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Multivariate and simultaneous equation models have been widely discussed in the
statistical literature and numerous applications abound in the physical and social
sciences (e.g., Bagozzi, 1980; Bentler, 1986; Goldberger & Duncan, 1973; Hurd,
1972; Joreskog, 1977; Koenker & Portnoy, 1990; Raj, 1980). Simultaneous equa-
tion models may be viewed as multivariate regression models entailing endogenous
variables that express the simultaneity in structural relations among the multiple
dependent variables. The classic simultaneous equation model can be expressed as:

By+T'x, ={, i=1,...,N(cross-sectional) observations )

where 1_3(Q x Q) and T'(Q x P) are coefficient matrices and C,.’ =, ..., Gio)

is a random vector of disturbances assumed to be identically and inde-
pendently distributed drawings from a multivariate normal distribution,
MVN(O ‘l’) y,(Qxl) and x,(Px1) are the vectors of endogenous and exogenous

variables, respectively.' When there is no simultaneity (i.e., B is diagonal), we

obtain the classic multivariate linear regression model, of which the seemingly
unrelated regression model is a special case (Zellner, 1962). Invoking the standard
assumptions that B is nonsingular and x; is uncorrelated with Q,, it can then be

shown that y follows a MVN (-B r x, , B‘l ‘I’(B") ), and its density function can

be written as:

’

" (‘?yj*fffl)] V)

It is common to estimate a single set of parameters B, T, and ¥ for the entire

IBI 1 By4T
fGo= W exp "5(_):.*_{‘)

sample. Doing so, however, assumes homogeneity in the structural relations across
the cross-sectional observations and may be justified if one is only interested in
aggregate-level estimates. However, it is well-known that ignoring cross-sectional
heterogeneity can potentially induce significant bias in the parameter estimates.
One option is to introduce cross-sectional characteristics as moderating variables
into the model formulation, or form homogeneous subgroups for analysis a priori.
However, this requires elaborate theory and knowledge and may be operationally
cumbersome, particularly if there is a large number of candidate variables. Another

'Some readers may be more familiar with the following formulation of the structural equauon model:
y=By+x+{ Comparing this formulation with Equation 1, it can be seen that B=(1-B"), and T"
=-T, and hence, the two formulations are equivalent.
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appealing option, therefore, is to specify a random distribution of parameter values
to capture any unobserved heterogeneity. The problem here is that the resulting
formulation can be intractable and difficult to estimate depending on the specific
parametric assumptions employed. Instead, one can assume a discrete mixture
distribution for parameters over the entire sample (McLachlan & Basford, 1988).
This type of “semi-parametric” approach can provide good numerical approxima-
tions even if the underlying mixing distribution is continuous (e.g., Heckman &
Singer, 1984; Laird, 1978). The point masses of such a distribution represent the
components of a finite mixture and can be interpreted as “latent-classes” of
cross-sectional observations (e.g., Dayton & MacReady, 1988; DeSarbo & Cron,
1988; Wedel, DeSarbo, Bult, & Ramaswamy, 1993).

Finite mixture models have received considerable attention in the statistics
literature (see DeSarbo, Manrai, & Manrai, 1994; Everitt & Hand, 1981; Titter-
ington, Smith, & Makov, 1985; Wedel & DeSarbo, 1994, 1995, for comprehensive
surveys and extensive discussions). These models postulate that a sample of
observations arises from a finite mixture of underlying populations (of unknown
proportions) with a specific form of densities in each population. Examples of such
models that have been extensively used include finite mixtures of normal (e.g.,
Hasselblad, 1966; McLachlan, 1982), exponential (e.g., Teicher, 1961), and Ber-
noulli (e.g., Clogg & Goodman, 1984; Dayton and MacReady, 1988) densities.
Over the past two decades, “conditional” mixture models have found wide appeal
in the physical and social sciences (McCullagh & Nelder, 1989). Conditional
mixture models allow for the probabilistic classification of observations and the
simultaneous estimation of regression models relating the moments of the depend-
ent variable for each mixture component to specified covariates. For instance,
Quandt (1972), Hosmer (1974), and Quandt and Ramsey (1978) examined finite
mixtures of univariate normal densities in which the expectations of these densities
were specified as linear functions of covariates. To our knowledge, however, the
various developments in formulating and estimating conditional mixtures for
generalized linear models have been restricted to models entailing a single depend-
ent variable (DeSarbo & Cron, 1988; Wedel & DeSarbo, 1995), and hence, cannot
accommodate the model formulation implied by Equations 1 and 2.

