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Abstract

Interest rate swap pricing theory traditionally views swaps as portfolios of

forward contracts with net swap payments discounted using the LIBOR curve.

Current market practices of marking-to-market and collateralization question

this view. Collateralization and marking-to-market affects discounting of swap

payments (through altered default characteristics) and introduces intermediate

cash-flows. This paper provides a theory of swap valuation under collateraliza-

tion and we find evidence supporting the presence of costly collateral. Using

Eurodollar futures rates, we find evidence that swaps are priced above the

traditional portfolio of forwards value and below a portfolio of futures value.

Moreover, the effect of collateral is time varying. We estimate a term structure

model to characterize the cost of collateral and quantify its effect on swap rates.
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1 Introduction

The traditional approach to interest rate swap valuation views swaps as portfolios of

forward contracts on the underlying interest rate (Sundaresan (1991), Sun, Sundare-

san and Wang (1993) and Duffie and Singleton (1997)). Under specific assumptions

regarding the nature of default and the credit risk of the counterparties, Duffie and

Singleton (1997) prove that market swap rates are par bond rates of an issuer who re-

mains at LIBOR quality throughout the life of the contract. This result is extremely

useful in practice for extracting zero coupon bond prices, for pricing swap derivatives

and for econometric testing of spot rate models.

Despite the popularity of the traditional view, market practices bring into question

some of the underlying assumptions of the portfolio-of-forwards approach. As the

swap market rapidly grew in the 1990s, an increasingly diverse group of counterparties

entered the swap market. To mitigate counterparty credit risk, market participants

used a number credit enhancements to improve the credit-quality of swap contracts.

Arguably, the most important credit enhancement is the posting of collateral in the

amount of the current mark-to-market value of the swap contract (ISDA (1999)).1

Recent high profile events such as the LTCM bailout and the Enron bankruptcy

provide a reminder to market participants of the importance of collateralizing over-

the-counter (OTC) derivatives transactions and frequent marking of the positions to

market.

In this paper, we provide a theory of swap valuation in the presence of bilateral

marking-to-market (MTM) and collateralization. MTM and collateralization result

in two important departures from the traditional approach for valuing swaps. First,
1Clarke (1999) provides a general overview of the various techniques for credit enhancement. For

information regarding common market practices, see the ISDA (1998, 2000) or BIS (2001).
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MTM and collateralization generate payments by the counterparties between the

periodic swap dates. Since these cash payments can induce economic costs/benefits

to the payer/receiver (either directly or via an opportunity cost of capital) and are

part of the initial swap contract,2 they must be accounted for when valuing the swap.

Second, MTM and collateralization reduce and may eliminate the counterparty credit

risk in the swap. In fact, market participants commonly assume collateralized swaps

are default-free and it is now common to build models of swap rates assuming that

swaps are free of counterparty credit risk (see, e.g., Collin-Dufresne and Solnik (2001)

and He (2001)).

Formally, we assume that counterparties post U.S. dollar (USD) cash as collateral

and mark the contracts to the market value of the contract. Although cash is certainly

not the only form of collateral, it is the most popular form of accepted collateral (ISDA

(2000), p. 2).3 In a discrete-time setting, we show that MTM and collateralization

result in intermediate cash flows in the swap contract that appear in the form of

a stochastic dividend where dividend rate is the cost of posting collateral. This

result is reminiscent of Cox, Ingersoll and Ross (1981) who show that the MTM

feature of futures contracts results in stochastic dividends. Futures contracts are

marked-to-market daily and variation margin calls are met by cash. This suggests

that swap contracts that are collateralized by cash may be more reasonably thought

of as a portfolio of futures contracts on LIBOR with an opportunity cost equal to the

default-free short interest rate. We pursue this line of reasoning further below.
2See, for example the “Credit Support Annex” (ISDA (1994)) to the ISDA Master Swap Agree-

ment.
3Cash collateral may be the cheapest form of collateral in many cases because of the large

haircuts required for risky securities and the valuation issues involved in determining the market

risk in securities posted as collateral.
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In continuous-time, we model counterparty credit risk via an exogenous random

stopping time which indicates default. Following Duffie and Singleton (1997), we use

a default-adjusted instantaneous rate model to price LIBOR rates. We do not assume

the occurrence of default in the swap and LIBOR markets are concurrent. We derive

closed form solutions (up to ODE’s) for market swap rates in an affine setting in the

presence of MTM and collateralization.

If there is no cost to posting and maintaining collateral, we show that swaps

are priced by discounting net swap payments at the risk-free rate as in He (2001)

and Collin-Dufresne and Solnik (2001). The assumption that there is no cost of

posting collateral is problematic, however: this would imply that counterparty credit

risk can be eliminated at zero cost! This does not square with the fact that swap

counterparties and regulators spend non-trivial amounts of time, effort and money to

mitigate credit risk. When collateral is costly, it enters as a (negative) convenience

yield on the swap, altering the discount rates. In the special case where the cost

of collateral equals the default-free instantaneous rate, swap contracts are priced as

portfolios of futures contracts on LIBOR instead of forward contracts.

What is the directional effect of MTM and collateralization on swap rates? We

argue that swap rates will increase in general as a result of these institutional features.

To see this intuitively, consider the swap from the perspective of the receiver of fixed.

When floating interest rates go down, the swap will have positive MTM value and the

fixed-receiver receives collateral. The return on invested collateral is lower due to the

decreased interest rates. Likewise, when rate increases, the swap will have a negative

MTM value and the fixed receiver will have to post collateral which is now more costly

due to the increased rates. Intuitively, it follows that the receiver of fixed will demand

a higher swap rate to compensate for the acceleration of (opportunity) costs implied
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by collateralization. Formally, we find that under standard assumptions, collateral

increases both swap rates and swap spreads.

Empirically, we find strong support for presence of costly collateral using two dif-

ferent independent approaches. First, we use the Eurodollar futures curve to estimate

a number of term structure models and provide information about the LIBOR term

structure. With the calibrated model, we compute hypothetical swap curves assum-

ing that swaps are priced as portfolios of futures (opportunity cost of collateral is the

risk-free rate) and also as par rates (the traditional approach). We find that market

swap rates generally lie in between the futures based swap rates and par rates. More-

over, market swap rates move substantially relative to the futures based and par swap

rates. This time variation is strong evidence consistent with the presence of costly

collateral. Perhaps more significantly, swap rates are closer to the futures based swap

curve in periods of market stress such as those in 1997, 1998 and 2000. This finding

squares nicely with the observation of increased credit concerns during these years.

Independently of our work, Bomfim (2002) performs related experiments and reaches

the same conclusions on the relative position of market swap rates.4 Our results are

closely related to Gupta and Subrahmanyam (2000) and Minton (1997) who analyze

swap spreads and the literature examining the difference between forward and futures

contracts.5

4In fact, Bomfim (2002) concludes that there is “no statistically significant role for counterparty

credit risk in the determination of market swap rates” (p. 33) and argues that this is due to effective

counterparty credit risk mitigation using collateralization.
5Cox, Ingersoll and Ross (1981), Richard and Sundaresan (1981) and Jarrow and Oldfeld (1981)

provide theoretical arguments for the differences and, in the case of interest rate sensitive securities,

Sundaresan (1992), Muelbroek (1992) and Grinblatt and Jegadeesh (1996) examine the empirical

evidence.
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Second, we specify and estimate a dynamic multi-factor term structure to in-

vestigate the nature and impact of costly collateral. The risk-free term structure

(estimated from Treasuries) is modeled as a two-factor model with a short rate and

a time-varying central tendency factor. These factors and the model are the same as

those used in Collin-Dufresne and Solnik (2001). The third factor is the spread be-

tween instantaneous LIBOR and Treasuries and the final factor is the cost of posting

cash collateral. These last two factors are extracted from LIBOR and swap rates and

the model is estimated using maximum likelihood.

Estimation results indicate that the implied cost of collateral is generally small,

with an in-sample mean of 42 basis points but exhibits significant time-variation.

Moreover, the cost of collateral dramatically increases around periods of market stress

such as the hedge fund crises in 1998, Y2K concerns in Fall 1999 and the bursting of

the dot-com bubble in Spring of 2000. Surprisingly, the cost of collateral is not highly

correlated with the factor that captures the instantaneous spread between LIBOR

and Treasuries, but is highly correlated with the short term, default-free interest

rate. This result reinforces the results obtained from the Eurodollar futures market

which indicate that swap are often priced close to a portfolio of LIBOR futures, that

is, that the cost of collateral is related to the short term, default-free interest rate.

Our results provide new insight into the determinants of interest rate swap spreads.

While standard arbitrage arguments indicate that the swap spread (the difference

between swap rates and par yields on similar maturity Treasuries) should be closely

related to short-term financing spreads (e.g., LIBOR minus general collateral repo),

there is not a strong relationship in observed data.6 Due to this somewhat puzzling
6For example, He (2001) notes that “the volatility we observe in the swap market recently cannot

possibly be triggered by the volatility of short-term financing spreads.”
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result, the literature has turned to investigate the role of credit, interest rate, and

liquidity risk premium (see, e.g., He (2001) and Liu, Longstaff and Mandel (2001)).

However, the evidence on these risk premium is somewhat mixed. For example, Liu,

Longstaff and Mandel (2001) find a significant credit risk premium, but it is negative

for much of their sample. Grinblatt (2001) provides an alternative explanation for

swap spreads based on a stochastic convenience yield to Treasuries.

Our analysis provides another plausible alternative explanation for the large and

volatile swap spreads. Evidence from both the Eurodollar futures market and term

structure models indicate that there is a time-varying cost of posting and maintaining

collateral and the cost of collateral is related to the short term default-free interest

rate. Moreover, costly collateral is a factor that appears only in the swap market and

not directly in LIBOR rates, thus it provides a factor that can move swap rates inde-

pendently of short-term financing spreads. We find that swap rates and therefore swap

spreads appear to reflect this cost of collateral. Moreover, our results lend support

to the economic intuition which indicates that the cost of posting and maintaining

collateral is greatest during period of market stress.

The following section, Section 2, discusses the institutional features of collater-

alization in the fixed income derivatives market. Section 3 values swaps under col-

lateralization in both discrete and continuous-time. Section 4 uses information in

Eurodollar futures to assess the presence of costly collateral. Section 5 introduces

and estimates the term structure model to assess the cost of the collateral. Section 6

concludes.
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2 Institutional Features of the Swap Market and

Collateralization

Over the past decade, the interest rate swap market has grown immensely and is now

the largest component of the OTC derivatives market. Across currencies, the Bank

for International Settlements reports the notional value of outstanding swaps is now

over $71 trillion, with USD denominated swaps accounting for almost $24 trillion

(BIS (2003)). Over the 1990s, year-to-year percentage growth rates in interest rate

swaps for many currencies averaged in double digits. As a testament to depth and

liquidity of the market, on-the-run swap rates have a bid-ask spread that is less than

one basis point.

In this section, we provide some background on collateralization of OTC deriva-

tives.7 Collateralization has always been an important feature of the OTC derivatives

market (Litzenberger (1992), p. 838), is currently widespread and has been rapidly

growing over the past five to ten years. ISDA (2003) reports that there is currently

more than $719 billion worth of collateral insuring OTC derivative obligations and

the amount of collateral in circulation increased about 70% from 2001 to 2002. One

explanation for the rapid growth of collateral in circulation is the dramatic decrease

in interest rates over the past three years. Counterparties who agreed to receive fixed

on long dated swaps initiated in the late 1990s are, in expectation, deep in-the-money,

and they require the fixed payer to post collateral to secure these obligations.

There are currently about 16,000 collateralized counterparties, an increase of 45%

from the number in 2000 (ISDA (2001), p. 10). While institutions collateralize many
7Most of the information comes from market surveys by The International Swap and Derivatives

Association (ISDA). See, for example, ISDA (1998, 1999, 2000, 2001).
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different types of derivatives, ISDA (2001) found that more than 65% of “plan vanilla

derivatives, especially interest rate swaps” are collateralized according to the Credit

Annex to the Master Swap Agreement. Discussions with market participants indicate

that nearly all of the swap transactions at major investment banks are collateralized.

Due to the importance of collateral and the size of the collateral programs, new

institutions such as SWAPCLEAR have been established with the stated purpose

of mitigating the credit exposure in the swap markets through large-scale MTM,

collateralization, and netting.

Most of the collateral posted was in the form of USD cash, US government se-

curities or agency securities, although foreign currencies, major index equities and

corporate bonds can also be posted. Together, according to ISDA (2000), cash collat-

eral and U.S. government securities cover about 70% of the posted collateral. ISDA

(2001) points out that the “broad trend towards greater use of cash continues to

gather momentum” (p. 3). Securities whose value changes over time (all collateral

except for USD cash) are more difficult to manage with as the receiver must account

for the risk that the payer will default and the value of the securities posted might

fall below the market value of the swap. Due to this, non-cash collateral is typically

subject to a substantial haircut. The key to effective credit risk mitigation is frequent

margin calls. ISDA (2001) surveyed market participants and found that at least 74%

of survey respondents MTM at least at a daily frequency.

An essential key to the success of collateralization for credit risk mitigation are

amendments to the U.S. Bankruptcy Code. These amendments passed in the 1970s

and 1980s assign a special status to collateralized derivatives transactions. Unlike any

other creditor,8 a derivatives counterparty receives an exemption from the Bankruptcy
8Technically, this statement is not completely correct. In unusual cases, certain other creditors
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Code’s automatic stay provision and the 90-day preference period. These provisions

prevent creditors from seizing the debtor’s assets once they declare bankruptcy and

may allow the court to recover any transfers from the debtor to creditors in the

90 days prior to bankruptcy. Due to their exemption, counterparties to derivatives

transactions can seize any margin or collateral even though the debtor has filed for

bankruptcy and its assets are shielded from collection activities by any other creditors.

Given this status, there is no concern that the debtor will have legal recourse to recover

the collateral or that the creditor will have to participate in legal proceedings.9

Collateralization provides a number of private and social benefits (see, BIS (2001)).

First, collateralization reduces realized losses conditional upon default. The party

who has received collateral keeps the collateral and the maximum loss is now the

total exposure minus any posted collateral. Second, collateral reduces regulatory

capital requirements. According to the Basle accord, collateralized transactions often

generate a zero credit risk weighting, which frees up scarce capital for other purposes.

Third, frequent posting and MTM of collateral constrains firms from taking too much

leverage, the implications of which were clearly seen in the hedge fund crises of late

Summer-Fall 1998. This in principle could reduce the probability that a counterparty

would default. Last, using collateral expands the list of potential counterparties as

also have an exemption from the Bankruptcy Code’s automatic stay provisions. These include

government agents (e.g., local police departments) exercising their regulatory powers and certain

Federal agencies (e.g., Housing and Urban Development) with monetary claims against the debtor,

for example, subsidized loans to developers of low income housing. These exemptions will rarely, if

ever, arise in the context of the bankruptcy of a party to a derivatives transaction. We thank Ed

Morrison for pointing this out.
9The Financial Institutions Reform, Recovery and Enforcement Act of 1989 (”FIRREA”) also

implies that collateral posted by commercial banks (who are regulated entities outside of the U.S.

Bankruptcy Code) can be seized.
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institutions are less concerned about the credit risk of the counterparty provided

they are willing to collateralize the transaction. This increases competition in the

swap market as lower rated financial institutions can compete with more highly rated

firms for transactions. Combined, the increase in counterparties and competition is

credited with increasing volume and liquidity in the swap market, providing a market

wide social benefit of lower bid-ask spreads and greater competition.

It is important to note that the posting of collateral no matter what or how it is

posted entails a cost or, for the other counterparty, generates a benefit. The easiest

way to see this is that the receiver of the collateral, when allowed, will typically reuse

or rehypothecate the collateral for other purposes. In fact, according to ISDA, 89% of

reusable collateral is rehypothecated. Thus firms can use collateral they have received

to cover their margin calls. Many firms are net holders of large amounts of collateral.

For example, Brandman (2000) reports that Goldman, Sachs & Co. held $6.6 billion

in collateral at the end of 1999 and Fannie Mae held $3.1 billion at the end of 2002

(Fannie Mae (2003)). It is reasonable to assume that these firms receive a net benefit

from holding these large amounts of cash and securities.

3 Swap Valuation

This section reviews the traditional approach to swap valuation and provides swap

valuation with collateralization in discrete and continuous-time.

3.1 Pricing LIBOR rates

The first stage in pricing swap contracts is characterizing the evolution of the floating

rate. We focus on interest rate swaps and always assume the floating rate is indexed
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to six-month LIBOR. To model LIBOR rates, we follow Duffie and Singleton (1997)

and use a reduced form specification as opposed to, for example, a structural model of

default (see, also Cooper and Mello (1991)). The default-risk adjusted instantaneous

spot rate, Rt, is given by Rt = rt + δt, where rt is the default-free instantaneous rate

and δt is the spread between instantaneous LIBOR and the default-free rate. In Duffie

and Singleton (1997), δt = λtht, where ht is the exogenous hazard process and λt is the

fractional default loss conditional on default. Intuitively, the probability of default

over a short interval ∆ is ht∆ and (1− λt) is the fraction of the market value recov-

ered. This assumes that LIBOR rates can be modeled as a single-defaultable entity

even though, in reality, LIBOR is a trimmed average of rates quoted by commercial

banks.

At any given point in time, T , the price of a zero coupon bond whose principal is

discounted at rate Rt and that matures at time T + s is given by, PR (T, s), where

PR (T, s) = EQT

h
e−

R T+s
T Rtdt

i
.

Throughout we use P x (T, s) to denote the zero coupon bond price discounted at rate

x. Given the “LIBOR” bond price, the discretely compounded six-month LIBOR

rate is

L6 (T ) = 2

·
1

PR (T, 6)
− 1
¸
.

Given a model of LIBOR rates, we next outline the traditional portfolio-of-forwards

approach for valuing interest rate swaps.

3.2 The Traditional Approach

Assume that there are two counterparties, A and B, and that Party A agrees to pays

Party B the fixed swap rate, which we denote by s0, and Party B pays Party A the
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floating rate. The floating payment can be either the floating rate at the time of

the exchange or it can be the value six months earlier (settled-in-arrears). In certain

cases, interpretation of results is cleaner with contemporaneous settlement, so we

often use that for simple examples although the differences between the two rates are

quite small.10

The traditional approach assumes that cash payments between counterparties are

made only on the discrete reset dates, in our case, every six months. Since only net

cash flows are exchanged, the swap contract formally takes the form of a portfolio

forward contracts with a common strike price, the swap rate. Therefore, to value the

swap contract using the traditional approach, that is, to find the fixed swap rate, we

need only to determine the interest rate used to discount the net swap payments,

L6 (T )− s0.
If both counterparties were free of default-risk, the net swap payments would be

discounted at the default-free instantaneous rate. In the more general case where the

counterparties of default-risky, the discount rate will depend critically on each of the

counterparty’s credit risk profile. Duffie and Singleton (1997) provide the following

set of formal assumptions.

1. They assume that default-risk is exogenous. This implies that λt and ht are

exogenous and, more specifically, are not functions of the swap value.

2. They assume that both parties have the same credit quality. This assumption

does not appear to be particularly important (see Duffie and Huang (1996)).
10Sundaresan (1991) finds that the difference between the fixed swap rate when the floating pay-

ments settled-in-arrears and those settled contemporaneously is a fraction of a basis point. In a

slightly different setting, Duffie and Huang (1996, p. 931) argue that the differences are negligible.
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3. They assume that both swap counterparties have a credit risk which is identical

to the average member of the LIBOR panel. Moreover, they assume the coun-

terparties retain this refreshed LIBOR status throughout the life of the swap

contract.

4. They assume that the default events and recovery rates in the LIBOR and swap

markets are the same. As Duffie and Singleton (1997) note, there is no reason

to believe that a default event in an OTC derivatives market will coincide with

a default event in the LIBOR (high quality interbank) market.

Together, these four assumptions imply that both counterparties have credit qual-

ity equal to the average member of LIBOR which implies that swap payments are

discounted at Rt. In the case of a single period swap, the market fixed rate, sR0 ,

solves:

EQ0

h
e−

R T
0 Rtdt

¡
sR0 − L6 (T )

¢i
= 0

where L6 (T ) can be either six-month LIBOR at time T or six-month LIBOR at time

T − 6 (as mentioned above, the difference is negligible). We use the notation sx0 to
denote the swap rate when the net cash flows are discounted at the rate x. The swap

rate is

sR0 =
EQ0

h
e−

R T
0 RtdtL6 (T )

i
PR (0, T )

= EQ0 [L6 (T )] +
covQ0

h
e−

R T
0 Rtdt, L6 (T )

i
PR (0, T )

. (1)

where EQ0 [L6 (T )] is the futures rate of six-month LIBOR. This shows the close re-

lationship between swap rates and futures rates. Since the covariance between the

discount factor e−
R T
0 Rtdt and LIBOR is always negative, swap rates in the traditional

approach are less than the associated futures rates.11

11This “convexity” correction is well known, observation is not new, see, for example, Gupta and

Subramanyam (2000).
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More generally, the annualized fixed rate in multi-period swap on six-month LI-

BOR settled-in-arrears is given by:

sR0 = 2 ·
1− PR (0, T )P2T
j=1 P

R
¡
0, j

2

¢ .
This is the familiar par rate representation of swap rates which is commonly used for

yield curve construction, empirical work and pricing swap derivatives. Throughout,

we treat the par representation of swap rates as the benchmark specification.

3.3 Pricing collateralized swaps: discrete-time

In this section, we provide a discrete-time approach to valuing interest rate swaps

subject to collateralization. This model-independent formulation draws on the in-

sights of Cox, Ingersoll and Ross (1981). For reasons that will become clear, we focus

initially on a single period swap that is priced at time 0 for the exchange of fixed and

floating payments at time T .

Consider first a two-period example with three dates, t = 0, 1, and 2. We assume

the swap is MTM at time 1 and fully collateralized by USD cash. At the end of

period 2, party A agrees to pay party B a fixed rate and receive the floating rate. We

assume it is costly to post collateral and that holding collateral generates a benefit.

The costs/benefits are symmetric: the cost to one party is equal to the benefit to the

other party. Let s0 denote the fixed swap rate, {St}2t=0 be the market value of the
swap contract at time t, y1 is the cost/benefit to posting/receiving the cash collateral

at time 1, and L2 is six-month LIBOR at time 2. We view the cost of posting collateral

as an interest rate to keep the analogy with the pricing of futures contracts, where the

cost of collateral is the risk-free rate. The mechanics of the swap and collateralization

procedure are as follows:
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• At time 0, the swap rate, s0, is set to make the market value of all future cash
flows zero: thus, S0 = 0.

• At time 1, assume the market value of the seasoned swap changes, and for
simplicity, assume S1 > 0. Party B pays Party A $S1.

• At time 2, Party A receives a benefit from holding the collateral in the amount
of y1S1; party B entails a cost of posting collateral in the amount of y1S1.

The parties net the collateral payment with the exchange of fixed and floating

payments, L2 − s0.

At initiation, the market value of the swap is zero and the market swap rate solves:

0 = PV0 [(L2 − s0) + S1y1]

where we use the notation PV0 to denote the present value of the cash flows at time

0. We intentionally do not specify what interest rate (default-free or default-risky)

is used to discount the cash flows. At this point, note that the swap rate on the

collateralized swap is different from the uncollateralized formulation where the swap

rate solves

0 = PV0 [S2] = PV0 [L2 − s0] .

This simple example provides the intuition for the more general results in the next

section.

From this simple example, there at least three important implications of collat-

eralization. First, MTM and collateralization result in a stochastic dividend, S1y1,

between contract initiation and the final period. This implies that collateralized swaps

are no longer portfolios of forward contracts. The stochastic dividend result is remi-

niscent of Cox, Ingersoll and Ross (1981) who demonstrate that, due to MTM, futures
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contracts have stochastic dividends. Second, MTM and collateralization alter the re-

covery characteristics in the case of default. If Party B defaults on Party A, Party

A can keep the collateral posted, S1. The maximum loss is now L2 − s0 + S1. This
dramatically reduces any potential losses, conditional on default. Third, as noted

in the references earlier, collateralization may reduce the probability that Party B

defaults as their leverage has been reduced.

3.4 The impact of collateral on swaps: continuous-time

We now turn to the valuation of swaps in continuous-time. This allows us to use

the Duffie and Singleton (1997, 2000) reduced form approach to valuing defaultable

securities and to focus on exactly how various assumptions regarding counterparty

credit risk, marking-to-market and collateralization effect swap valuation in a formal

manner.

We retain Duffie and Singleton’s (1997) assumptions regarding default in the LI-

BOR market, that is, we assume there is a default adjusted short rate, Rt = rt + δt,

and that δt is exogenous. To value the swap contract with collateral, we only as-

sume that default by a counterparty can be represented by a first jump time, τ , of

jump process with a (potentially stochastic) intensity. We let 1[τ>T ] = 1 if there is

no default by time T (see Bielecki and Rutkowski (2001) for formal definitions and

regularity conditions for modeling default with point processes). We do not require

any further assumptions on the nature of default by the counterparties. Conditional

on default, we assume that there is no recovery in excess of any collateral posted,

although it would be easy to model recovery. This is consistent with the legal status

of collateral in the U.S. Bankruptcy Code.

Our specification relaxes two of the assumptions in Duffie and Singleton (1997):
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(1) that default characteristics and occurrences in the LIBOR and swap market are

the same and (2) we do not assume that the counterparties are refreshed and remain

at LIBOR quality throughout the life of the swap. Instead we assume that swaps

are MTM and collateralized continuously in time. In practice, they are typically

marked at least daily with the option to demand additional collateral in the case

of large market moves.12 The amount of collateral posted at time t is $Ct and we

assume that there is a stochastic cost of posting collateral, {yt}t≥0. We interpret
the cost of collateral as an instantaneous interest rate accrual on the principal of

Ct. As an example, it is commonly assumed that the cost of collateral when valuing

futures contracts is the default-free short rate, rt. Because of the presence of MTM

and collateral, we do not need to make specific assumptions regarding the individual

counterparties credit risk profile.13

What is the value of a swap in this setting? First, consider the case where it is

costless to post and maintain collateral. In this case, the market value of a swap

struck at s0, St, is given by the solution of

St = E
Q
t

h
e−

R T
t rsdsΦT1[τ>T ] + e

− R τt rsdsCτ1[τ≤T ]
i
,

where ΦT = L6 (T ) − s0 and S0 = 0. The first term in the value of the swap,

e−
R T
t rsdsΦT , is the present value of the cash flows conditional on no default and the

second component, e−
R τ
t
rsdsCτ , is the present value of the amount received conditional

on default occurring at time τ ≤ T , Cτ .

In practice the amount of collateral posted is the MTM value of the swap, that
12ISDA (2001) indicates that most contracts are marked at least daily, while SWAPCLEAR marks

daily with an option to mark more frequently if there are large market movements.
13We do assume that cost of collateral is symmetric for the counterparties. This assumption

considerably simplifies the analysis.
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is, that Ct = St. This implies that the swap price process solves (for t < τ)

St = E
Q
t

h
e−

R T
t rsdsΦT1[τ>T ] + e

− R τt rsdsSτ1[τ≤T ]
i
.

Since recovery is full conditional on default, a collateralized swap contract is just

a contract with a random termination time. An application of the law of iterated

expectations implies that

St = E
Q
t

h
e−

R T
t rsdsΦT

i
and it is clear that the swap contract contains no counterparty credit-risk as recovery

in the case of default is full. This provides a justification for the formula of He (2001)

and Collin-Dufresne and Solnik (2001): if the swap is fully MTM and collateralized

and it is costless to post and maintain collateral, then swaps are discounted at the

risk-free rate. This, of course, is counterfactual as it implies that it is costless to

remove credit risk. At initiation, the value of the swap is zero, S0 = 0 which implies

that

sr0 =
EQ0

h
e−

R T
0 rsdsL6 (T )

i
P r (0, T )

= EQ0 [L6 (T )] +
covQ0

h
e−

R T
0 rsds, L6 (T )

i
P r (0, T )

(2)

where sr0 is the swap rate when the net payments are discounted at rt, and P
r (0, T ) is

the price of a default-free zero at time 0 expiring at time T . The covariance between

the risk-free discount factor and swap is typically negative (since Rt = rt + δt).

Next, consider the case with costly collateral. The value of the swap is, for t < τ ,

St = E
Q
t

h
e−

R T
t rsdsΦT1[τ>T ] + e

− R τt rsdsCτ1[τ≤T ]
i
+ (3)

EQt

·
1[τ≤T ]

Z τ

t

e−
R s
t ruduysCsds+ 1[τ>T ]

Z T

t

e−
R s
t ruduysCsds

¸
. (4)

The first term is the discounted value of the final swap payments conditional on

no default, the second is the discounted value of the collateral seized conditional on
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default, the third is the discounted value of the opportunity cost of the collateral up to

a default time, and the last term is the discounted value of the collateral conditional

on default. If the contract is fully marked-to-market, Cs = Ss, the collateralized swap

value is

St = E
Q
t

·
e−

R T
t
rsdsΦT+

Z T

t

e−
R s
t
ruduysSsds

¸
.

This formula is the familiar stochastic dividend-yield formula and implies that

St = E
Q
t

h
e−

R T
t (rs−ys)dsΦT

i
.

At initiation, the value of the swap is zero, S0 = 0 which implies that

sr−y0 =
EQ0

h
e−

R T
0 (rs−ys)dsL6 (T )

i
P r−y (0, T )

= EQ0 [L6 (T )] +
covQ0

h
e−

R T
0 (rs−ys)ds, L6 (T )

i
P r−y (0, T )

(5)

where sr−y0 is the swap rate when the net payments are discounted at rt − yt, and

P r−y (0, T ) = EQt
h
e−

R T
0 (rs−ys)ds

i
.

As in the case of costless collateral, swap contracts are again free of counterparty

default-risk via the posting of collateral in the MTM value of the swap contract.

However, costly collateral now alters the discount rate and as (5) shows, the impact

of collateral will be determined by the covariance of rt−yt and LIBOR. The potential
impact can be large. To see this, suppose that yt = rt which implies that swaps

are priced as a portfolio of futures contracts on six-month LIBOR. The differences

between futures and forwards is significant and can be large (see, Sundaresan (1991)

and Grinblatt and Jegadeesh (1996)). With futures contracts, futures prices are

reset continuously and the value of the contract is zero. With a collateralized swap,

the swap rate remains fixed until termination of the contract (either by default or

expiration). The value of the swap contract is exactly offset by the collateral.
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Is it possible to generically order the swap rates under the various assumptions

regarding MTM and collateralization? There are four rates of interest: the swap rates

of Duffie and Singleton (1997), sR0 , the swap rates of Collin-Dufresne and Solnik (2001)

and He (2001), sr0, and the costly collateral swap rates, s
r−y
0 , and the futures rates.

For simplicity in this section, we consider single-period swap rates and do not settle

the contracts in arrears. From equations (1),(2), and (5), we see the close relationship

between swap rates and futures rates and that the covariance of the discount factors

with the swap rates determines the gap between futures and swap rates.

The covariance between exp
³R T

0
Rsds

´
and L6 (T ) and the covariance between

exp
³R T

0
Rsds

´
and L6 (T ) are both negative, which implies that sr0, s

R
0 < E

Q
0 [L6 (T )].

Another case that is easy to determine is the case when yt is a nonrandom function

of time, then sr−y0 = sr0. This results does not carry over to the multi-period case due

to a nonlinear affect. In this case, sr−y0 is greater than sr0.

Consider the difference between the default-free swap curve, sr0, and the default-

risky swap curve, sR0 :

sr0 − sR0 =
covQ0

h
e−

R T
0 rsds, L6 (T )

i
P r (0, T )

−
covQ0

h
e−

R T
0 Rsds, L6 (T )

i
PR (0, T )

,

If we assume that (which is commonly supported in the data),

covQ0

h
e−

R T
0
Rsds, L6 (T )

i
< covQ0

h
e−

R T
0
rsds, L6 (T )

i
we have sr0 − sR0 > 0 (since PR < P r) . This implies that discounting by r instead of
R results in higher swap rates, holding all else equal. Similarly, if

covQ0

h
e−

R T
0 rsds, L6 (T )

i
< covQ0

h
e−

R T
0 (rs−ys)ds, L6 (T )

i
, 14

14Consider for the condition

covQ0

h
e−

R T
0
rsds, L6 (T )

i
< covQ0

h
e−

R T
0
(rs−ys)ds, L6 (T )

i
.
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then

EQ0 [L6 (T )] > s
r−y
0 > sr0 > s

R
0 .

For the models presented below this ordering holds. In the general case of multi-period

swaps settled in arrears, we expect this ordering to hold, although the ordering will

depend subtly on the relationships between the shocks and levels of the factors that

drive these variables.

4 Does Collateral Matter?

While collateral is clearly a contractual feature of interest rate swaps, it is important

to demonstrate that collateral matters, that is, that the presence of collateral affects

market swap rates. In this section, we use the information embedded in Eurodollar

futures rates to examine this issue.

As argued in the previous sections, collateral affects the discounting of swap rates

and generally increases swap rates relative to their value using the traditional ap-

proach. An obvious way to examine the impact of collateral would be to construct

hypothetical swap rates from refreshed LIBOR bond prices, PR, using the par rep-

resentation and compare them to market swap rates. If market rates are above the

hypothetical swap rates, then collateral matters, i.e., swaps are not discounted at Rt.

A first order approximation to the exponential, ex = 1 + x, implies that the required condition is

covQ0

"
1−

Z T

0

rsds,L6 (T )

#
< covQ0

"
1−

Z T

0

rsds+

Z T

0

ysds, L6 (T )

#

= covQ0

"
1−

Z T

0

rsds, L6 (T )

#
+ covQ0

"Z T

0

ysds,L6 (T )

#

and thus we have that sr−y0 > sr0 if cov
Q
0

hR T
0
ysds, L6 (T )

i
> 0. This is satisfied, if, for example,

collateral is positively correlated with the default-free short rate, rt, or the spread to LIBOR, δt.
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Unfortunately, refreshed LIBOR bond prices are typically obtained from swap rates

assuming the par representation holds, which makes this exercise tautological.

To investigate the validity of the par representation, we need to extract infor-

mation about the refreshed-LIBOR zero coupon term structure. The best source

of information regarding refreshed-quality LIBOR rates is the futures contract on

three-month LIBOR, typically known as the Eurodollar futures market. Using the

default-adjusted short rate approach of Duffie and Singleton (1997, 2000), the futures

rate at time t of a contract that expires at time Tn > t is

FUTt,Tn = E
Q
t [L3 (Tn)] ,

where L3 (Tn) is the three-month LIBOR rate,

L3 (Tn) = 4

·
1

PR (Tn, Tn + 3)
− 1
¸
,

PR (Tn, Tn + 3) is the price of a three-month zero coupon “LIBOR” bond,

PR (Tn, Tn + 3) = E
Q
T

h
e−

R Tn+3
Tn

Rsds
i
,

and Rs = rs + δs is the default-adjusted short rate.

The Eurodollar futures curve has a number of advantages. It provides a “clean”

piecewise view of expectations of future LIBOR rates. Each contract embodies the

markets expectation of discount rates over a 3-month period. Second, and unlike swap

rates, modeling futures rates does not require potentially controversial assumptions

regarding the cost of collateral and the credit risk of the contracts. Third, the market

is very transparent and liquid. The Eurodollar futures are traded 24 hours a day, on

the Chicago Mercantile Exchange, the Singapore Exchange and the LIFFE in London

as well as online through the GLOBEX system. The Eurodollar futures market is the
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most liquid derivatives market in the world in terms of notational dollar volume of

daily transactions. Moreover, the contracts trade out to ten years.

The only disadvantage of Eurodollar futures is that, unlike forward contracts,

they do not directly provide refreshed-LIBOR zero coupon bond prices. Thus, we

must estimate a term-structure model to compute refreshed LIBOR bond prices.

Unfortunately, there is no way around this issue. For robustness, we use a number of

different term structure models.

We obtained daily close prices for the Eurodollar futures contract from the Chicago

Mercantile Exchange from 1994 to 2002. We discard serial month contracts, and use

weekly Wednesday close prices. If Wednesday is not available, we use Thursday rates.

We use the first 28 quarterly contracts to calibrate the models which corresponds to

roughly the first seven years worth of data. We do not use data past seven years to

avoid any potential liquidity concerns on the long end of the futures curve.

To calibrate the models, we use the Vasicek (1977) and Cox, Ingersoll, and Ross

(1985) models and the Hull and White (1990) calibration procedure. For every day,

we compute the parameters that provide the closest fit:

bΘt = argmin 28X
j=1

°°°Futt,Tj (Θt)− FutMart,Tj

°°°
where Futt,Tj (Θt) are the model implied futures rates, FutMart,Tj

are the market ob-

served futures rates, and k·k is a distant measure. We have used both absolute

deviations and squared deviations, and the results reported below use squared devi-

ations. All of the models considered provide an accurate fit to the futures curve and

to insure smoothness of the curves, we constrain the parameters from taking extreme

values (this is especially important for the interest rate volatility). We repeat this

exercise weekly.
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We have also used convexity corrections from a proprietary model from an invest-

ment bank that uses the information embedded in swaptions to estimate volatility.

As implied volatility tends to be higher than historical volatility, the convexity ad-

justments are even larger and our results stronger. In general, our Vasicek and CIR

model convexity corrections are conservative.

Given the calibrated parameters, we compute swap rates assuming the par repre-

sentation (portfolio of forwards) holds. In addition to the par rates, we also compute

swap rates under the assumption that the cost of collateral is the instantaneous

default-free rate, rt. In this case, swaps are priced as a portfolio of futures con-

tracts on six-month LIBOR and the fixed rate, sFUT0,T , on a fixed-for-floating swap on

six-month LIBOR with semi-annual payments settled-in-arrears solves

0 = EQ0

hX2N

j=1

¡
L6 ((j − 1) /2)− sFUT0,T

¢i
which implies that

sFUT0,T =
1

2N

X2N

j=1
EQ0 [L6 ((j − 1) /2)] .

Note that we take into account the fact that the dates on which swap payments

are exchanged are six-months later than the date on which the floating index is

determined.

Tables 1 and 2 provide summary statistics for the Vasicek (1978) and CIR (1985)

models. We compute the difference between market swap rates and the hypothetical

par rates, sR0,T −sMar0,T where sMar0,T is the market observed swap rate for a T-year swap.

We report results for five and seven year rates. The results also hold for 3 and 10 year

rates, but provide little additional insight and are not reported. We also compute the

difference between the swap rates generated by a portfolio of futures on six-month

LIBOR: sFut0,T −sMar0,T . If we have the correct term structure model and swaps are priced
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as par rates, sR0,T − sMar0,T should be zero. As noted by Gupta and Subrahmanyam

(2000), most term structure models deliver similar convexity corrections and from

their Figure 4, we know that the CIR and Vasicek models cover the reasonable range

of convexity corrections.

These results indicate that swaps are not always and, in fact, rarely priced as par

rates. For example, for the entire 1994-2002 period, the average difference between

market and forward rates for seven-year swaps is -0.0969 for the Vasicek model and

is significantly different from zero. This implies that, on average, the market swap

curve is about nine basis points above par rate curve. Similarly, it is about seven

basis points below the futures curve.15 Taken together, the market swap rates on

average lies someone in between the portfolio of forwards and futures formulations.

The 5-year swap rates are even more striking: they are not statistically different from

the hypothetical futures based swap rates! This is true for both models. In light

of our theoretical arguments above, this indicates that, on average, collateral has a

significant effect on market swap rates.

Next, note that the position of the market swap rates vis-a-vis the forwards and

futures curves changes drastically over time. For example, for the 7-year swap rate,

in 1997, 1998 and 2000, the market swap curve was, on average, very close to the

portfolio of futures swap rate. For example, in 1998, the market swap rates were

within one basis point of sFut0,T but more than 16 basis points greater than sFor0,T . It

is particularly interesting note that 1997, 1998 and 2000 were all years in which

there was significant periods of market stress: the Asian currency crises, the collapse
15Note that we have very conservative convexity corrections of less than 20 basis points on average.

Larger corrections only move the hypothetical par swap curve down further and make the results

even stronger.
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Period 5 Year Swaps 7 Year Swaps

Forwards Futures Forwards Futures

1994-2002 -0.1043 (0.0031) -0.0012 (0.0029) -0.0969 (0.0040) 0.0696 (0.0093)

1994 -0.0972 (0.0077) -0.0002 (0.0068) -0.0727 (0.0076) 0.0713 (0.0066)

1995 -0.1256 (0.0094) -0.0068 (0.0080) -0.1277 (0.0131) 0.0756 (0.0058)

1996 -0.1143 (0.0069) -0.0062 (0.0056) -0.0997 (0.0088) 0.0686 (0.0044)

1997 -0.1714 (0.0070) -0.0280 (0.0059) -0.2026 (0.0101) 0.0336 (0.0056)

1998 -0.1430 (0.0074) -0.0442 (0.0034) -0.1628 (0.0127) 0.0078 (0.0040)

1999 -0.0720 (0.0070) 0.0137 (0.0070) -0.0763 (0.0091) 0.0695 (0.0070)

2000 -0.0898 (0.0057) -0.0348 (0.0075) -0.0781 (0.0050) 0.0188 (0.0064)

2001 -0.0684 (0.0095) 0.0140 (0.0107) -0.0215 (0.0088) 0.1024 (0.0105)

2002 -0.0553 (0.0077) 0.0821 (0.0086) -0.0285 (0.0075) 0.1792 (0.0069)

Table 1: For each Wednesday from 1994 to 2002, we calibrate the parameters of

the Vasicek (1978) model to fit the Eurodollar futures curve. Given the calibrated

term structure model, we compute hypothetical swap rates under the assumption

that swaps are priced via the par representation (portfolio of forwards, discounted at

Rt) and as a portfolio of futures contracts. The columns marked forwards (futures)

give the difference between the hypothetical swap priced as a portfolio of forwards

(futures) and the market swap rate. The standard errors are given to the right of the

mean estimates in parenthesis.
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Period 5 Year Swaps 7 Year Swaps

Forwards Futures Forwards Futures

1994-2002 -0.0666 (0.0028) -0.0036 (0.0030) -0.0352 (0.0026) 0.0676 (0.0031)

1994 -0.1025 ( 0.0077) 0.0031 (0.0068) -0.0834 (0.0071) 0.0746 (0.0067)

1995 -0.0641 (0.0085) -0.0133 (0.0079) -0.0201 (0.0061) 0.0692 (0.0413)

1996 -0.0776 (0.0059) -0.0096 (0.0079) -0.0456 (0.0056) 0.0651 (0.0057)

1997 -0.0779 (0.0067) -0.0292 (0.0061) -0.0527 (0.0066) 0.0298 (0.0058)

1998 -0.0846 (0.0038) -0.0508 (0.0038) -0.0580 (0.0066) 0.0005 (0.0043)

1999 -0.0389 (0.0057) 0.0098 (0.0068) -0.0166 (0.0054) 0.0660 (0.0069)

2000 -0.0738 (0.0072) -0.0371 (0.0073) -0.0480 (0.0059) 0.0148 (0.0061)

2001 -0.0721 (0.0072) 0.0094 (0.0108) -0.0237 (0.0088) 0.1039 (0.0107)

2002 -0.0078 (0.0117) 0.0859 (0.0111) 0.0312 (0.0078) 0.1855 (0.0068)

Table 2: For each Wednesday from 1994 to 2002, we calibrate the parameters of the

Cox, Ingersoll, and Ross (1985) model to fit the Eurodollar futures curve. Given

the calibrated term structure model, we compute hypothetical swap rates under the

assumption that swaps are priced via the par representation (portfolio of forwards,

discounted at Rt) and as a portfolio of futures contracts. The columns marked for-

wards (futures) give the difference between the hypothetical swap priced as a portfolio

of forwards (futures) and the market swap rate. The standard errors are given to the

right of the mean estimates in parenthesis.
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of LTCM and bursting of the dot-com bubble. The previous results indicate that

as collateral becomes more costly, swap rates move closer to futures rates and it is

not unreasonable to conjecture that collateral was relatively more costly/important

during these periods.

Figure 1 provides a plot of the time series of sFut0,T − sMar0,T and sFor0,T − sMar0,T . This

figure shows the very strong time variation in the relative position of market swap

rates vis-a-vis the portfolio of futures and portfolio forwards swap rates. Graphically,

and especially for the 7-year rate, it is apparent that market swap rates were very

close to the futures based swap curve during periods of market stress in 1997, 1998,

and 2000. Together, these results point to the importance of costly collateral and the

fact that the cost of posting collateral is time-varying.

Could our results be driven by our choice of data, calibration procedure, or choice

of model? This does not appear to be the case. Independently of out work, Bomfim

(2002) performs a similar experiment using (1) the entire Eurodollar futures curve

(as opposed to the first 28 contracts), (2) convexity adjustments with parameters

that are constant over the time (as opposed to varying weekly), (3) information

embedded in swaption prices, (4) in addition to the Vasicek (1978) and CIR (1985)

models, the Ho and Lee (1986) and a two-factor Gaussian model, and (5) a slightly

different procedure for generating the hypothetical futures curve. Bomfim’s (2002)

goal, analyzing counterparty credit risk during times of market stress, is different than

ours, but the conclusions regarding the location of the market swap curve relative to

the hypothetical futures and forwards based curves are remarkable similar. Bomfim

(2002) finds that the market swap rates for under 5 years are almost identical to the

hypothetical swap rates generated via a portfolio of futures argument and, generally

that the market swap curve lies in between the hypothetical portfolio of futures and
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Figure 1: This figure provides weekly time series of the differences between market

swap rates and swap curves calibrated from Eurdollar futures using the Vasicek (1978)

model and the Hull and White (1990) calibration procedure. The solid line gives the

difference between the par rate swap curve and the market swap curve and the dash-

dot line gives the difference between the portfolio of futures swap rate and the market

swap rates.
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portfolio of forwards rates.

Are there alternative explanations that would imply that market swap rates are

greater than those implied by the par representation? One alternative is the liquidity

explanation of Grinblatt (2001) which relies on the convenience yield generated by

holding Treasury securities. The convenience yield is generated by repo specialness of

the on-the-run Treasury issuances. Duffie and Singleton (1997) argue in the presence

of this liquidity factor, one can adjust the relevant discount rate for swap payments

to eRt = rt − lt + δt. Since eRt < Rt = rt + δt, this would be consistent with market

swap rates lying above those implied by the par representation. However, the results

above indicate that swaps are often priced close to and statistically indistinguishable

from the rates implied by a portfolio of futures. In this case, the liquidity based

argument would imply that eRt = 0 or that lt = rt+δt. This is potentially implausible

high for a liquidity proxy.16 For example, consider a 5-year swap. The benchmark 5-

year Treasury note which would accrue the convenience yield was typically auctioned

monthly in the 1990s. Due to this, at most, the specialness could have accrued for a

maximum of 1 month and therefore is likely to be a minor component of swap rates.

The same is true for 10-year swap rates, although in this case the liquidity factor

could play a slightly larger role as these are auctioned quarterly.

The results in this section are important because they rely only on the information

embedded in Eurodollar futures and interest rate swaps. In the following section, we

formally estimate a model embedding costly collateral.
16For example, when lt is positive, one would also expect rt is decrease and δt to increase, the

exact size of these effects is difficult to predict.
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5 What is the cost of collateral?

Given that collateral appears to matter, the next issue is to characterize the cost of

collateral. Evidence from the previous section indicates that during certain periods

of time swaps are priced as portfolios of futures. In our context, that means that yt

is related to the short term, default-free interest rate, but the effect is time-varying.

The purpose of this section is to give an illustrative feel for the time series properties

of the cost of collateral in the context of a term structure model. The extracted state

variable yt will allow us to examine whether the cost of collateral implied form the

model increases in periods of crisis as one’s intuition might suggest. This section is

not intended to provide precise characterization of the dynamics of swap spreads, but

rather to get a sense of its properties in periods of market stress. He (2001) and

Liu, Longstaff and Mandel (2001) provide more general models for explaining swap

spreads.

Our analysis in Section 3 indicates that swap rates should be discounted at rt −
yt which implies that we must model both the default-free term structure and the

LIBOR/swap term structure. We use a multi-factor Vasicek (1977) style model with

conditionally Gaussian factors. Gaussian specifications are common when modeling

swap rates, see, e.g., Collin-Dufresne and Solnik (2001), He (2001) and Liu, Longstaff

and Mandel (2001). The default-free term structure is given by:

drt = kr (θt − rr) dt+ σrdW
r
t (P)

dθt = kθ (θθ − θt) dt+ σθdW
θ
t (P) ,

where, for simplicity, we assume the Brownian motions are independent. The first

factor is the default-free instantaneous rate, rt, and the second factor, θt, is the rate to

which the short rate mean-reverts, commonly referred to as the time-varying central
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tendency. Our goal is to have the simplest possible reasonable description of the

default-free term structure. We assume there are constant market prices of risk, λr

and λθ, associated with the Brownian shocks.

Our third factor is the instantaneous spread from the default-free rate to LIBOR:

δt = Rt − rt and is modeled as

dδt = [κδ (θδ − δt) + κδ,rrt + κδ,yyt] dt+ σδdW
δ
t (P) .

Again, we assume that there is a constant market price of risk associated with W δ
t ,

λδ. The cost of collateral process is similarly given by:

dyt = [κy (θy − yt) + κy,rrt + κy,rδt + κy,θθt] dt+ σydW
y
t (P) .

We use off-diagonal terms in the specification of δt and yt to capture any contempo-

raneous relations between the variables. For example, we are especially interested in

the relation between yt and δt and rt. From the previous section, we have a strong

suggestion that yt is positively related in levels to rt and it is also plausible that the

cost of collateral is positively related to the short term funding spread, δt, as this is

a general proxy for default and liquidity concerns. As it is not possible to separately

identify correlations and off-diagonal terms, we assume all of the Brownian motions

are mutually independent. Part of the motivation for this is that it simplifies our

two-stage estimation procedure described below.

With six-month resettlement, the various swap rates are given by:
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All of these expressions are available in closed form, up to the solution of ordinary

differential equations using standard arguments (see Dai and Singleton (2001)).

We estimate our model using the principle of maximum likelihood (see Chen

and Scott (1993)). To extract information about both the risk-free rate and the

LIBOR/swap market, we use both Treasury (3-month rates and 3, 5, 7 and 10-

year par rates) and LIBOR/swap (3-month LIBOR rates and 3, 5, 7 and 10 year

swap rates) market data. Table 3 provides the summary statistics of data used.

We follow Collin-Dufresne and Solnik (2001) and Liu, Longstaff and Mandel (2001)

and use Treasury rates to extract information about the default-free term structure.

One could alternatively use either term Federal funds or general collateral repo rates,

although these series are seriously polluted with microstructure noise (e.g., settlement

Wednesdays).17

17Even if clean series for the these variables were available, our results would not likely change.
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Treasury LIBOR/Swap

mean std mean std

3-month 4.750 1.510 5.103 1.612

3-year 5.696 1.325 6.152 1.359

5-year 6.022 1.212 6.531 1.252

7-year 6.256 1.150 6.758 1.206

10-year 6.362 1.138 6.968 1.156

Table 3: Summary statistics of interest rate data used for estimation. All series are

sampled weekly, on Wednesdays, from 1/2/1990 to 10/29/2002.

The model of the previous section is a four-factor specification and with this many

parameters it is difficult to get reliable MLE estimates. To simplify and make more

robust the estimation procedure, we follow Duffie, Pedersen, and Singleton (2002)

and use a two step procedure. In the first stage, we estimate the two-factor risk-free

term structure using time series of 3-month Treasury bill rates and 3, 5, 7 and 10

year par rates. We fit the three-month rate and seven year par rates without error

The reasoning is as follows. Standard models of swap spreads (He (2000)) indicate that swap spreads

are, roughly speaking, properly ammortized present discounted values of short term spreads. In our

case, we use the LIBOR-Treasury Bill spread, which is about 35 basis points on average. The

problem in these models of swap spreads is that the short term spreads are highly volatile and

rapidly mean-reverting which implies the same for swap spreads. However, swap spreads tend to be

persistent and much larger (60-70 basis points) than the present value of the short-term spreads,

the difficulty noted in He (2001) and Liu, Longstaff and Mandel (2001). If we instead we able to

use the LIBOR-GC repo short term spread, the problem would be even worse as this series is also

rapidly mean-reverting but has a mean of only about 15 basis points. In this case, our collateral

factor would likely play an even greater role.
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and the three, five and seven year rates with error. We use the parameters and state

variables estimated as inputs for the second stage. In the second stage, we take these

parameters and the state variables as given and estimate a two factor model for the

LIBOR/swap market using 3-month LIBOR and 3, 5, 7 and 10 year swap rates. The

two step procedure sacrifices asymptotic statistical efficiency. The informational loss

is measured by the information contained in the LIBOR/swap curve regarding the

default-free parameter estimates and is likely to be small (see, also Duffie, Pedersen

and Singleton (2002)). We constrain the parameter, θδ, to be equal to 35 basis points,

the in-sample mean of the TED spread.

We invert using 3-month and 7-year rates.18 The 3-month rates were chosen be-

cause they are the shortest maturities for both markets that are free of microstructure

noise (see Duffee (1995)). The short maturity provides a clean view of the state vari-

ables that characterize the short end default-free and LIBOR curves (rt and δt). The

7-year rates provide a view of the longer end of the yield curve. Alternatively, we

could use 10-year rates for inversion results. The results are similar although collat-

eral plays an even more important role as the 10-year swap spread is larger on average

than the seven-year swap spread (60 basis points versus 50 basis points) and more

volatile.

Table 4 provides maximum likelihood estimates and Figure 2 provides time se-

ries of the states extracted from the maximum likelihood estimation procedure. The

parameter estimates are largely consistent with prior studies, although a number of

them are insignificant. For example, the long-run mean of the time-varying central
18Recently, there is a trend for fitting principal components (see, e.g., Dai and Singleton (2003)

and Collin-Dufresne, Goldtein, and Jones (2003)). In our case, we do not have zero coupon yields

and so we cannot use this methodology to recover model insensitive estimates of the states.
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Parameter Estimate S.E. Parameter Estimate S.E.

kθ × 102 9.149 0.975 θδ × 103 3.500 Fixed

θθ × 102 0.962 4.946 σδ × 103 9.019 0.437

σθ × 102 1.567 0.070 λQδ × 103 2.150 3.245

λQθ × 102 -6.142 5.145 ky × 103 3.390 2.520

kr × 10 8.399 0.062 ky,θ × 10 -0.229 1.304

σr × 103 8.075 0.134 ky,r × 10 2.652 1.442

λQr × 102 -1.950 0.337 ky,δ × 10 -1.384 0.773

kδ 1.573 0.178 θy -1.268 0.420

kδ,r × 10 -1.286 0.468 σy × 103 9.088 4.416

kδ,y × 10 8.953 4.350 λQy × 10 3.328 9.141

Table 4: Two-stage maximum likelihood estimates obtained using weekly Treasury

and LIBOR/swap market data from 1/2/1990 to 10/29/2002. The standard errors

were calculated using the outer-product of the scores.

tendency process is insignificant as are a number of the market price of risk para-

meters. Among the interaction terms in the drift, only κy,θ is clearly insignificant.

The average pricing errors on the 3, 5 and 10 year Treasuries were 0.1, 0.9 and 12.1

basis points, respectively and 14.9, 2.8 and 2.2 for the corresponding swap rates. Not

surprisingly, all have autocorrelation over 90 percent.

The implied states are very highly correlated with their analogs in the Treasury

and LIBOR/swap data. For example, the in-sample means of the implied states are

rt = 4.6 percent and δt = 34.3 basis points. For comparison purposes, the three-
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month Treasury rate had a sample mean of 4.65 percent and the TED spread (three-

LIBOR minus three-month Treasury) has a mean 35.2 basis points. Moreover, the

correlation between the implied state variable δt and the TED spread is 96.5 percent.

Due to this, we can safely identify δt as the TED spread. The correlation between

the δt and rt is 31.1 percent. While standard structural models would imply that this

spread should be negative, our positive correlation is not a surprise as the correlation

between the TED spread and the three-month Treasury bill rate over the same time

period is 37 percent. The mean of the implied cost of collateral is 43 basis points,

which is reasonable and is the same order of magnitude as the TED spread.

Of particular interest is the correlation of the implied cost of collateral process, yt,

and the other state variables. The correlation between yt and rt is 48.6 percent and yt

and δt is -11.0 percent. While the cost of collateral process is much smaller than the

short rate, this provocative result points toward the close relationship between cost

of collateral and the default-free short term interest rate. This is broadly consistent

with the findings in the previous section which showed that discount factor in the

swap market is often much lower than Rt or even rt. Moreover, from the time series

plots in Figure 2 we see that the implied cost of collateral increased drastically in

the fall of 1998 and remained high for a long time period. This also is consistent

with economic intuition: the cost of posting collateral increases dramatically during

periods of market stress.

Further support for this hypothesis come from a summary statistics of the TED

and 10-year swap spread. The TED spread is, on average, 35 basis points over

the sample period and the ten-year swap spread (ten-year swap rate minus ten-year

Treasury rate) was 60 basis points. In addition to the large magnitude of the swap

spread relative to the TED spread, the correlation between the ten-year swap spread
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and the TED spread is only 39% over the sample period. The small magnitude of

the TED spread makes it difficult to capture the large swap spreads and the lack

of correlation between the TED spread and the swap spread makes it difficult for

standard models of instantaneous LIBOR rates to capture these empirical regularities.

To generate the large spreads, researchers have typically turned to additional factors

such as liquidity or large credit or liquidity risk premium. Our cost of collateral

argument squares nicely with the high observed correlation (41 percent) between the

ten-year swap spread and the three-month Treasury rate.

Our model implies that net swap payments should be discounted at rt − yt in-
stead of rt + δt and we now examine the impact of collateral on the swap curves.

The top panel of Figures 3 plots the constant maturity Treasury curve as well as the

collateralized and par swap curves computed at estimated parameters and average

state variables. The bottom panel of Figure 3 plots the difference between the col-

lateralized and par swap rates, computed at estimated parameters and average state

variables. At ten years, the collateralized swap spread is about 10 basis points higher

than the par rate swap spread, which is well outside of the bid-ask spread and shows

the significant impact of collateral. However, it is important to note that these mag-

nitudes are model and parameter dependent. Figure 4 compares term structures and

swap spreads on a day with particularly high 7-year swap spreads, April 11, 2000.

The magnitude of the impact is slightly greater, about 15 basis points at 10 years.

While significant, these collateral costs are not enough to generate swap rates that are

priced as a portfolio of futures. Other components such as liquidity or more general

risk premium may be required to generate these larger effects.

These results have a number of implications. First, it is common to use the par rep-

resentation, in conjunction with market swap rates, to “bootstrap” the LIBOR/swap
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Figure 2: This fiture provides time series of the inverted factors: the central tendency

(top panel), the short rate (second panel), the instananeous spread from Treasuries

to LIBOR (third panel) and the cost of collateral process (bottom panel).
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Figure 3: The top panel the Treasury par curve (solid line), the par rate swap curve

(dash-dot line) and the collateralized swap curve (dotted line) using the average

values for the state variables. The bottom panel displays the difference between

collateralized swap rates and swap rates implied by the par representation.
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curve and obtain refreshed LIBOR zeroes. Our results indicate that this will gener-

ate, in general, negatively biased zero coupon bond rates. Even small differences in

these rates are extremely important in practice as these bootstrapped curves are used

for pricing derivatives and risk management. Second, it is standard practice to use

the par representation to price swaptions, see, for example, Musiela and Rutkowski

(Ch. 16). Again, our results indicate that this will generate a directional bias in the

swaption prices in the presence of collateralization. Third, it is common to use swap

rates to test term structure models, see, e.g., Duffie and Singleton (1997), Dai and

Singleton (2000), Collin-Dufresne, Goldstein and Jones (2003) or Piazzesi (2003). In

all of these studies, the authors assume the par representation holds. Our results

indicate that this will result in biased parameter estimates, although the magnitude

is unknown but likely to be small.

6 Conclusions

In this paper, we analyzed the role of collateral in determining market swap rates.

Theoretically, we showed that collateralized swaps are free of counterparty default

risk and that costly collateral enters as a convenience yield, altering the discount-

ing of net swap payments. Empirically, we find broadly consistent evidence from

two independent sources of information, the Eurodollar futures market and the Trea-

sury/LIBOR/swap term structure, which point to the importance of costly collateral.

Often, swaps are priced close to portfolios of futures rather than portfolios of forwards

discounted at the instantaneous LIBOR rates.

There are a number of important issues that need to be further addressed. First,

and foremost is the relationship between the cost of collateral, liquidity and default.
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Figure 4: The top panel the Treasury par curve (solid line), the par rate swap curve

(dash-dot line) and the collateralized swap curve (dotted line) using the state variables

on April 11, 2000, a day with large 7-year swap spreads. The bottom panel displays

the difference between collateralized swap rates and swap rates implied by the par

representation.
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For example, we followed He (2001) and Collin-Dufresne and Solnik (2001) and use

Treasuries for the default-free curve, but it might be useful to use alternatives such

as the repurchase rates or federal funds rates which might more accurately capture

the default-free rate. This would allow us to separately model the liquidity/flight to

quality component of Treasuries, the default embedded and LIBOR and may allow us

to identify the relative contributions and relationships between liquidity, default and

costly collateral. Casual observation implies that in addition to collateral, default and

liquidity are important: LIBOR rates are higher than GC repo rate or Fed Funds,

which, in turn, are generally higher than Treasury-bill rates. This implies that default

(the spread from GC repo to LIBOR) and liquidity (the spread from Treasuries to

GC repo) are likely to be significant factors in the Treasury and swap markets.

Second, it is important to consider more general models of the default-free and

LIBOR/swap rates. More general default-free and default-adjusted models, such

as those in Liu, Longstaff and Mandel (2001) will likely generate more realistic swap

spreads and risk premium estimates. Third, in this paper we characterized the impact

of collateral on swap rates, but nearly all OTC derivatives are collateralized and

MTM. Like swaps, it is common to discount OTC derivatives using the LIBOR curve.

Our approach extends in a straightforward manner to handle this case, and contracts

that are interest rate sensitive would be particularly sensitive to collateral.

44



References

Bank for International Settlements, 2001, Collateral in wholesale financial markets:

recent trends, risk management and market dynamics, Prepared for the Committee

on the Global Financial System.

Bank for International Settlements, 2003, OTC derivatives market activity in the

second half of 2002, Monetary and Economic Department, Research report.

Bomfim, Antuilio, 2002, Counterparty credit risk in interest rate swaps during times

of market stress, Federal Reserve Board of Governors, working paper.

Bielecki, Tomasz and Marek Rutkowski, 2002, Credit Risk: Modeling, Valuation and

Hedging, Springer, New York.

Brandman, Lawrence, 2000, The Role of Collateral in Risk Management, Goldman,

Sachs and Co, Powerpoint presentation.

Chen, Ren-Raw, and Louis Scott, 1993, Maximum likelihood estimation for a mul-

tifactor equilibrium model of the term structure of interest rates, Journal of Fixed

Income 3, 14-31.

Clarke, Michael, 1999, An Introduction to the Legal Aspects of Collateralization,

technical report, JP Morgan.

Collin-Dufresne, Pierre and Bruno Solnik, 2001, On the term structure of default

premia in the swap and LIBOR markets,” Journal of Finance 56, 1095-1115.

45



Collin-Dufresne, Pierre, Robert Goldstein and Chris Jones, 2003, Identification and

Estimation of ‘Maximal’ Affine Term Structure Models: An Application to Stochastic

Volatility, working paper, Carnegie Mellon.

Cooper, Ian and A. Mello, 1991, The Default Risk of Swaps Journal of Finance 46,

597-620.

Cox, John, Jonathan Ingersoll and Stephen Ross, 1981, The Relation between For-

ward Prices and Futures Prices, Journal of Financial Economics 9, 321-346.

Cox, John, Jonathan Ingersoll and Stephen Ross, 1985, A theory of the term structure

of interest rates, Econometrica 53, 385-408.

Dai, Qiang and Kenneth Singleton, 2000, Specification Analysis of Affine Term Struc-

ture Models, (with Qiang Dai), Journal of Finance 55, 1943-1978.

Duffee, Greg, 1996, Idiosyncratic Variation of Treasury Bill Yield Spreads, Journal

of Finance 51, 527-552.

Duffie, Darrell and Ming Huang, 1996, Swap Rates and Credit Quality, Journal of

Finance 51, 921-950.

Duffie, Darrell and Kenneth Singleton, 1997, An Econometric Model of the Term

Structure of Interest Rate Swap Yields, Journal of Finance 52, 1287-1323.

Duffie, Darrell and Kenneth Singleton, 1999, Modeling Term Structure Models of

Defaultable Bonds, Review of Financial Studies 12, 687-720.

Duffie, Darrell Kenneth Singleton and Jun Pan, 2000, Transform Analysis and Asset

Pricing for Affine Jump-Diffusions, Econometrica 68, 1343-1376.

46



Duffie, Darrell, Lasse Pedersen and Kenneth Singleton, Modeling Sovereign Yield

Spreads: A Case Study of Russian Debt, Journal of Finance 55, 119-159.

Fannie, Mae, 2002, Annual Report.

Grinblatt, Mark, 2001, An analytic solution for interest rate swap spreads, forthcom-

ing, International Review of Finance.

Grinblatt, Mark and Narasimhan Jegadeesh, 1996, The relative Pricing of Eurodollar

Futures and Forward Contracts” Journal of Finance 51, 1499-1522.

Gupta, Anurag and Marti Subrahmanyam, 2000, An empirical examination of the

convexity bias in the pricing of interest rate swaps, Journal of Financial Economics

55, 239-279.

He, Hua, 2001, Modeling term structures of swap spreads, Yale University, working

paper.

Ho, Thomas and S. Lee, 1986, Term structure movements and pricing interest rate

contingent claims, Journal of Finance 41, 1011-1029.

Hull, John and Alan White, 1990, Pricing interest rate sensitive securities, Review of

Financial Studies, 3, 573-592.

International Swaps and Derivatives Association, Inc., 1994, ISDA Credit Support

Annex.

International Swaps and Derivatives Association, Inc., 1998, Guidelines for Collateral

Practitioners.

47



International Swaps and Derivatives Association, Inc., 1999, ISDA 1999 Collateral

Review.

International Swaps and Derivatives Association, Inc., 2000, ISDA Collateral Survey

2000.

International Swaps and Derivatives Association, Inc., 2001, ISDA Margin Survey

2001.

Jarrow, Robert and Gary Oldfield, 1981, Forward Contracts and Futures Contracts,

Journal of Financial Economics 9, 373-382.

Litzenberger, Robert, 1992, Swaps: plain and fanciful, Journal of Finance 42, 403-

417.

Liu, Jun, Francis Longstaff and Ravit Mandell, 2001, The Market Price of Credit

Risk, Working paper, UCLA.

Minton, Bernadette, 1997, An empirical examination of basic valuation models for

plain vanilla U.S. interest rate swaps, Journal of Financial Economics 44, 251-277.

Muelbroek, Lisa, 1992, A comparison of forward and futures prices of an interest

rate-sensitive financial asset, Journal of Finance 47, 381-396.

Piazzesi, Monika (2003), Bond Yields and the Federal Reserve, working paper, UCLA.

Richard, Scott and Suresh Sundaresan, 1981, A Continuous-Time Equilibrium Model

of Forward Prices and Futures Prices in a Multigood Economy, Journal of Financial

Economics 9, 347-371.

48



Sun, T., Suresh Sundaresan and C. Wang, 1993, Interest rate swaps: an empirical

examination, Journal of Financial Economics 36, 77-99.

Sundaresan, Suresh, The Valuation of Swaps, 1991, in “Recent Developments in In-

ternational Banking and Finance,” Edited by Sarkhis Khoury.

Sundaresan, Suresh, 1991, Futures prices on yields, forward prices and implied forward

prices from the term structure, Journal of Financial and Quantitative Analysis 26,

409-424.

Vasicek, Oldrich, 1977, An equilibrium characterization of the term structure, Journal

of Financial Economics 5, 177-188.

49


