimation.
In our particular application, y(t)=m(t)=�(t)=�(t−1). We start out by simulating

100,000 observations of n(t) = log(�(t)=�(t − 1)) simultaneously with U 0
1 (t), returns

on F(U 1
1 (t); 	t) and the bank discount rate based on the price of the T-bill B(t; 	t)

given the parameter vector 
̂. 20 Various combinations of the last three variables will
serve as di�erent choices of the observables vector x(t). Itô’s formula and (13) allow
us to establish the dynamics of n(t) needed for the simulation scheme:

n(t) =
∫ t

t−1
d log�(u) =−

∫ t

t−1

(
r0 +

[
r1 +

�21 + �22
2

]
U2(u)

)
du

−
∫ t

t−1
(�1

√
U2(u) dW1(u) + �2

√
U2(u) dW2(u)): (21)

The Euler–Maruyama discretization scheme is used again to obtain realizations of
n(t). Next, we estimate four di�erent SNP densities fK (n̂(t)|x̂(t)) corresponding to
the choices of the exogenous variables x(t) outlined above. In order to obtain the
estimate of the PK we use (20), namely:

m̃(t) = E(m(t)|x(t)) =
∫

mp̂m(t)|x(t)(m|x(t)) dm

=
∫

enp̂n(t)|x(t)(n|x(t)) dn=
∫

enfK (n|x̂(t)) dn: (22)

This formula underlies the �ltering problem that we are trying to solve: we do not
attempt to forecast the PK, but we are trying to infer its value today from the contem-
poraneous asset prices.
The procedure outlined above will yield four alternative estimates of the PK. Section

5 will discuss our approach to the selection of the �nal estimate. Before we get there,
Section 4.3 will discuss the results of the described above methodology implementation.

4.3. Estimation results

4.3.1. Estimating the assets dynamics model
The estimated model parameters that are obtained via SMM are reported in Table

2. Table 3 complements it by discussing characteristics of the estimated model that
are more intuitive for interpretation. The �rst thing we notice from Table 2 is that
despite the ine�ciency of our estimator of the variance-covariance matrix of the mo-
ment conditions, many parameters, namely �; r0; r1; �2, all �’s, �2; �3, all �’s, and all –’s
are signi�cant. However, some of the standard errors are large and indicate potentially
insigni�cant parameters. In order to gain further intuition about our model, we will
concentrate on the entries in Table 3.

20 The time index in 	t indicates that every day the time to maturity will be di�erent.
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Table 2
Estimation results We calibrate the assets dynamics model

dSi(t)
Si(t)

= (r0 + �iU2(t)) dt + �i
√
1− �2

√
U2(t) dW1(t) + �i�

√
U2(t) dW2(t) + �i

√
V i(t) dZi(t)

dU2(t) = (�− �U2(t)) dt +
√
U2(t) dW2(t)

dV i(t) = (�i − –iV i(t)) dt +
√
V i(t) dWi(t)

�i = r1 + (�1
√

1− �2 + �2�)�i

to the returns on the S&P 500 index, GC, POM, NSM and the T-bill bank discount rate via the Simulated
Method of Moments. The S&P 500 is assumed to be fully diversi�ed, i.e. �0 =0. Panel A reports parameters
common to all the assets considered, while panel B shows the asset speci�c parameters. Panel B also shows
the relationship between the index i and an asset. The dynamics of the T-bill are completely determined by
the common parameters, hence it is not mentioned in the panel B. Standard errors are reported in parentheses.

Panel A

� � r0 r1 �1 �2 �

0.7172 1.8077 0.0214 0.0894 0.5581 −0.8371 −0.4817
(0.42) (1.07) (0.01) (0.03) (0.66) (0.28) (0.71)

Panel B

Assets S&P 500 GC POM NSM
parameters i = 0 i = 1 i = 2 i = 3

�i 0.2705 −0.1984 0.2850 0.9326
(0.04) (0.02) (0.04) (0.14)

�i 0 0:2668× 10−4 0.6803 0.1378
(−) (0:34× 10−4) (0.09) (0.01)

�i n.a. 2.5805 1.3155 16.2226
(0.92) (0.13) (3.21)

–i n.a. 4.1597 0.9418 5.0421
(0.88) (0.31) (1.07)

All the elements of Table 3 are computed based on the values of the estimated
parameters. For instance, the average value of the systematic factor is equal to the
unconditional mean of U2 that is very well known to be equal to �=�. Speed with
which U2 is pulled back to its mean (or its persistence) is measured by �. Smaller
values indicate a slower speed, i.e. a more persistent process. We can use the persistence
to measure the half-life of the process. Namely, half of the process shock dissipates in
log(2)=� years. Similarly, the average idiosyncratic factor is equal to the unconditional
mean of V i, i.e. �i=–i, the pullback speed is equal to –i and half-life is log(2)=–i: The
average risk-free rate is computed in the same way, based on the expression r0 + r1U2.
The leverage e�ect is equal to the correlation coe�cient �. We can also decompose
the average total variance of each asset into the systematic, �i2�=�, and idiosyncratic,
�i2�i=–i, components. They will allow us to assess the contribution of the common factor
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Table 3
Estimation results interpretation We use the estimated parameters reported in Table 2 to compute the implied
characteristics of assets that are easier to interpret.

Panel A

Average systematic Persistence Half-life Average Leverage
factor (U2) of U2 of U2 risk-free rate e�ect

0.3967 1.8077 0.3834 0.0569 −0.4817

Panel B

Assets S&P 500 GC POM NSM
characteristics i = 0 i = 1 i = 2 i = 3

Idiosyncratic factor (V i) n.a. 0.6203 1.3967 3.2173
Persistence of V i n.a. 4.1597 0.9418 5.0421
Half life of V i n.a. 0.1666 0.7359 0.1374
Systematic variance 0.0290 0.0156 0.0322 0.3451
Idiosyncratic variance 0 0:4418× 10−9 0.6465 0.0611
Risk premium 0.0958 −0.0702 0.1009 0.3302

U2 to the variability of di�erent assets. Finally, we can also compute the average risk
premium (�1

√
1− �2 + �2�)�i�=� of each asset.