In this article, we present the development of a maximum likelihood framework
for estimating finite mixtures of multivariate regression and simultaneous equation
models entailing multiple endogenous variables. Given a sample of heterogeneous
cross-sectional observations, this method estimates K latent-classes of cross-sec-
tions with associated point masses, the class-specific structural parameters
(B,,T,), the covariance matrix of disturbances, ¥,, and the posterior probability

of membership of each cross-sectional unit into each of the derived classes. The
variation in the structural parameters across the K classes captures the unobserved
cross-sectional heterogeneity in the data. Separate sets of class-specific parameters
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are estimated along with the size of each class. The estimation is performed using
a maximum likelihood framework. The number of classes that adequately fits the
data can be determined using various heuristics. A data set entailing cross-sectional
observations for a diverse sample of businesses is used to illustrate the proposed
finite mixture approach for estimating a simultaneous equation regression model
with two endogenous variables.

THE PROPOSED FINITE MIXTURE MODEL

We assume that y, is distributed as a finite mixture of conditional multivariate

normal densities, f,,(®):

IB,! ’
x x Tk 1 .
%= Zhuil5, By F_~’“{~>=EM[W“{'5(‘¥ w+tin) #(Boe, %-')H @

where:

k =1,...., K latent classes;

B, =((Bm)). the (Q x Q) matrix of endogenous variables coefficients for latent
T classk(rnm=1,..,0);

= ((Ym)), the (Q % P) matrix of exogenous variables coefficients for latent
classk(m=1, ..., 0;j=1,..P);

= the (Q x Q) covariance matrix of the disturbance vector {; for latent class
k;
= (M, ..., Ax), a vector of the K mixing proportions of the finite mixture (of
which K - 1 are independent) such that Ax > 0 and f_‘,lk =1

k=1

»~

-

' >

Assuming, in addition, that the y, vectors are independent, the likelihood function

for the N vectors (,,...,¥,) is given by:

ol x IB,| { ’ C))
~ -1
L=11 22, 2nop 7 O —E(B_g)jn‘r_l{;) ¥, (B_njﬁr_}{;)
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The mixing proportions 2\. can be construed as prior probabilities of any cross-sec-
tional observation belonging to the K latent classes. Note, the posterior probability
of membership for cross-section i in class k (ﬁ,,) can be computed within any
iteration using Bayes’ theorem, conditional on the estimates of the class-specific
parameters 7:,, ﬁ,, f‘,,, and ‘i’k via:

" i'lz ilk(yi"xi’ﬁk’ k’lilk) ®)
b=

K A A A A
Exkf;lk():ilx.i’ B.'k’ .l’ \I-’t)

There are two important issues concerning the identifiability of the proposed
finite mixture model. The first pertains to the identification of the finite mixture,
whereas the second relates to the identification of the specified model with multiple
endogenous variables when class membership is known. Regarding the first issue,
because mixtures of multivariate normal densities are typically identified (see
McLachlan & Basford, 1988, p. 97; Titterington et al., 1985, p. 162; Yakowitz &
Spragins, 1968, p. 211), we can always identify the mixing proportions and the
mean vectors (1, ) and covariance matrices (X, ) of the observables (y,), regardless

of the conditioning pattern imposed by the postulated simultaneous equation model.
Further, given that the mean vectors and covariance matrices are known and are
sufficient statistics for the simultaneous equation models in each class, the standard
identification theory for multiple samples applies (Sorbom, 1974). Hence, if the
data for each class are distributed as multivariate normal distribution, no new
identification theory beyond that of multisample simultaneous equation models is
required to recover the mixing proportions and other parameters of a latent-class
simultaneous equation model. The lack of identifiablity due to invariance of the
likelihood under interchanging of the labels of the latent-classes (Aitkin & Rubin,
1985) is not an issue here, and we follow the solution of McLachlan and Basford
(1988) in reporting results for only one of the possible arrangements of the classes.

Concerning the second issue, the model as specified in Equation 3 is not identified
ifall elementsin I'=(T},...,T,),B=(B,,..., B,), and ¥ =(¥,,...,'¥,) are free.

Identification in this context, therefore, requires placing restrictions on model
parameters. The most common restrictions set some elements of ', B, and ¥ to

zero or some other constant, whereas others entail the imposition of equality or
inequality constraints on parameters (Joreskog, 1977). Identification rules, such as
the order and rank conditions developed in the context of linear simultaneous
equation models (see Greene, 1993, p. 592), can be utilized in the present context
as well to establish the identifiability of the model formulation within each latent
class.
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THE EXPECTATION-MAXIMIZATION (EM)
ALGORITHM FOR ESTIMATION

The likelihood of finite mixture models can be maximized using optimization
methods such as the Newton—Raphson or by using the EM algorithm (Dempster,
Laird, & Rubin, 1977). Convergence is not ensured with the former method
(Atkinson, 1989; McLachlan & Basford, 1988), although relatively few iterations
are required for convergence. The EM algorithm is attractive because it can be
programmed easily and convergence is ensured; Dempster et al. (1977) provided a
proof based on Jensen’s inequality that the EM algorithm gives monotone increas-
ing values of the likelihood function. However, the EM algorithm typically requires
relatively more iterations and may converge to local optima, although several
procedures have been proposed to improve the rate of convergence (e.g., Jones &
McLachlan, 1992; Louis, 1982; Meilijson, 1989). Although either optimization
method can be utilized for finite mixture models (Everitt, 1984), the EM algorithm
has apparently been the most popular (Titterington, 1990).

We devised an EM-based algorithm for maximizing the log likelihood function for
the proposed finite mixture model for estimating T,, B,,¥,, and Ak =1,..., K),

given y=(y,,....¥,)s x= (x,,..., x,), a value of K, the constraints imposed on
A earlier, and |'¥,| > 0. The latter condition is necessary because the likelihood

function is unbounded when ¥, is singular, and hence consistent estimators are

not possible. Upon estimation, the maximum likelihood estimates B o f‘k charac-

terize the structural relations within each class, and the estimated posterior prob-
abilities of membership, P,, provide a probabilistic allocation of the N cross-sec-

tional observations into the K classes. A discrete allocation can then be obtained
by assigning each cross-sectional unit to the modal class (i.e., the class with the
largest posterior probability).

To formulate the EM-based algorithm, we define a latent class indicator variable
Zi as follows (cf. De Soete & DeSarbo, 1991; Jedidi, Ramaswamy, & DeSarbo,
1993):

_ {1 iff observation i belongs to latent class k,
% =10 otherwise.

We also assume that, for a particular observation i, the nonobserved vector,
z,=(z,,...,2,)’, is identically and independently multinominally distributed with

probabilities A, that is,
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(z)0)~ 1A, ©
Hence, the distribution of y, given z, is:

X 3 * Q)
012~ £zt O T By W0 =1 £u13, 1 By 0

Thus, considering Z=((z,)) as missing data, we can write the complete log
likelihood function as:

r

InL (A, ¥,AIZY,X)= ﬁ| :z] 2. In(f, Olx,, A, )+ }'El ?E, z,In(A,) ®)

i=l k=

= constant —% > f:' 2,(nl'¥ - IniB, P +(B, y+T, x,Y ¥, (B, y+T, x,))J+‘>'f] g z,In(A,)

= constant —% .f:. N,[In0¥ 1)~ In(B,P )+er(¥," A, M, A) ||+ ?’5. N,In(0,),
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Equation 8 is equivalent to the log of Equation 4 when Z is observed. Because Z
is unobserved, the maximization of In L. with respect to A, ‘¥, and k entails a

two-step procedure. An E-step occurs where the expected value of zi, given
provisional estimates for A, ¥, and A, is substituted for z;. An M-step occurs next
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where Equation 8 is maximized with respect to A, ¥, and A, conditional on the

new provisional estimates of zi, i =1, ..., Nand k=1, ..., K. These E- and M-steps
are successively applied until convergence.
Using Bayes’ rule, it can be easily shown that:

A )\' f;u(yllxp Ak’ \ilk) ~ (9)
Z,kly,,A ‘P Al= e =Pu
ZA’/ il](yl Aj9\Pj)

Thus, in the E-step, we substitute 13“ for zi in Equation 8.
In the M-step, we maximize Equation 8 with regard to A, ¥, and A subject to

the restriction A, > 0 and };.lk =1, conditional on the new provisional estimates of

Zir. TO estimate 7}, it suffices to maximize the augmented function:
SN, In(A,)- e(f; Ay = 1) (10)
k=1 k=1

where 0 denotes a Lagrangian multiplier and ﬁl, =if’“ /N. By differentiating
i=1

Equation 10 with regard to 6 and A4, and setting the derivatives equal to zero, we
can show that:

an

>
]
z|2

Given l? = ((lA’& ))and );, the maximization of Equation 8 with regard to Aand ¥

can be converted into K minimization problems of the form:

Min  { , (12)
AW, B=t|In0E)-In0B,F) +tr(%, A, M, A, )

kY Tk

Here, we utilize the conjugate gradient method with automatic restarts (Powell,
1977) in the minimization of Equation 12. This method makes use of the first
derivatives of F, with regard to the free parameters in B »and ‘P in finding the

minimum by an iterative search process. These pamal derlvatlves are:
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gg'_ = N,[W_;‘[B_, M +T, M:,]-Bg"] a3
—g% = N,[\P;'[B,Mj,ﬂ,Mﬁ,]] 14)
. Ll i i
E _ ffwr-wrama v ]- N bigd wiowoa moa e @5)
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where:
M, M. (16)
M, =| 5 r
_" M_,, lv{;

The new estimates A, ¥, and A serve as the new provisional estimates for the

next E-step iteration of the EM algorithm where the estimated posterior prob-
abilities, 13‘,, in Equation 9 are updated. The E-step and the M-step are alternated
until no further improvement in the objective function in Equation 8 is possible.
Hence, although convergence to at least a locally optimum solution is guaranteed,
different starting values of the parameters must be used to investigate the potential
occurrence of local optima.

The estimation algorithm must be executed for varying numbers of classes to
determine the appropriate number of classes (K), because the actual number of
classes is rarely known in practice. To test the null hypothesis (Ho) of K classes
against the alternative hypothesis (H;) of (K + 1) classes, the standard likelihood
ratio test statistic is inappropriate because it is not (asymptotically) a full rank
quadratic form under Ho (Aitkin & Rubin, 1985; Li & Sedransk, 1988). This
problem is similar to counting the modes of a density estimate where one cannot
determine a confidence interval for the number of modes (Donoho, 1988); rather,
only a lower bound can be obtained.? For mixture models, Monte Carlo procedures
have been utilized for testing the number of classes (Aitkin, Anderson, & Hinde,
1981; De Soete & DeSarbo, 1991; McLachlan, 1987) by comparing the likelihood
ratio statistic from the real data with a distribution of that statistic obtained from a
number of data sets generated under Ho, Such procedures, however, are computa-
tionally cumbersome (cf. McLachlan & Basford, 1988), and the observed rejection
rates do not quite conform to the intended levels under the null hypothesis
(Titterington, 1990).

’We thank an anonymous reviewer for this point.
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Another set of techniques for testing the number of components are those based
on information criteria in which a penalty, proportional to the number of parameters
estimated, is imposed on the maximized log-likelihood. These include, in increasing
order of penalty magnitude, Akaike’s Information Criterion (AIC; Akaike, 1974),
Schwarz’s (1978) Bayesian Information Criterion (BIC), and Bozdogan’s (1987)
Consistent AIC (CAIC). Although these criteria (particularly the AIC) rely on the
same asymptotic properties as the likelihood ratio test (Sclove, 1987), they are often
employed in practice as heuristics for selecting the number of mixture components
(Titterington, 1990). Bozdogan (1987) noted that among information criteria, the
AIC tends to lead to over-parameterized models. The BIC and CAIC are preferred
because they take into account the sample size and tend to favor more parsimonious
mixture models. These two heuristics are computed as :

CAIC, =—2In L+T,(InN+1) a7
BIC, =-2InL+T,In N (18)

where T is the number of free parameters that are estimated. Accordingly, one
chooses the model for which the value of these heuristics is smallest.

Before interpreting this chosen solution, however, it is useful to examine the
extent of fuzziness in class membership (when K > 1). An entropy-based measure
(Ex) can be computed using the estimated posterior probabilities of membership
(Ramaswamy, DeSarbo, Reibstein, & Robinson, 1993):

E, =l—[2i,§,—1§,lnﬁu]/mnx (19)

Ex is a relative measure of fuzziness of the derived latent classes. It has a value of
0 when all the posterior probabilities are equal for each cross-section and a value
of 1 when the derived classes are discrete. A value of Ex close to zero is cause for
concern as it implies that the centroids of the K classes are not sufficiently separated.
Because Ey is a nonlinear measure, even values around 0.50 to 0.60 for a given
K-class solution can be indicative of sufficient separation, and hence, one may wish
to also examine the distribution of the largest posterior membership probabilities
across the cross-sectional units. Further, if using a wide range of (random) starting
values does not produce well-separated classes, the assumption of discrete compo-
nents may not be appropriate for the data at hand. Moreover, because the conver-
gence to local optima can be exacerbated when the component densities are not
well separated, it is important to examine whether the estimated latent classes are
well separated before interpreting the chosen solution.

Finally, it is important to note that if any of the mixing proportions (71,) are zero,
the solution will be degenerate. This can occur if a large number of classes are
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extracted. However, this problem is easily resolved by simply ignoring the null
mixing proportions and reducing K accordingly. For the chosen K-class solution,
we can compute the asymptotic variance-covariance matrix of the parameter
estimates based on the asymptotic efficiency property of the maximum likelihood
estimations. To examine the goodness of fit for the estimated model, we can
compute the proportion of variance in each endogenous variable accounted for by
the explanatory variables:

R. =Var(y,)/ Var(y,) (20)

where y,, = i }A’,, (- ﬁ,," f‘, x,) is the predicted value of the cross-sectional observa-
k=1 - -~ -

tion y;,.

ILLUSTRATIVE APPLICATION

We present an illustrative application entailing the examination of price—quality
relations in the marketplace.’ Although consumers may use price as a cue in the
quality perception process (Geistfeld, 1988), Monroe and Dodds (1988) noted that
consumers may judge the acceptability of price after assessing the quality of the
product and suggest that the price—quality relation be modeled in a simultaneous
fashion. For purposes of illustrating the proposed method, we focus on research
involving perceived quality and price that has been conducted with data drawn from
the Profit Impact of Marketing Strategy (PIMS) SPI4 database. The PIMS data are
at the level of the strategic business unit (SBU), which is defined as an individual
business that sells a distinct set of products to a served market and in competition
with a well-defined set of competitors. A served market is defined as a segment of
atotal market wherein an identifiable group of customers have similar requirements
for a product. The SPI4 database contains 4-year averages of data including several
business-market characteristics and competitive strategies for over 3,000 partici-
pating SBUs (Buzzell & Gale, 1987).

Based on research studies using the PIMS database (e.g., Phillips, Chang, &
Buzzell, 1983; Robinson & Fornell, 1985; Tellis & Fornell, 1988), we specify and
estimate the simultaneous equation regression model summarized in Table 1. The
operational definitions of the variables in Table 1 are summarized in Appendix A.
The covariates can be classified into three categories (Tellis & Fornell, 1988): (a)
strategic variables (relative marketing expenditures, new product introductions,

*We thank William Robinson for his suggestions regarding the illustrative application employed in
this article.
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TABLE 1
Specification of Regression Models

Dependent Variable (Equation)

Independent Variable Relative Quality Relative Price
Endogenous
Relative perceived quality — By
Relative price B2 —
Exogenous
Strategic:
Relative marketing expenditures 1 1
Percentage from new products Y12 T2
Product patents Y13 —
Relative direct costs — Yaa
Market structural:
Market pioneer Y15 s
20-year pioneer Y16 a6
Follower Y17 Y7
Market leadership —_ Tag
Number of immediate customers — Y20
Internal structural:
Relative backware integration Yo -
Value added/sales Yin —

product patents, and relative direct costs), (b) market structure variables (order of
market entry, market leadership, and number of immediate customers), and (c)
internal structure variables (relative backward integration and value added/sales
ratio). For the specification in Table 1, it can be shown that the rank and order
conditions are satisfied indicating that the parameters of the model are identified.
We used a cross-sectional sample of 2,404 businesses in our illustrative appli-
cation with a single 4-year average for each business. The sample entails businesses
operating in different types of served markets, including consumer durable goods,
nondurable household goods, and industrial products that span various traditional
“industries” such as agriculture, mining, construction, tobacco, textiles, paper and
allied products, printing, chemicals, primary and fabricated metals, plastics, me-
chanical and electrical machinery, transportation equipment, precision instruments,
communications, and so on. Further, about one-fourth of the served markets are
located outside of North America. Given the diverse cross-section of businesses
and their operating environments, one might expect substantial cross-sectional
heterogeneity in the structural relations, as captured by the parameters in Table 1.
As noted at the beginning of this article, a common practice is to obtain a single
set of aggregate level estimates. These aggregate estimates (i.e., K = 1) for the
present model are shown in Table 2. Scanning the estimates for the relative quality
equation, note that relative price has a significant positive effect on relative quality.
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TABLE 2

Parameter Estimates from Aggregate Model
Variable Relative Quality Relative Price
Relative perceived quality 0.34] Hok*
Relative price 0.3] 5%
Relative marketing expenditures 0.050%* 0.095%**
Percentage new products 0.025 0.007
Product patents 0.155%%x
Relative direct costs 0.336***
Market pioneer 0.183%*+* -0.010
20-year pioneer —0.087%** 0.004
Follower 0.036 -0.015
Market leadership 0.13] ***
Number of immediate customers 0.028*
Relative backward integration 0.08 | ***
Value added/sales 0.099%**
Intercept 0.000 0.000

Note. Estimates are standardized.
*p < 0.10. **p < 0.05. ***p < 0.01.

Among the strategic exogenous variables, businesses that have higher relative
marketing expenditures and benefit to a significant degree from patented products
also tend to have higher quality. The order of entry effects indicate that market
pioneers tend to have higher product quality, although this dissipates over time.
The effects of the internal structure variables indicate that increased control over
supply and internal operations enhances product quality. Scanning the estimates
for the relative price equation in Table 2, note that relative quality has a significant
positive impact on relative price. Among the strategic exogenous variables, relative
direct costs has a relatively large impact on relative price; relative marketing
expenditures also has a significant, albeit smaller, positive impact. Although the
order of entry effects are insignificant, market leadership and number of immediate
customers are significant and positive. Overall, there appears to be a positive
relation between price and quality in the marketplace. The partial effects of price
on quality (0.315), and quality on price (0.341), are almost equal in magnitude. This
suggests a rather strong interdependence between price and quality, with each
having an influence on the other.

Although these results are consistent with previous aggregate findings
(Steenkamp, 1989; Tellis & Wernerfelt, 1987), such aggregate estimates can
potentially mask cross-sectional variation in the structural relations if there is
considerable heterogeneity in the data. For instance, Phillips et al. (1983) reported
varying estimates of the partial effects of quality on price ranging from 0.190 to
0.480 depending on the type of business (the weighted average of these estimates
is 0.355, which is close to our aggregate estimate of 0.341).
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To accommodate cross-sectional heterogeneity and obtain disaggregate esti-
mates of the structural relations, we applied the proposed finite mixture approach
by varying the number of classes beyond the aggregate case of K = 1. The resulting
In-likelihood values, number of free parameters, BIC and CAIC values, as well as
proportion of variance explained, are shown in Table 3, for K = 1, ... 4. Several
starting values were used and the resulting parameter estimates were observed to
converge around similar values. After inspection of these estimates and the log
likelihood values, the “best” solution for each value of K was selected.

As is evident from Table 3, both the BIC and CAIC values are minimum for
K = 3 classes, suggesting that three classes adequately describe the data. The last
two columns of Table 3 give the proportion of variance explained (R for the
relative quality and relative price equations respectively. Note that although R
increases with the number of classes, there is only a marginal increase beyond K =
3, also providing additional support for the choice of the three-class solution.
Although the entropy measure E; is 0.625, the mean (across SBUs) of the largest
(i.e., “modal”) posterior probability for each SBU is 0.826. Further, about 82%
of the SBUs have modal posterior probabilities greater than 0.70. The class-spe-
cific estimates (B,, T,) for the three-class solution are presented in Tables 4 and

5, for the relative quality and relative price equations respectively. The proportion
of SBUs in these three classes (Ax) are approximately 15%, 51%, and 34%,
respectively.

For the sake of brevity, we concentrate primarily on interpreting the price—qual-
ity effects that are of substantial theoretical interest. From Table 4, note that the
partial effect of relative price on relative quality is much larger for Class 2 (0.506)
and Class 3 (0.559), whereas it is much smaller for Class 1 (0.157). From Table 5,
note that the partial effect of relative quality on relative price is relatively large for
Class 2 (0.382) and Class 3 (0.421), whereas it is somewhat smaller for Class 1
(0.267). Carpenter (1987) observed that higher quality brands, other things equal,
price above lower quality brands. Our findings corroborate this general observation,
which implies that prices convey important information about quality. However,

TABLE 3
Statistical Criteria for Choosing the Number of Classes
Number of R? R?
Classes (K) LnL Ok BICk CAICy (Quality) (Price)
1 -6309.6 23 12798.3 12821.3 0.324 0.430
2 -5916.4 47 12198.7 12245.7 0.504 0.513
3 -5724.6 71 12001.9* 12072.9* 0.822 0.589
4 -5639.7 95 12018.9 12113.9 0.845 0.663

Note. BIC = Bayesian Information Criterion; CAIC = Consistent Akaike’s Information Criterion.
“Minimum BIC and CAIC.
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TABLE 4
Parameter Estimates From Finite Mixture Model
for Relative Perceived Quality Equation

Variable Class 1 (15%) Class 2 (51%) Class 3 (34%)
Relative price 0.157%* 0.506** 0.559%*
Relative marketing expenditures 0.006 0.051** -0.010
Percentage new products 0.014 0.011 -0.018
Product patents 0.041* 0.072%** 0.08] **
Market pioneer 0.108%* 0.222%* 0.003
20-year pioneer -0.011 -0.070* -0.006
Follower 0.069* 0.061* -0.009
Relative backward integration 0.037* 0.084** 0.024
Value added/sales 0.014 0.054** 0.064**
Intercept 1.541** -0.082 —0.465%*

Note. Estimates are standardized.
*p < 0.05. **p < 0.01.

TABLE 5
Parameter Estimates From Finite Mixture Model
for Relative Price Equation

Variable Class 1 (15%) Class 2 (51%) Class 3 (34%)
Relative perceived quality 0.267*** 0.382%** 0.42] **
Relative marketing expenditures 0.094** 0.22* 0.113**
Percentage new products 0.073 -0.022* 0.013
Relative direct costs . 0.475%** 0.068%** 0.292%**
Market pioneer 0.086 —0.075%** 0.026
20-year pioneer 0.012 0.051** -0.091
Follower —0.055** -0.017 0.008
Market leadership 0.044 0.046%** 0.33] *%*
Number of immediate customers —0.028 0.020%** 0.070**
Intercept 0.028 —0.193%** 0.337%**

Note. Estimates are standardized.
*p £ 0.10. **p < 0.05. ***p < 0.01.

the interdependence between price and quality is much stronger in Classes 2 and

3, and is relatively weaker in Class 1.

The aggregate (K = 1) estimates in Table 2 mask this heterogeneity in the
estimated price—quality relation. Moreover, although the partial effects of price on
quality and quality on price are about equal in magnitude in the aggregate, the
disaggregate results from our proposed method suggest a potential asymmetry in
price—quality relations. For Class 1, the impact of price on perceived quality is
smaller than the impact of perceived quality on price. On the other hand, in Classes

2 and 3, prices have a relatively larger impact on perceived quality.
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To formally diagnose the composition of the derived classes, we analyzed the
posterior probabilities of membership via the following model (see Ramaswamy
et al., 1993):

R, =ZZ,8,+V, @1

where R, =In(P, /P,),and P, = ! P,)X is the geometric mean of the posterior

probabilities, Z; is the value of the explanatory variable r for SBU i, 8 is the impact
coefficient for variable r for pool k, and v is a random normal disturbance. The
explanatory variables we employed represented the characteristics of the product
market and the scope of the business, which were expected to be associated with
the posterior probabilities of membership for the derived classes, as discussed later.
The specific operationalization of these explanatory variables are described in
Appendix B. Note that we are able to conduct a formal analysis of the posterior
probabilities because the PIMS database offers a rich source of background data
on the businesses and their served markets.

The stage of the product life cycle (PLC) serves as a proxy for the level of
information in the market because the proportion of informed consumers are
typically higher in the later stages of the PLC, in part due to more marketing
support that reduces search costs (Tellis & Wernerfelt, 1987). Tellis and Werner-
felt (1987) demonstrated analytically that the equilibrium correlation between
price and quality is an increasing function of the level of information in the market.
Hence, the correspondence between price and quality should increase over the
duration of the PLC (Curry & Riesz, 1988). Because the strength of the price—qual-
ity relation should be weaker in Class 1, we expect businesses in the early stages
of the PLC to have a higher likelihood of belonging to Class 1. Moreover, from
Table 4, marketing expenditures has no significant impact on quality for Class 1,
but is positively associated with price as seen in Table 5. This suggests that
marketing expenditures tend to support price adjustments rather than changes in
quality, which has been argued to be more likely in the early stages of the PLC
(Schmalensee, 1982; Tellis & Fornell, 1988). This further suggests that businesses
in the early stages of the PLC should have a higher likelihood of belonging to
Class 1.

Other product-market characteristics, such as the type of goods sold, may also
have a bearing on class membership. In industrial markets, buyers are more likely
to be informed when their purchases entail raw or semi-finished materials, and
particularly when auxiliary services such as customer education, installation, and
repair are less important. In these situations, the level of information should be
higher as products can be inspected on a regular basis (Nelson, 1970; Rangan,
Moriarty, & Swartz, 1992), and such businesses should have a higher likelihood of
belonging to Classes 2 and 3, which exhibit stronger price-quality relations. For
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consumer markets, in the present context the prices reflect what immediate custom-
ers such as wholesalers and retailers pay for SBU products. Unlike the case of
consumer durables that typically involve a large number of modest independent
retail outlets as immediate customers, most of the consumer nondurables are sold
to giant wholesalers, large retail chains, and institutional buying units who typically
wield more buying power. Hence, it can be argued that the level of information in
the consumer market, at the interface between the firm and channel intermediaries,
is likely to be higher for nondurables than durables. Moreover, from Table 5,
scanning the estimates for Class 3, market leadership appears to be an approach to
commanding price premiums, along with increased marketing expenditures relative
to competition. This phenomenon of pulling demand through the channel is
characteristic of businesses selling nationally branded consumer nondurables
(which comprise a majority of the consumer nondurable businesses in our sample),
and serves to insulate them from price competition from lower priced, unadvertised
products (e.g., Blattberg & Wisniewski, 1989; Bolton, 1989). Hence, we expect
businesses selling consumer nondurables to be most likely to belong to Class 3 and
least likely to belong to Class 2. Moreover, we expect these businesses to be in
markets with a large number of competitors. In such situations, the supply of
superior quality should enable businesses to command a premium (Tellis &
Wernerfelt, 1987), which is corroborated by the relatively large partial effect of
quality on price (0.421) for Class 3.

Apart from product-market characteristics, the scope of the business should also
be associated with the derived classes. Ceteris paribus, if the business has a
relatively narrow product or customer scope, the level of information in the SBU’s
served market is expected to be high. Censequently, we expect businesses that have
a relatively narrow product scope or customer scope to have a smaller likelihood
of belonging to Class 1.

The results of the regression analyses of the posterior probabilities of member-
ship using the model specified in Equation 21 are given in Table 6. The impact
coefficients have been standardized to facilitate relative comparisons. Comparing
the likelihood ratio % for each pool with a critical %° with 8 degrees of freedom,
the results for all three pools are significant as shown in Table 6.

From Table 6, we find that businesses that are in the early stage of the PLC are
indeed more likely to belong to Class 1. Also, Class 1 consists of markets where
auxiliary services are more important whereas Class 3 consists of markets with a
large number of competitors. However, although we expected the impact of the
stage of the PLC to be weaker for Class 3, it is insignificant. Further, consistent
with our expectations, businesses that sell consumer nondurables are more likely
to belong to Class 3, whereas those that sell industrial raw materials are more likely
to belong to Class 2. However, we find that consumer nondurables businesses are
also likely to belong to Class 1, although the impact is smaller than that for Class
3. Finally, the scope of the business also has an impact. Businesses that have
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TABLE 6
Analysis of Posterior Probabilities
Variable Class | (15%) Class 2 (51%) Class 3 (34%)
Product/market characteristics
Mature stage of PLC -0.315* 0.266* 0.049
Consumer nondurables 0.144* —0.348* 0.204*
Industrial raw materials -0.308* 0.314* -0.006
Importance of auxiliary services 0.188* -0.220* 0.032
Number of competitors -0.130* 0.030 0.101*
Business scope
Broad product scope 0.282* -0.125* -0.157*
Broad customer scope 0.263* -0.130* -0.133*
Intercept —-2.346* 1.061* 1.285%
Likelihood ratio x> 207.270* 189.082* 86.278*

Note. PLC = product life cycle.
*» <0.01.

relatively narrow product and customer scopes are indeed more likely to belong to
Class 2 and Class 3, although the impact on Class 2 is somewhat larger.

Overall, it appears that a complex combination of both product-market charac-
teristics and business scope are found to be associated with the composition of the
derived classes. This underscores the difficulty of capturing unobserved cross-sec-
tional heterogeneity a priori. In general, our empirical results seem to support the
theoretical contention that the price—quality correlation varies with the level of
information in the market. Tellis and Wernerfelt (1987) pointed out that this
dependence is nonlinear and that a linear approximation would actually lead to
weaker results. It should also be noted that the explanatory variables in our post
hoc analysis serve merely as proxies for the information structure of product
markets. Nevertheless, we are able to diagnose the derived classes and obtain some
insights into the heterogeneity in price—quality relations across product markets.

CONCLUSION

Failure to recognize consumer heterogeneity in estimating regression models with
multiple endogenous variables can potentially result in biased and misleading
estimates at the aggregate level. The proposed approach affords a viable alternative
for estimating discrete latent classes of cross-sections with similar structural
relations for each class, along with the posterior probabilities of class membership
for each cross-sectional unit. The structural relations for each cross-sectional unit
can be viewed as a convex combination of the class-specific relations and the
posterior probabilities of class membership for each cross-sectional unit. The
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proposed approach can be extended to accommodate concomitant variables to
provide more parsimonious representations of the data. For example, Dayton and
MacReady (1988) discussed the treatment of such concomitant-variable latent-class
models for categorical data.

Although the EM algorithm has good convergence properties (Boyles, 1983;
Wu, 1983) and was well-behaved in the illustrative application, estimation prob-
lems can potentially arise in other situations with ill-conditioned data. Although it
is possible to test equality of estimated parameters across the derived classes, the
imposition of varying restrictions across the classes may be difficult to implement
without prior knowledge of the composition of the classes. This underscores a
pragmatic limitation of the proposed approach, in that varying restrictions between
the classes can be difficult to specify prior to estimation, as the classes themselves
are formed by the procedure. Despite such potential limitations, the proposed finite
mixture approach can be gainfully utilized for estimating regression models with
multiple endogenous variables, when faced with heterogeneous cross-sectional
observations.
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APPENDIX A:

Variables and Measures Used in the Empirical Application

Variable

Definition

Relative perceived
quality

Relative price

Relative marketing
expenditures

Percentage new
products

Product patents

Relative direct costs

Market pioneer
20-year pioneer

Follower

Market leadership

Number of
immediate
customers

Relative backward
integration

Value added/sales

Difference between two percentage measures: proportion of SBU’s sales
volume due to goods of superior quality and proportion due to goods
of inferior quality. Quality in both cases is defined in relation to the
SBU’s three major competitors and is judged from the consumer’s
perspective.

Average price level of the SBU relative to the unweighted average price
of the SBU’s three major competitors.

Average of annual advertising, promotion, and sales force expenditures
relative to leading competitors.

Percentage of the total sales of SBU accounted for by products
introduced during the three preceding years.

1 if the SBU benefits to a significant degree from patents and trade
secrets; O otherwise.

The average level of the SBU’s direct cost per unit of products and
services relative to leading competitors. Includes costs of materials,
production, and distribution.

1 if the business is a market pioneer; O otherwise.

1 if the business is a market pioneer and has been in the market 20
years or more; O otherwise.

1 if the business is an early follower; O otherwise.

1 if the SBU has the largest market share; O otherwise.

The number of immediate customers served by the business ranging
from 1 (3 or fewer) to 8 (10,000 or more).

The degree of backward integration relative to leading competitors.

The ratio of value added (sales minus purchases) to sales.

Note.

For additional details, see Strategic Planning Institute’s (1978) Profit Impact of Marketing

Strategy Data Manual. SBU = strategic business unit.
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APPENDIX B:

Variables and Measures Used to Explain the Latent Class Memberships

Variable

Measure

Product/market characteristics

Mature stage of PLC

Consumer nondurables
Industrial raw materials

Importance of auxiliary
service

Number of competitors

Business scope
Narrow product scope

Narrow customer scope

1 if business is in the mature stage of the PLC (demand
growing at less than 10% annually in real terms);
0 otherwise.

1 if the SBU sells household goods whose typical purchase
amount is less than $10; O otherwise.

1 if the SBU sells raw materials to industrial OEMs;

0 otherwise.

1 or 2 if auxiliary services (customer education, installation,
and repair) provided are of some or great importance to
end-users; O otherwise.

The number of competing businesses, each with more than
1% of the served market.

1 if the breadth of product line is narrower than leading
competitors; O otherwise.

1 if the relative breadth of customer type is narrower than
leading competitors or the relative number/sizes of
customers are larger than leading competitors; O otherwise.

Note. PLC = product life cycle; SBU = strategic business unit; OEM = original equipment

manufacturer.



