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Abstract: This paper provides a general STructural Equation finite Mixture Model
and algorithm (STEMM). Substantively, the model allows the researcher to simul-
taneously treat heterogeneity and form groups in the context of a postulated causal
(i.e., simultaneous equation regression) structure in which all the observables are
measured with error. Methodologically, the model is more general than such sta-
tistical methods as cluster analysis, confirmatory multigroup factor analysis, and
multigroup structural equation models. In particular the general finite mixture
model includes, as special cases, finite mixtures of simultaneous equations with
feedback, confirmatory factor analysis, and confirmatory second-order factor
models. We describe the statistical theory, present simulation evidence on the per-
formance of the EM estimation algorithm, and apply the model to a psychological
study on the role of emotion in goal-directed behavior. Finally we discuss several
avenues for future research.

Keywords: Structural equations; Finite mixtures; Maximum likelihood; Emo-
tions; Weight loss

1. Introduction

Structural equation modeling is a powerful method for simultaneously
estimating both the posited model structure linking unobserved constructs
and the measurement errors in the observables (see Joreskog 1971, 1973). If
heterogeneity is present and group membership is known a priori, the
researcher can use standard multigroup methods (Joreskog 1971; Sorbom
1974). In practice, the researcher often does not have sufficient information
to form groups a priori. Consequently as Muthén (1989, p.558) notes, ‘‘Data
are frequently analyzed as if they were obtained from single populations
although it is often unlikely that all individuals in our sample have the same
set of parameter values.”” This homogeneity assumption is questionable at
best. For example, in survey research the validities and reliabilities of items
can vary across subgroups defined by race, gender, region, and issue salience
(Muthén 1989, p.558). Similarly, in consumer psychology different consumer
groups are likely to perceive brands differently depending on their previous
purchase behaviors and media habits. Furthermore, while data on demo-
graphics, psychographics and other background variables are indeed typically
collected by researchers, such information may be insufficient to allow
researchers to form groups a priori (see Moore 1980).

This paper proposes a new STructural Equation finite Mixture Model
(STEMM) and algorithm for handling heterogeneity in structural equation
models which simultaneously forms groups and estimates the model structure
and measurement errors for each group. The method is very general and sub-
sumes finite mixture models for confirmatory factor analysis, second-order
factor analysis, simultaneous equation models with feedback, and multiple
regression as special cases. Furthermore, the method allows the researcher to
use the mixture model in either a fully confirmatory or a partially
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confirmatory mode. The former mode is appropriate when the researcher has
a high degree of knowledge about the phenomena being analyzed (e.g., the
researcher can use extant theory to specify the number of groups a priori or
impose parametric restrictions based on previous empirical evidence). The
partially confirmatory mode is appropriate when the researcher knows only
the model structure but not the number of groups.

Section 2 discusses extant methods for treating heterogeneity, and Sec-
tion 3 provides the technical details of our mixture model. Section 4 presents
simulation results for three different model structures, and Section 5 applies
our method to a study on goal-directed emotions. Finally, Section 6 discusses
areas for future research.

2. Heterogeneity in Structural Equation Models

Previous research suggests two approaches for handling heterogeneity
in structural equation models. One approach which assumes sufficiently large
samples is to form groups a priori and then use the multigroup structural
equation model (S6rbom 1974). A second approach which does not require
such large samples or a priori grouping was recently proposed by Muthén
(1989). This method allows the researcher to handle certain types of hetero-
geneity by using covariates and applying the MIMIC methodology to the
pooled data. We discuss these approaches in turn.

Several methods are available for forming groups a priori. The
researcher can apply some form of cluster analysis to the observed variables.
This approach is problematic because ‘‘when clustering samples from a popu-
lation, no cluster method is a priori believable without a statistical model.”’
(See Aitkin, Anderson, and Hinde 1981, cited in McLachlan and Basford
1988, pp.2-3.) In addition, different clustering procedures tend to yield
different results, and little guidance is available on choosing the best pro-
cedure. Alternatively, the researcher can use a variety of data-reduction
methods (e.g., principal components or factor analysis) to filter the aggregate
data by purging measurement error and then form clusters using the reduced
dimensions. This approach is flawed because the first step assumes homo-
geneity (i.e., one population) whereas the second asserts heterogeneity (i.e.,
multiple populations). Empirical studies also show that these data-reduction
strategies are not robust (see Chang 1983). See also McLachlan (1992,
pp.196-203) for a succinct discussion of principal components and other
data-reduction methods in the context of clustering.

The previous difficulties are compounded when the data include
measurment error. Extensive simulation evidence shows that current cluster-
ing methods are highly unsatisfactory under these conditions. Baker (1974)
found that classification accuracy was seriously affected when the data were
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perturbed: the mean Goodman-Kruskal gamma statistics were as low as
0.365 for complete-link and 0.197 for single-link clustering for the high-error
condition in his simulation experiments. Milligan (1980) compared 11
hierarchical and four non-hierarchical methods (e.g., K-means clustering)
using cluster structures generated from truncated multivariate normal mix-
tures. He found that, despite the fact that the clusters were constructed to be
non-overlapping, the introduction of measurement error led to a significant
reduction in classification accuracy for all the algorithms tested. For details
on the efficiency of clustering in the presence of measurement error, see the
survey papers by Milligan (1981) and Milligan and Cooper (1987).

Finally, current clustering procedures do not postulate any causal (i.e.,
simultaneous equation regression) structure among the variables. This weak-
ness is recognized in the literature. For example, McLachlan and Basford
(1988, p. vi) note that their mixture method of clustering is meant for situa-
tions ‘‘where there is no a priori knowledge of any formal group structure in
the underlying population, but where one wishes to cluster the data into a
number of groups.”” Furthermore, McLachlan and Basford (p. 173) observe
that, ‘‘Ideally one would like to perform a clustering of the entitics on the
basis of all the information available assuming that differentiation between
the groups is to be with respect to the total information’’ [emphasis added].
Hence we need a model-based clustering method which simultaneously
allows both for causal relationships (i.e., a simultancous equation regression
structure) among the variables and for measurement error.