Overall results support the intuition developed by the unconditional characteris-
tics in the Table 1. S&P 500 and GC have very similar relatively small volatil-
ity (as measured by the sum of the systematic and idiosyncratic variances), while
POM and NSM have a substantially higher variation. Interestingly, most of the vari-
ation in POM is attributed to the noise term (0.65 of idiosyncratic term vs. 0.03
of the systematic one) while variation in NSM is mostly related to the market risk
(0.06 vs 0.34 respectively). Surprisingly, the GC noise component is virtually redun-
dant. The systematic and idiosyncratic components have quite di�erent dynamics as
measured by persistence. The half-life of the systematic volatility U2 is roughly 96
business days. The individual volatility components are ranked (from the most
persistent to the least persistent) as follows: POM (184 days), GC (42 days), and
NSM (34 days).
The persistence of the state variable U2, �, deserves a special attention. The reason

is that we model stock market volatility and risk-free rate via one state variable. If
we were to separate them and denote interest rate and volatility persistence by �r and
�v respectively, then we would expect the following relationship with the persistence
parameter of U2 : �r ¡�·r1 and �¡�v. 21 Future research should take this observation
into an account when modeling stock and bond markets simultaneously. 22

21 For example Gallant and Tauchen (1998) �nd �r ≈ 0:14 on an annual scale based on the 1962–1995
period, and Eraker et al. (2003) �nd �v ≈ 5:8 based on the 1980–1999 period.
22 See Chernov (2000) for further discussion of this issue.

COLUMBIA BUSINESS SCHOOL 16



The average risk-free rate is estimated to be 5.7%. We can note that it can be
decomposed into the constant part (r0) that is equal to 2.1% and the varying term
(r1U2), whose average is equal to 3.6%. Hence, we can draw an analogy with the
in�ation-indexed T-bonds that add a constant interest rate (around 3.5% depending on
the issue date) on top of the time-varying in�ation rate. Since our average stochastic
component roughly corresponds to the historical in�ation rate and U2 = 0 corresponds
to no uncertainty (no in�ation, in particular) in the economy, our estimate of r0 can
be interpreted as a �xed-rate adjustment on the in�ation-indexed T-bills if they were
issued.
We can make several interesting observations about the average risk-premium on

our assets. Note that the risk premiums of S&P 500 (the market) and POM are very
close. This is not surprising if one notices that the systematic variances of these two
assets are very close in magnitude as well. Hence, though POM has a much larger total
variance, most of it is diversi�ed a way in a portfolio and the systematic risk that is
left is very close to that of the market. This contradicts the value of the unconditional
beta (0.43) that was reported in Table 1. The risk premiums on GC and NSM support
the intuition from their respective betas.
Note that our model speci�cation implies that the investor may require not only the

premium related to the variation in the asset prices (�1
√
U2), but also the premium

related to the variations in volatility (�2
√
U2). We �nd that �2 is a statistically sig-

ni�cant parameter, hence the data supports our conjecture that compensation for the
uncertainty in asset returns is not enough to attract investors. Therefore, at a minimum,
one needs to consider a PK with two factors.

4.3.2. Reprojecting the pricing kernel
We can now proceed with the estimation of the PK based on the estimates of

the model parameters and various sets of conditioning variables. The SNP procedure
combined with the Schwarz BIC criterion selected the following models of the PK (see
the outline of the classi�cation scheme in Section 4.2):

(i) VR(1)-H (4; 2; 7), when the conditioning information set contains the S&P 500
returns, i.e. x(t) = U 0

1 (t);
(ii) VR(1)-H (9; 1; 3), when the conditioning information set contains the T-bill bank

discount rate, i.e. x(t) = B(t; 	t);
(iii) VR(1)-H (4; 1; 1), when the conditioning information set contains the S&P 500

returns and the T-bill bank discount rate, i.e. x(t) = (U 0
1 (t); B(t; 	t));

(iv) VR(1)-H (4; 2; 2), when the conditioning information set contains the S&P 500
returns and the GC returns, i.e. x(t) = (U 0

1 (t); F(U
1
1 (t); 	t)).

As one can notice, the regressive part of all the models is very simple: it involves only
the contemporaneous variables in the information set x(t). However, the modeling of
the error terms involves highly non-linear functions. Note that models (iii) and (iv)
involve bivariate series, hence a more simple functional form describing the dynamics
of the kernel.
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Fig. 2. Pricing kernels. We plot the time series of various PK estimators. Panels (a)–(d) show the kernels
obtained from the reprojection procedure conditioned on the observable assets named in the respective panels
headers. Panel (e) shows the PK implied from the T-bill prices and S&P 500 returns. The vertical dashed
line separates the estimation and evaluation samples.

Finally, we can obtain the reprojections of the kernel on the observed data given
the estimated SNP models. The panels (a) to (d) of the Fig. 2 plot the time series of
the obtained conditional estimates based on the SNP models (i) to (iv) respectively.
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We can immediately notice that the di�erent information sets yield kernels with very
di�erent numerical values and time series properties. Since we are essentially trying
to come up with a function of x(t) that would approximate the kernel the best, it is
natural that the resulting objects re�ect the properties of the variables in x(t). There are
di�erences not only in the pattern, but in the range of the estimates as well: the range
of the reprojected kernel is (1.004–1.010), (0.9260–0.9280), (0.9375–0.9395), and
(0.9760–0.9860) for panels (a)–(d) respectively. The fact that they do not overlap
is the evidence of how di�erent are the probability densities fK (·|x(t)) implied by
di�erent information sets.
It is also clear, that the estimated kernels are a�ected by the model misspeci�ca-

tion. Note that reprojected kernels involving the T-bill rate (panels (b) and (c)) have
much lower values, than the ones involving the S&P 500 returns (panels (a) and
(d)). Such ranking seems to be a direct consequence of the single factor that drives
both interest rates and stock market volatility. The discussed above implicit relation-
ship �r=r1 ¡�¡�v seems to be responsible for these di�erences in estimated kernels.
Namely, the density functions fK (·|x(t)) are estimated from the simulated data, i.e.
based on �; while the real data can be better described by �r , and �v. Hence, when
we impose the model on the data, the implicit ranking of the parameters a�ects the
ranking of the estimates.
Moreover, the estimate based on the S&P 500 is so high, that it is greater than

