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Abstract

Two endemic problems face researchers in the social sciences (e.g., Mar-
keting, Economics, Psychology, and Finance): unobserved heterogeneity
and measurement error in data. Structural equation modeling is a pow-
erful tool for dealing with these difficulties using a simultaneous equation
framework with unobserved constructs and manifest indicators which are
error-prone. When estimating structural equation models, however, re-
searchers frequently treat the data as if they were collected from a single
population (Muthén 1989). This assumption of homogeneity is often un-
realistic. For example, in multidimensional expectancy value models, con-
sumers from different market segments can have different belief structures
(Bagozzi 1982). Research in satisfaction suggests that consumer decision
processes vary across segments (Day 1977).

This paper shows that aggregate analysis which ignores heteroge-
neity in structural equation models produces misleading results and
that traditional fit statistics are not useful for detecting unobserved
heterogeneity in the data. Furthermore, sequential analyses that first
form groups using cluster analysis and then apply multigroup struc-
tural equation modeling are not satisfactory.

We develop a general finite mixture structural equation model that
simultaneously treats heterogeneity and forms market segments in the
context of a specified model structure where all the observed variables
are measured with error. The model is considerably more general than
cluster analysis, multigroup confirmatory factor analysis, and multi-
group structural equation modeling. In particular, the model sub-
sumes several specialized models including finite mixture simulta-
neous equation models, finite mixture confirmatory factor analysis,
and finite mixture second-order factor analysis.

The finite mixture structural equation model should be of interest to
academics in a wide range of disciplines (e.g., Consumer Behavior, Mar-
keting, Economics, Finance, Psychology, and Sociology) where un-
observed heterogeneity and measurement error are problematic. In ad-
dition, the model should be of interest to market researchers and product
managers for two reasons. First, the model allows the manager to perform
response-based segmentation using a consumer decision process model,
while explicitly allowing for both measurement and structural error. Sec-
ond, the model allows managers to detect unobserved moderating factors
which account for heterogeneity. Once managers have identified the
moderating factors, they can link segment membership to observable
individual-level characteristics (e.g., socioeconomic and demographic
variables) and improve marketing policy.

We applied the finite mixture structural equation model to a direct mar-
keting study of customer satisfaction and estimated a large model with 8
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unobserved constructs and 23 manifest indicators. The results show that
there are three consumer segments that vary considerably in terms of the
importance they attach to the various dimensions of satisfaction. In contrast,
aggregate analysis is misleading because it incorrectly suggests that except
for price all dimensions of satisfaction are significant for all consumers.
Methodologically, the finite mixture model is robust; that is, the parameter
estimates are stable under double cross-validation and the method can be
used to test large models. Furthermore, the double cross-validation results
show that the finite mixture model is superior to sequential data analysis
strategies in terms of goodness-of-fit and interpretability.

We performed four simulation experiments to test the robustness of the
algorithm using both recursive and nonrecursive model specifications.
Specifically, we examined the robustness of different model selection cri-
teria (e.g.,, CAIC, BIC, and GFI) in choosing the correct number of clusters
for exactly identified and overidentified models assuming that the distri-
butional form is correctly specified. We also examined the effect of distri-
butional misspecification (i.e., departures from multivariate normality) on
model performance. The results show that when the data are heteroge-
neous, the standard goodness-of-fit statistics for the aggregate model are
not useful for detecting heterogeneity. Furthermore, parameter recovery
is poor. For the finite mixture model, however, the BIC and CAIC criteria
perform well in detecting heterogeneity and in identifying the true num-
ber of segments. In particular, parameter recovery for both the measure-
ment and structural models is highly satisfactory. The finite mixture
method is robust to distributional misspecification; in addition, the
method significantly outperforms aggregate and sequential data analysis
methods when the form of heterogeneity is misspecified (ie., the true
model has random coefficients).

Researchers and practitioners should only use the mixture meth-
odology when substantive theory supports the structural equation
model, a priori segmentation is infeasible, and theory suggests that the
data are heterogeneous and belong to a finite number of unobserved
groups. We expect these conditions to hold in many social science
applications and, in particular, market segmentation studies.

Future research should focus on large-scale simulation studies to
test the structural equation mixture model using a wide range of mod-
els and statistical distributions. Theoretical research should extend the
model by allowing the mixing proportions to depend on prior infor-
mation and /or subject-specific variables. Finally, in order to provide
a fuller treatment of heterogeneity, we need to develop a general ran-
dom coefficient structural equation model. Such a model is presently
unavailable in the statistical and psychometric literatures.

(Structural Equation Models; Market Segmentation; Finite Mixture Models;
Confirmatory Factor Analysis; Customer Satisfaction)
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FINITE-MIXTURE STRUCTURAL EQUATION MODELS FOR RESPONSE-BASED
SEGMENTATION AND UNOBSERVED HETEROGENEITY

1. Introduction

Structural equation models provide a powerful framework
for estimating consumer decision process models and sys-
tems of simultaneous equations with measurement error.
When estimating structural equation models, researchers
frequently treat the data as if they were collected from a
single population (Muthén 1989). This assumption of ho-
mogeneity is often unrealistic. For example, in multidimen-
sional expectancy value models (Bagozzi 1982) consumers
from different market segments can have different belief
structures. Hence pooling the data across respondents is
likely to produce misleading results. Several authors in the
salesforce literature have cautioned against pooling data
across salespeople when testing theories of salespeople’s
performance/ satisfaction (e.g., Kohli 1989). Research in the
satisfaction literature also suggests that consumer decision
processes vary across segments (Day 1977).

To illustrate the problems stemming from failure to
treat heterogeneity in the context of structural equation
models, consider the model shown in Figure 1 where the
unobserved Affect (1) for a new food product depends on
two perceptual dimensions: Sweetness (£;) and Richness
(&,). Suppose there are two unobserved benefit segments
of equal size, indexed by ¢ = 1 and g = 2, respectively.
Segment 1 is “pleasure-seeking” whereas segment 2 is
“health-conscious.” Affect, Sweetness, and Richness are
each measured by two indicators. The values of the factor
loadings, structural parameters (ie., the importance
weights of the perceptual dimensions), and the factor co-
variances for both groups are shown in Figure 1. The vari-
ances of the measurement errors (i.e., the §’s and ¢'s) and
the structural errors (i.e., the {'s) are all equal to 0.5 and
the variances of the exogenous factors are all equal to
unity for both groups. The expected values of the exoge-
nous factors &; and &, equal zero for group 1 (i.e., E(§;)
=0,i =1, 2) and the corresponding values for group 2
are 0.6 (i.e., E(¢2) = 0.6,i =1, 2). Note that both Sweetness
and Richness have positive impacts on Affect in segment
1 (“pleasure-seeking”’) and negative effects on Affect in
segment 2 (“health-conscious”).

Suppose we fail to recognize the heterogeneity and
analyze the pooled covariance matrix.! Assuming a

T Let p, and X, respectively, define the mean vectors and covariance
matrices of the observable variables for group g. Then the pooled co-
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sample size of 500, we find that the fit statistics are per-
fect: x5 = 0 (p = 1.00), goodness-of-fit index GFI = 1.00,
and root mean residual RMR = 0, incorrectly implying
that the data are homogeneous and the model is correct.
The structural parameter estimates, however, are se-
verely biased. Both estimates equal 0.054 and are statis-
tically insignificant providing strong support for the
erroneous theory that the perceptual dimensions Sweet-
ness and Richness have no impact on Affect. Thus the
aggregate structural equation model leads to meaning-
less results: in particular, the estimated parameters do
not reflect the parameters of either segment even though
the fit statistics using the pooled data are perfect. More
seriously, the traditional fit statistics do not provide di-
agnostic information alerting the researcher to the pres-
ence of unaccounted heterogeneity in the model.

This paper develops a finite mixture structural equa-
tion model for detecting and treating unobserved het-
erogeneity. Substantively, the model allows the man-
ager to perform response-based market segmentation
using a consumer decision process model, while explic-
itly allowing for both measurement and structural er-
ror.2 The models can range in complexity from reduced-
form (i.e., single-equation) models with no measure-
ment error to nonrecursive systems of simultaneous
equations with measurement error. Methodologically,
the model contributes to the consumer behavior litera-
ture by allowing researchers to detect unobservable dis-
crete moderating factors which account for heteroge-
neity among consumers.’ The model also contributes to
the statistical literature by generalizing the multigroup
structural equation model (J6reskog 1971, Sérbom 1974)
to the case where group membership is unknown.

Section 2 discusses alternative methods for treating
heterogeneity in structural equation models. Section 3

variance matrix is

2
Tw= Y 055, + 025(m, — po) (s — pa)'.

8=1

2 The model differs from previous response-based segmentation mod-
els (e.g., Kamakura and Russell 1989 and Chintagunta, Jain, and Vil-
cassim 1991) because it allows for simultaneous equations and mea-
surement error.

3 We thank an anonymous referee for drawing our attention to this
interpretation.
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Figure 1 An Example lllustrating the Effects of Unobserved Heterogeneity
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develops the general finite mixture structural equation
model and shows how other models are special cases
(e.g., finite mixture confirmatory factor analysis). Sec-
tion 4 discusses model estimation and model selection
criteria. Section 5 applies the finite mixture method to a

MARKETING SCIENCE/Vol. 16, No. 1, 1997

commercial consumer satisfaction study. Section 6 dis-
cusses the results from simulations testing the robust-
ness of the methodology. Finally, §7 summarizes the
results, discusses limitations, and suggests future re-
search directions.
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2. Methods for Treating
Heterogeneity in Structural
Equation Models

Suppose the market researcher has formulated a struc-
tural equation model based on a well-developed theory.
The researcher, however, suspects that the data belong
to a finite number of groups / segments or, alternatively,
that a discrete unobservable moderating factor accounts
for heterogeneity.’ The preferred data analysis strategy
is first to form groups a priori and then use the standard
multigroup structural equation methodology (Jéreskog
1971, Sorbom 1974). However, a priori segmentation
based on demographic and psychographic variables
may be infeasible or insufficient to explain differences
in responses (Moore 1980).

Suppose the researcher cannot form segments a priori
and does not know the number of groups or the mod-
erating factors which account for heterogeneity. Two
procedures are available. First, the researcher can per-
form cluster analysis on the indicator variables to form
segments and then use multigroup structural equation
modeling to estimate the model for each segment. This
approach is problematic because “when clustering sam-
ples from a population, no cluster method is a priori
believable without a statistical model’” (see Aitkin, An-
derson and Hinde 1981; cited in McLachlan and Basford
1988, pp. 2-3). Second, the researcher can use a variety
of data-reduction methods (e.g., principal components
or factor analysis) to filter the aggregate data by purging
measurement error, form clusters (segments) using the
reduced dimensions, and then perform multigroup
structural equation modeling. This approach is logically
flawed because the first step assumes homogeneity (i.e.,
one population) whereas the second asserts heteroge-
neity (i.e., multiple segments or populations). Empirical
studies also show that this data-reduction strategy is not

4 The true model could also consist of one population with random
measurement and structural coefficients. Extant structural equation
models cannot handle this form of heterogeneity except in trivial cases
(i.e., single-equation models with no measurement error). Although
we shall not develop a random coefficient structural equation model,
our simulation studies will examine the robustness of the finite mix-
ture model when the true structural equation model has random co-
efficients. We thank the Area Editor and an anonymous referee for
suggesting this simulation study.
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robust (Chang 1983). These difficulties are com-
pounded when the data include measurement error
(Baker 1974). For details on the efficiency of clustering
in the presence of measurement error, see the survey
papers by Milligan and Cooper (1987) and Bock (1996).

In addition to these statistical difficulties, current
clustering methods are managerially restrictive: they do
not allow the manager to perform response-based seg-
mentation on the basis of a hypothesized model struc-
ture. This weakness is recognized in the literature.
McLachlan and Basford (1988, p. 173) observe that,
“Ideally one would like to perform a clustering of the
entities on the basis of all the information available, assum-
ing that differentiation between the groups is to be with
respect to the total information.”” (Emphasis added.)

In sum, researchers can use the standard structural
equation methodology when theory is sufficiently de-
veloped to allow them to form segments a priori or iden-
tify moderating factors which account for consumer
heterogeneity. In many marketing applications, how-
ever, these strategies are not feasible. Hence we need a
methodology for detecting and treating unobserved het-
erogeneity in structural equation models.

3. The Finite Mixture Structural
Equation Model

We now propose a finite mixture structural equation
model which deals with the problems caused by unob-
served heterogeneity (see previous section) and gener-
alizes the multigroup structural equation model (Jéres-
kog 1971, Sérbom 1974) to the case where group mem-
bership cannot be determined a priori.’ Specifically, our
method is a model-based approach for clustering using
structured data. Hence, we can simultaneously form
clusters (segments) and obtain segment-specific esti-
mates for the measurement and structural parameters

5 Muthén (1989) proposed a MIMIC approach for handling certain
forms of heterogeneity in structural equation models. Using this ap-
proach, the researcher can analyze the pooled data after including ad-
ditional explanatory variables (e.g., demographics) to capture hetero-
geneity. The MIMIC approach, however, only allows for special forms
of heterogeneity. Specifically, only the intercepts and the factor means
can vary across consumers. That is, all consumers must have the same
covariance matrices.
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of a postulated model structure.® We can also use the
method to test whether unobserved moderating factors
account for heterogeneity in the structured data.

For convenience, we shall use the standard notation
for multigroup structural equation models. Let ¢ index
membership in a (unknown) segment (g =1, - - - G), &
denote an (n X 1) vector of exogenous latent variables,
and 7% denote an (m X 1) vector of endogenous latent
variables. Let x| g denote a (g X 1) vector of observable
indicator variables measuring & and y|g denote a
(p X 1) vector of observable indicator variables mea-
suring 1°. Let the measurement model be:

ylg =95+ Afn® + &8 (1)
x|g = v+ ASEE + 862 (2)

where A§(p X m) and A§(g X n) are coefficient matrices
(factor loadings), #»§(p X 1), and »{(q X 1) are vectors
of measurement intercept terms, and & and 6¢ are vec-
tors of measurement errors in y | g and x| g, respectively.
Let E(£%) = 7§, E[(& — 7§)(& — 19)'] = ®3, E(e%*)
= @3, and E(8%6%) = ©% where ®¢ and @7 are not nec-
essarily diagonal. Assume that E(&*) = 0, E(8%) = 0, and
that the vectors of measurement errors are uncorrelated
with the vector of latent variables.

The structural model defines the hypothesized theo-
retical links among the latent variables. Let the struc-
tural model be defined by:”

B, = af + %€ + (8, 3)

where B, is an (m X m) matrix of structural parameters
specifying the links among the endogenous latent vari-
ables, I'! is an (m X n) coefficient matrix denoting the
effect of & on %, &f is an (m X 1) vector of intercept
terms, and {? is a random vector of disturbances (errors
in equations). Let E({3¢¢) = y¥. By assumption, E(L%)
= 0, £? is uncorrelated with &%, and B, is nonsingular.

¢ Alternatively, one can use a two-step method first to form the groups
without considering the structural model and then apply the multi-
group structural equation methodology to the partitioned data. This
procedure is statistically inefficient and may even be infeasible for
large models.

7 Strictly, we should use a superscript for g for the matrix B. Instead,
we have used a subscript to minimize notational clutter in our deri-
vations, given the types of matrix operations performed on B,.
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The finite mixture structural equation model defined
by Equations (1) through (3) is very general and sub-
sumes a variety of specialized models. Suppose the
model is defined by Equation (1) or equivalently by
Equation (2). The system now reduces to a finite mix-
ture confirmatory factor model. Suppose all measures
are error-free (e, 5 = 0, ¥ =0, A = 1, A§ =1, ©f
= 0, and ®% = 0). The system reduces to Equation (3),
a finite mixture simultaneous equation model. Suppose
the model consists of Equations (1) and (3) only. The
result is a finite mixture, second-order confirmatory fac-
tor model. Suppose the model is defined by the system
of Equations (1), (2), and (3). This formulation allows
for general types of heterogeneity in both the measure-
ment and structural equation models (e.g., a model
where consumers use different decision-process models
and the factor mean structures differ across segments).

Before proceeding to model estimation, it is necessary
to establish that the postulated finite mixture structural
equation model is identified. Suppose the multigroup
model for known groups is identified (see Sorbom 1974
for a discussion). Then the finite mixture of structural
equation models is identified provided the data for the
unknown groups follow multivariate normal distribu-
tions. This result follows from Definition 3.1.1 in Titter-
ington, Smith, and Makov (1985, p. 36). See Appendix
1 for a proof.