Muthén’s (1989) alternative approach estimates one structural equation
model using the pooled data, after including covariates to account for hetero-
geneity. His MIMIC method provides an important advantage: the researcher
does not need to split the sample. However, this method requires the
researcher to have sufficient a priori information or theory to specify covari-
ates. Such information is not always available. Furthermore, as Muthén
(1989, p. 564) notes, ‘‘In contrast to multiple-group analysis, the MIMIC
approach is restricted to modeling under the assumption of a group-invariant
covariance matrix for the observed response variables, conditional on group-
ing variables represented by the x’s [covariates]. But with insufficient sample
sizes for multiple-group analysis, this may be the best alternative.”” We
agree that if the sample size is modest the researcher may have no alternative
but to use the MIMIC approach. However, in many studies the sample size is
reasonably large. Furthermore, for many real-life problems, the assumption of
group-invariant covariance matrices is stringent. Hence, we require a large-
sample method which allows for general types of heterogeneity and a causal
structure recognizing both measurement and structural errors.
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3. The Finite Mixture Structural Equation Model

A. The Model

Consider a general finite mixture structural equation model with G
components. (We shall use the words ‘component’ and ‘group’ interchange-
ably.) Let w=(wy,...,wg)’ denGote the vector of mixing proportions such

that w, >0(g=1,...,G) and 3, wy=1. Let y| g denote a vector of p
=1

endogenous observable random {g/ariables and x | g a vector of g exogenous
observable variables for the g-th component.

Assume that the y | g and x | g variables measure the unobservable
(m x 1) vector of endogenous variables, 18, and the unobservable (n x 1) vec-
tor of exogenous variables, &8, according to the following measurement
model:

ylg=v§+Ané +€8, )
xlg=vl+AS&8 + &8, 2

where A§(p xm) and Af(g xn) are coefficient matrices (factor loadings),
v§(p x 1), and v{(g x 1) are vectors of measurement intercept terms, and &£
and & are vectors of measurement errors in y | g and x| g respectively.
Assume that the measurement errors are uncorrelated with the unobservable
variables, and satisfy E(e$)=0, E@®) =0, E(e)=0f and
E(® 88')=0§ where ©f and ©f are not necessarily diagonal. Let
E(E®%) = 1€ and E[(E® - t€)(§® —1£)"] = ®¢. Suppose the unobservable vari-
ables are related via the following system of linear structural relations:

BN = af + T¥E8 + (8, 3

where B, is a (m X m) matrix of structural parameters specifying the links
among the endogenous latent variables, I® is a (m X n) coefficient matrix
denoting the effect of &8 on 8, of is a (m x 1) vector of intercept terms, and
{8 (mx1) is a random vector of disturbances (errors in equations). We
assume that E((8 (&) = &, E((8) = 0, ¢ is uncorrelated with &2, and B, is
nonsingular. 1

1. We thank an anonymous referee for pointing out that one can express the structural equation
model (see equations (1), (2) and (3)) parsimoniously using the two matrices specified in the
Reticular Action Model [RAM] (McArdle 1978; McArdle and McDonald 1984). For a suc-
cinct discussion of the RAM, see McDonald (1985, pp. 151-156 and, in particular, equations
(4.3.6) and (4.3.7)).



28 K. Jedidi, H.S. Jagpal, and W.S. DeSarbo

Given the above assumptions, the conditional mean vectors
W [(p + g) x 1] and conditional covariance matrices 2@+ ) x (@ +g)] of
the joint vector A | g = [y [ g] are (see Joreskog 1973):

xlg
-1
0 = v§ + A{By (of + T¥1f) @
& |vE+ AfE ’
and
ASBHTE@ETS” + WOB,'AS” + OF ASBITEDEAE”
¥y = Y8 4 Y Y=g x (5)
£ | MO T BUAY ASDEAS + OF |

Before estimating the finite mixture structural equation model (i.e., the
parameters of equations (4) and (5) and w), we need to show that the model is
identified. In contrast to the standard multigroup model with known group
membership, we need to impose distributional assumptions to achieve model
identification. Suppose the data follow a finite mixture of multivariate normal
distributions. Then the finite mixture structural equation model is identified if
the multigroup structural equation model for known group membership is
identified. This result follows trivially because finite mixtures of multivariate
normals are identified in the sense of Definition 3.1.1 in Titterington et al.
(1985, p. 36). Henceforth we shall assume that the finite mixture structural
equation model is identified.

Assume that A | g follows a conditional multivariate normal distribu-
tion with mean vector W, and covariance matrix X,. Then the unconditional

distribution of the observed vector A = [i] is

G
A~ 2 ngg(A I l»lg ’Zg) » (6)
g=1

where f, () is the conditional multivariate normal density function:

_(Jltfl_) )
LA, Z)=02r) % 15,17

exp (- 5 (A1) T3 (A -} %)

The unconditional likelihood function for a sample (Aq,...,Ay) of N ran-
domly drawn observations from the finite mixture is then:
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N G _(.L‘HL) )
L=TILY w,2m) 2% 1Z,17*
i=1 g=1

exp {—172(A; —1e) T (A — )}, ®

where L is a function of the elements of B, I'¥, Af, Af, v§, v§, of, @2, ¥4,
0%, ©¢, and 1€ for g = 1,...,G. The problem is to maximize L with respect
to the free parameters given the sample data (Aq, .. .,Ay) and a prespecified
number of groups G, while taking into account the constraints imposed on w
above, and 1Z.| > O for all g. The condition [X,| > 0 is necessary because
consistent estimators are not possible when X, is singular.

