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Summary. We analyze the Pareto optimal contracts between lenders and borrowers
in a model with asymmetric information. The model generalizes the Rothschild-
Stiglitz pure adverse selection problem by including moral hazard. Entrepreneurs
with unequal “abilities" borrow to finance alternative investment projects which
differ in degree of risk and productivity. We determine the endogenous distribution
of projects as functions of the amount of loanable funds, when lenders have no
information about borrowers’ ability and technological choices. Then, we embed
these results in a dynamic competitive economy and show that the average quality
of the selected projects in equilibrium may be high in recessions and low in booms.
This phenomenon may generate (a) multiple steady states, (b) a smaller impact of
exogenous shocks on output relative to the full information case, (c) endogenous
fluctuations.
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1 Introduction

It is commonly argued that the business cycle is likely to be amplified in economies
with imperfect financial markets. Different versions of this proposition are in [13,1,
2,12,17]. When lenders are not well informed about borrowers’ investment projects
they may devise “second-best” contracts inducing the borrowers to take desirable
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actions or reveal some information. Since these contracts are often entailing col-
lateral requirements and credit rationing, investment and consumption turn out to
be highly dependent on the borrowers’ balance sheet position.

Most models predict that the agency costs associated to informational problems
in financial markets (monitoring, moral hazard, adverse selection, etc.) are more
important in recessions rather than booms. In fact, these costs are a decreasing
function of firms’ liquidity or collateralized assets and most models predict that
these variables are highly procyclical when endogenized in a general equilibrium
framework.

One problem with this literature is that it cannot explain why booms may some-
time revert to recessions. The idea that agency costs and distortions are negatively
affected by firms’ net worth is good for explaining the amplification of business cy-
cles (e.g., the fact that recessions may last longer than predicted by the real business
cycle models), much less for understanding endogenous reversion mechanisms.

This paper analyzes the relation between informational asymmetries in financial
markets and business cycle fluctuations from a rather different perspective. We
explore the effects of asymmetric information in financial markets by focusing on
the joint effects of adverse selection and moral hazard in a world with heterogeneous
entrepreneurs and investment projects. Our goal is to generate the distribution of
entrepreneurs and projects in equilibrium and to see how this distribution evolves
along the business cycle.

Projects chosen by a given pool of heterogeneous borrowers-entrepreneurs (dif-
ferentiated by ability or location) can be ranked in terms of risk and productivity.
Some of them have a higher probability of default and a lower expected output
for given investment. Entrepreneurs have no endowment and they can only invest
by applying for loan contracts. The type of investment projects that they choose
is a function of the set of loan contracts offered by lenders with no information
about borrowers’ types and investment choices. We endogenize the distribution of
projects by assuming that loan contracts are Pareto optimal and decentralizable and
by imposing that the opportunity cost of lending is determined by a market clear-
ing condition in the market for loans. Due to asymmetric information and limited
liability, the social costs generated by the risky projects are not fully internalized
and some entrepreneurs may choose to adopt them. The higher the proportion λ
of entrepreneurs undertaking these projects, the higher is the loss of efficiency and
real resources characterizing competitive equilibria.

The key step in the paper is to relate the optimal contracts and the distribution
of bad projects λ to the opportunity cost of lending (the risk free interest rate) and
the amount of loanable funds. We show that λ is an increasing function of interest
payments (loan rate times loan size) on good projects, i.e., higher interest payments
and limited liability make the moral hazard and adverse selection problems more
important. A rise in the interest rate induces a price and a quantity effect on interest
payments. The price effect increases the cost of borrowing (higher loan rate), while
the quantity effect reduces the loan size. If the quantity effect dominates over the
price effect, interest payments go down along with the proportion of bad investment
projects. As the interest rate is determined by a market-clearing condition in the
market for loans, a rise in loanable funds may have a negative effect on the loan
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rates and a positive effect on the average loan size. Hence, when the quantity effect
dominates over the price effect, the proportion of bad projects λ is increasing in the
size of loanable funds.

In the final section we embed this framework in an overlapping generations
model where the amount of loanable funds is equal to the competitive wage rate
arising from a neoclassical production function. This feature allows for a character-
ization of the joint evolution of projects distribution and output and the evaluation
of the impact of exogenous shocks. We find that the model may produce multiple
steady states and that a rise in productivity increases the steady state values of the
wage rate along with the proportion of bad projects. In addition, when the produc-
tion function is not “too concave”, a productivity shock has a smaller impact on
steady state real wages and output in the asymmetric information than in the full
information model. Finally, we show that the evolution of equilibrium contracts
along the cycle may produce discontinuities in the relation between the amount
of loanable funds and the opportunity cost of lending that may be responsible for
endogenous cycles. These cycles may exist because the high set-up costs generated
during the upswing (when more borrowers choose high risk and wasteful projects)
may eventually grow large enough to decrease output and wages.

Discontinuities are possible in our model because optimal contracts are subject
to a no cross subsidizing (NCS) condition. The latter allows for optimal contracts to
be decentralizable in a competitive environment (In Reichlin and Siconolfi [14] we
show how we can decentralize optimal contracts as the Nash equilibrium outcome
of the three stage game proposed by Hellwig [9]). NCS may generate “regime
switches": an increase of the opportunity cost of lending may cause a switch of
equilibrium contracts from “pooling” (borrowers get the same contract irrespective
of their project selection) to “separating” (borrowers “self-select” by choosing
contracts designed for their own project) or vice versa. This is the source for the
existence of endogenous cycles.

The “cleansing effect of recessions”, a phenomenon documented by Caballero
and Hammour [6] in a different context, may be a way of describing concisely what
may happen in our economy. During the cyclical upswing (when there is a large
amount of loanable funds) competitive lenders devise contracts attracting a high
proportion of bad projects; the opposite occurs during the downswing. In other
words, contrary to other papers in this field, our model predicts that the adverse
selection and moral hazard problem in financial markets may be more severe during
booms than recessions. Clearly, the reason for these diverging results is that we focus
on the equilibrium selection of different investment projects instead of focusing on
the interaction between credit limits and asset prices along the cycle. The two
approaches are not competing with each other.

One may argue that having entrepreneurs with no endowment is a strong as-
sumption. In fact, the degree of moral hazard and adverse selection could be a
function of the cyclical behavior of entrepreneurs’ net worth so as to alter the dy-
namics of our model. In Appendix 2 we show that, when Pareto optimal contracts
are obtained by maximizing the borrowers’surplus, the existence of positive endow-
ments does not significantly alter the results of the model as long as the endowment
is small enough. In particular, if the down payment earns the opportunity cost r
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and if there is no cost of liquidation, borrowers’ capital does not affect the nature
of pooling contracts and it may reduce the set of economies for which equilibrium
contracts are separating. Since our results hold under much weaker conditions
when contracts are pooling, assuming that the borrower has some endowment may
actually help in making our point.

Our model parallels Mankiw [13] by assuming a standard adverse selection
model where liquidity and collateral have no role. However, we endogenize the
opportunity cost of lending as an equilibrium interest rate on deposit, allow for sep-
arating contracts and add a specific form of moral hazard in the lenders-borrowers
relations so as to endogenize the distribution of borrowers in terms of risk and
productivity. Since we show that, in some cases, the proportion of bad projects may
be procyclical, our results are at variance with Mankiw [13].

Suarez and Sussman [17] explore the possibility that the costs associated to
asymmetric information may be more important in booms than in recessions. Be-
cause of moral hazard and limited liability, the probability of success of any given
investment project is positively correlated with the value of first period output. Since
entrepreneurs face a downward sloping demand curve, this value is anti cyclical in
equilibrium. It follows that a boom generates a low price of output and a low liquid-
ity thereby increasing external finance. Due to moral hazard, this leads to excessive
risk taking and a high rate of failure. However, the prediction that borrowers’ net
worth is counter-cyclical is at variance with empirical regularities.

Carlstrom and Fuerst [7] study a computable general equilibrium model based
on agency costs and find that the output response to exogenous shocks is character-
ized by more propagation and less amplification than in the standard Real Business
Cycle model. The agency problem derives from the costly state verification model
of Townsend [18] and contractual relations between lenders and borrowers are as-
sumed to be anonymous. Since in their model the response of agents’ net worth to
exogenous shocks is sluggish, aggregate fluctuations may loose amplitude while
gaining persistence.

2 The model

Agents and technologies

We consider an economy with overlapping generations of two sets of agents, lenders
and entrepreneurs (or borrowers). Each set has a continuum of two-period-lived
identical individuals in an interval of size one.

