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This paper is a theoretical investigation of equilibrium forward and futures prices. We construct
a rational expectations model! in continuous time of a multigood, identical consumer economy
with constant stochastic returns to scale production. Using this model we find three main
results. First, we find formulas for equilibrium forward, futures, discount bond, commodity bond
and commodity option prices. Second, we show that a futures price is actually a forward price
for the delivery of a random number of units of a good; the random number is the return earned
from continuous reinvestment in instantaneously riskless bonds until maturity of the futures
contract. Third, we find and interpret conditions under which normal backwardation or
contango is found in forward or futures prices; these conditions reflect the usefulness of forward
and futures contracts as consumption hedges.

1. Introduction

The purpose of this paper is to examine forward and futures prices in a
general equilibrium model. We wish to understand how forward and futures
prices are determined; why they differ; and how they are related to each
other and to other prices in the economy, such as spot prices. We also wish
to understand what economic risks are reflected in forward and futures
prices. First we review the distinction between forward and futures contracts
and forward and futures prices.

Forward and futures prices differ in a fundamental way because forward
and futures contracts promise fundamentally different payoffs. An investor

*We would like to thank Fischer Black, Doug Breeden, George Constantinides, Denny Epple,
Jonathan Ingersoll, Myron Scholes and Bill Schwert for comments. All errors are our
responsibility alone.
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who buys a forward contract agrees to buy one unit of a good at a specified
future time, called the maturity time. The price at which the purchase will be
made is called the forward price. The forward price is determined when the
contract is written, is specified in the contract and does not change over the
life of the contract. The forward price is chosen so that the purchaser of the
forward contract, who is in the ‘long’ position, pays or receives nothing when
the contract is written. At the time of maturity the long investor receives one
unit of the good, which is delivered by the seller of the forward contract, who
is in the ‘short’ position; at maturity time the short investor receives the
forward price specified in the contract.

The value of a forward contract fluctuates between the time it is written
and the time it matures. Where the contract is written it has no value, but on
the maturity date the long investor realizes a profit (or loss) equal to the
difference between the spot price of one unit of the good and the contracted
forward price. Between writing and maturity the value of a forward contract
will fluctuate because the value of the right to buy at the forward price
written in the contract changes as the spot price changes.

A futures contract is like a forward contract paid for on a unique
installment plan. The investor who buys a futures contract agrees to buy one
unit of a good at a specified maturity time at a specified futures price. The
futures price is determined when the contract is written and is specified in the
contract. The futures price is chosen so that no payment is made when the
contract is written, i.e., at initiation the futures contract has zero market
value. But as the contract matures, the investor must make or receive daily
installment payments toward the eventual purchase of the good. The total of
the daily installments and the payment at maturity will equal the futures
price specified when the contract was initiated.

What makes futures contracts unique among installment plans is that the
daily installments are not specified in advance in the contract, but are
determined by the daily change in the futures price. If the futures price rises
then the investor who is long the futures contract receives a payment from
the investor who is short. The payment is the rise in the futures price from
the previous day. On the other hand, if the futures price falls then the long
pays the short the change in the daily futures price. This process is called
‘marking-to-market’ on futures exchanges.

The effect of marking-to-market is to rewrite the futures contract each day
at the new futures price. (What the investor does with the installment
payment he has received is a separate issue that we discuss later in section 5.)
Hence the value of the futures contract after the daily settlement will always
be zero since the value of a newly written futures contract is zero. When the
contract matures the long investor will have already paid or received the
difference between the initial futures price and the futures price at the
maturity time. With these payments to his credit he will have a balance due
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equal to the futures price at the maturity time. But the value of a futures
contract written at the maturity time for immediate delivery must be zero.
Therefore at maturity the futures price must equal the current spot price.
Thus the balance due is simply the current spot price at the maturity time.
Unlike a forward contract, the value of a futures contract — after settlement
-— is always zero.

The distinction between the payoffs from forward and futures contracts
was made first by Black (1976). Jarrow and Oldfield (1981) further clarified
this distinction by showing that when the daily interest rate is constant,
forward and futures prices are identical.

In order to examine forward and futures prices we construct a rational
expectations general equilibrium model in continuous time of a multigood,
identical consumer economy with constant stochastic returns to scale
production. This model is developed in sections 2, 3 and 4. In section 2 we
describe consumer’s preferences, information and endowments and we specify
the production and investment possibilities. In the third section we find the
consumer’s budget constraint and set up his lifetime consumption—-investment
problem. In section 4 we define a rational expectations equilibrium in which
the price functions which the consumers use to make their optimal decisions
are precisely the equilibrium price functions which continuously clear the
markets.

Sections 5 and 6 contain our main results. In section 5 we state our main
pricing formulas, which are derived in the appendix. We find the prices of
discount bonds, commodity discount bonds, commodity options, forward
contracts, forward prices and futures prices.

In section 5 we show that a futures price is actually a forward price for the
delivery of a random number of units of a good. The random number is
independent of the good and is equal to the return earned from continuous
reinvestment in instantaneously riskless bonds until maturity of the futures
contract. The equivalent quantity in discrete time is the return earned from
rolling over daily riskless bonds until the maturity of the futures contract. By
using a portfolio strategy similar to one first used by Cox, Ingersoll and Ross
(1981), we show how to use futures contract to replicate the payoff from a
forward contract on the random number of units of a good. We also show
that the futures price is the present value of the same random number of
units of a good to be delivered at the maturity time.

In section 6 we discuss the implications of our model for the theories of
normal backwardation and contango. Normal backwardation is the
hypothesis advanced by Keynes (1923) and Hicks (1939) who argue that
futures prices must rise on average over the life of a futures contract in order
to induce speculators to hold long positions. Hence the futures price is a
downward biased estimate of the future spot price since we know at maturity
that the futures price equals the spot price. The converse hypothesis called
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contango is advanced by Telser (1958) who argues that speculators are
essentially gambling in the futures market and will hold long positions even
when futures prices are expected to fall on average. Under contango the
futures price is an upward biased estimate of the future spot price.! The
discussion of normal backwardation and contango usually is in terms of
futures prices, but the issue applies equally well to forward prices and we
shall examine them both.

The ability of investors to hedge against welfare losses by hedging their
future consumption determines whether normal backwardation or contango
will characterize these prices. In brief we will show that normal
backwardation is found when futures and forward contracts are poor
consumption hedges. By a poor consumption hedge we mean that these
contracts are more profitable than average when the marginal utility of
consumption is lower than average and vice versa. On the other hand,
contango prevails if forward or futures contracts are good instruments to
insure against adverse consumption opportunities. That is, we find contango
when futures or forward contracts are more profitable than average when the
marginal utility of consumption is higher than average. In our discussion we
shall emphasize the usefulness of these contracts as insurance (or hedges)
against welfare losses.

Our approach to asset pricing is to use a general equilibrium model in
which only the preferences, endowments and information of economic agents
and the technology of production are specified exogenously and all prices are
determined endogenously in equilibrium. Thus the equilibrium prices are
directly related to the preferences and underlying stochastic production in
the economy. Our model is related by this approach to several single-good
models. The pure exchange models of Rubinstein (1976) and Lucas (1978) and
the extension of Lucas’ model by Johnsen (1978) all demonstrate the key role of
the marginal utility of consumption in asset pricing; Brock (1978) extends
these pure trade models to a production economy. Prescott and Mehra
(1980) use an identical consumer model of production with many

!The term ‘normal backwardation’ was originally used by Keynes (1923) and Hicks (1939) to
refer to the situation where the current futures price is less than the current spot price. Hicks
(1939, p. 138) explains the term:

In ‘normal’ conditions, when demand and supply conditions are expected to be about the
same in a month’s time as it is today, the futures price for one month’s delivery is bound
to be below the spot price now ruling. The difference between these two prices (the current
spot price and the currently fixed futures price) is called by Mr. Keynes ‘normal
backwardation’.

The reason the futures price is ‘bound to be below the spot price’ is that ‘speculators’ must —
on average — receive a profit to induce them to bear the risk of taking long positions. A rising
price trend is the reward for this risk bearing. The modern usage of the term normal
backwardation (and contango) refer to the price trend or, equivalently, the bias in futures prices
as predictors of spot prices. We thank Jeffrey Williams and Stanley Black for bringing the
original definition to our attention.
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commodities to examine firm share prices in a recursive competitive
equilibrium; they do not, however examine commodity contract prices.

The continuous-time, single-good, identical consumer, production economy
model of Cox, Ingersoll and Ross (1978) is the prototype for our multigood
model; our model generalizes theirs to an economy with many goods so that
commodity prices can be studied. In an earlier draft, Cox, Ingersoll and Ross
(1977) found a formula for futures prices of discount bonds, but removed it
from Cox, Ingersoll and Ross (1978). By combining this futures price formula
from Cox, Ingersoll and Ross (1977) with valuation formulas in Cox,
Ingersoll and Ross (1978), their technique for finding futures prices can be
shown to be equivalent to the one we find.?

A different approach to asset pricing is to price one asset relative to a
second, which has an exogenously specified price or return. [This is called
partial equilibrium; a well-known model of this sort is the Black—Scholes
(1973) option pricing model.] While this approach cannot relate prices to
preferences and the underlying stochastic production in the economy, it can
specify important restrictions on the relative prices or returns of two assets.
Breeden (1979) examines the relative structure of security returns and shows
that under certain conditions a securities expected return is a linear function
of the covariance of its return with aggregate consumption. He uses his
model in Breeden (1980) to relate the equilibrium returns on futures
contracts to the stochastic process for aggregate consumption. Grauer and
Litzenberger (1979) study the pricing of futures contracts and other risky
assets in a two-period exchange economy where individuals have homothetic
utility functions.

2. Description of the economy

We consider an economy with a large number, I, of identical consumers.?
Each consumer seeks to maximize his lifetime expected utility

E[T e""u(c(t))dt], (1)
V]

2This equivalence is not obvious. We thank Doug Breeden for telling us of the equivalence
and supplying the proof found in footnote 8. Also, since completing an earlier draft of this paper
we have received papers by Cox, Ingersoll and Ross (1981) and French (1981), who, using
arbitrage arguments, derived forward and futures prices equivalent to the prices we find for our
model in section 5.

3The assumption that all consumers have identical preferences and endowments is much less
restrictive than it first appears to be. We could, as Cox, Ingersoll and Ross (1978) do, introduce
firms which invest in the production, buy and sell commodity contracts and, in general, act as
competitive economic agent. These firms would, of course, issue shares which would be owned
by the consumers and traded in a competitive capital market. As Cox, Ingersoll and Ross show,
the existence of these firms would not alter any prices or quantities invested — even though the
firms are not identical.

JFE—B
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where c(t)=(c,(t),...,cy(t)) 1s a vector of stochastic processes representing
the time ¢ rate of consumption of N goods, p is a discount factor, u(-) is an
instantaneous utility function and E[-] is an expectation operator. The
uulity function u is assumed to be strictly concave, increasing and twice
continuously differentiable in all of its arguments. To ensure internal
solutions to the consumer’s optimization problem we assume that the
marginal utility of consumption in each good approaches infinity as
consumption of that good approaches zero.

Each consumer is identically endowed. Let Q(t)=(Q, (t),...,Qx(t)) be the
time t aggregate stock of goods in the economy. At time zero each consumer
has an endowment of (1/I)Q(0) of the N goods. Because consumers are
identical and production 1s constant stochastic returns to scale, each
consumer will continue to own 1/I of the aggregate stock of goods at all
future times in equilibrium.

The consumption goods are produced by N distinct production process,
one for each consumption good.* The production process for good i, in
general, uses all of the N goods as inputs and produces an uncertain quantity
of good i. (It is possible to specialize production so that some of the goods
are not required as input for the production of good i.) Each production
process has constant stochastic returns to scale. The production processes
themselves change over time in response to random ‘technological shocks’,
which are exogenously determined. All consumers have equal access to the
production processes.

Let k;(£)=(k; (t),..., kix(t)) be the quantities of each good invested by the
typical consumer in the production process for good i at time t. The total
amount of good j invested in production is qj=2§v=lk,.j for j=1,...,N.
Finally, let X(t)=(X,(t),..., Xy (t)) be a set of M state variables which
summarize the current state of technology. Output of good i net of
consumption, dg;(t), is then given by the stochastic differential equation’®

dg;=[g:(ky X)—c;1dt + Gi(k;, X)dZ for i=1,..,N, )

where g; is the mean instantaneous gross output, G; is an 1 x (N + M) vector
of diffusion coefficient functions, and Z(t) is a vector of N+ M independent
Wiener processes. For each i=1,...,N the functions g and G; are
homogeneous of degree one in k; making production constant stochastic
returns to scale,

Agilk, X)=g,(4k;, X) and AG;(k,X)=G;(Ak;, X).

“We have allowed for only one production process for each good. This is, however, not a
restrictive assumption. When many production processes are available in each good, risk averse
consumers will diversify their investment across the production processes. This result is well
known in the portfolio theory literature. See Merton (1971) or Cox, Ingersoll and Ross (1978).

5See Fleming and Rishel (1975).
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For notational convenience we rewrite (2) in vector form
dg=[g—cldt+GdZ, (3)

where dg=(dg,,....dqy), g=(g,,...8gy) and G=(G,,...,Gy). We assume
that the instantaneous covariance matrix of output is positive, i.e., GG'>0.
The state of technology is stochastic and independent of any decisions

made h\/ the consumers. Each consumer knows that X has dvnamics oiven
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In (4) u(X)1s an M x 1 drift vector which is the expected instantaneous rates
of change in the state variables and S(X ) 1s an M x (N + M) diffusion matrix
such that S'S>0 is the instantaneous covariance matrix of the state
variables. Output and changes in state are correlated with covariance matrix
GS'.

To each consumer the state of the economy is characterized by the vector
X of technological state variables and the vector Q(t) of aggregate stocks of
goods. By this we mean that if at two different points in calendar time the
economy arrives at a particular state (Q,X), it will behave the same way
both times, regardless of the route by which fhp state was attained each time

105, pAllites ToLic wilIUID 2100 51AlC Was atlidlllCd calll uinig.

such that HH' >0 is the instantaneous covariance matrix of aggregate
output.

It is important to emphasize that each consumer acts as if the dynamics of
the aggregate quantities are independent of his own actions. When making
consumption or investment decisions the consumer, as part of his price
taking behavior, takes the functions h(Q, X) and H(Q, X) as given. Different
consumer beliefs about h and H will produce different equilibrium allocations
of investment and different equilibrium prices. Later, when we define a
rational expectations equilibrium we will find h and H by requiring that the
observed aggregate dynamics actually result from the aggregation of
consumer decisions. But in the meantime we can regard h and H as arbitrary

tocks and individual consumer output

th iance b
S5O0 tne covariance o

is H'G.

Since all consumers are identical in this economy, it is easy to see that
autarky is Pareto-optimal. Hence we need not establish any markets to
support the Pareto-optimal allocations. Nevertheless, we will assume the
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existence of competitive markets where specific types of goods or contracts
are traded. Since we know the equilibrium volume of trading in these (and
any other) markets will be zero, the main issue then is to determine the
equilibrium price functions.

A short digression on the determination of price dynamics will define a
useful notational convention. Since the state variables summarize the
consumer’s knowledge about the economy, all equilibrium prices can be
expressed as functions of the state variables only. Let n(t)=mn(Q(t), X(t),t) be
the time ¢ price of some good or contract defined below. By Ito’s Lemma the
dynamics of =(t) are

da(0)=(Lm)di+(mxS+mH)dZ,

where L is a differential operator defined by

O N ] N N 52
L= l;#, qX Z i@‘i'F%i;j; (HH/)UM
LY o 0
T2 2 SShayax +,; ,; HS )y 505%, ax

and ny=(n/CX,...,0n/0X ) and my=(0n/0Q,...,0n/0Qy).
As a notational convention we define for any price © the operators 5, and
o, given by

B.=Ln, (6)
and

G, =nxS+7noH. (7)

Thus f, is the expected instantaneous rate of change in n and g,0, is the
instantaneous variance of the change in n.

We now specify which markets exist and define what goods or contracts
are traded in these markets. We are interested in the relative spot prices of
all goods and the prices of two general types of contracts.

We assume that competitive spot market exists in which currently
available goods are continuously traded. Good one is arbitrarily chosen as
the numeraire good so that its time t price, denoted by P,(t), is identically
one for all r. The relative spot prices at time ¢ of the other goods are denoted
by P;(t) for i=2,...,N. By Ito’s Lemma the dynamics of P;(t) are

dP(1)=ppdt+0pdZ for i=1,..,N, (8)
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where B, and o, are found by substituting P;== into (6) and (7),
respectively. It will be convenient to rewrite (8) in vector notation,

dP=f,dt +0,dZ, 9)

where P=(P,,...,Px), B,=(Bp,,--..Bp,) and op=(0p,...,0p.)".
Consumers may also create and trade in competitive markets securities

1 £ +1 f th tat f th
which have payoffs specified as functions of the state of the economy

(Q(s), X(s)) for se[t, T], where the time between t and T is the ‘lifetime’ of
the contract. We will consider two types of contracts, both of which are
traded continuously. Contracis of the first type have a non-zero market vaiue
and have payoffs only at the time of maturity, 7. We call these contracts
‘maturity-payoff contracts’. Examples of this type of contract are commodity
discount bonds, forward contracts, and unit discount bonds. Contracts of the
second type have a market value of zero at all times, but these contracts
have continuous payoffs. We call these contracts ‘continuous-payoff
contracts’. An example is the futures contract which has a value of zero but
the owner gets (or pays) the difference between the futures prices at every
instant.

The unit discount bond price, B,(t, T), is the price to be paid at time ¢ in
the numeraire good for default-free delivery of one unit of the numeraire

3 1 tries unit dicoa wt e
good at some future time 7. The currently maturing unit discount bond

defines the current instantaneous risk-free interest rate® r(t), by r(t)=
— 7B (t,1)/cT. We assume that consumers can instantaneously borrow or
iend the numeraire good at the sure interest rate r. The commodity discount
bond price, B;(t,T), of good i is the price to be paid at time ¢ in numeraire
good for delivery of one unit of good i at some future time T.

Forward contracts were defined in section 1. Let T denote the maturity
time, ¢ the current time, and F,(f, T') the current forward price for one unit of
good i. We denote by V(s,T,F;) the time s market value of a forward
contract written at forward price F,. Since a forward contract has zero
market value when it is written we have V(t, T,F;(t, T))=0. At maturity
VAT, T,F,(t,T))=P,(T)—F,(t, T), the profit (or loss) from buying one unit of
good at price F;(t, T) when the spot price is P;(T).

A final type of maturity-payoff contract is a commodity option. A

+
commodity option is an ‘European’ option. The holder of this contract on

good i has an option to buy one unit of good i at a fixed time, T, in the
future at a specified exercise price, D;, determined now, t, but paid at T. We
denote by G;(t, T, D;) the price of the commodity option quoted at tr and due
to expire at T >t.

°Cox, Ingersoll and Ross (1978) show that instantaneous risk-free borrowing and lending is

feasible for consumers with risky portfolios when all price processes are continuous and tradin
is continuous.

o
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The only type of continuous-payoff contract we consider is a futures
contract, which was defined in section 1. Again let ¢t denote the current time,
T the maturity time, and let f;(¢, T) denote the futures price for good i
In continuous time the futures contract is rewritten at every instant in time at
the new futures price f(t, T) and thus always has a market value of zero. The
continuous payoff is determined by the instantaneous changes in the futures
price calculated below.

Without loss of generality we assume that there is one maturity-payoff
contract with market value denoted by v and there is one continuous-payoff
contract which has zero market value but provides a stochastic payoff df
over the next d¢ time interval. By Ito’s Lemma the dynamics of v are

dv=p,dt+o,dZ, (10)

where f, and ¢, are found by substituting v== in (6) and (7), respectively.
Similarly the stochastic payoff

df=p,dt +0,dZ, (11)

where fi; and o, are again found using (6) and (7). The important difference
between the two types of contracts is that a continuous-payoff contract
requires no investment, but provides continuous stochastic payoffs, while a
maturity-payoff contract has a non-zero market value in general, but
provides a payoff only at the maturity date.

3. The consumer’s optimization problem

Faced with the opportunity set described in section two, the consumer at
each point in time must allocate his wealth among investments in the
production technologies, the two contracts and riskless borrowing or lending.
He must also choose a consumption vector, c¢(t). Let w(t) be the consumer’s
wealth at time ¢, i.e., the market value of all goods and contracts held by the
consumer at time r. Let g(t)=(g,(t),...,qy(t)) be the vector of quantities
invested in each of the N production processes at time t. Let m(t) be the
number of maturity-payoff contracts held and n(t) be the number of
continuous-payoff contracts held. His total wealth, w, must be fully invested
at each time r. Hence the wealth invested in riskless borrowing or lending is
given by [w—Pq—mv]. The consumer’s wealth change over the next ‘df
time interval is the sum of his gain (or loss) from investment in production,
maturity-payoff contracts, continuous-payoff contracts and riskless borrowing
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(or lending),

dw=d(P'q)+mdv+ndf+(w—P'q—muv)rdt

=P'dg+q'dP+dP -dg+mdv+ndf+ (w—P'q—mv)rdt,

by Ito’s Lemma. The inner product dP -dg=tr(s,G")dt. Hence

dw=g,dt+0,dZ, (12)
where

Pu=P'(g—c)+q'p+tr(apG')

+m(f, —ro)+nf;+riw—Pq), (13)
aw:P’G+q’aP+mav+naf. (14)

In (12) B, is the instantaneous expected rate of change in wealth and o0, is
the variance of this change.

The consumer seeks to maximize his lifetime expected utility (1) subject to
his budget constraint (12). In doing so he takes as given the price functions
P, v, f and r and the state dynamics (4) and (5). Standard optimal control
theory [see Fleming and Rishel (1975)] proves that if the functions’
kiw,Q,X) for i=1,.. N, m(w,Q,X), n(w,0,X), c(w,Q,X) and J(w,Q, X)
satisfy the Bellman equation for this problem, then {k;}, m, n and ¢ are
optimal consumer decisions and J is the optimum value function. That is,
J(w,Q,X) is the consumer’s expected lifetime utility derived from having
wealth w when the state is (Q, X) and proceeding optimally into the future.
The Bellman equation for the consumer’s problem is

0= max {u(¢c)—pJ+LJ+B,J, +1J, 0.0,

tk.m,n,c}
+0,8Jx+0,H o) (15)

Here J, x =(3°J/owadX,,...,0°J/owdX,,) and J,.q =(8*J/dwdQy,...,0°J/dwdQy) .
In the appendix we find the necessary and sufficient first-order condition
for the maximization in (15).

The first-order conditions have some by now well-known implications for
the consumer’s asset demands in partial equilibrium. His demand for an asset

"There: are regularity conditions for g, m, n, ¢ and J. See Fleming and Rishel (1975). We
assume sufficient regularity of all functions for the appropriate theorems to apply.
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will reflect not only its instantaneous risk—return tradeoff, but also the asset’s
usefulness as a hedge against changes in the investment opportunity set.
Hence 1t is possible to derive Breeden’s (1979) ‘single beta’ capital asset
pricing model or a multifactor capital asset pricing model as in Merton
(1973) or Richard (1979).

4. Market equilibrium

In the previous section we saw that given the price functions and the state
dynamics, each consumer determined his optimal consumption and
investment decisions by solving (15). In this section we specify conditions for
market equilibrium which allow us to determine the price functions and the
state dynamics taken as given by consumers. There are two types of
conditions that define market equilibrium,

The first set of conditions for market equilibrium is that markets
continuously clear in the ordinary sense that supply equals demand. These
equilibrium conditions are straightforward in this economy because all
consumers are identical. Hence each consumer must own and invest an equal
share of the aggregate stocks of goods at every ¢,

g=(1/1)Q. (16)

Since consumers are identical, equilibrium demand for the maturity-payoff
contract, the continuous-payoff contract and riskless borrowing or lending
are all zero:

m=0, (17)

n=0, (18)
and

w=P'g. (19)

Egs. (16) and (19) imply that in equilibrium all wealth is held in stocks of
commodities, i.e., Iw=P'Q.

The second condition for market equilibrium is that consumers have
rational expectations. By this we mean that the price functions and state
dynamics assumed by consumers in solving (15) be the actual price functions
and state dynamics which are implied by the aggregation of the consumers
optimal decisions. We have already assumed that consumers know the
correct dynamics, eq. (4), for the technological state variables, X.
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Aggregation of the consumer’s stock dynamic, eq. (3), must equal the
assumed aggregate stock dynamics:

h=1I(g—c), (20)
and
H=IG. (21)

A rational expectations equilibrium boils down to finding price functions P,
v, f and r, a value of function J and optimal controls {k;}, m, n and ¢ which
simultaneously satisfy (15)-(21).

In the appendix we find the general formulas for the equilibrium price
functions. In the next section we apply these general formulas to find the
prices of commodity discount bonds, unit discount bonds, forward contracts
and commodity options. We also characterize the equilibrium forward and
futures prices.

5. Equilibrium prices of claims

In this section we present general formulas for the equilibrium prices of
commodities and contracts for commodities. In the appendix we derive
formulas for generic maturity-payoff and continuous-payoff contracts in
Theorem A.l and Theorem A.2, respectively. We then apply these theorems
to derive the prices of the particular claims discussed in this section. Qur
discussion emphasizes the economic intuition behind the formulas.

The prices of all the commodity contracts found in this section, except for
the futures price, are applications of a general formula for finding the present
value of a risky commodity flow. This general formula for type 1 claims is
given by Theorem A.1 of the appendix; we state a version of that theorem
here:

Theorem 1. Let «;(Q(T), X(T))=o;(T) denote a (possibly random) state
dependent quantity of good i to be received at time T. The time t market value
of a; is

Ui(t)=Ex[Mexp { —P(T—t)}Pi(T)di(T)],
uy (c(t))

where c(t) is per capita consumption at time t. Notice that v,(t) is implicitly a
function of the current state (Q(t), X(t),t) but this dependence has been
suppressed for notational convenience.
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Theorem 1 says that the present value of a random commodity flow at
time T is found by the following steps. First convert the random quantity,
o(T), of good i into a random quantity of good one by multiplying by
P,(T). Next convert the time T random numeraire good payoff, P;(T)a;(T),
into a random time ¢ numeraire good payoff by multiplying by the marginal
rate of substitution of good one at time T for good one at time t,
u, (c(T))e T ?/u,(c(t)). Finally convert the random time t numeraire good
payoff to a deterministic quantity by taking expectations. Theorem 1 is a
natural extention to our continuous time, multigood model of the present
value formulas found by, among others, Nielsen (1974), Rubinstein (1976),
Johnsen (1978) and Cox, Ingersoll and Ross (1978).

The equilibrium price at time t of a default-free discount bond on any
good i due to mature at time T is given by

uy (c(T)P(T)

B,(t,T)=E,
(6. T) [ uy(c(t))

exp{—p(T—r)}]. (22)

This follows from Theorem 1 with o;=1. In the appendix we show that

_wile(t)

P;(1) u, (1)

i=1,...,N, (23)

so that the spot price at time ¢ of good i is, of course, the marginal rate of
substitution of good i for good one, the numeraire good. Making use of (23)
we can rewrite (22) as

Cfutey
B"“’T’“E'[u‘,(c(t)) exp{—p(T t)}} (24)

The interpretation as the expected marginal rate of substitution is obvious.
In the special case of the numeraire good we have P/(T)=1, so (22)
specializes to

u,(c(T))

Bilt T):E'[ (e (1)

exp{—p(T—o}]. (25)

This formula describes real discount bond prices in the numeraire good and
hence can be used to find the term structure of interest rates. In fact this
solution reduces to that found by Cox, Ingersoll and Ross (1978) in a single-
good economy.

We now turn our attention to forward contracts. The equilibrium value of
a forward contract on good i written at time ¢ when the forward price was
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F.(t, T), due to mature at time T and quoted at s where t<s<T is given by

Vs, TFA, T)):ES[M (PAT)—Fi(, T} exp{—p(T—s)}]
ul(c(s))
= By(s, T)—F,(t, T)B, (s, T). (26)

This follows from Theorem 1 with aP;=P(T)—F;(t,T). The value of the
contract at time T can be positive, zero or negative as P;(T)ZF;.

In equilibrium the value of a newly written forward contract must be zero,
ie., Vi(t, T,F(t, T))=0. This implies that

Fi(t,T)=B;(t,T)/B,(t,T) (27)

Once again the formula for the equilibrium forward price has an intuitive
interpretation: it is equal to the time ¢t cost of one unit of good i to be
delivered at time T, but with payment deferred until time T.

We can derive an alternative expression for forward prices by using the
currently observed forward rates of interest, R(z,s), in the numeraire good.
The forward interest rates are defined by

T
Bl(t,T)Eexp{—jR(t,s)ds}. (28)
Substituting (22) and {28) into (27) we find that the forward prices are
Fi(t,T)=E,[MPE(T)exp{f(R(t,s)—p)ds}]. (29)
uy(c(t)) '

Hence the forward prices depend on the forward rates of interest. The
expression given by (29) is particularly useful in comparing forward and
futures prices.

The equilibrium futures price quoted on a futures contract at time ¢ for
good i to be delivered at time T is given by®

u {c(T))
uy (c(t))

8Substituting (27) into (26) gives Vi(s, T,F;(t, T))}=B,(s, T)[Fi(s, T)—F,(t, T)] the value of a
forward contract derived by Jarrow and Oldfield (1981) using an arbitrage argument.

°Cox, Ingersoll and Ross (1977) find a formula for the futures price of a discount bond that
can be shown to be equivalent to our solution. Let B(t, T) denote the time ¢ price of a discount
bond maturing at time 7T >t. Cox, Ingersoll and Ross (1977, p. 33) state that the time s<t
futures price for this bond is

f(s,t, TY=E[B(t,T)] (F.1)

T
f.-(t,T)=E,[ Pi(T)eXp{f(r(S)—p)dS}}- (30)
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This formula is derived in the appendix. In (30}, r(-) is the instantaneous
riskless rate of interest in the numeraire good.!°.

Egs. (29) and (30) provide a striking contrast as to why forward prices and
futures prices, in general, differ. At time t, the forward price is the present
value of a known number, exp { [/ R(t,s)ds} =1/B,(t, T), of units of good i to
be delivered at time T. The future price i1s the present value of a random
number, exp {[[ r(s)ds}, of units of good i to be delivered at time 7. Thus
the futures price represents a simultaneous speculation on both the future
spot price and the number of units to be delivered, which in turn is
determined by the future instantaneous interest rates. In contrast the forward
price represents a speculation only about the future spot price.

In fact the futures price, f;(t, T), is equal to the forward price, ¢;(t, T), for
the delivery of the random quantity, exp {|; r(s)ds}, of good i. To see this
consider a forward contract written at time r<7T for the time T delivery of
exp{[/ r(s)ds} units of good i. Note that the quantity exp{|/ r(s)ds} is
independent of the good on which the contract is written and is known at
time T. This forward contract requires no payment at time ¢, but specifies the
price per unit of good i, ¢;(t, T), to be paid at time T. To show that ¢,(t, T)
=/f.(t, T) first note that the profits, n;(t, T), realized at time T from going
long in the forward contract written at time ¢ are

T

n,-(t,T):exp{j r(s)ds}[P,—(T)—(/)i(t,T)]. (31)

t

where E, denotes the conditional expectation at time s relative to a certain risk-adjusted
diffusion. Using Lemma 4 and Theorem 4 of Cox, Ingersoll and Ross (1978), (F.1) yields

fis.t,T)=E, {;"ft—; exp (jf r(u )du)B(l, T )} , (F.2)
wiS s

where J () is the marginal indirect utility of wealth. But from the first-order condition [Cox,
Ingersoll and Ross (1978, eq. (10a))],

J ) =Uct), ) =u'(c(t))e™ ™, (F.3)

for the discounted utility we use. Substituting (F.3) into (F.2) gives

, {u/(c(t)) [' }

fs., TYy=E——-"exp| {(r(u)—p)dulB(, T)¢, (F.4)
u'(c(s))

which is the single-good equivalent of our eq. (30). We thank Doug Breeden for supplying this

derivation.

'These formulas have been tested empirically by two different methods. Sundaresan (1980)
chooses a particular class of utility functions and production function and derives closed form
solutions to (29) and (30). French (1981) compares observed forward and futures prices under
the assumption that the marginal utility of wealth is constant. Both Sundaresan and French
reject the model under their assumptions. A new technique, developed by Hansen and Singleton
(1981), assumes a particular class of utility functions and uses consumption data to test formulas
like (29) and (30). This technique has not yet been applied to futures or forward price data.



COLUMBIA BUSINESS SCHOOL 17

Since no investment is required we must have in equilibrium that the time ¢
present value of the profit is zero. Using P;(t)a;(T)=mn(t, T) in Theorem 1
and multiplying by u,(c(t))exp {p(T —t)} we get

0=E,[u,(c(T)m(t, T)]. 32)

Eq. (32) says that the forward price, ¢;(¢, T), is determined so that the
expected marginal utility of receiving a profit, n;(t,T), of P,(T)—¢;(t,T) on
exp {|/ r(s)ds} units of good i is zero. From (32) we find that

T
Et[“](C(T))P,-(T)eXp{f r(s)ds}]
&i(t, T)= — . (33)
E,[ul(c(T))exp{lj' r(s)ds}]

In the appendix, eq. (A.16), we show that

exp{—p(T—1)}

,
1= o) E,|:u1 (C(T))exp{j; r(s)ds}]. (34)

Eq. (34) says that the time ¢ present value of the proceeds of an investment
of one unit of numeraire good in rolling over instantaneous riskless bonds
from time t to time T must be one. Substituting (34) into (33) shows that

T
oilt, T)=E,[E(F(Tn P,-(T)eXp{f(r(s)—p)dSH. (35)
u (c(t)) :

Comparing (30) and (35) shows that ¢, (t, T)=f(t, T).

Using a portfolio strategy similar to the one first used in Cox, Ingersoll
and Ross (1981)!' we show that with no investment at time ¢, we can use
futures contracts to replicate the time T payoff, n,(t, T), of the forward
contract described above. Consider the plan, which we call the ‘forward
plan’, of going long in exp {{; r(s)ds} futures contracts maturing at time T at
each time t between t and T. The plan generates at each time t an
instantaneous payoff exp {|; r(s)ds}dfi(z, T). Continually reinvest the past
payoffs and accumulated interest at the instantaneous riskless interest rate,
r(t). Let n,(t, t) denote the time t value of this plan; since no investment was
required 7;(t,t)=0. The instantaneous change in value, dr,(t, 1), is the sum of

""Cox, Ingersoll and Ross (1981) first used a variation of the forward-plan, requiring a
positive investment, in their proof of their Proposition 2.
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the proceeds from the futures contracts and the interest on (¢, 1),

T

drn;(r,t)=exp {j r(s)ds}dj}(r, T)+m(t, t)r(t)dz. (36)

t

The solution to (36) with 7,{t,t)=0is

{27\
\J7)

=T, egs. (31) and (37) give identical expressions for n(t, T)

1, 103810 TCH

al 1 T
since f;(T, T):P (T). The fact that the forward plan for investment in futures
contracts and the forward contract for exp {{} r(s)ds} units of a good results
. .

in tha idantical navaff at tima T will nerave to ha Lau to int
111 lll\t lu\«llllbal }Jﬂ)’Ull aL v x Wlll }JIUVU v uwv I.ll\a A .y LU 11

futures prices in the next section.

When the instantaneous spot rate r is deterministic, forward prices and
futures prices coincide, i.e., F;(t, T)=f;(t, T). This resuit extends siightily the
work of Jarrow and Oldfield (1981) who show that F;(t, T)=f;(t, T) when r is
constant.

Lastly we find the price formula for a commodity option. The equilibrium
price, O;(t, T, D;), of a commodity option with an exercise price D; is given by

—wr—ntc(T))
0.1, T,D,-)=E,[e pr=n u ) max {O,P,-(T)—Di}]. (38)
This follows from Theorem 1 with oP;=max {O, P,(T)— D;}. Intuitively, the
price is the discounted value of the payments to be received at T. The
discount factor is again the marginai rate of substitution of consumption of
numeraire good at time T for numeraire good at time t.

6. Normal backwardation, contango and forward and futures prices as
unbiased forecasters of future spot prices

In this section we discuss the implications of our model for the theories of
normal backwardation and contango in both forward and futures prices.
Recall from the introduction that normal backwardation occurs when the
futures price is a downward biased estimate of the future spot price, while
contango occurs if it is an upward biased estimate. The issues of normal

backwardation and contaneo apply equally well to forward vprices. For both
CaCRkWallGaiion ald Conwangso appry Cquany wWlu 10 1I0rwara pricés. ror odin

prices the direction of the bias hinges on the usefulness of the corresponding
contract as a hedge against welfare losses.

we CdelIlC lOrWdI'(J prlccs llrbl blIl(.C lncy are slmpler to dIldlyZC lndIl
futures prices. Recall that a forward contract on good i written at time ¢
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requires the long position to buy one unit of good i at time T for the
contracted forward price, F,(t, T), paid at time T; no goods change hands at
the time of writing. (All prices and profits are in terms of good one which is
the numeraire.) The profit (or loss) realized at time T from holding a
forward contract is P;{(T)—F,(t, T). Substituting (22) and (25) into (27) and
rearranging gives

0=E,[u (c(THP(T)=F,t, T))]. (39)

Eq. (39) says that the expected marginal utility of buying a newly written
forward contract must be zero since the required investment is zero.

Normal backwardation will characterize a forward price when forward
contracts are relatively poor consumption hedges. To see this rewrite (39) as

cov, [, (¢(T)), (PAT)~F,(t, T))]

F. ,T :Ez Pi T (
(6, T)=E[P(T)]+ E,[u (c(T))]

(40)

The forward price is a downward biased estimate of the future spot price —
normal backwardation — when the profits from a forward contract are
negatively correlated with the marginal utility of consumption of the
numeraire good. If the gains from holding a long position in a forward
contract are higher than average when the marginal utility of consumption is
lower than average, then the forward contract is not a very good hedge
against welfare losses. Hence an investor holding the long position in a
forward contract is in a sense issuing insurance against a welfare loss to the
investor holding the short position. Therefore F,(t, T)}<E,[P;(T)] to induce
the investor to issue the insurance. Conversely, if higher than average profits
tend to occur when the marginal utility of consumption is higher than
average, then long investors have bought a hedge against welfare losses.
Hence F,(t, T)> E,[P;(T)] since the investor is buying insurance.

The analysis of normal backwardation in futures prices is similar to the
analysis in forward prices, but more difficult. The difficulty arises from the
fact that futures contracts have continuous payoffs until maturity in contrast
to a forward contract, which has a single payoff at maturity. In order to
analyze the usefulness of futures contracts as hedges for consumption at time
T, we must first calculate the total time T payoff derived from an investment
strategy in futures contracts. But as we showed in section 5 the payoff
realized at time T from an investment in futures contracts following the
forward plan is equal to the profit, n;(t, T) given by eq. (31), realized from
investing in a forward contract for exp {{] r(s)ds} units of good i to be
delivered at time T.

The key then to analyzing the relationship between the current futures
price and the expected future spot price is to see that the futures price is
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actually a forward price for the delivery of a random quantity of good at the
time of maturity. Hence we can determine the sources of bias in the futures
price as a predictor of future spot prices by analyzing the sources of bias in
the equivalent forward price for the delivery of exp{|/ r(s)ds} units of a
good.

Whether the futures price is a downward biased (normal backwardation)
or an upward biased (contango) predictor of the future spot price depends
on the sum of two factors. The first factor is a measure of the usefulness of
the futures contract or the equivalent forward contract as a consumption
hedge. The second factor measures the riskiness of the time T payoff from
the futures contract or the equivalent forward contract. To see this substitute
(31) and f;(t, T)=¢,(t, T) into (32) to get

0:E,|: c(T)) exp{fr } P(T)—fi(t, T))J. (41)

Expand (41) to get

T
O:E,[ul(C(T))]Er[eXp {f r(S)dS}(P.-(T) —filt, T))}

+cov,[u (T)), exp{fr } AT)—fi(e, T)):l. (42)

Substituting (31) into the covariance term in (42) and solving for f;(t, T) we
get

St )= ELp(Ty] +— VLl TN b T

E,[u,-(c(T»]E,[exp {fr(s)dsﬂ

cov,|:exp {} r(s)ds}, P(T)—f.(t, T)J
E,[exp {? r(s)ds}] .

The first factor determining the bias in the futures price is cov, [u, (c(T)),
n;(t, T)Y], which reflects the usefulness of the futures contract or the
equivalent forward contract as a consumption hedge. This factor is similar to
the consumption hedging factor in the forward price formula, eq. (40), which
was discussed above and needs no further interpretation.

+ (43)
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The second factor is cov, [exp{|] r(s)ds}, P{(T)—F;(z, T)] which reflects
the risk of the futures contract’s profit at time 7. Suppose the spot price and
the instantaneous interest rate are positively correlated. To a long investor,
the number of goods delivered by the forward plan, exp {j,Tr(s)ds}, tends to
be higher than average when the profit per unit delivered, P,(T)—F,(t, T), is
higher than average. Conversely, the number of units of goods delivered is
small when there is a loss on each unit. Thus the long investor is buying
insurance from the short investor, and he must pay for this insurance
through a higher futures price. On the other hand, if the spot price and the
instantaneous interest rate are negatively correlated, the short investor is
purchasing insurance from the long investor, resulting in a lower futures
price, ceteris paribus.

In general futures prices are biased predictors of future spot prices.'?
Examination of eq. (43) shows that the magnitude and direction of the bias
are difficult to determine, but easy to understand. The balance of two
insurance factors - one for consumption risk and one for profit risk —
determine the bias. These factors can be reinforcing or offsetting. Hence, even
if interest rates and prices are generally positively correlated the futures price
can nevertheless be a downward biased estimate of the future spot price
because the futures contract may not be well suited to hedging consumption
risks.

In conclusion we see that in equilibrium both forward prices and futures
prices are determined by the usefulness of forward and futures contracts in
hedging against welfare losses. If an investor can successfully use these
contracts to hedge consumption risks, then we will observe contango: if these
contracts are poor consumption hedges we will observe normal
backwardation. In addition futures price reflect the riskiness of the
comovement of prices and interest rates.

Appendix

We establish the pricing formulas in section 5. We can considerably
simplify notation by defining the differential operator

& N2 m '1 A2

C
(W2+ Y (o, S)\—A+ Z

)
i=1 X, 5 (w“‘Q

(A.1)

12Grauer and Litzenberger (1978) draw a similar conclusion for their model. There is some
problem in the interpretation of Grauer and Litzenberger’s conclusion since they use a two-
period model. As Jarrow and Oldfield (1980) have shown, in a two-period model forward and
futures prices are identical.
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In (A.1), L is the differential operator defined in section 2 of the text. The
operator L. when applied to some function n(w,Q, X,1) gives the expected
rate of change of 7 which is L.

The Bellman equation (15) can be rewritten as

0=ulc)+LJ—pJ. (A.2)

The first-order conditions are found by differentiating (A.2),

o= Py i=1....N, (A.3)
ce; (¢
0 (ﬁ(f:‘],)
Cky;
N °G.
:[P,. LI o;.—rP,JJw (A.4)
ok T G,

NG,
+ {P. ff——‘r + a,,jwa’ij +8J .yt H’JWQ—I, Lj=1,..,N,

l{-\k”
ij i 1
C(LJ)
0= (N 256 ] 4+6ST oaa HI (A S)
v - _‘"}l. ’L’,(IMTUl(M,J““TU',J JMXTUI.“ JMQ, ‘[“,J’
«cm
L)
; / .
0= o =p;),to0J oSy +a H . (A.6)

In (A.3)-(A.6), u; = cu/ic;, Jux=[J J0X ..., /CX u], J o
=[6J,1001,...,8J,/004] and dG/ok,;=(0G; /0ky,...,0G; n1mldky). The
price function P, v, f and r, the value function J and the optimal control
functions {k;}, m, n and ¢, which simultaneously satisfy the consumer’s
optimization problem, (A.2)-(A.6), and the equilibrium conditions, (16)—(21),
comprise a rational expectations equilibrium.

Maturity-payoff contracts with arbitrary boundary conditions are evaluated
according to Theorem A.1.

Theorem A.l. Let v(Q(t),X(t),t, T)=v(t) denote the time t price of a
maturity-pavoff contract with boundary conditions at T,

c(@(T), X(T). T T)=UQ(T), X(T)). (A7)
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Then

o=E| Y ot -z | (A.8)
u, (c(r))

where ¢(t) is per capita consumption at time t.

Proof. Take the total derivative of (A.2) with respect to w using the first
order conditions to get

O(LJ) CL . R
0= ~=pJy={-+LJ,—pJ,=rJ + L, —pJ,, (A.9)

(
cw ow

since ¢L/Ow=r(/Cw). Let J(1) denote J(w(1).Q(t), X{)), but note that J(r)
is not an explicit function of r. Examining (A.5) we see that it can be
rewritten as

0=L(J, v)—rJ o —uv(LJ,). (A.10)
To see this, note that Lv=p, because ¢ is not an explicit function of w so

that v, =0, etc., and note that ¢J,/Cr=0 since J is not an explicit function of
{. Substitute I:Jw from (A.9) into (A.10) to get

L{J, v)—p(J,v)=0. (A.11)
By Theorem 5.2 of Friedman (1975, p. 147) the solution to (A.11) is
JAOF(O)=E[J AT)(T)e 1], (A.12)

From the first-order condition (A.2) we know that J (7r)=u,(c(t)) which
when substituted into (A.12) gives (A.8). W

Continuous-payoff contracts with arbitrary boundary conditions are
evaluated according to:

Theorem A.2. Let f(Q(t), X(1), t, T)=f(t) denote the time t price written into
a continuous-payoff contract with boundary condition at T,

SQIT), X(T), T. T)=4Q(T). X(T)). (A.13)
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Then

o l‘]("(T’)V A e .
'f“)-E'[u](('(r)) gaxp(}\ (ris) p)da)}. (A.14)

Proof.  The proof is exactly parallel to Theorem A.l using eq. {(A.6) instead
of (A.5). Eq. (A.6) can be rewritten as

0=L1J, f)=f(LJ,),
or using (A.9) to eliminate LJ,.
O=L(J f)=J flp—r). (A.15)

Again by Theorem 5.2 of Friedman (1975) the solutions to (A.15) is

,
J“,(I)_f'(t)vE,{J“.(T)Q(T)exp <‘ (;-(s)~p)ds>:l~

which is equivalent to (A.14) since J  .(t)=u,(c(1)). 1

Theorem 1 of the text is simply Theorem A.1 with J(T)=xP;. The futures
price, eq. (31), is found from Theorem A.2 using the boundary condition
J(T)=P,T). The spot prices P,(t)=u;(c(r))/u;ic(t)) are found from (A.3) and
are the usual marginal rates of substitution.

We need one final result for use in section 5. Apply Theorem 5.2 of
Friedman (1975, p. 147) to find the solution of (A.9),

u, (e(T)) (T
1=E, sexps | (r(sy=pidsy |. (A.16)
uy(c(r)) i

Eq. (A.16) says that the time 1 present value of the proceeds of investing one
unit of numeraire good in rolling over instantaneous riskless bonds from
time t until time T is, of course, one unit of numeraire good.
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