4. Model Estimation and Model

Selection
We now develop an empirical methodology for esti-
mating the general finite mixture structural equation
model (see Equations (1), (2), and (3)).

Model Estimation

Consider the general model defined by Equations (1),
(2), and (3). Let Alg = [Zﬂ;‘] denote the joint vector of
observable indicator variables conditional on member-
ship in group g. Then its conditional mean vector p,[(p

+ g) X 1] is defined by:

v + A$B.(af + I'7§)
=

v b Ases @

and its conditional covariance matrix X[(p + q) X (p
+ )] by:
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) [Af;Bg“(I‘XQgI‘X' + OBV AL + O A§BS‘1FX<I>XA§']
* LAseTeB; Ay AsBAS + %]
5)

By assumption A|g has a conditional multivariate
normal distribution. Hence the unconditional distribu-
tion of the observed vector A = [{] is a finite mixture
of these distributions. That is:

G
A~ Y wfo(Alp, I, (6)

g=1

where w = (w;, ..., wg)’ is the vector of the G mixing
proportions such that w, > 0 and =5, w, = 1, and f(-)
is the conditional multivariate normal density function.
The likelihood function for a sample (A,, ..., Ay) of i
=1,...,Nrandomly drawn observations from the mix-
ture is then:

L=]1

N
=1

G
[ Z wg(zﬂ)—(p+q)/2| Egl -1/2
! g=1

X expl—3(A, — p)'T; (A, - ug)}] , (7)

where L is a function of the elements of w,, B,, I'é, A§,
AS, vE, v, af, B2, Y%, 05, 0%, andriforg=1,...,G.
The problem is to maximize L with respect to the free
parameters given the sample data (A4, ..., Ay) and a
specified number of groups G, while taking into account
the constraints imposed on w above, and |%,| > 0 for
all g8 Note that the maximum likelihood estimates %,
and f, are functions of the postulated theoretical model:
the measurement model and the structural model (see
Equations (4) and (5)), as well as the mixing propor-
tions .

We develop a maximum likelihood procedure to
maximize Equation (7), using a modified E-M algo-
rithm (see Dempster, Laird, and Rubin 1977). (Mathe-
matical derivations and details regarding the algo-

8 The condition | ;| > 0 requires a minimum sample size of (p + ¢)(p
+ g + 1)/2 for each group where p and g, respectively, denote the
numbers of indicators for the endogenous and exogenous constructs.
This condition should be satisfied in most marketing applications. As
in the standard multigroup structural equation model, empirical un-
deridentification can occur if any group is small.

rithm are described in a working paper available from
the first author.) The E-M method provides two im-
portant advantages. First, the method gives monotone
increasing values of the log-likelihood function (see
McLachlan and Basford 1988, p. 15 and Titterington,
Smith, and Makov 1985, p. 85). Hence, we can show
convergence to at least a locally optimum solution us-
ing a limiting sums argument, assuming that the es-
timated covariance matrices are nonsingular (Cour-
ant 1953, pp. 370-371). Second, based on our experi-
ence, the algorithm appears to be reasonably robust
over the choice of initial starting values for the param-
eters. (This issue will be discussed further in §§5 and
6.) A disadvantage of the E-M algorithm is that the
convergence rate can be slow (McLachlan and Bas-
ford 1988, p. 17).

Upon achieving convergence, the algorithm provides
estimates of the model parameters and their asymptotic
covariances (see McLachlan 1992, pp. 41-43). It is
straightforward to use the parameter estimates to assign
individual observations, i, to each of the G segments by
using Bayes’ rule:

5 __ Ofi(AS )
® 2I(G=1 wkfk(Al | 2k/ i"k) !

(8

where P,, denotes the posterior probability of observa-
tion i belonging to segment g. These posterior probabil-
ities represent a fuzzy classification (clustering) of the
N observations into G segments conditional on the
structural equation model postulated.

In practice, as in any other structural equation model
estimation procedure, it is necessary to apply the E-M
algorithm several times using a wide range of starting
values. This step is important because it is necessary to
search for all local maxima and choose the highest of
these values. McLachlan and Basford (1988, pp. 17-18,
and pp. 38-40) discuss the relevant statistical theory
succinctly, including the case where the likelihood func-
tion is unbounded (e.g., the covariance matrices differ
across groups).

Finally—and especially in consumer behavior studies—
one can interpret the G groups as defining a discrete
unobserved moderator of the relationships among
the dependent and independent constructs in the
structural equation model. Once the data have been
partitioned into the G groups, the researcher can im-
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prove marketing policy by performing a posterior
analysis to relate segment membership to observed
background variables (e.g., demographics and psy-
chographics).

Model Selection

Model selection depends on the researcher’s a priori
knowledge of the problem structure. Suppose the re-
searcher knows the number of segments a priori. Then
he or she can compare alternative nested models di-
rectly using the likelihood ratio statistic because the
regularity conditions hold. In most practical cases,
however, we expect the researcher to use the finite
mixture structural equation model in applications
where the number of segments G is not known a priori.
It is therefore necessary to choose statistical criteria
for determining the optimal number of segments. In
contrast to the standard multigroup case, conven-
tional tests based on the likelihood ratio (e.g., the chi-
squared statistic) do not apply because the regularity
conditions are violated. See Titterington, Smith, and
Makov (1985, pp. 4-5) for a simple example. This
problem is widely recognized in the literature and a
variety of heuristics has been proposed (see Mc-
Lachlan and Basford 1988, pp. 35-36). In keeping
with the spirit of finite mixture analysis, we propose
that the researcher choose the number of segments by
examining several global measures of fit such as the
consistent Akaike Information Criterion CAIC (Boz-
dogan 1987) and the Bayesian Information Criterion
BIC (Schwarz 1978).

Assuming that a G-segment model is satisfactory, it
is useful to assess the degree of separation among the
various segments. We use an entropy-based measure E¢
(Ramaswamy, DeSarbo, Reibstein, and Robinson 1992)
based on the posterior probabilities. Specifically, Eg is
defined by:

Ec=1- [zz - P, In ﬁ,g]/(Nln G, O

LI 4

where P, is defined in Equation (8). This measure is
bounded by 0 and 1. A value close to 0 indicates that
the posterior probabilities are not well separated (i.e., it
is difficult to classify observations accurately into dis-
tinct groups).

MARKETING SCIENCE/Vol. 16, No. 1, 1997

5. A Customer Satisfaction
Application

Several researchers have used structural equation
models to analyze the antecedents of consumer satis-
faction (e.g., Fornell and Westbrook 1984). We applied
the finite mixture structural equation method to a sat-
isfaction model using data from a customer satisfac-
tion study conducted for a home shopping club in Eu-
rope. The data were collected by a European direct
marketing firm using a telephone survey. The sample
size was 1,564 customers. After discussing the substan-
tive issues with the client and examining several ex-
ploratory analyses, we hypothesized that seven latent
dimensions determine overall satisfaction (7). They
are satisfaction with price, variety, catalog, promotion,
delivery, credit, and quality. The observable indicators
for price (&) are satisfaction with delivery charge (x,)
and with overall price (x,). The observable indicators
for variety (&,) are satisfaction with overall product
range (x3), brands (x,), fashion (xs), and exclusivity
(x6). The indicators for catalog (¢;) are satisfaction with
overall catalog (x), picture quality (xs), information
(x9), and style (x10). The indicators for promotion (£,)
are satisfaction with letters (x;;) and with gifts (x,).
The indicators for delivery (¢s) are satisfaction with
availability (x3), shipment (x;,), and speed (x;5). The
indicators for credit (&) are satisfaction with the pro-
cedure (x;4) and with reminders (x;7). The indicators
for quality (&) are satisfaction with general quality
(x18) and with product guarantees (x;). The indicators
for overall satisfaction (7) are general satisfaction (y,),
closeness to ideal outlet (y,), conformance (y;), and
care (y,). All variables were measured on ten-point
scales where higher scores denote higher levels of the
variables. See Figure 2 for a summary of the causal
structure postulated.

Two research strategies are possible. First, one can
estimate a single-group structural equation model using
the aggregate data. This approach implicitly assumes
that the data are homogeneous. Second, one can theo-
rize that there are distinct segments each of which
possibly follows a different model.” For example,

o Alternatively, one can argue that a discrete unobserved moderating
factor accounts for the heterogeneity.
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Figure 2 Theoretical Model for Customer Satisfaction Study*
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1. Numbers in parentheses denote the estimated variances of the disturbance terms.
2. Numbers in square brackets denote factor loading estimates.
3. All the variance and factor loading parameters are significant at p < 0.01 level

consumers could belong to the “highly satisfied,”
“highly unsatisfied,” or ‘“‘moderately satisfied” seg-
ments and so on (i.e., the factor means could differ
across segments). The underlying facets of satisfaction
could have differential effects (i.e., the structural param-
eters could differ across segments). The accuracy with
which respondents answer questions could also depend
on task involvement (i.e., the measurement parameters
could vary by segment).

In order to test for unobserved heterogeneity, we an-
alyzed the aggregate and finite mixture structural equa-
tion models. To reduce the chance of local optima, we
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estimated each model ten times using different random
starting values.

The results for the aggregate data (G = 1 solution)
suggest that except for price all the facets of satisfaction
are important (see Table 2). Before accepting these re-
sults we tested for unobserved heterogeneity using the
following general measurement and structural models:

x,|g = v§ + ASES + 6%, (10a)
y.lg =v§+ Afn® + &8, (10b)
B = of + IS8 + L2, (10¢)
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Table 1 Summary Statistics for Model Selection in Satisfaction Study

G Measurement Model Mg ~LntL CAIC BIC GFI RMR E;
1 - 76° 43950.7 88536.3 88460.3 0.79 0.17 -
2 invariant 92 42958.0 86684.7 86592.6 0.89 0.06 0.78
2 free 114 42866.3 86685.1 86571.1 0.89 0.05 0.80
3 invariant 108 42793.2 86488.8* 86380.7* 0.89 0.05 0.70
3 free 152 42637.4 86544.7 86392.7 0.90 0.05 0.72
4 invariant 124 42754.9 86545.9 86421.8 0.89 0.05 0.62
4 free 190 42551.4 86690.3 86500.3 0.89 0.06 0.62

* Denotes minimum values for CAIC and BIC.
2 M; denotes the number of free parameters.

Equations (10a), (10b), and (10c) imply that the means
and reliabilities of all latent variables differ across seg-
ments, the intercept terms in the structural equation
model vary across groups, and the differential impacts
of the dimensions of satisfaction on overall satisfaction
vary by group.

To achieve model identification, we impose the fol-
lowing constraints: E(£') = 0 (the null vector), a' = 0,
Var(¢¥) = ¢f = 1foralli, g, and A, = 1 for all g. Hence
7$(g > 1) measures the differences in the factor means
across groups for the exogenous latent variables, where
Segment 1 is the reference group.

We estimated several finite mixture structural equa-
tion models, varying the number of segments and al-
lowing for general types of heterogeneity (i.e., we al-
lowed for different structural and measurement models
across segments). Note that although we could have
simply asserted that the measurement model is invari-
ant across groups, we chose a more conservative strat-
egy because of the lack of previous research using our
method. Recall that we can also interpret “‘segments”
as discrete unobserved moderators of the relationships
among the constructs in the structural equation model.

The results (see Table 1) show that both the BIC and
CAIC criteria point to the three-segment (G = 3) solu-
tion in which the measurement model is invariant
across groups. This result of measurement model in-
variance suggests that the indicators are well chosen.

We now analyze in detail the results for the three-
segment solution with an invariant measurement
model. The results (i.e., factor means and structural pa-
rameters) for the overfitted three-segment solution with
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heterogeneous measurement models are very similar
and are omitted.

The results of the finite mixture analysis suggest that
the data are heterogeneous. All the reliabilities in the
three-group solution have significant loadings, suggest-
ing a good fit (see the factor loading estimates in Figure
2). The mean levels for the satisfaction constructs across
groups are given in the first panel of Table 2. The results
show that Segment 3 (17.3% of the sample) has the high-
est mean satisfaction levels across all constructs. Seg-
ment 2 (39.0% of the sample) has the lowest mean sat-
isfaction levels for all constructs. Furthermore, the mean
differences for all latent variables are highly significant
across all groups. Hence, the manager might consider
steps to improve the satisfaction scores for Segment 2.
Before modifying the marketing mix, however, it is nec-
essary to examine the structural model for each segment
in detail.

Panel 2 of Table 2 gives the estimates of the structural
parameters for the aggregate model and the three-
segment solution. As discussed previously, the aggre-
gate model (G = 1) suggests that all dimensions except
price are significant determinants of customer satisfac-
tion. The finite mixture results, however, show that
there are both common and segment-specific effects
across the three market segments. Only delivery, credit,
quality, and promotion influence overall customer sat-
isfaction in Segment 1. In contrast, catalog, promotion,
delivery, credit, and quality determine overall customer
satisfaction in Segment 2. Only delivery and credit sig-
nificantly impact overall customer satisfaction in Seg-
ment 3.
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Table 2 Parameter Estimates for the Aggregate and Three-Segment Solutions in the Satisfaction Study
Structural Parameters
Factor Mean Scores Finite Mixture
Factor Segment 2° Segment 3 Aggregate Solution Segment 1 Segment 2 Segment 3
7 (Satisfaction) -06 0.85 - - - -
&4 (Price) —253** 277 0.060 0.093 —0.006 0.011
(.487)° (.515) (.037) (.068) (.063) (.095)
&, (Variety) —-1.27** 1.84** 0.074* 0.031 0.051 0.061
(.115) (.155) (.033) (.032) (.034) (.059)
&; (Catalog) -1.56** 1.87* 0.237** 0.058 0.275** 0.115
(.118) (.160) (.036) (.036) (.032) (.062)
&4 (Promotion) —0.76** 0.62** 0.077* 0.075* 0.079** 0.000
(.084) (.100) (.032) (.027) (.026) (.037)
&5 (Delivery) -0.86** 1.07** 0.207** 0.183** 0.188** 0.163**
(.092) (.137) (.036) (.030) (.025) (.049)
&g (Credit) -0.83** 0.58** 0.170** 0.167** 0.119** 0.163**
(.102) (171) (-040) (.035) (.028) (.055)
&7 (Quality) —2.967** 3.96** 0.234** 0.331** 0.213** 0.099
(.635) (.814) (.049) (.047) (0.062) (.117)
a - - - 0 0.830 —-0.171
(.348) (.615)
Mixing Proportions - - - 0.437 0.390 0.173

2 Segment 1 is the reference group (i.e., all factor means for segment 1 are set to zero).

® Standard errors are in parentheses.
** Denotes significant at the 0.01 level.
* Denotes significant at the 0.05 level.

These results show that aggregate analysis is mislead-
ing. They also show that, even if the confirmatory factor
model for all the exogenous variables were homoge-
neous, the structural model would be misspecified if we
performed an aggregate analysis using the pooled
data.”

In practice, the next step would be to use the posterior
probabilities from the finite mixture model to classify
individuals into the three segments. These results could
be used to improve marketing efficiency by relating
group membership to such individual-specific variables
as demographic and psychographic characteristics.

071t is straightforward to verify that, regardless of which dimension
(£,) of satisfaction we consider, the 99% confidence intervals for the
means across groups do not overlap (see Table 2). Hence pooled data
analysis is not appropriate.
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Lacking such data, we could not perform this posterior
analysis.

Cross-Validation

We performed a double cross-validation analysis to
check the stability of the results. This method requires
one to randomly split the sample into halves, estimate
the model separately for each subsample, and use the
estimates from one subsample to predict (validate) the
outcomes for the other. The correlation between the vec-
tor of parameter estimates from the first subsample and
the corresponding vector from the full sample is COR
= 0.985 and the mean absolute deviation for the two
sets of coefficients is MAD = 0.034. The corresponding
values for the second subsample are COR = 0.987 and
MAD = 0.030. These double cross-validation results re-
inforce the validity of our conclusions (i.e., the estimates
are stable).

MARKETING SCIENCE/Vol. 16, No. 1, 1997
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Comparison to Sequential Data Analysis

We compared the finite mixture structural equation
method to a sequential data analysis strategy: perform-
ing K-means cluster analysis of the observed variables
followed by multigroup structural equation modelling
for G = 3 and an invariant measurement model. We also
performed a double cross-validation analysis for both
methods. The finite mixture method consistently out-
performed the sequential data analysis strategy regard-
less of the choice of model fit statistics or validation cri-
teria. For example, CAIC = 87155.2 and BIC = 87047.1
for the K-means model and CAIC = 86488.8 and BIC
= 86380.7 for the finite mixture model. Detailed results
are available from the first author.

6. Testing the Finite Mixture Model:

Simulation Evidence
We performed four simulation experiments to test the
robustness of the finite mixture model. The first two
experiments examine the performance of different esti-
mation methods for correctly specified models; the
other two experiments focus on the effect of model mis-
specification. The first experiment examines the robust-
ness of different statistical criteria (e.g., BIC and CAIC)
for model selection in the finite mixture model. The sec-
ond experiment compares the performances of the finite
mixture method and a sequential data analysis strategy
(K-means clustering followed by multigroup structural
equation modeling). The third experiment examines the
effect of estimating a finite mixture structural equation
model when the correct model has random coefficients.
The fourth experiment examines the effect of distribu-
tional misspecification on the performance of the finite
mixture structural equation model.

Most simulation studies use a fixed set of parameter
values. Thus the results are likely to depend heavily on
the particular set of parameters chosen. To avoid this
difficulty, we used separate sets of parameter values for
all replications and treatments. Appendix 2 provides the
details of how we generated the data in the four simu-
lation studies. For each treatment condition we per-
formed five replications and estimated the model ten
times to avoid local optima. In all four experiments, we
used a moderately large fixed sample size of 1,500.
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Model Performance Criteria

The model performance criteria of interest are: good-
ness-of-fit, group separation, recovery of group mem-
bership, recovery of the measurement model, recovery
of the structural model, and recovery of the full model.
We used several measures of each criterion. We used
RMR and GFI as measures of goodness-of-fit and en-
tropy (see Equation (9)) as a measure of group separa-
tion. We used two measures for the recovery of group
membership. The first was a matching coefficient
MATCH (a hit rate based on classifying an observation
into the segment for which the posterior probability is
the highest); the second measure, CORP, was the bi-
serial correlation coefficient between the estimated pos-
terior probabilities and the true group memberships.
We used two measures for the recovery of the measure-
ment (structural) model. The first measure is a normal-
ized root mean square statisticc RMSM (RMSS). This
measure is scaled such that a value of one means perfect
parameter recovery."' The second measure, CORM
(CORS), is the correlation coefficient between the true
measurement (structural) parameters and their esti-
mates. We measured the recovery of the full model
(measurement and structural models) similarly using
RMSMS and CORMS. We transformed the response
variables where necessary to avoid heteroscedasticity in
the ANOVA analysis. Specifically, we applied Fisher’s
Z transform to all correlations and used the log-odds
transformation in cases where the measure varied be-
tween zero and one. Because of space constraints, we
summarize the main results. Details are available from
the first author.

First Simulation: Model Selection

Our primary purpose in this experiment was to examine
the abilities of different model selection criteria (e.g.,
CAIC, BIC, GFI, RMR, and Entropy) to choose the cor-
rect number of clusters for exactly identified and over-
identified models, assuming that the distributional form

" Let \¥ denote any measurement parameter for group g. Then
RMSM =1 — (2 TN - X;")Z/Z ) (7\;“)2) :
g ¢ g 7

A similar definition applies for the root mean square statistic RMSS of
the structural model.
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Figure 3 Theoretical Model for Simulated Data: Two-Group, Nonrecursive Model
g
1
9 g g g
59 | x9 A8 A y9 g
g
d g ¢12 w192 61% g g g
- g
g g
62 —— Xg A 42 84 y4g «— & 4
C g
2

(i.e., multivariate normality) is correctly specified. We
estimated a one-factor model using a (2 X 2) factorial
design with the following treatments: number of clus-
ters (2 and 4) and number of indicators (3 and 6). To
assess the abilities of the different information criteria
(e.g., BIC) in picking the correct number of groups, we
estimated the finite mixture model by varying the num-
ber of groups from one through six.

The results show that only BIC and CAIC are effective
for choosing the number of groups. For example, in the
four-group model, the average GFI statistics across sim-
ulation runs are, respectively, 0.96, 0.95, 0.98, 0.99, and
0.99 for the one-, two-, three-, four-, and five-group
cases. The corresponding estimates for RMR are 0.05,
0.06, 0.06, 0.028, and 0.026.

Overall, the BIC criterion was somewhat superior to
CAIC and picked the correct number of groups in 92.5%
of the cases. In contrast, the success rate for CAIC was
85%. Both BIC and CAIC performed extremely well for
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the overidentified six-indicator models. The success rate
for BIC was 100% for both the two- and four-group mod-
els. The success rate for CAIC ranged from 90% in the
four-group model to 100% in the two-group model. Both
BIC and CAIC performed less well in the exactly identified
three-indicator models. In particular, the success rate for
each criterion fell when the number of clusters increased.
The success rate of BIC (CAIC) fell from 90% (90%) in the
two-group model to 80% (60%) in the four-group model.
Thus both BIC and CAIC perform well for overidentified
models. These results are encouraging because most struc-
tural equation models are overidentified for theoretical
reasons. BIC, however, appears to be a superior model
selection criterion for exactly identified models.

Second Simulation: Recovery of Parameters and
Segment Membership

This experiment examines the nonrecursive model
shown in Figure 3. The primary focus is on comparing

MARKETING SCIENCE/Vol. 16, No. 1, 1997
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the abilities of the finite mixture model and a two-step
approach (K-means clustering followed by multigroup
structural equation analysis) to recover segment mem-
bership and, for each method, to determine the param-
eter biases for different model specifications.'” (We used
PROC FASTCLUS in SAS to perform the K-means clus-
tering.) We also measured the extent of bias in the pa-
rameter estimates produced by an aggregate analysis
which ignores heterogeneity.

We chose a (4 X 2) factorial design and used the fol-
lowing treatments: estimation method (aggregate AGG;
known group membership MG; finite mixture FM; and
K-means KM) and model specification (i.e., a model
with invariant measurement loadings and free struc-
tural parameters across groups and a model with all
measurement and structural parameters freely varying
across groups). We included two covariates. The first
covariate is the variance of the mixing proportions
(VLAM) and is used to capture the effect of dispersion
in group sizes. The second covariate is the average gen-
eralized Mahalanobis distance (DIST) between all pairs
of population group centroids. We chose DIST because
this measure explicitly allows for unequal covariance
matrices across groups to capture the effect of group
separation. In this experiment, the number of groups
was fixed to two and was treated as known a priori in
the estimation.

Table 3 shows the cell means for each performance
criterion for different model specifications and method
treatments. To facilitate comparison, consider the
known group membership (MG) case as the bench-
mark. The finite mixture (FM) method performs ex-

2 To our knowledge, this study 1s the first to examune the robustness
of different methods (e.g., K-means clustering) where there is an ex-
plicit model structure and measurement error is present. Previous
studies which examine measurement error do not allow for model
structure; those studies which incorporate model structure do not al-
low for measurement error. See the review papers by Milligan and
Cooper (1987) and, in particular, Bock (1996, pp. 404-405). In our
simulations we used a sequential data-analyss strategy. We first per-
formed K-means clustering to determine the appropriate number of
groups and the corresponding group membership. We then applied
multigroup structural equation modeling on the partitioned data. Al-
ternatively, we could have estimated the multigroup structural equa-
tion model for different numbers of clusters and chosen that solution
which provides the best fit in terms of the CAIC or BIC criteria.
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tremely well in recovering group membership: the K-
means (KM) results are less satisfactory. For example,
in the treatment with free measurement and structural
parameters, the CORP statistics for FM and KM are
0.945 and 0.840, respectively. The results for parameter
bias show that, regardless of which set of parameters
we consider (i.e., the measurement model, the structural
model, or the complete model) or which performance
criterion we use, the known group membership (MG)
and finite mixture (FM) models significantly outper-
form the aggregate and K-means models (AGG and
KM). For all comparisons and choices of performance
criteria, however, the FM method performs as well as
the benchmark model MG, i.e., the results are not sig-
nificantly different."

Note that for the aggregate model even though the
standard goodness-of-fit statistics (e.g., GFI) are ex-
cellent, the recovery of both the measurement and
structural parameters is extremely poor. Thus hy-
pothesis testing using aggregate analysis is seriously
misleading.

In order to determine the joint effects of the treat-
ments, we performed an analysis of variance for each
response variable (e.g., CORP) using the treatments and
their interactions as independent variables. The last col-
umn of Table 3 shows the overall fit statistics for each
response variable. Regardless of which performance cri-
terion we choose, the main effects of the estimation
method are highly significant (p < 0.001 in all cases
except for RMR, for which p < 0.014). The main effects
of the type of model (fixed or free measurement models
across groups) are not significant. For the goodness-of-
fit statistics GFI and RMR there is a significant interac-
tion between estimation method and type of model (p
< 0.0001 and p < 0.047, respectively). The group mem-
bership recovery statistics CORP and MATCH improve
when the generalized Mahalanobis distance DIST is
high (p < 0.003 and p < 0.001, respectively).

These results show that the finite mixture method
(FM) performs well. To further examine the effect of
group separation, we performed a median split on
DIST. The K-means model (KM) is unsatisfactory when

'*We performed pairwise comparisons using orthogonal contrasts in
the analysis of variance.
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Table 3 Summary Measures for the Accuracy of Different Estimation Methods: Nonrecursive Model
Measurement Model
Invariant Free
Measures MG FM AGG MG M KM AGG R?
Goodness-of-Fit GFl 0.992 0.993 0.958 0.997 0.993 0.993 0.987 0.990 0.65**
RMR 0.048 0.043 0.176 0.029 0.035 0.032 0.049 0.042 0.46
Measurement Model Recovery RMSM 0.055 0.056 0.262 0.732 0.091 0.118 0.197 0.655 0.82**
CORM 0.998 0.998 0.960 0.771 0.994 0.990 0.974 0.785 0.88**
Structural Mode! Recovery RMSS 0.123 0.119 0.614 0.916 0.087 0.098 0.249 0.317 0.63**
CORS 0.956 0.957 0.703 0.685 0.971 0.964 0.752 0.636 0.68**
Full Model Recovery RMSMS 0.082 0.081 0.401 0.842 0.091 0.115 0.217 0.584 0.89**
CORMS 0.995 0.995 0.903 0.693 0.992 0.987 0.958 0.771 0.83**
Group Membership Recovery CORP 1.00? 0.960 0.840 - 1.00? 0.945 0.845 - 0.82**
MATCH 1.00? 0.950 0.841 - 1.00? 0.936 0.848 - 0.76**

a These values are trivially equal to unity because group membership is known.

* Denotes significant at 0.05 level.
** Denotes significant at 0.01 level.
MG Denotes the case where group membership is known.

FM Denotes the finite mixture model where group membership is unknown.

KM Denotes the K-means model where group membership is unknown.
AGG Denotes the aggregate model.

the groups are not well separated (i.e., DIST is low). If
the groups are well separated (i.e., DIST is high), both
FM and KM perform equally well in recovering group
membership; however, FM is significantly superior to
KM in recovering both the structural and the measure-
ment parameters. These results are consistent with pre-
vious empirical studies which find that even in the ab-
sence of measurement error, mixture models signifi-
cantly outperform fixed-classification models (e.g.,
K-means clustering) in parameter recovery. See Bock
(1996, pp. 404—405) for a succinct review.

Third Simulation: Robustness to Misspecification of
Form of Heterogeneity

This experiment focuses on model specification bias
where the true but unknown form of heterogeneity is a
random coefficient structural equation model. Follow-
ing Sérbom (1981, p. 194) we assume fixed measure-
ment parameters. The structural coefficients, however,
vary randomly across the population according to a
multivariate normal distribution with a diagonal co-
variance matrix. Qur primary goals were to examine the
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robustness of the aggregate, finite mixture, and K-
means estimators and to compare the performance of
different model selection criteria (e.g., BIC and CAIC).
Recall that we cannot use a random coefficient struc-
tural equation estimator as a benchmark because this
estimator has not been developed in the statistical and
psychometric literature.

We examined a nonrecursive random coefficients
structural equation model (see Figure 3) using a (3 X 2)
factorial design with the following treatments: estima-
tion method (aggregate AGG; finite mixture FM; and K-
means KM) and level of heterogeneity in the random
coefficients'* (low and high).

4 We operationalized the levels of heterogeneity in the random coef-
ficient structural equation model using the following procedure. Let
F11, Y22, Brz, and Bz denote the population means of the structural
parameters (see Figure 3). Consider the structural equation 7, = (y1
+ )& + (B2 + €)m + §; where € and ¢, respectively, denote the
random deviations of y;; and 3;, from their population means. Then
€,&1 + €1, is the effect of parameter heterogeneity and ; the effect of
random error. Let 4; and a,, respectively, denote the variances of (e,&;
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Table 4 shows the parameter biases of the different
estimation methods for each heterogeneity level. We re-
port the biases of the finite mixture method when dif-
ferent information criteria (i.e., CAIC, BIC) are used for
selecting the number of groups.

The K-means model is highly sensitive to specifica-
tion error introduced by random coefficients, especially
when parameter heterogeneity is high. In all replica-
tions, regardless of the level of parameter heterogeneity,
the K-means method picked models with four or more
groups. In the high heterogeneity treatment, the K-
means method picked six-group solutions in two of the
five replications.

The finite mixture method is less sensitive to specifi-
cation error resulting from random coefficients. Both
BIC and CAIC perform approximately equally well. For
the low heterogeneity treatment, BIC and CAIC point
to the one-group solution in one replication and to the
two-group solution in four replications. Not surpris-
ingly, high heterogeneity has an adverse effect. For ex-
ample, CAIC leads to three-group solutions in four rep-
lications and to a four-group solution in one replication.

In order to obtain additional insight, we examined
for each cell the average value across replications of
the largest mixing proportions, AVG MAX MIX (see
Table 4). The results show that, regardless of the per-
formance criterion (CAIC or BIC) or level of hetero-
geneity, the finite mixture method tends to lead to one
large group. For example, in the low heterogeneity
treatment, AVG MAX MIX is 0.89 for both CAIC and
BIC. In contrast, the K-means method (KM) tends to
lead to a large number of groups of approximately
equal size. For example, in the low heterogeneity
treatment, AVG MAX MIX for KM is only 0.30. These
results (i.e., one large group and several small
groups) suggest that the finite mixture model pro-
vides useful diagnostic information when the model
is misspecified (i.e., the true model consists of one
population with random coefficients).

Interestingly, the goodness-of-fit statistics for any
given level of heterogeneity are similar for all estimation

+ em,) and §;. Then a,/(a, + a,) = 0.3 defines the low heterogeneity
and a,/(a, + a;) = 0.7 the high heterogeneity treatment. We followed
the same procedure to define low and high heterogeneity for 7,.
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methods and do not provide diagnostic information
(see Table 4). The aggregate model AGG, however, per-
forms best and K-means is the least satisfactory. For ex-
ample, in the low heterogeneity treatment, the GFI sta-
tistics are 0.9972 and 0.925, respectively, for the AGG
and KM models.

The aggregate model captures the measurement pa-
rameters (i.e., the \’s, #’s, and ¢’s) and the population
means of the structural parameters extremely well (see
Table 4). The average normalized root mean squares for
these parameters are 0.98 or better. The aggregate
model, however, performs poorly for the structural er-
rors. The average normalized root mean squares are
0.56 and 0.10, respectively, for the low and high hetero-
geneity treatments. These results are not surprising be-
cause fixed coefficient models force the error terms to
pick up the unobserved heterogeneity in the parame-

ters.”
All four methods capture the measurement parame-

ters (i.e., the \’s and #'s) extremely well. For example,
the normalized root mean square for A in the low het-
erogeneity treatment ranges from 0.990 for K-means to
0.997 for the aggregate model. Compared to the aggre-
gate and the finite mixture methods, however, the K-
means method does very poorly in recovering the co-
variance matrix of the exogenous constructs ®. For ex-
ample, the normalized root mean square for ¢ in the
high heterogeneity treatment is 0.41 for K-means and
0.996 for the aggregate model.

The biases in the structural parameters depend cru-
cially on the estimation method. For the structural pa-
rameters # and vy, the aggregate and finite mixture
methods are highly similar and perform extremely well
(i.e., the normalized measures are close to unity). In
contrast, the K-means results are unsatisfactory: the nor-
malized measures for 8 and vy for the low and high het-
erogeneity treatments, respectively, are 0.416 and 0.841.

1> Consider the simple regression model y = & + Sx + u where x and
y are observables measured without error and « and 8 are random
coefficients. Let E(a) =@ and E(8) = . Theny =& + fx + u' where
u’ = (a — @) + (B — B)x + u. The disturbance u' in the fixed coefficient
model is heteroscedastic and confounds random error (1) and the ef-
fect of parameter heterogeneity (ie., (@ — &) + (8 — f)x). Maddala
(1977, pp. 401-403) discusses estimation methods for this type of sin-
gle-equation random coefficient regression model.
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Table 4 Summary Results for the Random Coefficient Model:
Nonrecursive Specification
Finite Mixture
AGG CAIC BIC K-Means
A. Low Heterogeneity
Parameter Recovery:'
Lambda 0.99714 0.99935 0.99935 0.99086
Theta 0.99394 0.99600 0.99600 0.97471
Phi 0.99650 0.99718 0.99718 0.45228
Beta/Gamma 0.98546 0.97923 0.97923 0.41573
Psi 0.55823 0.84892 0.84892 0.52746
Goodness-of-Fit:
GFI 0.9972 0.9952 0.9952 0.92460
RMR 0.0122 0.0254 0.0254 0.08620
Entropy - 0.5710 0.5710 1.00?
Avg. Max Mix - 0.8885 0.8885 0.29780
B. High Heterogeneity
Parameter Recovery:
Lambda 0.99827 0.99956 0.99953 0.99805
Theta 0.99518 0.99694 0.99658 0.94356
Phi 0.99606 0.97482 0.97792 0.41651
Beta/Gamma 0.98369 0.97043 0.96714 0.84124
Psi 0.10000 0.42685 0.48152 0.26742
Goodness-of-Fit:
GFI 0.99760 0.98880 0.98880 0.92380
RMR 0.01160 0.03720 0.04060 0.07700
Entropy - 0.63080  0.57060 1.0000%
Avg. Max Min - 0.70374 0.60000 0.29840

' Parameter recovery is measured using normalized values. A value of
unity denotes perfect recovery.
2 The value of Entropy is trivially 1.00 for K-Means.

The results for the structural error ¢ show that the K-
means model confounds parameter heterogeneity and
errors-in-equations. The finite mixture method does
much better in separating these effects. For example, in
the low heterogeneity case and when CAIC is used for
model selection, the normalized root mean square for
is 0.53 for the K-means model and 0.85 for the finite
mixture model.

In order to determine the joint effects of the treat-
ments, we performed an analysis of variance for each
response variable using the treatments and their inter-
actions as independent variables. In contrast to the pre-
vious experiments, we did not include covariates be-

cause heterogeneity is a treatment and the true model
includes only one population.

The dependent variables are the biases in the follow-
ing sets of parameters: \, 6, ¢, 8 and v, and ¢ (see Figure
3). For all sets of parameters, the main effects of esti-
mation method are highly significant (p < 0.002). For
the structural parameters 3, y, and ¢ the main effects
of heterogeneity are significant (p < 0.01). In addition,
for B and v there is a significant interaction effect be-
tween estimation method and level of heterogéneity (p
< 0.02). These results for specification error show that
all methods capture the measurement model well. The
structural model, however, is most accurately captured
by the finite mixture method; the K-means method per-
forms poorly. In particular, only the finite mixture
model provides useful diagnostic information when the
model is misspecified.

Fourth Simulation: Robustness to Distributional
Misspecification

This experiment focuses on distributional misspecifica-
tion. Specifically, we examine a nonrecursive model (see
Figure 3) for which the number of groups is known a
priori. Our primary focus is on the ability of the finite
mixture method to recover the true parameters and seg-
ment membership as we vary the number of segments
and violate the distributional assumption of multivari-
ate normality. We also examined in detail which factors
affect the incidence of local optima.

We chose a (2 X 2 X 2) factorial design and used the
following treatments: number of clusters (2 and 4),
skewness (0 and 1), and kurtosis (0 and 2.75). Because
the data generation process does not allow us to simu-
late a distribution with skewness 1 and kurtosis zero
(see Fleishman 1978, Figure 1, p. 527), we chose a skew-
ness of 0.75 when the kurtosis is zero. This design and
choice of factor levels are consistent with those used in
previous simulations (e.g., Muthén and Kaplan 1985).

Table 5 summarizes the performance of the finite mix-
ture model for different specifications of skewness, kur-
tosis, and the number of clusters. As Table 5 shows, the
goodness-of-fit statistics are excellent. GFI is very stable
and ranges from 0.988 to 0.994. The normalized RMR is
highly satisfactory but less stable and ranges from 0.015
to 0.026. For the two-group model, the accuracy in pre-
dicting group membership is very high. For example,
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MATCH (i.e., the hit rate) ranges from 0.969 to 0.983.
Accuracy in predicting group membership in the four-
group model is somewhat lower. MATCH ranges from
0.899 to 0.941. The entropy measure shows that the
groups are well separated: the values range from 0.870
to 0.951. Entropy, however, tends to fall as the number
of clusters increases.

The finite mixture algorithm estimated the measure-
ment model accurately for both the two-group and four-
group models. The normalized RMSM ranges from
0.993 to 0.997. CORM—the correlation between the pre-
dicted and actual measurement parameters—is almost
perfect and ranges from 0.977 to 0.998.

The normalized RMSS varies from 0.923 to 0.951 in
the two-cluster model and is highly satisfactory. The
structural parameters for the four-cluster model are less
accurately measured, especially when skewness and
kurtosis are high (i.e., 1 and 2.75, respectively). In this
case, RMSS drops sharply to 0.705. CORS—the corre-
lation between the predicted and actual structural pa-
rameters—shows the same pattern as RMSS. The dete-
rioration of fit, however, is less extreme (e.g.,, CORS
= 0.883 when skewness = 1 and kurtosis = 2.75). Sim-
ilar results are obtained when all measurement and
structural parameters are analyzed jointly.

The analysis of variance results show that, regardless
of the dependent variable chosen, model performance
depends on two factors only: the distances between the
groups, DIST, (p < 0.001) and the number of groups (p
< 0.01). All the other main effects (i.e., skewness and
kurtosis) and all the two- and three-way interactions are
insignificant. The finite mixture model performs best
when the number of groups is small and the groups are
well separated (see Table 5). This finding is not sur-
prising because the sample size was fixed and the num-
ber of parameters increases almost linearly with the
number of groups.

The finite mixture model—like the standard struc-
tural equation model—is subject to local optima prob-
lems. In our simulation, we encountered local optima
in 38 out of 200 runs (see Table 5). The binary logit
results show that the incidence of local optima depends
significantly on the number of groups and the average
distance between the groups. Specifically, the propor-
tion of local optima increases from 9% in the two-group
case to 29% in the four group-case.
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Summary of Simulation Results

In summary, the simulation results show that when the
data are heterogeneous such goodness-of-fit statistics as
GFI, RMR, and ENTR are not useful in choosing the
correct number of groups.'® Aggregate analysis is seri-
ously misleading and does very poorly in recovering
both the measurement and structural parameters. For
the finite mixture method both BIC and CAIC per-
formed well as model selection criteria for overidenti-
fied models. BIC, however, appears to be superior for
exactly identified models. The finite mixture method-
ology is reasonably robust except when skewness and
kurtosis are severe. We did not encounter any problems
of empirical underidentification or convergence for the
sample size examined (N = 1500). The K-means method
is not satisfactory, especially when the groups overlap
substantially. If the true model is a random coefficients
structural equation model, both the finite mixture (FM)
and K-means (KM) models are misspecified. FM, how-
ever, is much less sensitive to this specification error
than KM. Of all methods examined including the ag-
gregate model, the FM method performed best in cap-
turing heterogeneity in the structural model, even
though the model is misspecified. Finally, only the finite
mixture model provides useful diagnostic information
when heterogeneity occurs because of random coeffi-
cients.

7. Summary and Conclusions

This paper develops a finite mixture structural equation
methodology to detect and treat unobserved heteroge-
neity. The method is appropriate for response-based
market segmentation in the presence of measurement
error and behavioral studies which postulate that unob-
served moderating factors account for consumer hetero-
geneity.

Our method is general and subsumes a variety of sta-
tistical methods as special cases. These include finite
mixture models in the frameworks of confirmatory fac-
tor analysis, simultaneous equation models with no

16 This finding is not surprising because these fit measures are based
on the elements of the aggregate covariance matrix which are not suf-
ficient statistics for the model parameters (see Everitt and Hand 1981,
p- 12).
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measurement error in variables, and second-order fac-
tor analysis. Simulation results suggest that the algo-
rithm is reasonably robust even when a moderate sam-
ple size is used. In particular, CAIC and BIC statistics
perform well in model selection provided the structural
equation model is correctly chosen, the data for each
segment follow a conditional multivariate normal dis-
tribution, and the models are overidentified (as is usu-
ally the case).

We applied the finite mixture method to a direct mar-
keting study of customer satisfaction and fitted a large
model with eight latent variables and 23 observable in-
dicators. The results show that aggregate analysis can
be seriously misleading when there are significant dif-
ferences in model structure across segments. The finite
mixture model appears to be robust (i.e., the results
hold under cross-validation); sequential data analysis
(i.e., K-means clustering followed by multigroup struc-
tural equation modeling) is less satisfactory.

The results show that, from a practical viewpoint,
researchers should be alert to the presence of un-
observed heterogeneity; in particular, standard
goodness-of-fit measures in structural equation mod-
els do not provide diagnostic information. If the data
belong to a finite number of groups and the groups
are well separated, K-means clustering performs rea-
sonably well in classifying observations; parameter
recovery, however, is poor. If the groups are not well
separated, K-means clustering performs poorly both
in classification and in parameter recovery. In all
cases (including misspecified models in which the
true model has random coefficients), the finite mix-
ture model performs well and provides useful diag-
nostic information. Thus, given that the researcher
cannot determine the degree of separation among
groups 4 priori and is primarily interested in accu-
rately estimating the model structure, the prudent
strategy is to use the finite mixture method.

Researchers should keep in mind the following ca-
veats. The researcher should use only the finite mixture
methodology when substantive theory supports the
structural equation model formulation and a priori seg-
mentation is infeasible. In particular, theory should be
available suggesting that the data are heterogeneous
and belong to a finite number of unobserved groups.
We expect these conditions to hold in many marketing

MARKETING SCIENCE/Vol. 16, No. 1, 1997

applications (e.g., clustering) where measurement error
and heterogeneity coexist. The finite mixture method,
like the standard multigroup structural equation model
with known group membership, requires large samples.
In particular, the method cannot be used to detect out-
liers or niche segments (i.e., segments for which the
mixing proportions are close to zero). One practice that
should be avoided is that of fitting a finite mixture
model which is not well grounded in substantive theory
and simply adding groups until a reasonable fit is found
(Everitt and Hand 1981, p. 127). In particular, as in other
statistical models, a good fit for the mixture model does
not “prove’” that the hypothesized causal structure is
correct (Boulding and Staelin 1995).

Future research should focus on large-scale simula-
tion studies to test the fipite mixture method using a
wide range of models and statistical distributions. From
a substantive viewpoint it is necessary to apply our fi-
nite mixture method to a broad range of marketing ap-
plications where heterogeneity is typical (e.g., salesforce
compensation plans and power relationships in chan-
nels of distribution). Theoretical research should extend
the finite mixture model by allowing the mixing
proportions to depend on prior information and/or
subject-specific variables. Finally, in order to provide a
fuller treatment of heterogeneity, we need to develop a
general random coefficient structural equation model.
Such a model is presently unavailable in the statistical
and psychometric literatures."”
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gan, and Shaw Hwa Lo for their helpful comments and encourage-
ment and Claes Fornell for his permission to use the satisfaction data.
The authors also thank the Editor, Area Editor, and two anonymous
reviewers for their constructive comments. Kamel Jedidi and Har-
sharanjeet Singh Jagpal, respectively, acknowledge the financial sup-
port of the Columbia Business School and the Faculty of Management,
Rutgers University.

Appendix 1. The Identification of Finite Mixtures of Structural
Equation Models

PROPOSITION.  Suppose a given multigroup structural equation
model for known groups is identified. Then the finite mixture of struc-
tural equation models is identified provided the data for all groups
follow multivariate normal distributions.

ProOOF. Consider any G-group finite mixture of structural equation
models. Let A = (y, x)’ denote the joint vector of observables where
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y and x, respectively, denote the subvectors of observables for the
endogenous and exogenous constructs, respectively. For group g let
¢* denote the parameter vector of the structural equation model,
#3(p?) the implied mean vector of observables, and =¢ (¢f) the implied
covariance matrix of observables. Let Q¥ denote the vectors of all the
unduplicated elements in 4f and 28, @ = (@', ..., Q% and ¢ = (¢},
.., ¢%). By assumption, the structural equation model for known
groups is identified. That is, the mapping ¢ — €2 is one-to-one.

Let F(A, ¢®) denote the distribution function for the observables in
group g and H the distribution function of the finite mixture of ob-
servables. Then the finite mixture structural equation model is iden-
tified if H = =, w¥F(A, ¢®) implies that G, w*, and ¢* are unique
(see Titterington, Smith, and Makov 1985, p. 36).

Our proof proceeds by contradiction using the result that finite
mixtures of multivariate normal distributions are identified (see Tit-
terington, Smith, and Makov 1985, p. 162; Basford and McLachlan
1988, p. 97). Let ¢, = (1, ..., ¥§") and @, = (93, . .., p§?) where G,
and G are not necessarily equal. Suppose the proposition is false. Then
there must be some ¢, # @, such that

Gy Gz
H= Y wiF(A, ¢5) = 3 wiF(A, ¢f)

g=1 g=1
(see definition 3.1.1 in Titterington et al. 1985, p. 36).

Case 1: G, = G,.

By assumption the mapping ¢ — 2 is one-to-one. Hence ¢, # ¢,
implies that (; # Q, where ©; and 2, have the same dimensionality.
Thus two finite mixtures of multivariate normal distributions with the
same number of groups yield the same distribution function H. How-
ever, this contradicts the result that a finite mixture of multivariate
normal distributions is identified. Hence ¢; = ¢,.

Case 2: G, # G,.

In this case, p; # ¢, implies that Q; # , where (), and ), have
different dimensionalities. Thus H can be represented as a G;-group
or as a G,-group finite mixture of multivariate normal distributions.
This implication also contradicts the result that finite mixtures of mul-
tivariate normal distributions are identified. Hence ; = ¢,, conclud-
ing the proof.

Appendix 2. Data Generation Procedure for Simulation Studies
We used separate sets of parameter values for all treatments and rep-
lications and a fixed sample size of 1,500.

In order to generate the mixing proportions, we chose random
numbers a, (g = 1, ..., G) from a uniform distribution with a
range of 0 to 1. The mixing proportion for group g was defined as
w, = a,/2 a,. In order to avoid undersized samples, we rejected
any set of mixing proportions which led to any group with fewer
than 200 observations. Thus, no group comprised less than
13.33% (i.e., 200/1500) of the population. Note that we tested the
finite mixture model under stringent conditions; a sample size of
200 is small compared to the number of free parameters per
group. Muthén and Kaplan (1985), for example, used a fixed set
of parameters and a sample size of 1,000 in their simulation to
test a single-group confirmatory one-factor model with only eight
parameters.
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In all experiments, we set one Jambda per construct to unity for
identification. For each remaining observable we generated the
lambdas randomly from a uniform distribution with a range from
0.5 to 1.5. This procedure ensured that the lambdas varied freely
across constructs and clusters. For each cluster ¢ we chose the
mean of each exogenous construct (§) randomly from a uniform
distribution with range —g to g. We chose these ranges to provide
some degree of separation among the clusters. We set the vari-
ances of all exogenous constructs to unity for all clusters. Note
that although we fixed these theoretical variances at unity for data
generation, each variance is a free parameter in the model. For
each indicator (including the reference indicators) we chose the
reliability randomly from a uniform distribution with a range of
0.5 to 0.9. This range is consistent with typical findings in behav-
1oral research. Having chosen a particular reliability, we deter-
mined the implied variance of the corresponding measurement
error term.

For each group, we chose the correlation between the exoge-
nous constructs randomly from a uniform distribution with a
range of —0.8 to 0.8. For the structural model in Figure 3, we
generated each beta and gamma randomly from a uniform dis-
tribution with a range from —1 to +1. For each structural equation
in each group we chose R? randomly from a uniform distribution
with a range from 0.3 to 0.8. This procedure determined the (ran-
dom) variances of the structural error terms. For generality, we
allowed the structural errors to be correlated (see Figure 3). We
chose each such correlation coefficient randomly from a uniform
distribution with a range from —0.8 to 0.8. We used these corre-
lations to determine the covariances between the structural er-
rors. For treatments involving skewness and kurtosis, we gener-
ated the data using the methods described in Fleishman (1978)
and Vale and Maurelli (1984).

In all experiments, once a set of model parameters had been ran-
domly generated for each group, we computed the implied group
mean vectors and the implied covariance matrices and used these val-
ues to generate the sample data randomly.
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