Applying Bayes’ rule, we can use (within any estimation iteration) the
maximum likelihood estimates %, and ﬁg (which are explicit functions of the
estimated model parameters) and v'{)g to estimate the posterior probabilities,
P;g, of each observation i in each of the G components:

y"\’gfg(Ai | Zg’ﬁg)

. - )
Y, Wifie(A; | Z,lp)
k=1

Pig =

®

These posterior probabilities represent a fuzzy classification (clustering) of
the N observations into G components based on the postulated measurement
and structural models.

B. Special Cases

The finite mixture structural equation model described by equations (1),
(2), and (3) is very general and subsumes a variety of models as special cases.
Reducing the model to either equation (1) or (2) produces a finite mixture
confirmatory factor analysis model. If the endogenous and exogenous vari-
ables (factors) are measured by error-free indicators (i.e., v§ =0, v§ =0,
Af =1, A§ =1, ©§ =0, and ©f = 0) the general model reduces to equation
(3): a finite mixture, simultaneous equation model. We can impose various
constraints on the general model parameters to produce a series of nested
models. For example, we can make the measurement model parameters A
and v¢ invariant across groups if it is reasonable to assume that the groups
react similarly to the measuring instruments for & and 1. Likewise, we can
impose invariance across groups on the covariance matrices of errors. We
can impose several other model restrictions depending on the context being
studied or the theory being tested. Finally, the general structural equation
mixture model is equivalent to multiple-group structural equation modeling
(Joreskog 1971; Sérbom 1974) if the groups and associated group member-
ships are known a priori.
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C. Model Estimation: The EM Algorithm

This section outlines the full-information algorithm to estimate the gen-
eral structural equation finite mixture model?> (STEMM). Technical details
and algebraic derivations are available from the first author.

Suppose the structural equation finite mixture model is identified (see
sub-Section 3.B) and, in particular, the data follow a finite mixture of mul-
tivariate normals. For an EM algorithm formulation (see Dempster, Laird,
and Rubin 1977) we begin by defining indicator variables Zjg 8!

' 1 iffobservation i belongs to group g , and
%g = 10 otherwise.

We also assume that, for a particular observation i, the non-observed vector,
z; = (%1, - - - ,Zig)’, is i.i.d. multinominally distributed with probability vector
w. That is,

G
(z; | w) ~ T wie. (10)
g=1

The distribution of A; given z; is therefore:

G G
Qi 12) ~ 3 zigfy(Ai 1 g, ) = TTIf(A 1 g, ZH1™ . (11
g=1 g=1

With Z = ((z;;)) considered as missing data and A = ((Aj)) as the input data
matrix, the complete log-likelihood function to be maximized is given by:

2. An alternative strategy is to use a two-step limited-information estimator. In the first step,
estimate M, X, and w, (see equations (4) and (5) using a standard algorithm for estimating
unconstrained mixtures of multivariate normals (e.g., Wolfe’s NORMIX algorithm 1967)). In
the second step, apply the standard multigroup methodology to the partitioned data (see
Joreskog 1971; S6rbom 1974). The two-step limited-information estimator is straightforward
and easy to implement. However, the full-information estimator is more efficient for correctly
specified mixture models which are overidentified (as is usually the case). See Judge, Griffiths,
Hill, and Lutkepohl (1982, pp. 384-386) for a discussion. Furthermore, the two-step estimator
is likely to encounter singularity problems in the first step if W, and %, have high dimensional-
ities and the sample size is not sufficiently large. Note that the full-information and limited-
information estimators are identical if the structural model for known group membership is
exactly identified (e.g., the case of a finite mixture, single factor, three-indicator model where
all the parameters vary across groups). In such a case, we recommend the simple two-step
method because the M-step of the EM algorithm (Dempster, Laird, and Rubin 1977) exists in
closed form.
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N G
+ 3 Y L lnw,, (12)

where L= (q,... ,I.lG) and X =(%q,...,2¢).

Note that the EM algorithm provides monotone increasing values of the
log-likelihood function so that convergence to at least a locally optimum
solution can be achieved (see Titterington, Smith, and Makov 1985, pp. 95-
97). However, EM algorithms tend to converge slowly (see McLachlan and
Basford 1988, p. 17). This issue will be addressed in Section 4.

The EM algorithm requires two steps in maximizing equation (12): an
E-step in which we compute the expected value of z; given A and provisional
estimates for |, X, and w, and an M-step where we use Powell’s (1977) conju-
gate gradlent method to estimate B=(B;,...,Bg), I'= (1"1 FG)

Ar=(AL, ... A —(Al,.. A9), 05 = ©L, ...,09),
®e=(e;,...,@§), —(‘P1 ‘PG) q>=(q>1,...,q>G),
V= (vl . v, v, =k 9, a=@, ... ,00), =1, 1),

and w conditional on the newly estimated values of Z and subject to the
model identification restrictions, We iterate between the E- and M-steps until
no further improvement in the log-likelihood function in equation (12) is pos-
sible.

1. E-Step

Using Bayes’ theorem, we can show that (see Jedidi, Ramaswamy, and
DeSarbo 1993, for a similar derivation):

N 7 X Dt
E(Zig IAi,E,lJ,,W) — e gfg( ] g u’g) , (13)
3 Wifi(A; | Z, i)
k=1

which is equal to P,g in equation (9). Therefore, the conditional expectatlon
of equation (12) with respect to z;, evaluated at the provisional estimates X, i,
w (ignoring the constant term without loss of generality) is:
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-~ G
E,(InL, | AZ,1,W) = -% 2 N,In{Z, |
+1r (T, -1) 2Inw,], (14)
where
N .
Ng = 2 Pig s

]
—_

LA .
g_N_ZP A_ug)(Ai_ug) .

Thus, the expectation phase amounts to replacing the non-observed data
Z = ((zg)) in equation (12) by their estimated conditional expectations
P = ((Py)).

2. M-Step

Let F = — E, (") where E,(°) is equation (14). In this step, we minimize
F with respect to B, T, A,, A, O3, O, ¥, D, v,, Vy, O, T an((;i w, subject to

the identification restrictions and the constraints w, > 0 and ¥ w, = 1, con-

g=1
ditional on the new provisional estimates of Z = ((zig)). To estimate w, it
suffices to minimize the augmented function

G G
-2 Nylnw, +0(3, we—1), (15)
g=1 g=1
where 6 denotes a Lagrangian multiplier. By differentiating equation (15)
with respect to 6 and w, and setting the derivatives equal to zero, we can
show that:

Wy = £ (16)

Given P = ((IA’ig)) and w, we can minimize F with respect to the remaining
parameters.

We estimate A,, Ay, B, T, ©5, O, ¥, @, v&, 1€, and of using Powell’s
(1977) conjugate gradient iterative method. We use the estimates from the
M-Step to compute new values for i and T using equations (4) and (5). We
use these new estimates for |, X, and w in the next E-step iteration of the EM
algorithm to update the posterior probabilities P;, in equation (9). We alter-
nate between the E- and M-steps until no further improvement in the likeli-
hood function in equation (12) is possible. Once convergence occurs, we
obtain final estimates for v¢, t§, of, Af, A{, B,, I'¥, ©f, ©f, %, and
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P =((Py)) for g =1,...,G and compute the asymptotic standard errors of
the model parameters using the inverse of the empirical information matrix
(see Meilijson 1989).

D. Model Selection

In most practical cases, we expect the researcher to use the finite mix-
ture structural equation model in a partially confirmatory mode because the
number of components (groups) G is typically not known a priori. It is there-
fore necessary to choose statistical criteria for determining the optimal
number of components (groups). In contrast to the standard multigroup case,
conventional tests based on the likelihood ratio (e.g., Xx? statistic) do not
apply because the regularity conditions are violated. See Titterington, Smith,
and Makov (1995, pp. 4-5) for a simple example. This problem is widely
recognized in the literature, and a variety of heuristics are available (see
McLachlan and Basford 1988, pp. 35-36).

In keeping with the spirit of mixture models and structural equation
modeling, we propose that the researcher examine several global measures of
fit, One approach is to choose G to minimize the Akaike (1974) Information
Criterion defined by:

AlCg =~21nLg +2Mg a7

where M denotes the number of free parameters estimated in a G-component
solution (see Sclove 1983; Bozdogan and Sclove 1984). Note that Mg
depends on the specific structural equation model being tested: there is no
generic equation form for M. Bozdogan (1987) proposes modifying this
AIC heuristic so that the penalty coefficient multiplying M is 3. We shall
use this measure and refer to it is as the ‘‘modified AIC.”” A problem with the
AIC criterion is that it fails to penalize overparametrization appropriately (see
McDonald 1989). To deal with this deficiency, Bozdogan (1987) suggests that
G be chosen to minimize the consistent AIC statistic defined by:

CAIC; =-21InLg + Mg(n N + 1). (18)

Bozdogan asserts that CAIC is more robust than AIC, particularly in large
samples (i.e., CAIC is less likely to lead to overparameterization).

Another approach is to use the Bayesian information criterion (Schwarz
1978) defined by:

BIC=-2InL;+MgInN. (19)

BIC is very similar to CAIC in penalizing overparametrization. We remind
the reader that AIC, CAIC, and BIC are heuristics. (See Windham and Cutler
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1992 for recent comparisons of methods for selecting G in finite mixture
models.)

Assuming that a G-component model is satisfactory, it is useful to
assess the classification of subjects into groups. We use an entropy-based
measure Eg which is based on the posterior probabilities (Ramaswamy,
DeSarbo, Reibstein, and Robinson 1992). Specifically, Eg is defined by:

E,=1-[Y Y -P,nP,]/(NInG). (20)
i g

This measure is bounded by 0 and 1. A value close to O indicates that the
posterior probabilities are not well separated (i.e., it is difficult to classify
observations accurately into distinct groups).

Finally, if one chooses to use a fully confirmatory model (i.e., one is
willing to specify the number of components a priori or impose additional
structure on the models applying to different groups), one can use more
stringent statistical tests for model adequacy. For example, if G is known a
priori, one can compare alternative nested models using the likelihood ratio
statistic directly since the regularity conditions hold.

4. Testing the Mixture Model: Simulation Evidence

We performed simulations to test the EM mixture algorithm (STEMM)
for three commonly-used model structures: (a) a confirmatory factor model,
(b) a non-recursive model with feedback, and (c) a recursive model. Each
model includes a fairly large number of parameters, ranging from 28 for the
confirmatory factor model to 30 for the recursive and non-recursive models.
To approximate real-life applications, we used a moderate random sample of
400 in all our simulations. For each model structure, we used the implied
population mean vectors and covariance matrices for each group to generate a
random sample. We used each sample to estimate the relevant model 100
times, using different sets of random starting values for the parameters. We
used a convergence criterion of 0.00001 for improvements in the log-
likelihood function and set the maximum number of iterations at 2,000. We
paid particular attention to parameter recovery, local optima, convergence
speed, and the performance of different model selection criteria. We per-
formed all the runs on an IBM-RS6000 mainframe computer.

The first simulation analyzes a two-group confirmatory factor model
with four factors, each measured by two indicators. Both groups are of equal
size and follow the same model structure. However, the factor means and the
reliabilities of the measures differ across groups. The population parameter
values are shown in Table 1, column 2.
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Table 1
TWO-GROUP SOLUTION: SIMULATED DATA FOR FOUR-FACTOR
CONFIRMATORY MODEL
Population Estimated Estimation
Parameter Parameter Error
Measurement Model*
X, 1.000 1.063 0.063
x 1.000 0.977 -0.023
p 1.000 0.996 -0.004
Xy 1.000 1.068 0.068
2 1.500 1.536 0.036
2 1.500 1.476 0.024
: 1.500 1.497 -0.003
x5 1.500 1.505 0.005
Measurement Error
0, 0.500 0.485 -0.015
0, 0.500 0.550 0.050
0, 0.500 0.497 -0.003
0,, 0.500 0.469 0.031
0., 0.500 0.551 0.051
0, 0.500 0.520 0.020
0., 0.500 0.552 0.052
B 0.500 0.533 0.033
Factor Structure
$u 1.000 0.865 -0.135
» 0.300 0.241 -0.059
. 0.300 0.285 -0.015
" 0.300 0.242 -0.058
$n 1.000 0.913 -0.087
& 0.300 0.297 -0.003
b 0.300 0.233 -0.067
$s 1.000 1.011 0.011
Pae 0.300 0.277 -0.023
Pus 1.000 0.820 -0.180
Factor Means
EE - &) 3.00 2.83 -0.170
1 1
1 2 o
EE. - 8) 3.00 2.97 0.030
1 2 .
EE - &) 3.00 2.98 0.020
1 2
E(E4 -8 3.00 3.04 0.040
Mixing P .
w, 0.500 0.5027 0.003

. g8 (8 .8 g . S e
The parameters for X7, X3, X's and X7 were set to unity for model identification.
* Superscripts denote groups.
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Note: Superscripts are used for the groups (g = 1, 2) only when parameters differ across

groups.

Figure 1. Theoretical Model for Simulated Data: Two-Group Non-Recursive Model.

Table 2

SUMMARY STATISTICS FOR MODEL SELECTION: SIMULATED DATA FOR
FOUR-FACTOR CONFIRMATORY MODEL

G -LnL AlIC CAIC BIC GFI  ITER
1 5231.6 10529.2 10617.0 10595.0 0.993 1953
2 5076.3 10245.7 10369.4°  10338.4" 0.976 306
3 5068.8 10257.6 10417.2 10377.2 0.967 2205
4 5068.7 10284.4 10480.1 10431.1 0.968 2229

“Denotes minimum values for AIC, CAIC, and BIC.

We generated a random sample of 400, assuming that the data for each
group follow a multivariate normal distribution. We then estimated the two-
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group confirmatory factor model 100 times using different sets of random
starting values for the parameters. The average CPU time for the two-group
solution was 53.67 seconds, with a range of 34 to 122 seconds. The average
number of iterations was 305.82, and the range was 259 to 375 iterations.
Titterington, Smith, and Makov (1985, p. 89) report similar results with the
EM algorithm. Of the 100 runs, 91 converged successfully to the largest sta-
tionary maximum (found via simulation). The remaining runs converged to
local optima.

Table 2 provides the average summary statistics for model selection
based on the successful runs. The information-theoretic criteria (i.c., the
modified AIC, CAIC, and BIC) correctly point to the two-group model. The
GFI criterion does not reflect the heterogeneity in the population. This result
is consistent with previous findings that GFI is an inappropriate goodness-of-
fit statistic even if the data belong to one population (see Mulaik, James,
Alstine, Bennett, Lind, and Stilwell 1989).

Table 1 shows the parameter estimates for the two-group mixture
model, averaged over the 91 successful runs. (Note that the parameter esti-
mates were highly similar, typically differing only in the second decimal
place.) The results show that the algorithm almost perfectly recovers the
mixing proportions (W = 0.5027, w; = 0.5). In general, the parameter esti-
mates are highly satisfactory, especially for the measurement model and the
differences in factor means. Ignoring trivial fits for fixed parameters, the
mean absolute percentage differences for the parameters of the measurement
model and the factor mean structure are respectively 2.54% and 2.17%.

The second simulation analyzes a non-recursive, two-group model with
two endogenous and two exogenous constructs, each with two indicators (see
Figure 1). The structural parameters and factor means differ by group. How-
ever the measurement model is invariant across groups. The population
parameter values are shown in Table 3, column 2.

We generated a random sample of 400, assuming that the data for each
group follow a multivariate normal distribution. Given the complexity of the
model structure (note that there was no structural model in the first simula-
tion), it is not surprising that the EM algorithm required significantly more
CPU time and iterations than in the first study. The average CPU time for the
100 runs was 384.12 seconds, and the CPU times ranged from 227 to 786
seconds. The average number of iterations per run was 1242.68, and the
range was from 874 to 1601 iterations. Of the 100 runs, 74 converged suc-
cessfully to the largest stationary maximum (found via simulation) and 26
converged to local optima. The parameter estimates for the successful runs
were highly similar, typically differing only in the second decimal place.

Table 4 provides the average summary statistics for model selection
based on the successful runs. As in the first simulation, the GFI criterion
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TWO-GROUP SOLU"}:?(I;II?J 3 SIMULATED DATA
FOR NON-RECURSIVE MODEL

Population Estimated Estimation

Parameter Parameter Error
X, 1 1
X, 1 1.033 0.033
X, 1 rr
X\ 1 1.028 0.028
mﬁ) .
Y 1 1
Y. 1 0.97 -0.03
Y 1 1
A 1 0.89 -0.11
(el::‘xogenous Variables) 0.500 0.564 0.064
0, 0.500 0.370 -0.130
0, 0.500 0.645 0.145
0., 0.500 0.588 0.088
mbles)

u 0.500 0.41 0.090
[ 0.500 0.47 -0.030
€3 0.500 0.33 -0.170
€y 0.500 0.53 0.030
{Exogenous Constructs)

i 1.00 1.067 0.067
[ 0.30 0.477 0.177
b 1.00 1.008 0.008
Suimmmmm -0.300 -0.445 -0.149

12 0.700 0.967 0.267
B%‘ 0.700 0.896 0.196
12 -0.300 0.269 0.031
# 0.500 0.592 0.092
T 0.500 0.561 0.061
Tp -0.500 -0.500 0.000
Y%‘ 0.500 0.677 0177
Y22
%Tlmm 0.500 0.66 0.160
¥, 0.000 0.11 0.110
¥, 0.500 0.60 0.100
Eactor Means
E(Ei _ ET) 3.00 2.81 -0.190
E(il _ Ez) 3.00 2.89 -0.110
2 2
{svdlxxmg_kmpnmnn 0.5 0.494 -0.006

“denotes parameters set to unity for model identification.
“Superscripts denote groups.
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Table 4

SUMMARY STATISTICS FOR MODEL SELECTION: SIMULATED DATA FOR
NON-RECURSIVE MODEL

G -LnL AIC CAIC BIC GFI ITER
1 4804.3 9674.6 9762.4 9740.4 0.993 2324
2 4703.9 9500.8 9624.5° 9593.5" 0.973 1500
3 4690.1 9500.3" 9659.9 9619.9 0.971 2420
4 4687.5 9522.0 9717.6 9668.6 0.966 3885

*Denotes minimum values for AIC, CAIC, and BIC.

leads to underfitting (i.e., the one-group solution). In contrast to the first
study, the modified AIC criterion leads to overfitting and points to the three-
group solution (see also Cudeck and Browne 1983). However, the CAIC and
BIC statistics point to the two-group solution.

Table 3 gives the parameter estimates for the two-group solution, aver-
aged over the 74 successful runs. The algorithm almost perfectly recovers the
mixing proportions (W, = 0.4936, w{ = 0.5). Overall, the parameter esti-
mates are satisfactory, especially for the measurement model and the
differences in factor means. The mean absolute percentage differences
(ignoring trivial fits) for the parameters of the measurement model and factor
mean structure are respectively 5.03% and 5.00%.

The third simulation analyzes a recursive two-group model with one
endogenous and three exogenous constructs, each with two measures (see
Figure 2). Both groups have a common measurement model. However, the
structural parameters and factor means differ by group. The population
parameter values are shown in Table 5, column 2.

As in the previous simulations, we generated a random sample of 400,
assuming that the data for each group have a multivariate normal distribution.
Not surprisingly, the average CPU times and numbers of iterations for the
two-group solution were larger than the corresponding values for the pure
measurement model (first study) and smaller than the corresponding values
for the non-recursive model (second study). The average CPU time was
116.36 seconds, and the range of CPU times was 52 to 290 seconds. The
average number of iterations per run was 304.82, with a range of 219 to 428.
Of the 100 runs, 85 converged successfully to the largest stationary maximum



K. Jedidi, H.S. Jagpal, and W.S. DeSarbo

Table 5
TWO-GROUP SOLUTION: SIMULATED DATA
EFOR RECURSIVE MODEL,
Poputation Estimated Estimation
Parameter Parameter Error
Measurement Model:
(Exogenous Variables)
x 1.000 1.000°
% 1.000 1.026 0.026
X, 1.000 1.000°
X, 1.000 1.031 0.031
Xs 1.000 1.000
X6 1.000 0.984 0.016
Measurement Model:
(Endogenous Variables)
" 1.000 1.000°
Y. 1.000 0.990 -0.010
Measurement Error
(Exogenous Variables)
8, 0.500 0.515 0.015
0., 0.500 0.591 0.091
0, 0.500 0.559 0.059
" 0.500 0.366 0.134
0, 0.500 0.542 0.042
[ 0.500 0.489 -0.011
Measurement Error
(Endogenous Variables)
€ 0.500 0.340 0.160
€ 0.500 0.490 -0.010
Covariances
(Exogenous Constructs)
du
¢ 1.000 1.044 0.044
&5 0.300 0.455 0.155
by 0.300 0.279 -0.021
by 1.000 1.059 0.059
[ 0.300 0.286 -0.014
1.000 0.980 -0.020
Y 1‘ 0.500 0.436 -0.064
i 0.500 0.468 -0.032
Y; 0.500 0.614 0.114
2 -0.500 -0.414 0.086
v -0.500 0.633 -0.133
Y; 0.500 0.456 0.044
Structural Errors
¥, 0.500 0.520 0.020
2.
{ ~ &) 3.000 2.960 -0.040
1 2
EE, - &, 3.000 2.850 0.150
1 2
EGE, - &) 3,000 2.980 0.020
w, 0.500 0.507 0.007

‘denotes parameters set to unity for model identification.
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Note: Superscripts are used for the groups (g = 1, 2) only when parameters differ across

groups.

Figure 2. Theoretical Model for Simulated Data: Two-Group Recursive Model.
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Table 6
SUMMARY STATISTICS FOR MODEL SELECTION: SIMULATED DATA FOR
RECURSIVE MODEL
G -LnL AIC CAIC BIC GFI ITER
1 5150.7 10367.5 10455.3 10433.2 0.993 1645
2 4873.2 9836.3" 9956.1° 9926.0° 0.967 346
3 4863.3 9840.6 9992.3 9954.2 0.962 1648
4 4862.3 9862.5 10046.1 10000.1 0.962 1239

"Denotes minimum values for AIC, CAIC, and BIC.

(found via simulation), and 15 converged to local optima. The parameter esti-
mates for the successful runs were highly similar, typically differing only in
the second decimal place.

Tables 5 and 6 respectively provide the average parameter values and
fit statistics for model selection based on the successful runs.
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All the information-based measures of fit (i.e., modified AIC, CAIC,
and BIC) point correctly to the two-group solution. GFI leads to underfitting
as in the second study. The algorithm almost perfectly recovers the mixing
proportions (W, = 0.5068, w; = 0.5) and the parameter estimates are satisfac-
tory. In particular, the mean absolute percentage errors for the measurement
parameters and the factor mean structures are respectively 2.08% and 2.33%.

These simulation experiments lead to several important conclusions.
Only the CAIC and BIC measures of fit consistently pick the correct number
of components (groups). The modified AIC works well in general but can
lead to overfitting (i.e., choosing too many groups). GFI is too conservative
and always leads to an underfitted model. Our algorithm (STEMM) provides
satisfactory estimates even for reasonably large models and a moderate sam-
ple size. Although we did not encounter any problems stemming from empiri-
cal underidentification, local optima can, as in other iterative multivariate
algorithms, be a problem especially when the sample size is moderate.
Hence the preferred strategy is to estimate the model using different sets of
starting values to identify multiple local optima if they exist. Finally, the
simulation results reported above are limited, and future research should
further test the robustness of the algorithm under different scenarios (e.g.,
different model structures).

5. An Empirical Application

Bagozzi, Baumgartner, and Pieters (1995) developed a second-order
factor model to examine the role of emotion in goal-directed behavior (see
Figure 3). Their model is based on a general framework for an emotional
goal system in which an individual’s appraisals of the consequences of
achieving success/failure at a goal elicit anticipatory emotions. Bagozzi et al.
(1995) postulate that ‘‘emotion’” is a superordinate factor and ‘‘positive
affect,”” “‘negative affect,”” and ‘‘volition’’ are first-order factors. Each first-
order factor is measured using two or more observed subordinate indicators
(v1 through y,q in Figure 3). Each subordinate indicator for *‘positive affect’’
and “‘negative affect’’ is measured as the average score of two or more items,
each of which is measured on an 11-point scale with anchor points “‘not at
all’’ and ‘“‘very much.”” For example, y, is the average score of three items:
happy, glad, and satisfied. Each subordinate indicator for ‘volition’’ is meas-
ured using a single item with anchor points ‘‘completely agree” and “‘com-
pletely disagree.”’

Bagozzi et al. (1995) tested their second-order factor model in the con-
text of regulating one’s bodyweight by exercising and dieting. The sample
consisted of 763 subjects in the Netherlands who were part of an ongoing
panel of representatives, administered by the Netherlands’ Institute for Public
Opinion,
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Table 7
SUMMARY STATISTICS FOR MODEL SELECTION IN THE EMOTION STUDY

Factor Adj
G Loadings M -LnL CAIC BIC GFI E
1 - 23 10837.9 21839.9 21816.9 0.94 -
2 Invariant 51 10428.8 21221.5 21170.5 0.92 0.96
Free 58 10414.3 21242 .4 21184.4 0.93 0.96
3 Invariant 69 10296.2 21084.7°  21015.7" 0.95 0.76
Free 84 10270.2 21132.6 21049.6 0.95 0.81
4 Invariant 87 10281.2 21183.2 21096.2 0.94 0.68
Free 108 10247.3 21265.2 21157.2 0.95 0.73

"Denotes minimum values for CAIC and BIC.

Table 8
FACTOR MEAN SCORES FOR THE MIXTURE MODEL
IN THE EMOTION STUDY

Factor Group T Group 72 Group 3
Positive Affect 0 4.51 2.1
Negative Affect 0 3.15 1.45
Volition 0 3.44 1.02
Emotion 0 3.21 1.02

If the data were homogeneous, one could use the aggregate sample
covariance matrix to estimate the structural equation model. In reality,
different groups could follow different models of emotion-directed behavior.
The structural parameters which link the superordinate factor ‘‘emotion’’ and
the first-order factors (i.e., ¥y, Y2, and y3) could vary across groups. For exam-
ple, in the context of weight loss, ‘‘emotion’” can affect intentional structures
(e.g., “‘volition’’) differently for different groups of the population. Further-
more, the measurement model which links the first-order factors and the
subordinate indicators (i.e., A; through A;¢ inclusive) could also differ across
groups. For example, the effect of “‘volition’” on the expenditure of effort
(Mo) can vary across people.

To test for heterogeneity, we used our algorithm (STEMM) to estimate
the mixture model. Specifically, we used the partially confirmatory approach
because extant theory cannot be used to determine the number of groups
(components) a priori. We estimated seven models, varying the number of
groups from 1 through 4 and allowing for both free and invariant first-order
factor loadings (i.e., A’s) across groups (see Table 7). Both the CAIC and
BIC criteria for model selection pointed to the three-group, invariant factor-
loading model. We now analyze the results for this model.



Table 9
MEASUREMENT PARAMETERS FOR THE AGGREGATE AND MIXTURE SOLUTIONS IN THE EMOTION STUDY"

Aggregate Solution Mixture Solution

Error Variance

Indicator Loading Error Variance Loading Group 1 Group 2 Group 3

A 1 4.76 1 3.73 5.16 7.18
(42) (.428) (.411) (.480)

Ay 1.12 2.53 1.15 3.66 0.54 3.96
(.05) (.28) on (.676) (.093) (.334)

As 1.15 1.77 1.19 1.59 0.23 3.06
(.05) (.26) )] (.319) (.084) (.323)

Ay 1 2.43 1 0.02 3.54 3.07
(.23) (.002) (.216) (.235)

As 0.97 3.38 0.98 0.03 5.10 3.78
(.03) (.29) (.006) (.002) (.262) (.323)

Ag 1.01 2.31 1.05 0.04 2.73 3.33
(.03) (.23) (.009) (.004) (.249) (.164)

A 0.95 3.84 1.10 0.02 3.57 5.87
(.03) (.32) (.006) (.002) (.318) (.211)

Ag 1 5.91 1 7.56 6.95 7.82
(.52) (.603) (.535) (.466)

Ay 1.31 1.00 1.32 0.45 0.99 1.29
(.06) (.26) (.09) (.272) (.168) (.217)

A 1.26 2.06 1.26 3.14 0.07 2.96
(.06) (.28) (.08) (.326) (.134) (.253)

*Standard errors in parentheses.

[OPOIN QIMIXIA S11uL uonenby [emonns

Sy



46 K. Jedidi, H.S. Jagpal, and W.S. DeSarbo

Table 10
STRUCTURAL PARAMETERS FOR THE AGGREGATE AND MIXTURE MODELS
IN THE EMOTION STUDY"
Endogenous Aggregate Mixture Model
Factor Solution Group 1 Group 2 Group 3
Positive Affect (y,) 3.15 4.31 1.40 2.05
(0.23) : (0.90) (0.24) (0.41)
Negative Affect (y, ) 2.06 2.32 0.978 1.42
0.20) (0.59) 0.18) (0.32)
Volition ;) 1.75 1.66 1.07 0.99
0.17) 0.42) (0.18) (0.24)
Mixing (w) - 0.22 0.38 0.4

Proportions
* Standard errors are in parentheses.

The three groups comprise 22%, 38%, and 40% respectively of the
sample. The structured factor means for each group are shown in Table 8,
where Group 1 denotes the reference group and also has the lowest means for
the superordinate factor, ‘‘emotion,”” and all three first-order factors (‘‘posi-
tive affect,”” “‘negative affect,”” and ‘‘volition’’). We shall refer to Group 1 as
the low felt-emotion group. Group 2 has the highest means for all four fac-
tors. Hence we refer to Group 2 as the high felt-emotion group and Group 3 as
the moderate felt-emotion group.

The results suggest that the measurement model (i.e., the factor load-
ings for the subordinate indicators) is invariant across all three felt-emotion
groups. Thus the emotion model exhibits a certain degree of generalizability
across groups; see Table 9.

In contrast to the results for the measurement model, the data show that
there is considerable heterogeneity in the structural model (i.e., the ¥'s vary
across groups); see Table 10. The effect of ‘‘emotion’ on any given first-
order factor (‘‘positive affect,”” ‘‘negative affect,”” and ‘‘volition’”) is the
highest for Group 1 (the low felt-emotion) and the lowest for Group 2 (the
high felt-emotion).

The next step in the analysis was to determine if group membership is
related to demographic variables. For each group, we performed a logistic
regression where log [P;, /(1 — P;;)] is the dependent variable and gender
(coded as O for males and 1 for females), household income, education, and
the individual’s weight-to-height ratio are the independent variables. We
used the last variable because Bagozzi et al. (1995) examined individuals’
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Table 11

LOGISTIC REGRESSION RESULTS FOR POSTERIOR ANALYSIS

IN EMOTION STUDY*
Variable Group 1 Group 2 Group 3
Intercept -4.09 -8.82 3.77
Gender -2.06" 1.82" 0.35
Income 0.19" -0.02 -0.19°
Education -0.24 0.02 0.14
Weight -0.38 1.34™ -0.75°

* All the regressions are significant at the 0.05 level.
® Coded as 0 for males and 1 for females.

" p<0.0l

p <0.05.

»

emotional goals systems in the context of those individuals’ regulation of
their bodyweight.

Table 11 reports the results of the logistic regression. Three demo-
graphic variables (gender, income, and the weight-to-height ratio) are
significantly related to group membership. Subjects in Group 1 (the low felt-
emotion) are more likely to be males (p < 0.05) and have higher incomes
(p < 0.05). Subjects in Group 2 (the high felt-emotion) are more likely to be
females (p < 0.01) and have higher weight-to-height ratios (p < 0.01). In
contrast, the subjects in Group 3 (the moderate felt-emotion) are more likely
to have lower incomes (p <0.05) and lower weight-to-height ratios
(p < 0.05). Gender is not significant for this group.

These results suggest that females and subjects with higher weight-to-
height ratios are more likely to experience higher felt-emotions than males
and subjects with lower weight-to-height ratios. The analysis also indicates
that low-income subjects experience more emotion than high- income sub-
jects. Furthermore, it appears that these demographic groups follow different
emotion models in regulating bodyweight.
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Our finding on gender differences in the experienced intensity of antici-
patory emotions is consistent with Bagozzi et al. (1995) and empirical studies
of gender differences in emotion experiences, which find females to be more
emotionally expressive than men (e.g., Wood, Rhodes, and Whelan 1989;
Derbaix and Pham 1991). The result regarding higher-weight subjects is also
consistent with Nisbett’s (1972) finding that obese people are more emotional
than their normal-weight counterparts. To the extent that income is related to
self-esteem, our results seem consistent with previous research showing that
self-esteem intensifies emotional reactions, especially in unpleasant settings
(e.g., Weiner, Russel, and Lerman 1979; Brown and Dutton 1995).

6. Summary

This paper proposes a new structural equation finite mixture model and
algorithm (STEMM) for simultaneously depicting heterogeneity and forming
groups in the context of a postulated causal (i.e., simultaneous equation
regression) structure in which there are measurement and structural errors.
The model is very general and subsumes as special cases finite mixtures of
confirmatory factor analysis, second-order factor analysis, and simultaneous
equation models with feedback.

Our simulation results suggest that the CAIC and BIC fit statistics are
reasonably robust for model selection. However, as in other multivariate
methods (e.g., multigroup structural equation models with known group
membership), the researcher should estimate the mixture model using a wide
range of starting values to reduce the chance of obtaining local optima.

We analyzed a second-order factor model of emotion proposed by
Bagozzi et al. (1995). The results suggest that different groups of the popula-
tion follow different models of goal-directed behavior. For the data exam-
ined, gender, the weight-to-height ratio, and income were significant predic-
tors of group membership. In particular, the results suggest that female and
higher-weight (low-income) subjects experience higher felt-emotions than
males and lower-weight (high-income) subjects.

Because of the computational burden, our simulation study was mod-
est. Extensive and detailed simulation studies are necessary to analyze more
complex model structures and to allow for different distributional forms (e.g.,
departures from multivariate normality). Furthermore, future research is
necessary to develop better starting values, especially in cases where the
number of components is unknown and a subsample of classified data is una-
vailable. Finally, an important area for future research is to reparameterize
the mixing proportions as functions of such explanatory variables as demo-
graphics and psychographics to provide a richer explanation of heterogeneity
(see Dayton and McReady 1988).
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