1 for the whole period. These values do not imply a negative interest rate however,
because the expectations, that we take in (22) are contemporaneous and, therefore, are
not equal to the inverse of the gross interest rate. In other words, we estimate today’s
realizations of the PK, not the expectation of its tomorrow’s value. There is nothing
problematic with a value of the PK greater than 1. The only troublesome feature of our
estimate is that it is greater than 1 for the entire period. The �ip side of this feature
is that T-bill based estimates are less than 1 in the same sample.
Obviously, the model misspeci�cation and nonavailability of the full information

set introduce trade-o�s regarding particular estimates to be used in applications. One
way to select the preferred estimate is based on the magnitude of the pricing error.
However, before we do this, we explore another estimate of the kernel, which we call
the implied PK.

4.3.3. Implying the pricing kernel
Observe, that the bond pricing formula in (A.2) implies that

logB(t; 	) = C(	)|�=0;’=i + Au(	)|�=0;’=iU2(t): (23)

It means that if our model is perfectly speci�ed we can invert the values of U2 from
the bond prices. However, since our model is misspeci�ed, this operation would be
similar to the implied volatility procedure frequently used in the context of the Black
and Scholes (1973) model or the Heston (1993) stochastic volatility model. We will
denote this implied latent factor by Û 2.
Since �0 is equal to zero, the knowledge of the index returns U 0

1 and the com-
mon latent factor Û 2 allow us to imply the realizations of the unobserved systematic
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information shocks dW1 and dW2 as a solution of a simple linear system consisting
of the discretized versions of (4) and (2). We will denote these implied shocks as
e1 and e2, respectively. If our model was ideally speci�ed, then ei ∼ N (0; 1=250). In
reality, ei’s will absorb all the model errors, i.e. they will act as error terms that an
econometrician adds to a model to account for misspeci�cation. Finally, the knowledge
of Û 2 and ei’s allows us to imply the values of the PK based on the discretized version
of (13).
The implied kernel is plotted on the last panel of Fig. 2. One can notice that the

implied kernel has a higher variability than the reprojected ones. This makes perfect
sense, because under the null that the model is speci�ed correctly we e�ectively make
the full information set observable. In other words, we obtain the projection of the
kernel on the time t information set, rather than a subset x(t) as in the reprojection
procedure of the previous section. Even if the model is misspeci�ed, we still have more
variability for the same reason. However, the values of the kernel may be biased, which
does not happen with the reprojection procedure.
As a side product of our implied kernel procedure, we can look at the implied

information shocks e1 and e2 as a simple diagnostic of the model misspeci�cation.
According to our model, these errors should be i.i.d. normal. Hence, departures from
this assumption will point out the directions of the model misspeci�cation.
We will resort to the simplest graphical techniques to evaluate the normality of

random variables. Figs. 3 and 4 report such analysis. The �rst of these �gures looks at
the unconditional properties of the series. Panel (a) shows the scatter plot to check if the
ei’s are uncorrelated as it is assumed in our model. The plot reveals little dependence
of the two variables. Panels (b) and (c) show the QQ plots for each of the series.
Panel (b) reveals that e1 is fairly symmetric, but has heavier tails as compared to the
normal distribution. Panel (c) shows that e2 has a certain degree of negative skewness.
The tails are heavy as well, but not as much as the ones of e1. Hence we can conclude,
that the implied information shocks are not normally distributed.
The normality of the ei’s may not be that important as long as the series exhibits

features of white noise such as homoscedasticity and zero autocorrelation. Fig. 4 eval-
uates some of the time series properties of the ei’s for this reason. Panels (a) and
(c), which show the simple time series plots, immediately reveal heteroscedasticity in
the series. This heteroscedasticity most likely accounts for the unconditional departures
from normality observed in the Fig. 3. Panels (b) and (d) show the sample autocorre-
lations for the series. The e1’s exhibit the desired white noise feature in this respect.
However, e2’s have signi�cantly non-zero autocorrelations that die out very slowly.
This is indicative of ARMA structure in the series. This term takes on most of the
misspeci�cation in our model. It seems that the observed heteroscedasticity of the ei’s
might be removed by adding a jump component. We can conclude, that our model is
misspeci�ed and, hence, the implied PK will not be consistent with the dynamics of
the model.
This evidence of our model misspeci�cation may be interpreted as a failure of the

suggested methodology. However, from the empirical perspective, we have to acknow-
ledge that any model, no matter how realistic it is, will still be misspeci�ed. Therefore,
the generic problem that any empiricist is facing, is how to make the best use out of
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Fig. 3. Unconditional properties of the information shocks. We look at the simplest unconditional properties
of the information shocks e1 and e2 implied from our model and the T-bill and S&P 500 data. Panel (a)
shows the scatter plot, while panels (b) and (c) show the QQ plots for e1 and e2, respectively.

the given misspeci�ed model. Implementation of the model that is consistent with its
theoretical properties (i.e. implicit distribution of the state variables), allows to identify
its pitfalls from the modeling and empirical perspectives. For instance, our diagnostics
results show, that the reprojected PK is only a portion of the “true” PK (see also our
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Fig. 4. Conditional properties of the information shocks. We look at the simplest conditional properties of
the information shocks e1 and e2 implied from our model and the T-bill and S&P 500 data. Panels (a) and
(c) show the times series plots, while panels (b) and (d) chart the sample autocorrelations of the respective
series. Lags are measured as fractions of the sampling period, i.e. 0.01 corresponds to approximately 24
days.

discussion of (14)). Hence, we know, that empirical asset returns constructed based on
this PK will represent only a part of the actual returns. Implied PK may provide the
superior �t by design, but will not yield any of the insights we discussed here, because
it is not consistent with the model dynamics.
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Table 4
The pricing kernels diagnostics We report the diagnostics results based on the Hansen–Jagannathan (HJ)
methodology for the candidate PKs estimates based on di�erent combinations of samples and assets. The
combination type has a name of the form “sample-#”, where “sample” can be either “in” denoting the
estimation period from March, 1988 to August 1996 or “out” indicating the evaluation period from September,
1996 to August, 1997. The “#” stand for the number of assets used to compute the distance. If we rely
only on the assets used for estimation, then “#” is equal to 4. If we add the options prices on top of that
then the “#” is equal to 8. Refer to Section 3 and Appendix C for details on the datasets. Panel A reports
the optimal distance to the HJ bound statistics (OD) and the respective p-values in the parentheses. Large
p-values indicate that the PK is on or inside the HJ bound. Refer to the Appendix C and, in particular,
formula (C.10) for details. Panel B reports the values of the HJ distance from the estimated PKs to the set
of admissible PKs.

Type S&P 500 T-bills S&P 500 and T-bills S&P 500 and GC Implied

Panel A
in-4 1.55 2.57 2.57 1.90 0.00

(0.11) (0.05) (0.05) (0.08) (0.50)
in-8 1.94 2.57 2.56 1.98 0.00

(0.08) (0.05) (0.05) (0.08) (0.50)
out-4 1.15 0.99 2.29 2.38 2.00

(0.14) (0.16) (0.07) (0.06) (0.08)
out-8 1.10 0.80 2.53 2.29 1.97

(0.15) (0.19) (0.06) (0.07) (0.08)

Panel B
in-4 2.90 4.33 3.96 2.99 2.35
in-8 8.94 9.50 9.34 8.97 8.81
out-4 2.82 3.03 2.97 2.83 2.55
out-8 3.63 3.79 3.74 3.63 3.41

5. Evaluation of the candidate pricing kernels

Since we have obtained �ve di�erent estimates of the PK, it is important to evaluate
them based on a selected criterion. We choose two evaluation tools for such an as-
sessment both developed by Hansen and Jagannathan (1991, 1997) and are known as
the HJ bounds and HJ distance (�) respectively. The HJ bound establishes a threshold
level on the second moment of an admissible PK. Violation of this bound indicates
misspeci�cation of a candidate kernel. The bound is considered to be violated if the
candidate PK is outside of the bound and the distance to the bound is signi�cantly
di�erent from zero, as judged by the optimal distance test (OD). The � measures the
distance from the candidate to the unobserved true PK and can be interpreted as the
pricing error magnitude. We brie�y discuss the methodology in Appendix C.
Table 4 reports the values of the OD statistic and the � computed for each candidate

PK depicted in the Fig. 2. We consider four di�erent sets of asset returns for each
estimate of the kernel. These sets vary across the sample period and the number of
assets involved in the computation of the HJ distance. On the one hand we consider
in- and out-of-sample pricing errors (the corresponding time periods are from March 1,
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1988 to August 29, 1996 and from September 1, 1996 to August 29, 1997). On the
other hand we consider the four assets used in the model estimation and then we
look at these assets plus additional four series of options prices that are described in
Appendix B.
Panel A of the table reports the tests of the HJ bounds violations. The OD statistic

used in these tests (see formula (C.10)) involves GMM estimation based on the moment
conditions featuring the second moment of the PK, m2(t). One way to compute this
second moment would be just simple raising of m̃(t) to the second power. However,
since m̃(t) = E(m(t) | x(t)), this approach will yield a biased estimate of m2(t). The
unbiased estimate would be direct �ltering of the second moment following the same
approach as for m(t) itself. In other words, we have to compute E(m2(t) | x(t)). One
can notice from (22), that this quantity is simply

∫
e2nfK (n | x̂(t)) dn. We will denote

it by m̃2(t) to distinguish from the second power of m̃(t). Given that we already have
estimated all the SNP densities fK (·), it is a fairly simple matter to �lter the second
moments of the candidate PKs.
Overall, the OD test results judge our estimates of the PK favorably. Since Burnside

(1994) provides evidence that in �nite samples the test tends to overreject, even the
p-values equal to 0.05 may mean a failure to reject the kernels admissibility. The
most impressive results are obtained for the implied PK: it lies on the bound in sam-
ple, however it deteriorates slightly out of sample. The PK reprojected on S&P 500
also has good properties: most p-values are higher than 0.10 based on the asymptotic
distribution. The performance of this kernel actually improves once we go out of sam-
ple. One explanation could be that our misspeci�ed model may happen to recreate the
out-of-sample dynamics better. The performance of other kernels seems to be worse,
though the one reprojected on T-bills performs really nice out-of-sample. It is not sur-
prising that all kernel estimates are close to the admissibility bound. As we mentioned
in our discussion of Eqs. (13) and (14), our approach yields estimates of the minimum
variance kernel.
Panel B of Table 4 reports the values of the HJ �. Regardless of the sample of returns

we use, we establish the following ranking of the PKs estimates (in descending order):
the implied kernel, the kernel reprojected on the S&P 500 returns, the kernel reprojected
on the S&P 500 and GC returns, the kernel reprojected on the S&P 500 and T-bill
returns and, �nally, the kernel reprojected on the T-bills. The superior performance of
the implied kernel is not surprising: it is akin to superior performance of the ad-hoc
implementation of the Black–Scholes model in option pricing tests. This approach uses
the degrees of freedom provided by the model to adjust for whatever misspeci�cation
the model has. Every day these adjustments are di�erent, however, which leads to a
very complicated structure of the information shocks that are supposed to be white
noise (see our discussion of these issues in Section 4.3.3).
If we concentrate on the more consistent reprojection procedure, the S&P 500 based

�lter is the best. Interestingly, the quality of the information contained in the index is
so good that it is able to correct the mispricings of the T-bill based �lter (compare
the pricing errors of the univariate �lter based exclusively on T-bills and the bivariate
�lter based on the T-bills and the S&P 500 index). This result is surprising in that the
S&P 500 index does not seem to contain information about the market prices of risks
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that constitute an important component of the PK. The bivariate �lters, which involve
both the S&P 500 and an asset requiring the risk-neutral parameters (T-bills or the
gold futures) do not improve upon the more simple �lter.
We noted in Appendix C, that due to particulars of our estimation procedure, we

cannot derive a test to evaluate �. However, it is not an important drawback given the
above discussion. Indeed, if we found that all �’s were not signi�cantly di�erent from
each other, it would still indicate that we have to rely on the S&P 500 based one for
the parsimony reasons. Hence, we arrive at the estimate of the PK which involves only
the data on the S&P 500 returns. In this respect we come back to the CAPM, whose
practical implementation often involves the same index as a proxy for the PK. The
crucial di�erence, however, is that our estimate is based on a highly nonlinear function
of the index returns while CAPM reserves to the simple linear relationship.
As we observed in Section 4.3.2, our preferred kernel is greater than 1 for the

entire sample period. While this does not violate any basic principles per se, it still
raises a question whether such realizations of the PK are reasonable. Except for the
discussed above model misspeci�cation, this result may be driven by the speci�cs of
our sample. In general, except for the short contraction period in the beginning
of the 1990s, the U.S. economy enjoyed “good times” (see for instance panel (a)
of Fig. 1). The PK greater than 1 implies a premium put by investors on payo�s dur-
ing the good time. Such a result cannot be explained in the framework of the standard
time-separable utilities. Indeed, good times imply consumption growth, which in its
turn implies decrease in marginal utility, and, therefore, a PK which is less than 1.
Hence, the Hansen–Jagannathan diagnostics exclude this class of preferences.
Can we explain our result by di�erent type of preferences? The stochastic habit

formation model of Campbell and Cochrane (1999) can be one possible explanation.
Their model implies the following PK:

m(t) = %
(

C(t)− X (t)
C(t − 1)− X (t − 1)

)−�

; (24)

where C(t) denotes the level of consumption, and X (t) is the habit level. Time pre-
ference and risk aversion parameters are denoted by % and �, respectively. We can
see from this expression, that m(t) is greater than 1, when the surplus consumption,
C(t) − X (t), decreases. Such an outcome is quite plausible because we would expect
the habit to grow faster than consumption during the good times.
Panel (a) of Fig. 5 shows the familiar plot of the PK reprojected on the S&P 500

returns with the beginning and the end of the NBER dated contraction cycle (dashed
lines), the beginning of the evaluation sample (dotted line), and the unconditional �rst
moment of the kernel (thick solid line). It is quite hard to interpret this plot, since
the contraction period does not seem to critically di�er from the expansion periods.
However, one can notice higher volatility during the contraction. This observation is
con�rmed by panel (b) of the �gure. Here we plot the discrete-time counterpart the
PK’s volatility, i.e. m̃2(t)−m̃2(t). The thick solid line indicates the unconditional second
moment on this panel. It is clear, that during the contraction period the volatility of
the PK increases. This indicates, that the time of contraction is a good investment
opportunity, since there is a potential to �nd portfolios with quite high Sharpe ratios.
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Fig. 5. The conditional expectation and variance of the pricing kernel. We plot the conditional expectation
(panel (a)) and variance (panel (b)) of the PK. These moments were computed based on the reprojection
procedure using the S&P 500 returns as the informations set. The dashed lines on both panels indicate the
beginning and ending of the NBER dates contraction cycle. The dotted line indicates the beginning of the
evaluation sample. The thick solid line shows the unconditional expectation and variance respectively.

We can also notice that the variance starts to increase in the evaluation period. It is
hard to say, however, whether it is anticipation of the next contraction, or just simple
out-of-sample deterioration of results.
We would also like to obtain more intuition on the reprojection procedure by es-

tablishing a rigorous link between our PK and CAPM. Namely, observe that the PK
reprojected on S&P 500 is equal to m̃(t) in (22) with x(t) equal to the logarithmic
returns on the index, i.e. x(t) = log(S0(t)=S0(t − 1)) = log(1 + rM (t)), where rM (t)
are the simple net returns. Let us contrast the BIC chosen SNP density fK , which
is equal to VR(1)-H (4; 2; 7), with a VR(1) density. In the VR(1) case l(t) | x(t) ∼
N (a + bx(t); �), where a; b; � are the parameters of the SNP density. Then (22) im-
plies that the reprojected PK is equal to the moment generating function of the normal
distribution evaluated at 1:

m̃(t) =MGFl|x(1) = ea+bx(t)+�3=2 = ea+�2=2(1 + rM (t))b

= A(1 + brM (t) + o(r2M (t))) ≈ A+ BrM (t); (25)

where notations A and B are used for exp(a + �2=2) and Ab respectively. The last
equality is based on the Taylor expansion. Hence PK reprojection based on a suboptimal
probability density implies CAPM. 23

These results are similar to the �ndings in Bansal and Viswanathan (1993), who
also nest a linear function of the index returns (CAPM) within a nonlinear model of

23 VR(1)-H (4; 2; 7) is preferred to VR(1) based on the likelihood ratio test as well.
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the PK. They directly impose a particular form (neural net of the length 3) on the PK
as a function of the T-bill yields and market returns, treated as observable factors. The
critical di�erence in our approach is that we assume that systematic factors are not
observable and obtain the PK as a complex nonlinear function of the S&P 500 returns
as a result of estimation of these unobservable factors via the observable index returns.
We conclude that we do not need to observe the market portfolio to implement asset

valuation. It is very important, however, to extract information from the observable data
in a e�cient way. For instance, one can simply use the S&P 500 (or similar) index
for the estimation of the PK as long as it happens in conjunction with a realistic model
of asset returns.
Another observation we can make from Table 4 is that as soon as we introduce

the options data, the pricing error increases tremendously, especially in the estimation
sample. Our model speci�cation does not require the options data to identify parameters,
hence it would seem that the model should perform roughly the same with or without
options. Since it did not happen, this is another indication of the model misspeci�cation.
It is clear that stochastic volatility is necessary to achieve this goal, but one should
consider augmentation by a jump component as well. Also, the risk premium may be
too simplistic to account for variation in the options returns. Future research should
take this observation into an account to improve upon the existing assets models.

6. Conclusion

In this paper we suggest an econometric procedure that allows us to estimate the
unobservable pricing kernel (PK) without either any assumptions about the investors
preferences or the use of the consumption data. To this end, we propose a model of
the equity’s price dynamics that allowed for (i) simultaneous consideration of multiple
stock prices, (ii) analytical formulas for such derivatives as futures, options and bonds,
and (iii) a realistic description of all of these assets. The analytical speci�cation of the
model allows us to infer the dynamics of the PK. The model, calibrated to a com-
prehensive dataset including the S&P 500 index, individual equities, T-bills and gold
futures, yields the conditional �lter of the unobservable PK. As a result we obtained
the estimate of the kernel, which is positive almost surely (i.e. precludes arbitrage),
consistent with the equity risk premium, the risk-free discounting and with the observed
asset prices by construction.
The main advantage of our procedure is its generality. It can be applied to a class

of a�ne di�usions (potentially augmented by jump components). The Fourier trans-
form methods lead to pricing of a variety of derivative products (Bakshi and Madan,
2000; Du�e et al., 2000), hence derivatives can be included in the set of assets used
for estimation. It is particularly important because we can estimate parameters related
to the risk-neutral probability measure. The wide variety of estimation methods al-
low us to successfully solve the model calibration problem. Finally, the reprojection
technique of Gallant and Tauchen (1998) recovers the unobservable components of
the model and, in particular, the PK. The only limitation we are aware of is the
computing power.
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The speci�cs of the model considered in this paper allow for the construction of an
alternative PK estimator. We call it the implied PK because it is recovered from T-bills
and S&P 500 prices in a manner very similar to the implied volatility in the Black
and Scholes model. Despite the theoretical inconsistencies of the procedure, such an
estimate performs the best in terms of minimizing pricing errors. The best PK obtained
via the reprojection procedure involves only the information in the S&P 500 index. It
is, therefore, very similar to the empirical implementation of CAPM that often involves
this index as a proxy for the PK. The crucial di�erence, however, is that our estimate
is based on a highly nonlinear function of the index returns while CAPM reserves
to the simple linear relationship. Therefore, the main drawback of CAPM is not the
unobservability of the market portfolio, but the linear relationship with the market
proxy that it used in typical empirical applications.
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Appendix A. Derivatives pricing

We consider a system which is speci�ed as in (6)–(8) under the risk-neutral measure
P∗. In this appendix we drop the superscript i to avoid clutter and since it does not
cause any ambiguities. In the subsequent analysis i will denote

√−1.
Both Bakshi and Madan (2000) and Du�e et al. (2000) deliver the derivatives

pricing methodology which is applicable in our case. Both, the price of a bond and a
futures price, can be computed via a generalized characteristic function of the state-price
density:

f(t; 	; �; ’) = EP∗
t

[
exp

(
i’

∫ t+	

t
(r0 + r1u) du+ i�U1t+	

)]
: (A.1)

COLUMBIA BUSINESS SCHOOL 28



If we know f(t; 	; �; ’), then the bond price B(t; 	) is equal to f(t; 	; 0; i), while
the futures price of contract on U1 with maturity in 	 periods, F(U1t ; 	), is equal
to f(t; 	;−i; 0).
Following the standard approach (the details are available in Chernov, 2000) we

�nd:

f(t; 	; �; ’) = exp{i�U1 + C(	) + Au(	)U2 + Av(	)V}; (A.2)

where

Aj =
2�j(e	=2(Aj+−Aj−) − 1)
Aj+e	=2(Aj+−Aj−) − Aj−

; j = u; v (A.3)

Aj± = kj ±
√

k2j − 2�j (A.4)

C =
∑
j=u;v

2�j log
(

Aj+ − Aj−
Aj+e	=2(Aj+−Aj−) − Aj−

)
+ �jAj+	+ ir0(�+ ’)	 (A.5)

with

�u = �; �v = �; ku = �∗ − ��i�; kv = –;

�u =− 1
2 �

2�(�+ i) + ir1(�+ ’); �v = 1
2 �

2�(�− i) (A.6)

Appendix B. Details of the dataset

B.1. Details of the T-bill data

In our model the stochastic interest rate is not observable. We can identify the
relevant parameters from the T-bill prices that can be obtained from T-bill yields.
Speci�cally, FRED reports T-bill yields on a bank discount basis. The daily yields
are obtained from an arithmetic average of the secondary market quotes taken from
each vendor. The vendors are the ones who collect prices from dealers and inter-
dealer brokers on all actively traded Treasury issues. The quotes on T-bills auctioned
the previous Monday are selected. This is done because the secondary rate refers to
bills that have been in the market for at least 24 h. Therefore, the Tuesday yield is
computed from quotes on a 89-days-to-maturity T-bill; : : : ; the Friday yield is com-
puted from quotes on a 86-days-to-maturity T-bill and, �nally, the Monday yield is
computed from the 83-days-to-maturity T-bill. Then the cycle starts over with the
89-day bill. This information allows to infer the average quote via the bank discount
formula:

Y =
F − B
F

360
t

; (B.1)
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where Y is the bank discount yield reported by FRED, F is the bill face value and B
is its price; t is the time to maturity.

B.2. Details of the futures data

The futures contracts have several times to maturity and hence, in principle, several
series could be constructed from the data provided by COMEX. We select short matu-
rity contracts. The shortest maturity available is 1 month, however we do not want to
include the contracts with less than 7 business days to maturity. Since only institutional
features a�ect the behavior of time to maturity, we obtain a very regularly behaved
set of maturities corresponding to the prices in panel (e). Namely, maturity bounces
between 7 and 28 business days increasing from the smallest to the largest by one
day and then dropping back to the smallest. Also, note that the process (1)–(3) with
i = 1 does not describe the behavior of the futures prices. It is rather a model of the
commodity price behavior (gold in our case). Commodity prices are known to exhibit
mean reversion (see the discussion in Schwartz (1997)). Therefore, (1) does not seem
to be appropriate as a model for a commodity price. However, Schwartz (1997) �nds
in a model qualitatively similar to ours that all mean reversion in the gold price can be
explained by mean-reverting stochastic interest rate (the parameters of a mean-reverting
convenience yield are virtually zero). Hence our model seems to be appropriate for the
particular data choice.

B.3. Details of the options data

The assets described in Section 3 allow us to identify the full parameter vector,
however we use additional data for the model evaluation purposes. The complimentary
series are gross returns on:

0(a): At-the-money (ATM, moneyness closest to 1.00) medium time to maturity
(closest to 50 days) puts on the S&P 500 index (CBOE ticker SPX).

0(b): Out-of-the-money (OTM, moneyness closest to 1.06) short time to maturity
(closest to 6 days) puts on the S&P 500 index.

3(c): At-the-money (moneyness closest to 1.00) short time to maturity (closest to
6 days) calls on “National Semiconductor” (CBOE ticker NSM).

3(d): Out-of-the-money (moneyness closest to 0.94) long time to maturity (closest to
100 days) calls on “National Semiconductor” 24 .

By adding these data we want to capture the cross-sectional information in the options
market and see how our model explains it. The four options time-series allow us to
consider all types of moneyness (OTM puts are equivalent to the ITM calls in a sense
of the put-call parity), di�erent information which may be potentially contained in the
put and call trading, various time-to-maturity e�ects.

24 We de�ne moneyness as an option price divided by its strike price.
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B.4. Computing gross returns of derivatives

The gross returns are computed by matching the derivatives prices with the prices
of the same contract on the previous day. This way, �(t + �t) in (C.1) does not
stand for the terminal payo�, say (S(t + 	) − K)+, as is typically considered but
for the day t + �t derivative, say call, price. In the case of the futures contracts,
we will understand R(t + �t) to be F(St+�t ; 	 − �t)=F(St; 	); in the case of call
options it will be C(t+�t; 	−�t; K)=C(t; 	; K); in the case of puts we will, similarly,
have P(t + �t; 	 − �t; K)=P(t; 	; K). Unfortunately, our dataset does not allow us to
construct similar series for the bond prices. Ideally, we would have to consider B(t+�t;
	−�t)=B(t; 	) as R(t+�t). However, when 	−�t is equal to 89 days (Tuesday quote),
we cannot �nd the quote on the previous day, because the Monday quote is based on
the 83-days-to-maturity T-bill (see Section 3 for details). Hence we have to omit the
T-bills from our HJ bound evaluations.

Appendix C. Hansen and Jagannathan methodology

This appendix brie�y discusses the HJ approach to the evaluation of the PK.
The methodology was developed in a discrete time setting because it is nonparametric

in its nature and we observe data only at discrete time intervals. Hence, we start with
the discrete time analogue of the asset pricing formula (12):


(t) = EP
t (m(t +�t; 
)�(t +�t)); (C.1)

where we denote the discrete values of the PK by m(t; 
) and emphasize its dependence
on the model parameters vector 
. We can rewrite this equation in the returns form:

1 = EP
t (m(t +�t; 
)R(t +�t)): (C.2)

This form of the asset pricing equation immediately yields itself to the estimation of 

via GMM because returns R(t +�t) are stationary and population moment conditions
are readily available. The GMM estimate is equal to:


̂= argmin T · g�T (
)W−1
T gT (
); (C.3)

where T is the sample size and gT (
) = (1=T )
∑

t(1
� − m(t +�t; 
)R�(t +�t)) is

the sample moment based on a vector of returns. The optimal weighting matrix WT is
equal to the consistent estimator of the asymptotic covariance of the pricing errors.
Hansen and Jagannathan (1997) show, that if we de�ne � to be the distance from

the candidate PK m to the set of admissible PKs A:

�2 = min
a∈A

E(m− a)2 (C.4)

then the � is equal to the minimand in (C.3) with WT =(1=T )
∑

t R
�(t)R(t). The fact

that WT is not the optimal GMM weighting matrix implies that � does not reward PKs
with higher sampling errors and, therefore, it can serve as a measure of comparison of
di�erent PKs based on the same set of asset returns.
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On the other hand, if we obtain the parameters estimate 
̂ via (C.3), the distribution
of the test statistic based on � is no longer �2. It is rather a sum of �21 distributions
weighted by the positive eigenvalues of a transformation of the score of the pricing
errors (see Jagannathan and Wang, 1996, for details). However, in our application,

̂ is obtained via minimization of a di�erent function (see the moment conditions in
Section 4.1). Hence, we can evaluate �’s corresponding to di�erent candidate PKs only
informally by computing the minimand in (C.3) and comparing the obtained numerical
values.
Having estimated 
 via (C.3) based on the available data, one may want to see if

the obtained PK is admissible. Hansen and Jagannathan (1991) provide insights into
this approach. If we project m on the space spanned by the returns of the selected
assets and the constant 1:

m= R̃�� + u; R̃� = (1 R�) (C.5)

(i.e. perform regression of m on R), then (C.2) and the fact that u is orthogonal to
R and has a non-negative variance allows us to impose a lower bound on the second
moment of m:

E(m2)¿ (E(m) –�)[E(R̃R̃�)]−1(E(m) –�)�; (C.6)

where – is a vector of 1’s the length of which is conformable with the one of R.
This bound can be used as the informal check of the particular model of interest. One

can always compute E(m) and E(m2) given the model and its estimated parameters. If
this pair violates (C.6), then a researcher may make some conclusion about the inade-
quacy of the modeled PK. Burnside (1994) and Cecchetti et al. (1994) note that, since
all the objects involved in the bound evaluation (E(m);E(m2) and the bound itself)
are random, this informal procedure may be a�ected by the sample variation. Hence a
formal statistical test is required to assess the signi�cance of the bound violation. We
adopt the tests described in Burnside (1994) to evaluate our PK.
Burnside (1994) discusses and evaluates several tests. Based on his simulation ev-

idence, the optimal distance (OD) test seems to be the most robust in terms of the
relationship between the small sample and asymptotic properties. So we choose this
test as our evaluation tool.
The OD test computes the shortest distance, �, from the model implied point (E(m);

E(m2)) to the volatility bound in (C.6) under H0 : �= 0. One starts out by computing

�̂=
1
T

∑
t

m(t)2 −
(

1
T

∑
t

m(t) –�
)[

1
T

∑
t

R̃R̃�
]−1 (

1
T

∑
t

m(t) –�
)�

:

(C.7)

If �̂ is negative, one has to perform the second step. Namely, form the following
moment conditions:

E{m− �}= 0; (C.8)

E


m2 − (� –�)

[
1
T

∑
t

R̃R̃�
]−1

(� –�)�


= 0: (C.9)
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These moment conditions exploit the H0 and estimate the kernel mean, � that corre-
sponds to the shortest distance between the objects being compared. Then,

OD =

{
0 if �̂¿ 0

J if �̂¡ 0
(C.10)

where J is the Hansen (1982) J -statistic (the optimal value of the objective function)
based on the above moment conditions. OD is distributed �21 with probability 0:5 under
the H0.

Appendix D. Approximate maximum likelihood estimation of the model for the S&P
500 and T-bills

As a robustness check of the estimation method, we perform an approximate maxi-
mum likelihood (ML) estimation of the bivariate sub-model of (1)–(3), (5) using the
S&P 500 and T-bills data. Du�e et al. (2002) propose a very simple and accurate
approximation to the likelihood for the special case of a�ne di�usions, which our
model belongs to. In our context this approximation works as follows. We observe the
level of S&P 500, S0, and the T-bill yield, Y: The state vector consists of U 0

1 ; and U2:
Observables are related to the factors via the following relations:

U 0
1 (t) = log S0(t); (D.1)

U2(t) =
1

Au(	)
logB(t; 	)− C(	)

Au(	)

=
1

Au(	)
log

[
F
(
1− Y (t; 	)

	
360

)]
− C(	)

Au(	)
; (D.2)

where the last equation is obtained from (23) and (B.1). The absolute value of the
determinant of the Jacobian of the inverse relationship is equal to

D(t) =
360
	

Au(	)
F

exp(C(	) + Au(	)U2(t)): (D.3)

Therefore, the likelihood function of the data S0; Y takes form:

p
(S0; Y ) =
T∏
t=1

p
(U 0
1 (t); U2(t)|U 0

1 (t − 1); U2(t − 1))
1

D(t)
: (D.4)

Notice, that

p
(U 0
1 (t + �t); U2(t + �t)|U 0

1 (t); U2(t))

=p
(U2(t + �t)|U 0
1 (t); U2(t))p
(U 0

1 (t + �t)|U 0
1 (t); U2(t); U2(t + �t))

=p
(U2(t + �t)|U2(t))

×E[p
(U 0
1 (t + �t)|U 0

1 (t); U2(t); {U2(s); s∈ [t; t + �t]})|
U 0

1 (t); U2(t); U2(t + �t)]; (D.5)
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Table 5
Approximate maximum likelihood estimation results We calibrate the assets dynamics model

dS0(t)
S0(t)

= (r0 + �0U2(t)) dt + �0
√

1− �2
√

U2(t) dW1(t) + �0�
√
U2(t) dW2(t)

dU2(t) = (�− �U2(t)) dt +
√
U2(t) dW2(t)

�0 = r1 + (�1
√
1− �2 + �2�)�0

to the returns on the S&P 500 index and the T-bill bank discount rate via the approximate maximum
likelihood. Standard errors are reported in parentheses.

� � r0 r1 �1 �2 � �0

0.5158 1.7466 0.0252 0.1566 0.5580 −0.9091 −0.4816 0.5441
(0.21) (0.73) (0.01) (0.06) (0.23) (0.38) (0.20) (0.22)

where the last equality is due to the special structure of our model, i.e. U 0
1 does not

feedback into U2: The density in the �rst term is non-central chi-squared, i.e. it is known
in analytic form. The density in the second term is Gaussian and is approximated via
a Gaussian density that does not depend on the entire path of U2 between t and t+ �t
and has mean and variance:

m�t = r0�t + U 0
1 (t) +

�
2
�t(U2(t) + U2(t + �t)); (D.6)

V�t =
�02

2
�t(U2(t) + U2(t + �t)): (D.7)

This is the �rst order approximation that is shown to be very accurate in Du�e
et al. (2002). Given this approximation, the expectation in the last term of (D.5)
can be computed analytically.
From, this point the implementation of ML is straightforward. The Table 5 provides

the estimation results. Most of the estimated parameters are in line with the SMM
parameters, and most standard errors are smaller as expected.
All parameters which are substantially di�erent are related to the level of the volatil-

ity. The long-run volatility value, �0
√
�=�; is equal to 29% according to the MLE and

to 17% according to SMM, which is more reasonable. It appears that the full dataset
contains more information about volatility. This conjecture is supported by smaller
SMM standard errors. Statistically, none of the parameters are signi�cantly di�erent
from each other.
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