The cumulative distribution function of entrepreneurs is G (with density G′ =
g), where G is assumed to be twice continuously differentiable with support in [0, 1]
and such that

Assumption 1. sg′(s)/g(s) > −2, for all s ∈ [0, 1].

The precise role of the above assumption will be apparent in Section 4, where
we derive the loan contracts allowing entrepreneurs to finance their projects. Es-
sentially, the assumption simplifies the exposition, by ruling out a non convexity
of the programming problem from which contract choices are derived.
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Lenders are endowed with one unit of labor when young, which they supply
inelastically to a large set of competitive firms engaged in the production of a fi-
nal good y. Entrepreneurs are endowed with the ability to run investment projects,
whose output is an intermediate good z. All agents save and produce while young
and consume in old age only. Given this assumption, it is inessential to specify the
utility function of the ”old”, assumed to be strictly monotonic. Good y can be con-
sumed or used as a capital good for the production of z, which is an input (materials)
for the production of the final good y. Capital and materials fully depreciate in the
production process. Production of y is instantaneous and described by a production
function y = AF (z, L), where A > 0 is a productivity parameter and L is a labor
input.

Assumption 2. F (z, L) is homogeneous of degree 1 and strictly concave.

Under full employment and by the linear homogeneity of F (.) we can write:

y = AF (z, 1) ≡ Af(z)

where f ′(z) > 0 and f ′′(z) < 0.
Prices are defined in units of the final good and we let w and q be the relative

prices of labor and materials respectively. Then, perfect competition and profit
maximization imply:

w = A [f(z) − zf ′(z)] ≡ AW (z), q = Af ′(z) (1)

An entrepreneur s ∈ [0, 1] can undertake, in the first period, one of two possible
projects, L and H . In particular, if entrepreneur s invest k units of good y at time
t − 1 in the j-project (j = H, L), he obtains a random output

z̃j
s(k) = max{0, α̃j(k − ej

s)}
in period t, where ej

s is a set-up cost. This technology satisfies the following as-
sumptions.

Assumption 3. α̃j is iid across entrepreneurs and it takes two values, αj > 0 with
probability pj and zero with probability 1−pj , with pH < pL, pLαL = pHαH = ᾱ.

Assumption 4. z̃j
s(k) = z̃j

s(1) for all k ≥ 1.

Assumption 5. eL
s = 0, eH

s = es, with e > 0.

Both project types are affected by two parameter values: the marginal products
αj and the set-up cost ejs. Since the latter is a function of j (the riskiness of the
project) and s (the entrepreneur’s ability), the model is characterized by both moral
hazard and adverse selection.

Assumption 3 is almost a replica of a key assumption in Stiglitz and Weiss [16],
i.e., projects differ according to a mean preserving spread of the marginal rates
of return. The alternative assumption pLαL > pHαH would not change the basic
predictions of our model, as long as the two expected marginal products are not too
far apart.
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Assumption 4 guarantees the existence of solutions to the entrepreneurs’ profit
maximization problem for a wide range of relative prices.

Assumption 5, together with 3, imply that any investment k yields a higher
expected output with L-projects than with H-projects. For this reason we will
occasionally refer to the H-project as the “bad” project. Notice that no qualitative
property of our model depends on the fact that the set-up cost is proportional to the
marginal product of capital α̃j .

Assumptions 4, 3 and 5 generalize the standard adverse selection model (e.g.,
Stiglitz and Weiss [16], Bester [3], Boyd and Smith [5]) introducing a potential
moral hazard problem in the relation between entrepreneurs and outside investors.
In a pure adverse selection model projects are not choice variables, the output of a
project is independent of s and, in general, of k, since investment is usually assumed
to be indivisible.

We consider the above assumptions to be the natural generalization of the stan-
dard assumptions employed in the literature on adverse selection to a setting in-
cluding moral hazard (however, see Bester [4] for a different approach).

The assumptions about the production of materials is where we depart from
more standard models. Here we choose a simple condition to capture the idea that
only the ”best” entrepreneurs (low values of s) find the risky project more profitable
than the safe project. In Stiglitz and Weiss [16], at equilibrium, the risky project
yields, by the mean preserving spread assumption, a higher expected profit, while,
in our model, this is true only for the best entrepreneurs. This creates an incentive
for some borrowers to select the safe project. The reference to a set-up cost is just
a way, computationally convenient, to obtain this property.

Loan contracts and information structure

The type of an entrepreneur and his investment choice are private information, both
before and after the realization of the random variable α̃j . However, it is publicly
known whether an investment project is successful or not, i.e., whether α̃j = 0 or
α̃j > 0.

Since entrepreneurs have no physical endowment and projects yield no output
in the bad state, the entire production of the intermediate good is financed externally
with limited liability loan contracts. Namely, the borrower repays the loan when
the investment project is successful, while no payment occurs otherwise.

As in many other applications of incentive problems to the analysis of business
cycles (e.g., Bernanke and Gertler [1,2], Suarez and Sussman [17]), we assume
that loan contracts are constrained Pareto Optimal, i.e., they are the best arrange-
ment under which borrowing can take place, given the information structure. More
precisely, contracts are obtained by maximizing the borrowers’ profit subject to the
lenders’ participation constraint. Since lenders are only consuming when old, their
reservation utility at time t is rtqtwt−1, where r is a deterministic “opportunity
cost of lending” in units of the intermediate good. When deriving contracts, we
take r as given. However, this is an endogenous variable, which is determined, at
equilibrium, by the equality between demand and supply of loanable funds.
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A contract is a pair c = (B, R) specifying the size of the loan and the amount
of repayment per unit of loan in the good state. For convenience, the loan size, B,
is defined in units of the final good and the amount of repayment per unit of loan,
R, is defined in units of the intermediate good. This specification of c allows us
to define the expected profit of an entrepreneur in units of the intermediate good
independently of q. In particular, the expected profit at time t of an entrepreneur s
investing at time t − 1 in the j-project with a contract ct−1 = (Bt−1, Rt) signed
at time t − 1 is:

πj
s,t(ct−1) = (ᾱ − pjRt)Bt−1 − ᾱejs, j = H, L,

where eH = e and eL = 0.
The presence of asymmetric information rules out contracts contingent on the

specific realizations of α̃j , the borrowers’ type and their project choice. In principle,
lenders may devise a continuum of contracts, each of them inducing self selection of
s-types. However, in our model, for a given project choice, the borrower’s ranking
of the available contracts is independent of the type s. More precisely, if c and c

′
are

two distinct contracts, πj
s(c) − πj

s(c
′
) is s- independent for j = L, H . Therefore,

there is no loss of generality in restricting our attention to at most two contracts
(designed for each project). We call these separating if they are distinct, and pooling
if they are equal.

Let C (r) be the family of optimal contracts for a given (next period) opportunity
cost of lending r. An element c ∈ C (r) is a pair cs = (cH , cL) (if contracts are
separating) or it is a single contract cp (if contracts are pooling), with cj = (Rj , Bj)
and j = H, L, p. Separating contracts induce self selection of borrowers. Thus, a
borrower adopting the risky (safe) project (weakly) prefers cH to cL (cL to cH ).
Equivalently, separating contracts satisfy the incentive compatibility constraints,
i.e., πL

s (cL) ≥ πL
s (cH) and πH

s (cH) ≥ πH
s (cL).

Whether c is separating or pooling depends on which of these alternative ar-
rangements provides the largest surplus.Whenever pooling and separating contracts
yield the same surplus, we allow for randomization. Namely, a random contract is
an array c = (cs, cp, θ) with θ ∈ [0, 1] denoting the probability for the lender to get
the separating contract. With random contracts, the lender selects the investment
project after having observed the realization of the lottery over the pair (cs, cp). If
the separating contract realizes, the lender is free to choose the cH or cL component.
By construction, randomization does not alter the optimal surplus. However, it is
essential for the existence of an equilibrium in the market of loanable funds (see
next section). Thus, the optimal contract c(r) is separating (pooling) if θ(r) = 1
(θ(r) = 0). The precise definition of the Planner’s problem and the derivation of
the contracts is described in Appendix 1.

Intertemporal equilibria

To simplify the exposition, we now define intertemporal equilibria when contracts
are deterministic. However, as already mentioned, existence of an equilibrium may
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require a randomization. Later on in this section, we explain how to generalize the
definition and the analysis to random contracts.

For given opportunity cost of lending, rt, set of optimal contracts, C(rt), and
proportion of entrepreneurs selecting the H-project, λ(rt), are determined at time
t − 1. The aggregate demand for loans at t − 1 is denoted as D(rt), where

D(r) =
(
1 − G(λκ(r)(r))

)
BL(κ(r))(r) + G(λκ(r)(r))BH(κ(r))(r),

for κ(r) = p if cp(r) = C(r), κ(r) = s if cs(r) = C(r), L(p) = H(p) = p,
L(s) = L and H(s) = H . Hence,

D(r) =

{
Bp(r) if κ(r) = p,

(1 − G(λs(r)) BL(r) + G(λs(r))BH(r) if κ(r) = s.

Since lenders work in young age and consume when old, the (per capita) supply
of funds at t−1 coincides with the wage rate wt−1 and the market clearing condition
in the loan market at time t − 1 is:

wt−1 = D(rt) (2)

The set r(wt−1) of values of r solving Equation 2 is defined as the set of
temporary equilibrium interest rates. By the law of large numbers (with the usual
caveat applying to a continuum of random variables (see Judd [11]) and by the
assumption that borrowers get all the surplus generated by the optimal contracts,
lenders earn the deterministic gross return r on any unit of loaned funds. Hence,
their (per capita) consumption at t is simply rtqtwt−1. Since pHαH = pLαL = ᾱ,
the supply of the intermediate good is defined by:

Z(r) = ᾱ

(∫ λκ(r)

0
(BH(κ)(r) − es)dG(s) +

∫ 1

λκ(r)
BL(κ)(r)dG(s)

)
.

Hence, Z(r) = ᾱD(r) − Me(r), where:

Me(r) = ᾱ

∫ λκ(r)

0
esdG(s)

is the aggregate set-up cost.
Equations 1 (i.e., wt = AW (zt) and qt = Af ′(zt)) determine the real wage

and the relative price of the intermediate good for given demand of the intermediate
good, zt, while the market clearing condition of the intermediate good market at
time t is:

zt = Z(rt) = ᾱD(rt) − MeA(rt). (3)

At a general equilibrium, the markets for loanable funds, labor, final and inter-
mediate goods clear. The equilibrium conditions determine three relative prices: the
interest rates r (in units of the intermediate good), the wage rate w and the price of
the intermediate good q. Exploiting Walras’ Law, we eliminate the market clearing
condition for the final good.
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Definition 1 (Intertemporal equilibrium). For given initial value w0, an in-
tertemporal equilibrium is a trajectory {(zt, wt−1, rt, qt, C(rt)) : t ≥ 1}, such
that, for all t, C(rt) is a family of optimal contracts and Equations 1, 2 and 3 are
satisfied.

Definition 2 (Stationary state). A stationary state is an array (z∗
e , w∗

e , r∗
e) such

that

w∗
e = D(r∗

e) = AW (ᾱw∗
e − Me(r∗

e)) , z∗
e = Z(r∗

e), q∗
e = Af

′
(z∗

e ).

By trivial manipulations, we can more directly define an intertemporal equilib-
rium as a sequence {(wt, rt) : t ≥ 1} satisfying Equation 2 and:

wt = AW (ᾱwt−1 − Me(rt)) , (4)

where the remaining variables, zt and qt are determined by the conditions zt =
Zj(rt) and qt = Af

′
(zt).

Evidently, for e = 0 (i.e., when all entrepreneurs are equal), the dynamic be-
havior of the real wage (and therefore, of materials and final output) is independent
of the loan market. Intertemporal equilibria can be derived from:

wt = AW (ᾱwt−1). (5)

In the next section we show that the above also characterizes intertemporal
equilibria of the full information model.

Full information

When projects are observable, optimal contracts are contingent on project types. By
limited liability, these contracts are a pair (cL, cH) such that pLRL = pHRH = r
and BL = BH = 1 if Rj < αj , Bj ∈ [0, 1] if Rj = αj (j = H, L).

For w < 1, equilibrium in the market for loans implies Bj = w, Rj = αj ,
j = H, L. Then, all borrowers choose the L-project and the opportunity cost of
lending is rt = ᾱ for all t. An intertemporal equilibrium of the full information
model is, therefore, the unique monotonic sequence {wt : t ≥ 1} solving Equation
5 with initial condition w0 < 1.

To single out the role of informational asymmetries in the dynamics of the
model, we only consider economies that, under full information, have stationary
states w∗

0 ∈ (0, 1]. The following assumption guarantees this:

Assumption 6. limz→0 −zAf ′′(z) > 1/ᾱ, Af(ᾱ) − ᾱAf ′(ᾱ) ≤ 1.

Competitive allocations of the benchmark model are Pareto optimal if and only
if they are dynamically efficient. As usual, we define a stationary intertemporal
equilibrium as dynamically efficient if there is no way to increase agents’ total
consumption by destroying the existing stock of capital. This type of inefficiency
(which typically arises in overlapping generation models) is ruled out when the
marginal product of capital is sufficiently high. The relevant condition in this model
is ᾱAf ′(ᾱw∗

0) ≥ 1.
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3 Intertemporal equilibria with asymmetric information

In this section we partially characterize the dynamic properties of competitive
equilibria with asymmetric information. We first provide an informal discussion of
the contractual problem and we state the main properties of the optimal contracts.
Then, we examine the consequences of these properties on intertemporal equilibria,
under a set of simplifying assumptions. These are the minimum set of assumptions
guaranteeing the uniqueness of a temporary equilibrium interest rate r (and optimal
random contract) for any given wage w. It will be explained in a moment that
uniqueness can be insured whenever the set-up cost e is not “too small” (the critical
size of e depends on the shape of the distribution function G(s)). Furthermore,
we will show that, when e is big enough so as to guarantee the uniqueness of an
equilibrium interest rate, r(w), the latter is a decreasing function and the associated
proportion of bad projects, λ(r(w)), is an increasing function of w. We regard this
as the “regular case” when the inefficiency arising from asymmetric information is
quantitatively significant.

The existence of a unique temporary equilibrium interest rate, r(w), has impor-
tant implications for the dynamics of intertemporal equilibria. Indeed, when r(w)
is decreasing and λ(r(w)) is increasing in w, the aggregate set-up cost

Me(r(w)) = ᾱ

∫ λ(r(w))

0
esdG(s) ≡ me(w)

is an increasing function of w. Then, Equation 4 becomes:

wt = AW (ᾱwt−1 − me(wt−1)) .

A detailed analysis of the dynamics of the above map will be derived later on in
this section. However, it is immediate to see that the positive effect of an increase in
past wages wt−1 on current wage wt is tempered by the rise of the aggregate set-up
cost. Hence, adverse selection and moral hazard imply a slower wage growth and
a smaller impact of exogenous shocks as compared to the full information case.

When these assumptions are not satisfied, optimal contracts may not be unique
and intertemporal equilibria may display a variety of different dynamic patterns.
In the final section of the paper we concentrate on a specific type of multiplicity
related to the coexistence of different type of optimal contracts (pooling and sepa-
rating) for a given wage. This multiplicity calls for a selection criterion and it may
be responsible for the existence of endogenous fluctuations. We postpone the dis-
cussion of these cases to the last section of the paper. An example shows that, for e
below the value above which uniqueness is guaranteed, the model does not behave
(not even approximately) like the full information model. The reason is that opti-
mal contracts may “switch” from separating (pooling) to pooling (separating) as w
changes along the cycle and ”switching regimes” are associated to discontinuities
of the map defining the equilibrium dynamics.
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Main properties of loan contracts

Contracts are obtained by maximizing the borrowers’ profit subject to the lenders’
participation constraint. The presence of a continuum of borrowers’ types allows
for many possible and alternative choices of the Planner’s objective function. The
propositions, in this section, state some of the most relevant properties of the optimal
contracts. The analysis of the contractual problem together with the proof of all the
propositions in this section are in Appendix 1. Although we provide some intuition
for the results, the propositions that follow can be read, at this stage, as assumptions
satisfied by the optimal contracts.

As it is customary in environments with asymmetric information, we design
the contractual problem by imposing a no cross subsidizing (NCS) condition (see
Henriet and Rochet [10] for a discussion of the role of the NCS condition in com-
petitive markets). More specifically, we require that (separating) contracts (cL, cH)
cannot produce a negative surplus for the lender when offered separately. The
(NCS) condition guarantees that optimal contracts are decentralizable in a compet-
itive environment. In Reichlin and Siconolfi [14] we provide a specific game form,
with lenders (banks) and borrowers, which delivers (decentralizes) as a (subgame
perfect) Nash equilibrium the efficient contracts used in the paper. As usual, the
decentralization of efficient contracts requires an exclusivity assumption, i.e., each
borrower can apply at most for one contract.

By the NCS condition, optimal contracts may be either pooling or separating
(or both), depending on the value of r. A value r∗ ∈ (0, ᾱ) is called a switching
point if cp and cs are both in C(r∗) (are both optimal). r∗ is called a switching
point because, as shown in Appendix 1 (Lemma 4), for e in a generic set of R++,
r∗ is locally isolated and optimal contracts “switch” from pooling (separating) to
separating (pooling) as r crosses r∗. The (generically finite and possibly empty) set
of switching points in [0, ᾱ] is denoted with S∗. From now on we will implicitly
assume that e is either zero or it belongs to the generic subset of R++ for which
S∗ is finite.

Proposition 1. For all r ∈ [0, ᾱ], the set of optimal contracts C(r) is non empty.
Moreover,

– if S∗ = ∅, θ(r) = 0 (i.e., the optimal contract is pooling) for all r ∈ [0, ᾱ] and
if S∗ �= ∅, θ(r) = 0 for all r ∈ [0, r∗

1) and some r∗
1 ∈ S∗;

– the optimal proportion of H-projects, λ(r), is strictly positive for all r ∈ (0, ᾱ)
and λ(0) = λ(ᾱ) = 0.

Proposition 1 guarantees that the set {r : θ(r) = 0} is non empty, i.e., a deter-
ministic pooling contract is optimal for r small enough. The proposition, however,
does not rule out that θ(r′) = 1 for some r′ ∈ (0, ᾱ), i.e., the possibility for optimal
contracts to be separating. Clearly, if θ(r′) = 1 for some r′ ∈ (0, ᾱ), Proposition
1 implies that S∗ �= ∅.

In the pure adverse selection model, if cross subsidization is allowed, Pareto
optimal contracts are, typically, separating. The loan contract offered to high risk
borrowers is associated with a higher loan rate and it generates a surplus which
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can be used to subsidize the contract (generating a negative surplus) offered to
low risk borrowers. The NCS condition imposes a lower bound on the loan rate
of the (safe) L-contract. Thus, the benefit from cream skimming may not be fully
exploitable and a pooling contract may dominate. This is a known possibility in pure
adverse selection environments with exogenously given values of risky projects λ
(e.g., Rothschild and Stiglitz [15]). In our economy, instead, the presence of moral
hazard and adverse selection makes λ endogenous and thus, separating and pooling
contracts may be optimal for different values of r (or for the same r). Proposition 1
shows that “cream skimming” is not beneficial when the opportunity cost of lending
is relatively low.

The following two propositions provide two alternative sufficient conditions
under which switching points are either absent or unique.

Proposition 2. Let S∗ �= ∅. Then, r∗
1 is increasing in e. Moreover, there is a value

eo large enough and such that, for e ≥ eo, S∗ = ∅.

Proposition 3. If sg(s)/G(s) ≤ 1, S∗ is either empty or it contains a unique
switching point r∗ ∈ (0, ᾱ).

Proposition 3 shows that, for a large class of distributions functions, either
optimal contracts are pooling for all r, or they are pooling for r < r∗

1 ∈ (0, ᾱ),
while they are separating for r ∈ (r∗

1 , ᾱ).A specific case is the uniform distribution,
i.e., G(s) = s, for which the unique switching point is:

r∗
1 =

ᾱ

µ + 4(1 − µ)2/e
.

In this case, optimal contracts are always pooling if e ≥ 4(1 − µ) and they are
separating for r ∈ [r∗

1 , ᾱ] otherwise.
The general equilibrium properties of the model are critically related to the be-

havior of the optimal contracts as a function of r. The next propositions characterize
the map C(r) when θ(r) = 0 or θ(r) = 1 (deterministic contracts).

Proposition 4. Consider a deterministic contract cκ(r) ∈ C(r) (κ = p, s). Then,
Bκ(r) is non increasing andRκ(r) is strictly increasing for all r ∈ [0, ᾱ]. Moreover,
BH(r) = 1 > BL(r) and Bp(r) < 1 for all r ∈ (ro, ᾱ], for some ro ∈ (0, ᾱ).

Proposition 4 is in line with known results in the adverse selection literature.
Asymmetric information may generate credit rationing of all borrowers when con-
tracts are pooling and credit rationing of the safe borrowers (those selecting project
L) when contracts are separating. Since contracts guarantee the lenders a reserva-
tion utility defined by the opportunity cost r, a higher value of r is compensated
by a higher repayment Rκ. Since high repayments induce borrowers to take more
risk, the Planner reduces the loan size to compensate for the loss generated by the
increase in risk.

Separating contracts (cH , cL) satisfy two conditions. The first is the no cross
subsidizing (NCS) condition pLRL = pHRH = r. The second states, as in the pure
adverse selection model (e.g., Rothschild and Stiglitz [15]), that the risky borrowers
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are not rationed, i.e., BH = 1, and that they are indifferent between the cH and
the cL contract, i.e., πH

s (cH) = πH
s (cL). When the NCS condition is taken into

account, the latter implies that:

BL =
(

ᾱ − pLRL

ᾱ − pHRL

)
.

Rationing of safe borrowers is the cost paid in order to make a separating contract
incentive compatible (cream skimming). By optimality, BL must be the largest loan
size satisfying the incentive compatibility constraint of the risky borrower.

The proportion of risky (bad) projects λ plays a fundamental role in a general
equilibrium. When r �∈ S∗, this variable will be denoted with λκ(r), where κ = p
if C(r) = cp(r) and κ = s if C(r) = cs(r).

Proposition 5. The functions λj(r) (j = s, p) are continuous and unimodal in
[0, ᾱ] (with λj(0) = λj(ᾱ) = 0). Furthermore, λp(r) is strictly decreasing in r,
for r ∈ (ro, ᾱ]. Finally, if λ ∈ (0, 1), it is:

λκ =
(pL − pH)

ᾱe
RL(κ)(r)BL(κ)(r),

for κ = p, s and L(p) = p, L(s) = L.

The particular functional form of λκ in Proposition 5 is obtained by solving for
λ the equation πH

λ (cp) = πL(cp), when contracts are pooling, and the equation
πH

λ (cH) = πL(cL), when they are separating.
For r ∈ S∗, optimal contracts are a correspondence and the expression of λ

depends on the particular contracts C(r) selected. Hence, for r ∈ S∗ and θ ∈ (0, 1),
the law of large numbers implies that:

λ = λθ(r) = (1 − θ)λp(r) + θλs(r).

The basic content of Proposition 5 is in the characterization of the proportion of
risky projects as a function of r. The statement is quite intuitive. Limited liability
debt contracts induce borrowers to undertake risky projects because of the lower
expected interest payments associated with these choices. Hence, an increase in
r has an ambiguous effect on the proportion of risky projects. This effect can be
decomposed into a quantity (fall in loan size) and a price (rise in repayments per
unit of loan) effect. This is the reason why, as stated in Proposition 5, λκ(r) is
increasing for low values of r (dominating price effect) and decreasing for high
values of r (dominating quantity effect).

Dynamics of equilibrium allocations

Two distinct problems arise in the model with asymmetric information. First, the
set of equilibrium interest rates r(w) defined by Equation 2 may be empty, i.e.,
an equilibrium with deterministic contracts may fail to exists. Second, r(w) may
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contain several elements, i.e., the pairs (wt, rt) solving Equations 2 and 4, for some
given value of wt−1, may be indeterminate.

Recall that, by Proposition 4, BH(r) = 1 and the aggregate demands of loans
are,

(1 − G(λs(r)) BL(r) + G(λs(r)) ≡ Bs(r) if θ(r) = 1,

Bp(r) if θ(r) = 0.

Then, given w ∈ [0, 1], a credit market equilibrium with random contracts is a
pair (r, ϑ), such that:

ϑBs(r) + (1 − ϑ)Bp(r) = w; ϑ ∈ θ(r) (6)

and ϑ = θ(r) if r ∈ [0, ᾱ]\S∗, while ϑ ∈ [0, 1] otherwise. With some abuse of
notation, we keep denoting with r(w) the non empty set of values of r solving
Equation 6.

When S∗ �= ∅, a temporary equilibrium with deterministic contracts may not
exist for some values of w, i.e., r(w) may be empty. The reason is simple. Consider
an arbitrarily small interval around r∗, I(r∗). By definition of switching point, for
r ∈ I(r∗), r < r∗, optimal contracts are pooling (separating), while for r ∈ I(r∗),
r > r∗, optimal contracts are separating (pooling). Thus, at r∗, the demand of
loanable funds changes discontinuously from Bp(r∗) to Bs(r∗).

When market clearing requires random contracts, i.e., when r(w) ∈ S∗, ϑ(w)
will denote the market clearing mixing parameter. Moreover, for κ = p, s, we
denote with rκ(w) the set of solutions to Bκ(r) = w and, for r∗

i ∈ S∗, wκ
i =

Bκ(r∗
i ).

Proposition 6. For all w ∈ [0, 1], there exists a credit market equilibrium
(ϑ(w), r(w)) ≥ 0, with r(0) = ᾱ and r(1) = 0. Moreover, if S∗ �= ∅, wp

i > ws
i

for all r∗
i ∈ S∗ and, if ϑ(w) ∈ (0, 1),

ϑ(w) =
wp

i − w

wp
i − ws

i

∈ (0, 1).

Since, by Proposition 4, Bp(r) is non increasing, rp(w) is either a singleton or
empty. Thus, S∗ = ∅ is a sufficient condition for the uniqueness of the equilibrium
interest rate r(w) = rp(w).

However, Bs(r) may be a non monotone function. In fact, notice that

∂Bs

∂r
= (1 − G(λs))

∂BL

∂r
+ (1 − BL)G′(λs)

∂λs

∂r
.

By Proposition 4, ∂BL/∂r ≤ 0, for j = H, L, and BL < 1. However, by
Claim 5, ∂λs/∂r cannot be signed and, hence, Bs(r) may not be monotonic.
Hence, rs(w) may be a non trivial correspondence. This problem can only arise
when λs(r) is increasing. In this case, a rise in the opportunity cost of lending has
two effects on the aggregate demand for loans. On the one hand, Bs(r) falls for
given λ because borrowers get a smaller loan size. On the other hand, Bs(r) rises
because the proportion of risky borrowers increases and these are the borrowers
who get a larger loan size when contracts are separating. Hence, when S∗ �= ∅,
r(w) may be a correspondence.
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Avoiding multiplicity

Proposition 6 leaves open the possibility of multiple credit market equilibria and
clarifies that multiplicity may occur under the following two distinct possibilities:

(a) rs(w) contains at least two distinct elements, r and r′, such that θ(r) = θ(r′) =
1;

(b) θ(rp(w)) = 0 and θ(rs(w)) = 1 (and/or, θ(r(w)) ∈ (0, 1)).

Case (a) never arises when the set-up cost e is large enough. In particular, let
As(e) = {r : θ(r) = 1}. Then, we can state the following.

Proposition 7. There is a large enough value ê such that, for all e ≥ ê, λs(r) is a
decreasing function in As(e) and rs(w) ∩ As(e) is decreasing in w.

In turn, case (b) never arises when the number of switching points is not greater
than 1 and rs(w)∩As(e) is decreasing in w. In particular, we can state the following
proposition.

Proposition 8. Assume that rs(w)∩As(e) is a decreasing function and S∗ contains
at most one switching point. Then, r(w) is unique for all w ∈ [0, 1].

Recall that there exists a value eo > 0 such that S∗ = ∅ for all e ≥ eo (cf.
Proposition 2) and that, if sg(s)/G(s) ≤ 1, S∗ contains a single switching point r∗

(cf. Proposition 3). In either one of these cases (by Proposition 8) we can rule out
any multiplicity arising from the coexistence of separating and pooling contracts for
a given w. Hence, multiplicity may only arise from the non monotonicity of Bs(r).
By Proposition 7, we can state the following proposition, almost as a corollary of
Propositions 6, 7 and 8.

Proposition 9. If sg(s)/G(s) ≤ 1 for all s ∈ [0, 1], there exists a value
ē > min{eo, ê} > 0 such that r(w) is a decreasing differentiable function and
λϑ(w)(r(w)) an increasing differentiable function of w.

Intertemporal equilibria when r(w) is unique.

The analysis of the dynamic behavior of the economy is carried out by imposing
uniqueness of credit market equilibria. At the end of the paper, we will discuss
the consequences generated by the existence of discontinuous regime switches
(i.e., discontinuities in the relation between w and the equilibrium opportunity cost
r(w)).

From now on in this section we study economies that satisfy the assumption of
Proposition 9, i.e.,

Assumption 7. e ≥ ē > 0, sg(s)/G(s) ≤ 1 for all s ∈ [0, 1].

By Proposition 9, we can express the aggregate set-up cost, Me(r(w)) as an
increasing function of w ∈ [0, 1] denoted by me(w). Thus, substituting Equation
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2 into Equation 4, the equilibrium dynamics of the wage rate wt is defined by the
following equation:

wt = Φe(wt−1) ≡ AW (ᾱwt−1 − ᾱme(wt−1)) , (7)

The equilibrium sequence of wage rates is generated by Equation 7 provided
that wt ≤ 1, for all t (otherwise, the capacity constraint of the intermediate good
technology is binding and Φe no longer describes the equilibrium of the system).
This is an immediate consequence of the next proposition.

Proposition 10. Under Assumption 7:

– Φe(w) is increasing in [0, 1];
– Φe(w) has at least one fixed point w∗

e in [0, 1) such that Φ
′
e(w

∗
e) < 1;

– w∗
e < w∗

0 .

By Proposition 10, all the stationary states of the asymmetric information econ-
omy are smaller than w∗

0 , the stationary state of the benchmark model. Further-
more, Φe(w) is increasing in [0, 1], it has at least one fixed point w∗

e ∈ [0, 1) with
Φ′

e(w
∗
e) < 1, and since Φ0(w) > Φe(w), by Assumption 6, 1 > Φe(1). Hence,

for any given initial condition w̄ ∈ (0, 1), the equilibrium sequence of wage rates
converges monotonically to some steady state w∗

e < w∗
0 . Hence, for any initial

condition in (0, 1), the equilibrium sequence of wage rates {wt} is bounded above
by 1.

Evidently, since there are no more restrictions on the shape of the map Φe(w)
other than the ones specified in Proposition 10, we cannot rule out the existence
of multiple fixed point. In this case, the equilibrium sequence may converge to
different steady states for different initial conditions and asymmetric information
may be responsible for the existence of “poverty traps” that would otherwise be
absent in the model.

Since λ is an increasing function of w, the monotonicity of the sequence of
equilibrium wages translates into monotonicity of the equilibrium proportion of
bad projects. Figure 1 shows a diagrammatic representation of the equilibrium
dynamics of the model with full and asymmetric information.

By inspection of the map Φe, a rise in w generates two opposite effects. On
one hand, higher wages increase the amount of loanable funds, reinforcing the
initial increase in wages. However, higher wages produce a fall in the opportunity
cost of lending, an increase in the proportion of bad projects and an increase in
the amount of resources lost because of the set-up cost. If the effect of w on λ is
positive and strong, this mechanism damps business fluctuations (relatively to the
full information benchmark), thereby introducing a role for asymmetric information
somewhat in contrast with the standard view in this literature. Most importantly, this
phenomenon may occur (locally around a steady state) irrespectively of whether
the equilibrium contracts are separating or pooling. Although we do not investigate
this issue, we conjecture that the phenomenon holds independently of the no-cross
subsidizing condition. In the absence of this condition, optimal contracts would
always be separating, but a positive relation between w and λ may still be there.
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Finally, the same mechanism is responsible for the (possible) existence of multiple
steady states.

To evaluate the long-run effect of a productivity shock with asymmetric infor-
mation, consider a stable steady state w∗

e and define the elasticity of a change in A
as:

ε(e) =
∂w∗

e/∂A

w∗
e/A

=
1

1 − Φ′
e(w∗

e)

where

Φ
′
e(w

∗
e) = AW ′(.)ᾱ

[
1 − eλg(λ)

∂λ

∂w

]
and ε(e) is well defined and positive by the stability of w∗

e . Hence, a stable steady
state λ∗

e is increasing in the productivity parameter A. Furthermore, since Φ′
e(w

∗
e)

defines the approximate “speed of adjustment" to the steady state wage rate, ε(e)
is positively correlated with the speed of adjustment of real wages to their steady
state value.

We can compare the steady state effects of a productivity shock in the asymmet-
ric information model relative to the full information case by looking at the values
of ε(e) and ε(0). The results are summarized by the following proposition.

Proposition 11. ε(e) < ε(0) for e > 0 iff:

eλg(λ)
∂λ

∂w
> 1 − W ′ (ᾱw∗

0)
W ′ (ᾱw∗

e − ᾱme(w∗
e))

. (8)

where λ and ∂λ/∂w are computed at r(w∗
e).
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Proposition 11 states that, if inequality 8 is satisfied, a productivity shock has a
relatively smaller impact on steady state real wages and output in the asymmetric
information than in the full information model. How should we interpret these
results? The right hand side of the inequality in Proposition 11 is non positive for
all convex wage functions W (.). In these cases the inequality is always verified.
When the wage function is strictly concave, ε(e) < ε(0) requires a sufficiently high
value of ∂λ/∂w at w∗

e . In the latter case, the speed of adjustment with e > 0 tends
to be smaller because of adverse selection (i.e., the adverse effect of λ on output),
but it tends to be higher because of concavity (the steady state capital stock with
asymmetric information is smaller than the capital stock with full information).

4 Endogenous cycles

We now give conditions under which separating and pooling contracts may coexist
for the same w in a credit market equilibrium and we point out a general property
of any selection criterium that could resolve this multiplicity problem.

A selection criterium E is a rule assigning to w ∈ [0, 1] a unique credit market
equilibrium (ϑE , rE), (remember that, by definition of equilibrium, ϑE ∈ θ(rE)).
We define this rule as a map

E(w) = (rE(w), ϑE(w)).

The existence of multiple market clearing contracts may generate, at some w,
a “sudden" discontinuity in the behavior of the equilibrium interest rate r(w) (and,
hence, of the proportion of risky contracts λ and the production of materials z as
functions of w). The discontinuity may be induced, for instance, by a change of
regime, i.e., a switch from a deterministic pooling to a deterministic separating con-
tract (or vice versa), or by a discontinuous choice among the multiple separating
equilibria. Let λE(w) be the credit market equilibrium proportion of H-projects
generated by the selection criterium E . More precisely, we give the following defi-
nition.

Definition 3. Given a selection E , we say that there is a discontinuous switch at
w′, if (rE(w), λE(w)) is discontinuous at w′.

Now recall that n denotes the cardinality of the set of switching points r∗
i ∈

(0, ᾱ). The following proposition states that discontinuous switches always occur
when n ≥ 2.

Proposition 12. Let n > 1. Then, (i) there exists a multiplicity of market clear-
ing contracts, (ii) for each selection E(w) there exists a w at which there is a
discontinuous switch.

The last proposition implies that the lack of continuous selections is independent
of the existence of multiple separating contracts. However, if rs(w) ∩ As is a
continuous (and decreasing) function and n ≤ 1, r(w) is, by Proposition 9, a non
increasing function and ϑ(w) is trivially continuous. Furthermore, Proposition 3
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provides a sufficient condition for n ≤ 1, while Proposition 7 shows that e ≥ ê
suffices to make rs(w) ∩ As a (decreasing) function.

To illustrate the consequences on the equilibrium dynamics of regime switching,
we consider a specific example. Suppose that e ≥ ê, so that, by Proposition 7, rs(w)
is a decreasing function. It will be apparent that this assumption plays no role. Most
importantly, suppose that S∗ = {r∗

1 , r∗
2}, with ᾱ > r∗

2 > r∗
1 > 0 and wp

1 = 1,
ws

1 > wp
2 . Remember that, in this situation, optimal contracts must assign θ(r) = 0

for r ∈ [0, r∗
1)∪(r∗

2 , ᾱ] and θ(r) = 1, for r ∈ (r∗
1 , r∗

2). Since n > 1, by Proposition
12 there is no selection criterium E making rE(w) a continuous function.

It will be sufficient, for our purposes, to define a selection criterium E in the
interval [ws

2, w
p
2 ]. Setting w̄ = (wp

2 +ws
2)/2, E is implicitly defined in [ws

2, w
p
2 ], by

the following conditions:

w ∈ [ws
2, w̄] ⇒ rE(w) = rs(w), ϑE(w) = 1;

w ∈ (w̄, wp
2 ] ⇒ rE(w) = rp(w), ϑE(w) = 0;

E selects the separating contract in the interval [ws
2, w̄] and the pooling contract

in (w̄, wp
2 ]. In particular, rE(w̄) = rs(w̄), while

lim
w↓wp

2

rE(w) = rp(w̄).

Most importantly, the adopted selection criterium generates a discontinuity in the
proportion of H-projects: as w crosses w̄ from the right, λ(rE(w)) jumps upward
discontinuously. This is shown in the next proposition:

Proposition 13. λ(rE(w̄)) = λs(rs(w̄)) < limw↓wp
2
λ(rE(w)) = λp(rp(w̄)).

This proposition points out a general problem with selection criteria for
economies with n > 1. Every time the selection criterium implies a regime switch
from separating to pooling contracts as w increases, the proportion of H-projects
goes up abruptly. Although for n = 2 this type of regime switch is avoidable (i.e.,
it is always possible to construct selections where the switches are from pooling to
separating), the phenomenon seems somewhat structural for high values of n.

Evidently, the discontinuity in λ(.) translates into a discontinuity of Φe(w), as
defined in Equation 7. Since a sudden increase in λ generates a sudden decrease in
the production of the material, the following inequality holds true

Φe(w̄) > lim
w↓w̄

Φe(w).

This discontinuity may be a source of endogenous dynamic fluctuations. In partic-
ular, the map Φe(w) may not have a steady state w∗

e . If, given our adopted selection
criterium, there is no steady state w∗

e , we have the following situation:

Φe(w) > w for w ∈ [0, w̄],

Φe(w) < w for w ∈ (w̄, 1].

This implies that the equilibrium trajectory {wt; t ≥ 0} permanently fluctuates in
the interval (0, 1] for all initial conditions w0 ∈ (0, 1]. Figure 2 shows a diagram-
matic representation of a cycle of period 2. The example proves that the model
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can explain an endogenous reversion mechanism. Low wages induce borrowers to
select good projects so as to produce higher wages in next periods. In turn, high
wages induce agents to choose bad projects setting up the conditions for a down-
turn. It should be stressed, however, that discontinuous regime switches may as
well generate the opposite type of discontinuity for the map Φe(w). Namely, the
curve representing this map may jump upward as w crosses a given threshold from
the left. In this case we would expect multiple steady states.

5 Conclusions and extensions

Using a version of a celebrated model by Stiglitz and Weiss [16], this paper shows
that the interplay of moral hazard and adverse selection in the market for loans im-
plies that risky and socially costly actions made by profit maximizing entrepreneurs
may be more pervasive in booms other than recessions. Hence, by embedding the
Stiglitz-Weiss model in a general equilibrium framework, we may argue that credit
market imperfections do not necessarily amplify the effects of exogenous shocks.
Multiple steady states and endogenous fluctuations are a more likely phenomena.
This is in contrast with what comes out from most of the literature in the field (for
example, [1,2] and [12]). Our results show that business cycle theory may be very
sensitive to the way information and market frictions in credit markets are modeled.

Our model is admittedly very simple, mainly because we assume that contracts
are single-period and borrowers have no endowment. In particular, a natural ob-
jection to this model is that we are overlooking the importance of the borrowers’



Optimal debt contracts and moral hazard along the business cycle 95

balance sheet and the role of collateral. As a partial answer to this type of criticism,
in Appendix 2 we study the case in which entrepreneurs are endowed with some
positive amount E < 1 of the consumption good in the first period of their life. In
this case, contracts may include the following additional components: some amount
W ∈ [0, E] to be invested by the borrower in a “secure deposit” (yielding the return
r) and some payment V ≥ 0 to be delivered by the borrower to the lender in the
case in which the project fails. We find that:

– W and V play no role in defining the optimal contracts in the sense that their
value is either zero or left undefined in the optimal contract;

– credit rationing still occurs when E + w < 1;
– pooling contracts are independent ofE when credit is rationed, i.e.,Bp < 1−E;
– the range of r for which optimal contracts are pooling is increasing in E.

The key result is that pooling contracts are more likely to be optimal when
borrowers have a (relatively) large endowment. The intuition is that a larger E
reduces the lenders’ exposure with high risk borrowers and, hence, their need to
separate risky from safe types. To give a sense of the effects of introducing en-
dowments on the type of contracts prevailing in the model, consider that, with the
uniform distribution G(s) = s, optimal contracts are pooling for all r (and w) when
E ≥ 1 − e/4(1 − µ). If we assume, as usual in business cycle models, that E is
procyclical, we should expect pooling contracts to be more likely in booms, both
because a high w implies a low r (as shown in Section 4, optimal contracts are
always pooling when r is small) and because E is larger. Hence, the effect of intro-
ducing the endowment E is ambiguous. On the one hand, a large E may eliminate
rationing along with any interesting dynamics of intertemporal equilibria. On the
other hand, when E is not too big, the set of wage rates for which optimal contracts
are pooling is larger and λ is more likely to be procyclical.

Appendix 1: Optimal contracts and proofs

In this appendix we derive the family of optimal (random) contracts C(r) for a
given opportunity cost of lending r (in units of materials).

As anticipated in Section 2, contracts are obtained by maximizing the borrowers’
profit subject to the lenders’participation constraint. The presence of a continuum of
borrowers’ types allows for many possible and alternative choices of the Planner’s
objective function. We make this function equal to the profit of the most inefficient
borrower, i.e., the borrower of type s = 1.When λ < 1 the profit of the least efficient
borrower is πL(.), while it is πH

1 (.) when λ = 1. Since every borrower is free to
select projects, our criterium is equivalent to the maximization of a “reservation”
profit for all types of entrepreneurs.

Hence, for all given r ∈ [0, ᾱ], we seek triples C = (cs, cp, θ), with (cs, cp) ≥ 0
and y ∈ [0, 1], maximizing:

W(C) = θπL(cL) + (1 − θ) max{πL(cp), πH
1 (cp)},
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subject to :

Bκ ≤ 1, (κ = H, L, p) (CC)

(ᾱ − pHRH)BH ≥ (ᾱ − pHRL)BL, (IC1)

(ᾱ − pLRL)BL ≥ (ᾱ − pLRH)BH , (IC2)

pjRj ≥ r, (j = H, L), (ZPS)

Rp
[
pHG(λ) + pL(1 − G(λ))

] ≥ r. (ZPP)

The form of the objective function follows from the following consideration.
If, at a separating contract c′s = (c′L, c′H), every borrower applies for the contract
c′H , then λ = 1. Hence, we can identify, without loss of generality, c′s with the
pooling contract cp = c′H . By adopting this convention, we rule out the possibility
that, at a separating contract, λ = 1.

Condition (CC) is the capacity constraint, (IC1) and (IC2) are the incentive
compatibility constraints and (ZPS) is a NCS condition. By (ZPS) and (ZPP),
contracts satisfy the standard participation constraint, i.e., the cost of lending cannot
exceed the expected return of each contract in the optimal offer. Furthermore, given
the adopted objective function, we need not write down explicitly the borrowers’
individual rationality constraints. Since Bκ = 0 (κ = H, L, p) is always feasible, it
must be πL(cκ) ≥ 0 (and hence πH(cκ) ≥ 0) at any solution of the programming
problem. These inequalities, together with the other constraints, imply Bκ ∈ [0, 1]
for κ = p, s, Rj ∈ [0, αj ] for j = H, L and Rp ∈ [0, αH ]. Hence, the (relevant
part of) the feasible set is compact.

The separability in cs and cp, the linearity in θ of the objective function and the
NCS condition imply that the optimality problem separates in two programming
problems defining, respectively, optimal separating and optimal pooling contracts.
More specifically, for given r, an optimal pooling contract cp is a solution to

(P.p) maxcp≥0{max{πL(cp), πH
1 (cp)}} s.t.: (CC), (ZPP),

while, an optimal separating contracts c = (cL, cH) is a solution to

(P.s) max(cH ,cL)≥0 πL(cL) s.t.: (CC), (IC1), (IC2), (ZPS).

In the sequel, cj(r) and πj(r), j = p, s, will denote the set of optimal so-
lutions to and the value functions of the programs (P.κ), κ = s, p. If, at r,
πp(r) > (<)πs(r), the optimal random contract implies θ(r) = 0 (θ(r) = 1) and it
degenerates in the pooling (separating) contract. Optimal random contracts are non
trivial lotteries over the two deterministic contracts only when πp(r) = πs(r). In
such a situation, any θ ∈ [0, 1] is optimal, i.e., θ(r) = [0, 1]. It is evident that if, for
instance, θ(r) = 0, the actual specification of the separating component is imma-
terial. However, it will be convenient and without loss of generality to specify the
set of optimal contracts as the array C(r) = (cs(r), cp(r), θ(r)). Since θ ∈ (0, 1)
only when πp(r) = πs(r), the introduction of random offers does not increase the
value of the objective function and it is inessential for optimality.
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Proof of Propositions 1, 4, 5

The proof of Proposition 1 is divided in three steps. In the first we characterize cs(r),
in the second cp(r) and in the last θ(r). From now on we simplify the notation by
setting µ = pH/pL and σ = pL(1 − µ)/ᾱe.

Step 1: optimal separating contracts. As we have already observed, πL(cL) ≥ 0
(and hence πH(cH) ≥ 0) at any optimal solution, since BL = BH = 0, Rj = αj

is feasible. Furthermore, all additional constraints in the programming problem
(P.s) are weak inequalities. Hence, the search for optimal separating contracts is
in a compact region contained in the compact set {(cH , cL) : Bj ∈ [0, 1], Rj ∈
[0, αj ], j = L, H}. The following lemma characterizes the properties of the unique
optimal separating contract cs(r) = (cH(r), cL(r)). The argument is standard and
it is therefore omitted.

Lemma 1. A contract cs(r) solving problem (P.s) is such that:

pHRH(r) = pLRL(r) = r, (9)

BH(r) = 1, (10)

BL(r) =
ᾱ − r

ᾱ − µr
. (11)

By the properties of the separating contract, it is readily verified that the pro-
portion of H-projects is equal to:

λs(r) = σRL(r)BL(r) = σ
(ᾱ − r)r
ᾱ − µr

.

The function λs(r) is hump shaped, equal to zero at r = 0 and r = ᾱ and
possibly greater than or equal to 1 for some r. Then, there is a closed subinterval
Is = [rs

1, r
s
2] ⊂ (0, ᾱ), possibly empty, such that λs(r) = 1, for r ∈ Is, i.e.,

no optimal contract can be separating for r ∈ Is (or, equivalently, separating and
pooling contracts are, for all practical matters, indistinguishable).

Now let πs(r) = max{πL(cs), πH
1 (cs)} for cs in the constrained set defined

by (CC), (IC1), (IC2), (ZPS). The above discussion implies that:

πs(r) =

{
(ᾱ − r) − ᾱe for r ∈ Is;

(ᾱ − r)2/(ᾱ − µr) for r ∈ [0, ᾱ] \ Is,

Step 2: optimal pooling contracts. At a pooling contract, λp(r) =
min{1, σBpRp}. When λp(r) = 1 the contract is defined by Rp = r/pH , Bp = 1.
Otherwise, it is a solution to:

(P.p′) maxc(ᾱ − pLR)B s.t.: (CC), (ZPP), σBpRp ≤ 1.

Once again, B = 0 is always feasible and all constraints in (P.p′) are weak
inequalities. Hence, the search for optimal pooling contracts is in a compact region
contained in the compact set {cp : Bp ∈ [0, 1], Rp ∈ [0, αH ]}.
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Lemma 2. Let Ip = {r : λp(r) = 1}. Under Assumption 1, there is a unique
optimal pooling contract cp(r) with the following characterization. If Ip �= ∅,
Ip = [rp

1 , rp
2 ] ⊂ (0, ᾱ) and there is a value r̂ and a continuous function λp(r) such

that:

– r̂ = rp
1 , if Ip �= ∅, r̂ ∈ (0, ᾱ), otherwise;

– λp(r) = 1 for r ∈ Ip, λp(r) strictly increasing in [0, r̂), strictly decreasing in
(r̂, ᾱ] \ Ip and λp(0) = λp(ᾱ) = 0;

– Bp(r) = 1, for r ∈ [0, r̂] ∪ Ip, Bp(ᾱ) = 0, Bp(r) strictly decreasing in
[r̂, ᾱ] \ Ip and Rp(r) = (r/pL)[1 − (1 − µ)G(λp(r))]−1 for r ∈ [0, ᾱ].

Proof. Since both the objective function and λp are monotonic in B, solutions in
Cp(r) satisfy (ZPP) with equality. Hence:

pLRp(r)[1 − (1 − µ)G(λp(r))] = r. (12)

Now define T (λ) = ᾱ (1 − (1 − µ)G(λ)) λ. By Equation 12 and the definition
of λ, problem (P.p′) can be restated as

(P.po) maxλ∈[0,1] Q(λ, r) s.t.: T (λ) ≤ σrᾱ/pL,

where Q(λ, r) = T (λ) − rλ.
Let Λp(r) be the set of solutions to problem (P.po). Notice that Q(0, r) = 0,

T (0) < σr for r > 0 and ∂Q(0, r)/∂λ = ᾱ − r, ∂T (0)/∂λ = pLᾱ > 0. Then,
λ > 0 for all λ ∈ Λp(r) with r ∈ (0, ᾱ) and Λp(ᾱ) = Λp(0) = {0}. Furthermore,
by the maximum theorem, the continuity of T (.) and Q(.) and the compactness of
the constrained set imply that Λp(r) is an upper hemi continuous correspondence.

Now we show that Λp(r) = {λp(r)}, where λp(r) is a function. Since all
λ ∈ Λp(r) are positive, T ′(λ) ≥ r, i.e., T ′(λ) > 0 for λ ∈ Λp(r). Assumption
1 implies that Q(.) and T (.) are strictly concave in λ. Hence, the constraint set
in (P.po) is the union of two disjoint intervals, I1 = [0, ξ1(r)], I2 = [ξ2(r), 1],
where I2 is possibly empty, ξ1(r) ∈ (0, 1] and ξ1(r) < ξ2(r). Since T ′(0) >
0, T ′(ξ1(r)) > 0, T ′(ξ2(r)) < 0 and T ′(λ) > 0 for all λ ∈ Λp(r), must be
Λp(r) ⊂ I1. Hence, the strict concavity of Q(.) and the convexity of I1 imply that
Λp(r) = {λp(r)} is a continuous function.

By the implicit function theorem, ξ1(r) is an increasing function of r. By the
strict concavity of the objective function in (P.po), there exists a unique η(r) such
that ∂Q(η(r), r)/∂λ = 0. Then, λp(r) = min{η(r), ξ1(r)}. Since ξ1(0) = 0,
η(0) > 0, η(ᾱ) = 0, ξ1(r) is increasing, while η(r) is decreasing. Then, there is
a subinterval Ip = [ρp

1, ρ
p
2] ⊂ (0, ᾱ), possibly empty, and a value r̂ ∈ (0, ᾱ), with

r̂ = rp
1 , when Ip �= ∅, such that:

λp(r) =




ξ1(r) for r ∈ [0, r̂] \ Ip,

1 for r ∈ Ip,

η(r) for r ∈ [r̂, ᾱ] \ Ip.

Hence, the unique contract c̄(r) solving problem (P.po) satisfies:

σB̄(r)R̄(r) = λp(r), R̄(r) =
r

pL[1 − (1 − µ)G(λp(r))]
.
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Since the Planner’s objective is to maximize max{πL(c), πH
1 (c)}, we know that

an optimal contract is characterized by R = r/pH and B = 1 when λ = 1. Hence,
the unique optimal pooling contract cp(r) satisfies cp(r) = c̄(r) for r ∈ [0, ᾱ]\ Ip,
cp(r) = (1, r/pH) for r ∈ Ip. ��
Lemma 3. πp(r) = max{πL(cp(r)), πH

1 (cp(r))} is strictly decreasing in [0, ᾱ]
and such that ∂2πp(r)/∂r2 < 0, for r ∈ (0, r̂) and, if Ip �= ∅, ∂2πp(r)/∂r2 = 0
for r ∈ (rp

1 , rp
2).

Proof. Consider r ∈ [r̂, ᾱ) \ Ip. By the envelope theorem:

∂πp(r)
∂r

=
∂Q(λp(r), r)

∂r
= −pLᾱ

r2 (1 − (1 − µ)G(λp(r))) λp(r) < 0.

For r ∈ (0, r̂), T (λp(r)) = ᾱσr/pL and πp(r) = 1 − (pLλp(r)/σ). Then:

∂πp/∂r = −(pL/σ)∂λp(r)/∂r, ∂2πp/∂r2 = −(pL/σ)∂2λp(r)/∂r2,

where the first and second derivatives of λp(r) are obtained by total differentiation
of the equation T (λp(r)) = σr, i.e.:

∂λp(r)/∂r = (σ/pL)[1 − (1 − µ)H(λp(r)],

∂2λp(r)/∂r2 =
σ(1 − µ)H ′(λp(r))

pL[1 − (1 − µ)H(λp(r))]2
∂λp(r)/∂r,

where H(λ) = G(λ) + λg(λ).
Lemma 2 implies that ∂λp(r)/∂r > 0, and, therefore, ∂πp/∂r < 0, for r ∈

(0, r̂). Furthermore, for r ∈ [rp
1 , rp

2 ], the constraint λ(r) ≤ 1 is binding and, hence,

Q(λp(r), r) = (ᾱ[1 − (1 − µ)G(λp(r))] − r) λ = ᾱµ − r. ��

Step 3: optimal contracts. We are now ready to characterize θ(r), thereby com-
pleting the study of the optimal contract (cs, cp, θ)(r). If πs(r) > πp(r) (πs(r) <
πp(r)), the optimal contract is separating (pooling), i.e., θ(r) = 1 (θ(r) = 0).
If r is such that πs(r) = πp(r), the contract (cs(r), cp(r), θ) is optimal for all
θ ∈ [0, 1]. By direct computations and by the previous lemma, πs(0) = πp(0) = ᾱ,
πs(ᾱ) = πp(ᾱ) = 0 and, at r = 0, ∂πs/∂r = µ − 2 < −1 = ∂πp/∂r. Hence,
there exists r∗ ∈ (0, ᾱ] such that πp(r) > πs(r) for r ∈ (0, r∗). This completes
the proof of Proposition 1. ��

We have now all the elements needed to characterize the properties of the set
of switching points, S∗. We call a subset A ⊂ R++ generic if it is both open and
of full Lebesgue measure. The proof of the next Lemma is a trivial application of
the joint trasversality theorem.

Lemma 4. For e in a generic subset of R++, the set S∗ of switching point is either
empty or finite. For each r∗

i ∈ S∗, i = 0, 1, ..., n, either πp(r) > πs(r) for all r in
a left neighborhood of r∗

i and πp(r) < πs(r) for all r in a right neighborhood of
r∗, or vice versa.
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Proof. First we show that the lemma is true for e in a full Lebesgue measure set of
R++. Then, we prove that this set is open as well.

Consider the function f(r, e) = πs(r, e) − πp(r, e), for e > 0. For each e > 0,
f(ᾱ, e) = f(0, e) = 0. From Lemma 3 , ∂f(0, e)/∂r < 0, and, hence, r = 0 is a
locally isolated zero of f , for all e > 0. Furthermore, from the proof of Proposition
2, ∂f(ᾱ, e)/∂r = 0, ∂2πs(ᾱ, e)/∂r2 = −2/ᾱ(1 − µ) and ∂2πp(ᾱ, e)/∂r2 =
−σ/ᾱ. Thus, for e ∈ K = {e > 0 : σ �= 2/(1 − µ)}, ∂2f(ᾱ, e)/∂r �= 0. Hence,
for each e ∈ K, r = ᾱ is a locally isolated zero of ∂f/∂r, and, since f(ᾱ, e) = 0,
ᾱ a locally isolated zero of f (just take a second order Taylor expansion in a
neighborhood of ᾱ). Now, consider the map f : (0, 1) × K → R. Bear in mind
that we are restricting the domain of the map f to not include the points r = ᾱ and
r = 0. Since, ∂πs/∂e = 0, while ∂πp/∂e < 0, the map f is transversal to zero.
Let fe(r) denote the map f for given value of e. By the joint trasversality theorem,
there exists a full Lebesgue measure subset of K, K∗, such that either f−1

e (0) = ∅
or, for r ∈ f−1

e (0), ∂f(r, e)/∂r �= 0, for e ∈ K∗. Thus, by the implicit function
theorem, the solutions r∗

i are locally isolated. If they are not finite, they must have
either r = 0 or r = ᾱ as accumulation points. However, this is excluded by the fact
that both of them are locally isolated solutions of f(r, e) = 0. Hence, S∗(e) is a
finite set for all e ∈ K∗. Furthermore, since, if r ∈ f−1

e (0) �= 0, ∂f(r, e)/∂r �= 0,
for e ∈ K∗, the second part of the lemma holds true.

In order to show that K∗ is open, pick a point ê ∈ K∗. If f−1
ê (0) = ∅, by

the continuity of f and by the fact that both 0 and ᾱ are locally isolated zeros,
f−1

e (0) = ