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I. INTRODUCTION

I I Ihe traditional hedging model (THM) posits investors with undiversified

portfolios, each consisting of a cash position with a definite maturity and
one or more futures.! The identity of the cash position is not a question in the
THM. For the farmer, it is the value of his crop at harvest time; for the institu-
tional investor, it is the value of a future foreign-currency cash flow. The main
problem posed in the futures market literature to date is to determine the opti-
mal hedge, defined as the quantity of futures that either minimizes the vari-
ance of the cash-cum-futures position or that maximizes its expected utility.>
A variance-minimizing hedge generally appears as a component of an ex-
pected-utility maximizing strategy.

The purpose of this paper is to explore the intertemporal structure of the
optimal hedging decision when, in addition to a single cash position, investors
can also hold (a portfolio of) freely shortable, traded assets. Among the major
implications of this extension are that futures generally will not be used exclu-
sively for hedging purposes; that the existence of a futures contract that is
perfectly correlated with the price of the nontraded position will not generally
be sufficient for a perfect, zero-variance hedge; and that the conditions for
optimal hedges to be preference-free and, therefore, implementable, will
rarely be met in practice.

Demands for assets for hedging purposes in an intertemporal portfolio
choice framework were first identified by Merton (1971 and 1973). What gen-
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'We mean nothing invidious by this characterization. The term “‘traditional” does not mean obsolete and
is used here simply as a short-hand device. The literature on hedging using the THM is long and distin-
guished. It contzins the classics in the field: Working (1953 and 1962), Johnson (1960), Telser (1955 and
1958) and Stein (1961). Recently, with the growth of organized futures markets, the topic has been fruitfully
revisited: In one-period models by Ederington (1979), Stoll (1979), Rolfo (1980), Anderson and Danthine
(1981), and Benninga, Eldor, and Zilcha (1985); and in intertemporal models, following Merton (1971 and
1973), and Breeden (1979 and 1984), by Ho (1984), and Stulz (1984).

2Varia ing hedging rules generally will not maximize expected utility, a point clearly recog-
nized by Ederington (1979) and Anderson and Danthine (1981) and those who came after them. See also
Section 6, below.
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erates hedging behavior in Merton’s model is the possibility of shifts in the
opportunity set. More specifically, investors demand financial assets for hedg-
ing purposes when the future consumption of each depends on economic state
variable in addition to the level of his wealth. State variables are best described
as information processes that cause the future means and variances of tradec
asset returns and, therefore, the opportunity set, to be random: they may in-
clude the asset prices themselves. The presence of state variables in the specifi-
cation of traded-asset return-diffusions is tantamount to the assumption of an
imperfection, in the form of incomplete information about the future local
moments of asset-return distributions. The only kind of hedging that arises in
Merton’s model or in that of Breeden (1979 and 1984) is of this information-
based variety.

To obtain hedging in the THM sense, that is, the use of one or more assets
and futures to hedge a pre-designated position, three further requirements
must be met. The position cannot be continuously revisable; it must be corre-
lated with existing assets; and it must appear as the source of an identifiable
future cash flow that affects the investor’s welfare. Merton and Breeden did
not find any THM hedging demands because their investors did not take posi-
tions in state variables directly. However, Mayers (1972) obtained a (variance-
minimizing) hedging term in a one-period portfolio-choice model due to his
introduction of nontraded assets that affect end-of-period consumption and
that are correlated with traded assets. A puzzle in the literature, which we
resolve below, is why, when Ho (1984) replaced the freely traded assets in
Merton’s model with a nontraded position, he did not obtain the intertem-
poral counterpart of Mayers’ minimum-variance hedge while Stultz (1984),
working in a very similar setting, did.

As a device for generating traditional hedging decisions, nonmarketability
is sufficient and convenient. The nontradedness paradigm may indeed capture
empirically relevant aspects of reality. The liabilities that pension managers
are locked into may legitimately be viewed as non-traded. So may other finan-
cial assets such as unregistered stock or privately-placed corporate and munic-
ipal securities. Empirically, however, observed hedging behavior is often di-
rected at positions that are not permanently nonmarketable, like large
managed portfolios that are subject to short selling constraints but that can be
liquidated at a cost. Even farmers may add to or sell off part of their holdings
before the harvest season. What generates hedging in these latter cases is high
liquidation costs and costly restrictions on short-selling that produce disconti-
nuities in trading for some assets. The imperfections that give rise to what
might be called temporary nontradedness are unduly hard to model in any
detail. For simplicity we therefore proxy their effects in what follows by allow-
ing some positions to be completely nontradeable.

The structure of the paper is as follows. Section II sets forth our assump-
tions. Section III demonstrates the equivalence between alternative formula-
tions of the investor’s expected-utility maximization program, presents the op-
timal demands for traded assets and futures, and decomposes these demands
into speculative and hedging components. Section IV establishes that futures
will be preferred to traded assets as hedging instruments only under conditions
where the hedging demand for traded assets disappears. Section V explores
the feasibility of perfect, zero-variance hedges. Section VI investigates imple-
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mentable hedges and shows that they will rarely also be optimal for general
utility structures. Conclusions and final remarks appear in Section VII.

IEL. ASSUMPTIONS

Assumption 1. The investor is endowed at time-0 with the right to an uncertain
quantity, Qr, of a specific commodity or asset that will be received at time T
Costless information about this delivery is gathered continuously and allows
the agent to revise his beliefs. The continuous information process, {Q,} satis-
fies the stochastic differential equation:

dQ: = pg(Q, t)dt + 0(Q, t)dz,(¢), o))

where {z,(¢); 0 = ¢ < T} is a standard Brownian motion process (BMP). The
process { Q,} may be interpreted as a weather report that causes a farmer to
update his forecast of his field’s yield at harvest-time. Alternatively, take the
case of a common stock, traded on a foreign exchange and quoted in 2 foreign
cutrency, that the investor either cannot or does not want to liquidat= or sell
short before time T; Qr then represents the random foreign-currency value of
the stock at time T while {Q,} is the current foreign-currency price of the
stock.

Assumption 2, (Nontradedness). The initial endowment is fixed and cannot
be revised or altered between times 0 to 7', even parsimoniously.

Assumption 3. The spot price of the nontraded position is specified exoge-
nously and satisfies the stochastic differential equation:

dP, = p,(P, t) + 0,(P, t)dz,(2), 2)

where {z,(¢); 0 = ¢t = T} is a standard BMP and the instantaneous correla-
tion between the price and quantity processes is given by: p, ,dt = dz, - dz,.

Assumption 4. The investor has free and unrestricted access to a financial
market in which a numbez, A, of financial assets are traded continuously. The
A X 1 vector of prices, P,, of these assets satisfies the stochastic differential
equation:3

dP,, = I,[p.dt + 0,dz,(t)] 3)

where I, is an A X A diagonal matrix whose diagonal is the vector of prices;
Ra represents the constant vector of mean rates of return on these assets and

INotice that while the price dym.xmics of the information processes, P and Q, are written in terms of their
levels, the dynamics of traded-assets' prices are specified in terms of their percentage changes. For the ith
traded asset: dPy;/P,; = paidt + 0,dz,(t), where the moments are at most deterministic functions of time.
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V.. = 0,0, is the constant instantaneous variance-covariance matrix. The ith
component, z,, of the vector Wiener process, z,, has instantaneous correla-
tions, p,,,, and p,, 5, with the processes z, and z,, respectively.

Assumption 5. An instantaneously riskless bond is available. Its rate of re-
turn, r, is constant over the period [O, T]. The investor may borrow or lend
freely at this rate.

Assumption 6. The investor also has free and unrestricted access to a fu-
tures. market. One of the futures contracts is written on the nontraded posi-
tion. It promises delivery at time T of a fixed amount of Q at a futures price
fixed at time 0. This contract is marked to market continuously leaving its net
value equal to zero. The settlement price of the contract, F,, is assumed to
satisfy:

dF, = pp(P, 1)dt + o/(P, t)dz,(2), )

where the BMP, {z/(t); 0 = ¢t = T} has correlations p;, and p;,, with the
processes z, and z, that in general are not perfect due, possibly, to random
convenience yields.* When the futures contract is priced by arbitrage and the
convenience yield is proportional to the spot price (c(P, t) = cP), F, =
P,er~XT=tYand p, , = 1. When, in addition, the contract is assumed, follow-
ing Breeden (1984), to mature instantaneously, ¥, = P,.

In what follows, we contempliate at several points the introduction of a sepa-
rate futures contract that is perfectly correlated with Q.° In the case of a for-
eign stock, for instance, where Q represents its foreign currency price, the
contract would promise the delivery of one share at time T, at the futures price
fixed at time-0. Perfect correlation is obtained if the variations in the settle-
ment price of this contract are spanned by the variations in the foreign cur-
rency price and in the riskless (constant interest rate) instantaneous foreign
bond.

Assumption 7. The investor chooses a consumption stream {c, }, a trading
strategy in futures {x,} and in traded assets {w,W,} adapted to his informa-
tion, so as to maximize his expected lifetime utility. For simplicity, we shall
suppose that the life of the investor corresponds to the delivery interval [0, T1.
During his lifetime, the investor instantaneously consumes an amount of the
good ¢, and trades in the asset market so as to secure future consumption. At
maturity, he consumes his terminal wealth consisting of the cash amount gen-
erated by his past trading strategies and of the proceeds of his nontraded posi-

“For instance, if the convenience yield satisfies the stochastic differential equation dec = p(P, t)dt +
0,(P, t)dz. where {z.(t); 0 < t = T}is a BMP distinct from the process {z,(t); 0 < ¢ = T}, an arbitrage
argument involving only the commodity, the futures contract and the riskless bond cannot be implemented.
In this instance the futures settlement price is imperfectly correlated with the commodity price. Obviously
the assumption that the correlation between the futures and spot price is imperfect and the representation of
the futures settlement price process assumed in Equation (4) raise questions of compatibility with a full-
fledged equilibrium model.

*Such a contract would be written much like index contracts are now. At maturity they promise delivery
of an amount of cash equal to some pre-set multiple times Q. For a farmer, for example, to view the con-
tract as perfectly correlated with his yield, it would have to be written on quantity of his specific harvest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tion PyQ . The instantaneous utility function u(c,, ¢) and the terminal utility
function B(Wr + PrQr, T) are assumed to satisfy the usual assumptions.

Assumption 8. In the course of his life, it is quite possible that the investor
may adopt strategies that will deplete his cash resources or that will generate a
positive probability of ohtaining a negative cash-flow at the maturity date 7.
For the purpose of this paper, we shall not deal explicitly with this bankruptcy
problem ard its consequences in terms of decision rules. We will instead sup-
pose that the structure of the economy produces a positive cash flow with cer-
tainty at date T along the optimal path.

II. THE OPTIMAL HEDGING DECISION

This section investigates the investor’s program for optimally hedging his non-
traded position in the presence of traded assets and futures. A main result is
that two apparently competing specifications of the intertemporal budget con-
straint are, in fact, equivalent and lead to the same optimal decision. This
proposition serves to identify the minimum-variance component of the opti-
mal hedge as an intertemporal demand in the sense of Merton (1971). Follow-
ing Assumption 7, the investor’s program is:

Maximize EH: ulc,, t) + B(Yr, T)] )

{ernwWp),x.}

where W7 represents the cash position at the target date; PrQr is the unique
cash flow generated by the nontraded position at time T and total wealth at
maturity is given by their sum: Yy = Wy + P;Q-.

To solve this intertemporal consumption-investment-hedging problem, the
investor must maximize Equation (5) subject to a dynamic budget constraint.
Two different formulations of this constraint are possible. The first is a con-
straint on the cash-balance:

dW =w'W cg’,, + xdF + [(1 — w'D)rW — cldt (6)

where w'l = L., w; is the sum of the portfolio weights of traded assets. Alter-
natively, the constraint may be expressed in terms of total wealth at time ¢;
Y,=W,+ P,Q,

dY = d(PQ) + w W P, + xdF + {(1 — w'DrW — c]dt 7
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Except for the inclusion of the cash flows from traded assets, Equation (6) is
the form used by Ho (1984), and Equation (7) is the one employed by Stulz
(1984). The difference between the two formulations is that Equation (7) con-
tains J{PQ), while Equation (6) does not. This apparent difference is illusory.

In the cash balance constraint formulation, Equation (6), the investor
chooses a trading strategy in traded assets and futures so as to guarantee opti-
mal consumption and to control the level of the cash balance position. Al-
though there are no intermediate cash flows associated with the nontraded
position, its presence causes the investor to modify his intertemporal trading.
The boundary condition, which stipulates that the value function at time-T be
equal to the terminal utility of the cash balance plus the cash flow generated by
the nontraded position, is what produces this effect.

In the wealth constraint formulation, Equation (7), P,Q, is the present
value of P7Q . As the position is nontraded, d(PQ), does not represent a cash
flow and does not have a direct control variable associated with it. Conse-
quently, d(PQ), operates in Equation (7) as a pure information process. The
investor using this formulation of the constraint in effect trades in assets and
futures to adjust the cash balance, using information on the current value of
the nontraded position, so as to maximize his expected lifetime utility. What
may not be obvious is that the trading strategy of an investor who uses the cash
balance formulation of the constraint is identical. A straightforward general-
ization of Adler and Detemple (1986) yields,

Proposition 1. The optimal trading strategies for futures and traded assets
and the investor’s expected utility based on the cash balance constraint, Equa-
tion (6), and those based on the wealth constraint Equation (7) are the same.

What drives the proof is the fact that the information conveyed by the pro-
cesses {Y,, P,, Q,} and the processes { W,, P,, Q,} is identical, as wealth and
cash balances are linked by the additive relationship, ¥, = W, + P,Q,. Con-
servation of information suggests that the solution not be modified by moving
from one formulation to the other. Consequently, the optimal hedges obtained
by Ho and Stulz should have been, despite any apparent difference, the same.

The proof of Proposition 1 in the appendix also enables us to write out the
optimal vector asset demands for traded assets and futures as:

I T
x T Bs Vi I Vg I
(®)

where, in addition to notation already introduced, J is the indirect utility or
value function and subscripts denote its partial derivatives; V, , and V, , are
respectively the (4 X 1) vectors of the covariances, o, , and o, ,, between the
traded assets and the price or quantity of the nontraded position; V;,, and
V;., are the (scalar) covariances between the futures price and, respectively,
the spot price and the quantity; and V is the (4 + 1) X (4 + 1) variance-
covariance matrix with the (single) futures contract appearing in the (4 +
1)st position. N
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Equation (8) decomposes the demand for assets and futures into two parts,
a locally speculative demand in the first term on the right hand side (RHS) and
a hedging demand in the second. To see this interpretation, notice first that
the speculative demand consists of the mean-variance-efficient portfolio,
weighted by the investor’s risk tolerance, that solves the problem:$

{Iv%x) E(dW) subject to Var(dW) = a constant

As in Anderson and Danthine (1981), the THM result, reached first by
Working (1953) and McKinnon (1967) and repeated more recently by Rolfo
(1980) and by Benninga, Eldor and Zilcha (1985), that the sign of u; automati-
cally determines the sign of the weight of the futures position in the speculative
demand portfolio, breaks down in our model. Whether the investor is long or
short in futures depends, in general, not only on the expected change in the
futures price but also, via the inverse of the variance-covariance matrix, on its
correlations with every other traded asset. Finally, we note that the speculative
demand would be the only demand were there no nontraded position (or other
exogenous state variables). This observation illustrates the point, implied also
in Merton (1973), that investors will not hedge at all when all assets can freely
be sold short and there are no shifts in the opportunity set.’

SAs pointed out also in Stulz (1984), the problem is:

(I\évax) [itpe + W' Wins — rl) + x'py] + Nk — (Wiw/Vow + x'Vex + 2Ww'V,, ,x)].
w,x

The first order conditions are:
pa =~ 1l = MVuwW + V, ,x)

By = MV wW + Vyx)

which, after manipulation, provides up to a scalar multiple:

<WW> [Vn Vﬂl:l_l(“ﬂ , rl)

x Vi Vg By

This portfolio is also called a speculative demand because it depends en the direction in which securities’
and futures’ prices are expected to move.

"Notice that as an interim step in obtaining the mean-variance efficient portfolio in footnote 6 one could
have written the demand as:

W = [V, — 8'Vy 8] (e — 1) — 81/l
xm = V}}l(ﬂf - V,,.wW)

where 8 = V, [V ! = the matrix of regression coefficients of a on f, and V., — 8’ V8 = the matrix of
the residuals of these regressions, Following Sercu (1980), the equation for wW™ can conceivably be intet-
preted as a demand for traded assets “hedged by futures’ and x™ is then the sum of the demand for futures
to hedge traded assets plus a demand for futures as part of the efficient portfolio. The point to stress,
however, is that the notion of hedging traded assets with futures is completely arbitrary. It is an artifact, due
purely to an arbitrary partitioning of the variance-covariance matrix: other partitions would produce differ-
ent “*hedging” demands. It is meaningless to define hedging in the absence of state variables that shift the
opportunity set.
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The hedging expression, the second term on the RHS of Equation (8), rep-
resents (twice) the portfolio that maximizes the covariance between the con-
trollable cash balance component of wealth and the relative change in the
marginal utility of total wealth; that is, it is (two times) the portfolio that solves
the unconstrained program:?

di, ]
(l&%ﬁ Cov[dW, 7, (Y,P,Q, 1)

It is useful to decompose the hedging term one stage further. Denoting the
hedge portfolio by 4, we obtain from Equation (8):

<WW>h N ——V_l {(Va‘p> i + (Va,q> .—Iﬂ} - V_l {(Va'p> Q + <Va'p> PI
x \ZPRL Vi I Vi Vi

The two preference weighted portfolios in the first term on the RHS of Equa-
tion (9) replicate the Merton-Breeden dynamic hedges in this case with two
state variables. The second term on the RHS of Equation (9) is the one that did
not emerge in their setting as it is due to the introduction of a nontraded posi-
tion into Equation (5). Since the stochastic part of d(PQ) equals the stochastic

*The program is Max Cov{dW, (dJ,/J, (Y, P, Q, t)], where
{wW.x}

dJ, = £1,(-) + Iy lwWoa,dz, + xo;dz, + Qo,dz, + Pogdz,) + Jyp0pdzp + Jy0edzy

and where £ is the instantaneous mean operator. This program is equivalent to

1, wW Vap \'
Max ——{(w'W,x")V + (w'W,x’) o+ P
Pty Jy x \7% Vig
Va. Va.
+ (w'W,x") |:< p) i.-" < q> J.\'qj|
Vi) I Viel I
for which the first order conditions are:
wW\ (V.. \ v
x Vis In Via T
wW V.. V.
=< >=_i V-.< F<J—"’+Q +v—'< ) Ji+p>
x 2 Vie T Via I /
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part of QdP + PdQ, it is immediate that this term represents the portfolio
that solves the program:®

Ve Vo [WW
Min Var(dY) = (w'W, x)
{wiW.x} Vi Vg x

\Z
"’") + Var[d(PQ)]l, (10)

frrq

+ 2(w'W, x)(

where V; ,, = covariance of asset / with the value of the nontraded position.

In what follows, we shall refer to this portfolio as the minimum-variance
hedge. As the sequence of decompositions indicates, it is a component of the
intertemporal demand for assets and futures, for hedging shifts in the oppor-
tunity set. As distinct from all the other components of the optimal demand, it
is preference-free and is, therefore, potentially implementable by regression
analysis. Finally, it is the one term that distinguishes hedging in the sense of
the THM from the more general problem of determining the optimal intertem-
poral demand for assets.

IV. ON THE EXCLUSIVE USE OF FUTURES FOR HEDGING

This section addresses the question of whether futures will be preferred to
other traded assets as hedging instruments when transactions costs are zero.
An immediate implication of the construction of the minimum-variance hedge
is that, in general, neither will be preferred and both will be used together. To
see this, we write out the first order conditions for Equation (10), denoting the
minimum-variance hedge portfolio by v, as follows:

WWYy = =V 'Vyx' — V' Vo
(11)
x' = =V 'V(wWy — V'V,

9(%&2} (Var[d(PQ)] + W2w'Vow + x'Vyx + 2Ww'V,,, + 22V, + 2Ww'V, ;x) provides
the first order conditions:

VawW + Vyx + Vo, =0
VwW + Vyx + V;, =0, so that
wWy” Vare Vin Vea
= -y = —V! Q+ P
x Vira Vio Vie
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The second term in each line of Equation (11) reveals that the nontraded
position will be hedged by both traded assets and futures. The first terms in
each line reveal further that the variance-minimizing demands for traded as-
sets and futures each respectively depends on the other. It follows that futures
will be the preferred hedging instrument under conditions that set the vari-
ance-minimizing demand for traded assets, (wW)”, equal to zero. These con-
ditions are summarized in the following sequence of linked propositions.

Proposition 2. If there exists for a given state variable a futures price that is
perfectly correlated with it, then: () only that futures contract will be used for
hedging it; and (i7) a portfolio of the future and other assets will, in general, be
used to hedge other state variables.

Proposition 2 implies directly that, where a futures is perfectly correlated
with the underlying asset, it and it alone will be used to hedge the underlying
asset. The proposition generalizes teadily. When there are many state vari-
ables and futures contracts, each state variable will be hedged exclusively by
the one futures that is perfectly correlated with it.!°

In general, however, the perfect correlation requirements of Proposition 2
may be violated. Random convenience yields can produce imperfect correla-
tions between futures prices and the associated spot prices. In addition, there
may exist no futures contracts at all for such variables as the weather in vari-
ous locations, foreign GNPs and interest rates or, for that matter, for the
quantity component of the nontraded position in our model. Under what con-
ditions will futures be preferred over traded assets for hedging in these more
general circumstances? In the presence of many futures and state variables (or
nontraded positions), the answer has two parts. The first is:

Proposition 3. The hedging demand for traded assets will disappear and
only futures will be used for hedging if the return on each traded asset is inde-
pendent of each futures price and of each state variable, including the spot
prices and quantities of each nontraded position.

Proposition 3 incorporates the possibility, discussed by Anderson and
Danthine (1981), that a given nontraded position will be cross-hedged by more
than one future in a world with no perfect correlations. Moreover, it general-
izes their result. The hedge portfolio will include also traded assets unless the
latter are independent of both the futures and the nontraded position. Finally,
Proposition 3 leads naturally to the statement of the very strong conditions to
b};s met if the routine, one-position, one-futures hedge of the THM is to arise in
this case.

1%See Breeden (1984) for the complete markets case with instantaneously maturing futures that are per-
fectly correlated with each and every state variable. Due to these perfect correlations and with spanning, the
demand for traded securities to hedge state variables disappears. Under more general conditions where
correlation is imperfect, however, the link that Breeden forges between risk aversion and the J,,/J, terms
and his subsequent result, that the logarithmic utility separates “long"” hedgers from *reverse” hedgers,
both break down. Logarithmic utility does not produce myopia in this instance when the underlying cash
position is nontraded, as we show in Adler and Detemple (1986).
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Proposition 4. Each nontraded position will be hedged exciusively by the
one, imperfectly correlated futures contract written on it if each nontraded
position is correlated with only one futures price (independently of all other
security prices) and each such futures price is independent of all other futures
and asset prices.

To sum up this section, futures can be said to be preferred over other assets
as hedging instruments in the absence of transaction-cost differentials only
under conditions where the hedging-demand for traded assets disappears. The
notion of futures being better for the purpose of hedging when traded assets
also appear in the hedging demands is vacuous. The two sets of conditions in
which futures only are used for hedging involve a trade-off. Propositions 3 and
4 allow futures to be imperfectly correlated with (the components of) the non-
traded position but then require these two sources of uncertainty to-be orthog-
onal to all other traded assets. Proposition 2 is more restrictive in that it re-
quires perfect correlation between a futures contract and each component of
the nontraded position, but is less restrictive in that it allows all sources of
uncertainty to be correlated.

In practice, transaction cost differences may account for what casual empir-
icism suggests is a market preference for hedging with futures. To short a
stock, for example, one initially borrows and sells it; puts the proceeds after
paying a commission in escrow at zero interest; and simultaneously posts a
S50%, interest-earning margin. Subsequently, with maintenance margins set
at 30%, margin calls are satisfied by cash payments. When shorting a future,
there are no initial proceeds on which interest income is lost. In other respects,
the cost structure is similar: Commissions must be paid; margin of between
2% and 6% can be posted with T-bills; and margin calls are paid in cash. The
main cost advantages of futures are the lower margins and the avoidance of
the lost interest on short-sale proceeds, and these may be substantial. How-
ever, if transactions costs distort pricing in equilibrium in such a way as to
remove the advantage of futures, investors in general will use all traded assets
for hedging purposes except under circumstances like those described above.

V. THE FEASIBILITY OF ZERO-VARIANCE HEDGES

We maintain the setting of Section 3, with many traded assets, one nontraded
position and no state variables other than P and Q. The question in this sec-
tion is: When will minimum-variance hedges also be zero-variance, or what
have been called perfect, hedges in the presence of quantity uncertainty? As
anticipated, it is enough to have access to futures whose prices are perfectly
correlated with P and Q, respectively.!' This is the immediate implication of
the following proposition.

""The possibility of perfect insurance in continuous time models where futures contracts based on each of
the sources of uncertainty and perfectly correlated with these sources are available is discussed in Ho (1984).
In the BEZ (1985) one-period model a perfect hedge is possible, but the hedge ratio for the exchange rate
depends on the hedge ratio for the quantity. This dependence arises because the multiplicative uncertainty
faced in the single-period setting cannot be linearized as in a continuous time model.
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Proposition 5. A perfect hedge, which reduces the variance of changes in
total wealth to zero, exists if there are futures that are perfectly correlated with
changes in P and changes in Q, respectively.

1t is of interest to note that the additive combination of the two futures con-
tracts described in the proposition provides the investor with perfect insurance
against the product of two variables, PQ. This follows from the fact that, in
continuous-time models with diffusion processes, the local uncertainty faced is
linear-additive. That is, the stochastic part of the change in the product PQ is
a linear combination of the stochastic parts of the change in P and of the
change in Q. As long as the investor can trade continuously, he can then lo-
cally offset each of these sources of uncertainty by the selection of an appropri-
ate trading strategy in the two futures, thereby achieving a perfect hedge.

It is perhaps notable that Proposition S is unaffected by the presence of
traded assets, other than the two assumed futures, that may be partially cor-
related with the nontraded position. This is a reflection of Proposition 2 above,
which establishes that the demand for traded assets for hedging any state vari-
able that has a perfectly correlated future written on it will be zero. As a result,
the vector zero-variance demand for the two futures may be written simply as:

x\r=0 /
( > = —(Qa” 0’) (12)
y Po, /o,

where y denotes the position in the futures that is perfectly correlated with dQ
and o, is the standard deviation of its price, while ¢, ¢, and g, are the stan-
dard deviations, respectively, of the spot price, the quantity and the price of
the future that is perfectly correlated with dP.

Of course, futures contracts on the quantities of nontraded positions are,
with rare exceptions, not available. The usual situation is that of having to
hedge a position where, at best, there is a contract perfectly correlated with the
spot price. The following proposition summarizes all the circumstances, men-
tioned at various points in the literature, in which a zero-variance hedge is
available in this case.!?

Proposition 6. When there is one futures contract whose price changes are
perfectiy correlated with dP and no other asset or futures that is perfectly cor-
related with dQ, a perfect hedge exists either:

(?) if quantity is deterministic (o, = 0), where the zero-variance hedge is

given by x*=0 = —Qo¢,/0;; or

(i) if quantity is random but is perfectly instantaneously correlated with
the price (p,, = 1), where the hedge is given by x*=* = —(Qg, *
Pg,)/ af.

12See, especially, Anderson and Danthine (1981) and Ho (1984).
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This is perhaps the appropriate point to compare the zero-variance hedges
of Proposition 6 with the “delta” hedges of the futures and options literature.
A delta hedge is defined as the number of futures (or options) required to in-
sure perfectly a unitary position in the underlying commodity or asset, where
perfect insurance means that the insured position has zero variance and re-
turns the riskless rate. Delta hedge ratios are derived assuming that F = F(P,
t), that is, that the futures price (and the convenience yield) is a function of at
most the current spot price and time. A delta hedge then involves going short
F; ! futures contracts for each unit of the commodity purchased

"To obtain the relationship between delta and zero-variance hedges, notice
that when F = F(P, t), o; = F,0,. Consequently, the hedge ratio in case (Z) of
Proposition 6 may be written as: (x*=%/Q) = —F,!. When quantity is non-
random, the zero-variance hedge is a delta hedge In case (u), where quantity
is random but perfectly correlated with price, the zero-variance hedge ratio
becomes: (x"=%/Q) = —F, »[1 = (Po,/Qo,)]. In this case, the zero-variance
hedge is proportional but not equal to the delta hedge, where the proportional-
ity constant depends on the ratio of the normalized standard deviations, ¢,/Q
and ¢,/P. In general, a minimum-variance hedge that is not perfect is neither
equal to nor proportional to a delta hedge.

To close this section, we explore the conditions for the zero-variance hedge
ratio to be constant, that is, not to require revision, over time. Clearly, this is
impossible in case (if) of Proposition 6, where quantity may fluctuate, or under
Proposition 5, where both P and Q may vary. In case (i) of Proposition 6, the
hedge ratio will at least be deterministic. When the futures is priced by arbi-
trage, as in Black (1976), Brennan and Schwartz (1985), and Richard and
Sundaresan (1981), and in the absence of a convenience yield, F, = P,e"T™9,
and the perfect-hedge ratio, F;' = e™"(T~%), is at most a function of time to
maturity: it is constant for Breeden-type futures that mature instantaneously.

V1. IMPLEMENTABLE HEDGES

For our final purpose, we define as implementable those hedges that are pref-
erence-free and that depend (for all preference structures) only on the measur-
able characteristics of the opportunity set. Under what conditions, we then
ask, will preference-free hedges be optimal, that is, expected-utility maximiz-
ing, for arbitrary preferences? The answer to this question is of considerable
practical interest.

The only preference-free hedge in our framework is the minimum-variance
hedge. To see this, we need only rewrite Equation (8), following Equation (9),
as:

<WW) N _J_y V_l (’La . rl) B V_l [(Va’p> Jﬂ.l- <Va'q> ‘I_qy—:l B V_l(va,pq>
x T Hy Vil v \Vy) Iw Vira
(13)
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Clearly, the only preference-free term is the last. There is widespread recogni-
tion throughout the literature that the minimum-variance hedge is potentially
nonoptimal (even for quadratic preferences). What is perhaps less well-known
is the precise set of conditions under which it will be optimal.

Restated, the question can now be asked in two ways. First, what are the
conditions that set both of the first two, preference-laden terms on the RHS of
Equation (13) equal to zero? This is the subject of Proposition 7, below. Alter-
natively, can we determine conditions under which: Only futures appear in the
hedge portfolio; only traded assets feature in the speculative portfolio; and the
middle, Merton-Breeden hedging term on the RHS of Equation (13) drops
out? This is the subject of Proposition 8. Both are proved in the appendix.

For simplicity, we maintain the following assumptions throughout this sec-
tion: (a) there is one traded asset, one nontraded position, and a single futures
contract; (b) there is no quantity uncertainty; (c) the futures contract promises
delivery of one unit of the nontraded position and is perfectly correlated with it
(i.e., ppr = 1); and (d) the traded asset is distinct from the futures (i.e., P #
*1). Under these assumptions, we have the following sufficient conditions.

Proposition 7. Under assumptions (1)-(4) above, the optimal demands for
traded assets and futures consist only of the minimum-variance demands if:

(i) p; = 0; the futures price is a pure martingale, and
(ii) p, = r; the risky traded asset is dominated by the riskless asset for all
risk-averse investors.

Proposition 7 merits further discussion. The condition, p,; # %1, in princi-
ple permits both the traded asset and the futures to appear in the optimal
demand. However, following Proposition 2 above, only the futures contract
will actually be used for hedging as it is perfectly correlated with the spot price.
Together, conditions ({) and (if) reduce the speculative, mean-variance de-
mand to zero. And, as the appendix demonstrates, they are sufficient also to
set the cross-partial derivative of the value function, J,, = 0. Thus, the first
two terms on the RHS of Equation (13) become equal to zero and the optimal
demands, denoted by an asterisk, are given in this case by:

()= el
= — 14)
x* Qo,/0y

Notably, the traded asset, which is dominated in the mean-variance sense, also
serves no useful hedging purpose. The hedging demand for futures, as before,
can be computed as a regression coefficient, as Qe,/0; = Qoy,/ afz when pg, =
1. Following Proposition 6, the hedge is perfect.

Notice further that conditions ({) and (i) of Proposition 7 would be met were
assets priced in the capital markets as if aggregate risk-tolerance were infinite,
that is, risk-neutrally. These conditions are therefore inconsistent with any
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single-agent model of capital market equilibrium where the representative in-
dividual is risk-averse, They are at best consistent with a multiple-agent equi-
librium in which risk-averters are dominated at the level of pricing by the pres-
ence of at least one risk-neutral agent who would end up holding all assets in
positive net supply. There is sufficient evidence of risk-premia in the mean
returns on capital assets in general to suggest that the two conditions of Propo-
sition 7 are violated empirically.!3

The question then remains: Can the minimum-variance hedging demand
for futures be optimal under less restrictive circumstances? In the next propo-
sition, the traded asset’s expected returns can differ from the riskless rate: it
is, therefore, not dominated. Proposition 8 identifies the condition under
which there is a separation of functions: only the traded asset is held for specu-
lative purposes; only the futures is used for hedging; and the hedging demand
is implementable.

Proposition 8. Under the assumptions preceding Proposition 7 and with
tqa ¥ r, the optimal speculative demand contains only the traded asset and the
optimal hedging demand is a minimum-variance portfolio containing only the
future if: p; = (p, — r)ogn/ok.

In this case, the optimal demands for traded assets and futures are given, as
the proof of the proposition in the appendix implies, by:

w* « — 1)/l 0
R
x* T 0 Qa,/0y

where, by virtue of Proposition 6, the hedge again is perfect, i.e., zero-vari-
ance.

The intuition behind Proposition 8 is straightforward. A risk-averse investor
who owns a nontraded position will, in the absence of a perfect hedging instru-
ment, diversify his portfolio in a distorted way, so as to offset the imbalance
due to that position. In the limiting case where there exists a future whose
returns are perfectly correlated with those of the nontraded asset, the investor
first hedges by shorting the future in a manner that exactly cancels the pres-
ence of the nontraded position. He then proceeds to choose an efficient portfo-
lio from among the remaining traded assets (or, in this case, that consists of
the traded asset). Three-fund separation is achieved. The optimal portfolio
consists of combinations of the riskless asset, the risky traded asset and the
hedge portfolio. The condition that the future be priced so that its excess ex-
pected returns are linearly related to those of the traded asset, that is, that

*Here we are taking exception to the thrust of the argument in Benninga, Eldor, and Zilcha (1984) who
assume "‘unbiased capital markets,” i.e., risk neutrality, as an empirically verified proposition. Their paper
also assumes “‘regressivity,” that is, that the spot price is a linear function of the futures price plus some
error term of the form: P, = a -+ bF, + &,. This formulation is hard to motivate on the basis of existing
theory. Linearity holds under arbitrage pricing but with no error. When the futures price depends on the
spot price plus additional (imperfectly hedgable) state variables, there is no prior reason for a linear rela-
tionship to materialize.
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s = (pa — r)og/ o2, is what guarantees that the future will not be held fo1
mean-variance efficiency purposes.”

What is perhaps less obvious but true nonetheless is that the same pricing
condition (combined with the same perfect hedging opportunity) also removes
the preference-dependent component of the hedging demand for futures. In-
tuitively, at the point where the nontraded position is hedged perfectly and the
pricing condition is met, changes in wealth are independent of the futures
price and, therefore, of the nontraded position, so that J,, = 0.

The discussion of Proposition 8 reveals also its fragility. Following Proposi-
tion 2 above, its desirable, function-separating properties break down in the
presence of quantity uncertainty that cannot separately be covered by a per-
fectly correlated futures contract. More generally, one would expect that in-
complete hedging opportunities would render the pricing condition of the
proposition inconsistent with a capital market equilibrium with nontraded as-
sets. In short, the conditions for implementable, variance-minimizing hedges
also to be optimal are likely to be breached empirically.

VII. CONCLUDING REMARKS

Hedging in the sense of the THM does not occur in perfect financial markets.
For a demand to appear, for some assets to hedge other, predesignated assets,

"To see this last point more precisely, note that the speculative component of the demand for the asset

and the future, denoted by m, is:
W ”m .=
(w > - H‘_,L V_l<,‘ A >
x I nr

In this two-by-two case, we also have

of —o,

4 4 2 2 2

Vv-l=p . ) where D = a,07(1 ~ pi).
0 Ta

Substituting, the mean variance demand becomes:

(w p J, , (pa — r)afz-— KOs ., (r, — rY/o?
= ——=D" = ———

x Iy —(#ta — Yoy, + pro? Iy 0
since the condition of Proposition 8 implies that the bottom term in the square bracket equals zero and,
rewritten as p,/0; = py(p, — r)/a,, that the top term is given by (p, — r)o? ~ (62/62) (pa — 1) = (s, —
ryoj(t —~ p2).

'*Note the proof in the appendix. Another way of seeing this is to write out the wealth budget constraint
as:

Y = {(Qp, + xp; — rPQ)dt + Qo,dz, + xa,dz,} + {(WW(p, — r) + rY)dt + wWao,dz,}

where the first bracketed term is zero by arbitrage. What remains is the second bracketed expression,
changes in which can be associated with the total returns on the mean-variance portfolio of traded assets.
When futures are priced by the condition that ne = (pa — r)a/,,/a,z,, these returns are independent of the
moments of the futures price and, therefore, of the spot price, as footnote 13 shows. Consequently, dY is
similarly independent of P.
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some imperfection that causes trading discontinuities in the pre-identified as-
sets is required.!6 Taking some positions as completely nontraded most closely
conforms to the fixed-cash-position assumption of the THM. When perfect
hedges are infeasible, investors will generally hedge their nontraded positions
with portfolios that contain both traded assets and futures.

The only implementable hedges are minimum-variance hedges. They canbe
estimated by ordinary least squares (OLS) techniques provided that the re-
gression coefficients are intertemporally constant. If the regression coeffi-
cients depend on exogenous state variables, OLS procedures at best provide an
approximation and more complex statistical techniques are required. In gen-
eral, minimum-variance hedges must be rebalanced continuously. Only if
there is no quantity uncertainty and a perfect hedge is possible can the hedge
ratio be constant. In any event, minimum or zero-variance hedges will seldom
be optimal in the expected-utility-maximizing sense.

The main limitation of the model on which these results are based is, as was
implied in the introduction, its assumption of cornplete nonmarketability for
the positions that investors choose to hedge. By virtue of this assumption, this
paper, along with most of the hedging literature, considers only the problem of
hedging a given exposure. Over time, of course, each exposure, that is, the size
of each temporarily nontraded position, can in principle be varied. Were this
position instantaneously and costlessly modifiable in any direction, the hedg-
ing model would reduce once more to the general portfolio model. Only shifts
in the opportunity set would be left to motivate hedging behavior as the direct
hedging term, which reflects THM-type hedging, would disappear. A full the-
ory of hedging therefore lies between the two extremes: Of the complete non-
tradedness of target positions that underlies the THM on the one hand, and
pure portfolio theory with freely variable spot positions on the other.

A notable line of contributions, including Stein (1961}, Stoll (1979), Rolfo
(1980), Anderson and Danthine (1981), and Benninga, Eldor, and Zilcha
(1985}, all in a one-period framework; and Ho (1984) in an intertemporal
model, have explored the interaction between hedging and an initial, once-off
production decision. Their analyses are most clearly applicable to circum-
stances like those of a farmer who, once his field is cultivated and planted,
may be unable thereafter to increase his acreage or liquidate part of it. How-
ever, this approach cannot capture the essence of hedging behavior in finan-
cial markets where exposures themselves (i.e., production decisions) are peri-
odically revisable. What is required is a theory of the optimal choice of spot
positions that can be adjusted, perhaps sluggishly, over time. Explicitly mod-
elling this problem will undoubtedly require the introduction of transactions
costs, short-selling constraints and stopping times. While this task is formida-
ble, hedging theory will remain incomplete until the work is done.

16The assumption of nontradedness of an asset or position, however, also raises the issue of its compatibil-
ity with a continiious process for that asset, i.e., the existence of a market with continuous trading. This
apparent conflict is resolved as follows. First a market with continuous trading may exist, but access to the
market may be restricted for various reasons: divisibility problems, minimum transaction size require-
ments, discrimination among classes of investors, and so on. Second, investors may trade at discrete points
in time in some markets, but the arrival process of orders to the market may still produce continuous trad-
ing. In both cases a continuous price process at the aggregate level coexists with barriers to continuous
trading at the individual level.
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Appendix

Proof of Proposition 7

Under the maintained assumptions (1)-(4) in the text, the demand function
are:

2 -1 —
x Iy \os  o? My o,/ Iw ¢,/ 0y
and substituting in the Bellman equation leads to,

—I, =1,1Qpu, + tW — ¢l + T, + V2l 02 + ulc, t)

P I L (ra—
MG R A bl i )
f

[P a, 3
+ 2Jy(”"' - I"'f)v_l ( p> :;ﬂ + JyP(apay Upf)v_l ( p) %pl
il Opp/ =%

(P g,
+ 1,y Q0 gy 0,) V! ( ”> + 20, — 1, p) V! ( ”) Q
Ofp Ofp
Cop
+ 2J,,(0pas 0,) V!
Ofp
Further noticing that:

Ua
02 = (Opay 0,)) V1 < p> =0

Osp
aa
.(”'a -r #f)V_l (o’ P) = (U,,/Uf)/l.j
fo

and that by arbitrage:

pp — (0, /00)p; = rP
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we obtain:
-1, =1,0Y —¢) + Jp, + Val,0} + ule, t)

2 Bo—T
— 1l (e =7, 1)V - Jy(ap/af)ufjﬂ
J.Y.V 173 J.W

—1 [%op) Tpy
- I/ZJyp(O'p,,, O'pj)V 7—
() yy

Now the mean variance demands are zero if:

X pa — 1) — Gpup; =0
‘Cl) {f falbf

—0pa — 1) + 0lpy =0

and the value function J is of the separable form J[Y, P, t] = y(Y, ¢) +
¢(P, t) (so that J,, = 0) if:

Pa —

r
(o —r, p) V1 ( ) is independent of P.

Ky

and there exist two functions y and ¢ satisfying

Y2 Pa =T
(C2) —v¥, =Y, (rY —¢) +ule,t) — V2L (pa— 1, g V1
Yy By

)

—¢, = ¢pﬂp + 1/2¢ppag

&P, T)=0; (Y, T)=BIY, Tl where ¢ = u;'(¥,).

Now if conditions (7) and (i) of the proposition are satisfied, we immediately
get (C1) and the first condition of (C2) holding. Thus, the result is obtained if
in addition there exists a solution ¥ and ¢ of the system:
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=¥, =, Y —¢) + ule, t)
— ¢, = dpp, + 126,05
(P, T)=0; (¥, T)=B[Y, Tl
where ¢ = u.'(¥,)

In the statement of the proposition we omit these existence conditions. That is,
we implicitly suppose that there exists a space of utility functions, U, for which
these conditions are met.

Proof of Proposition 8

Following the proof of proposition 7, we need the conditions:
(C'1) —on(p, — 1) + oiu, =0

and (C2) to be satisfied. Under the condition of the proposition, (C’1) is trivi-
ally satisfied and the first condition of (C2), namely:

[(pa — 120} — 204(n, — r)py + piolloiof(1 — pZ)]1™' independent of P
vecomes
[(ua — r)*/0%] independent of P

This condition is clearly satisfied. Assuming away the existence problem men-
tiored earlier completes this proof of Proposition 8.
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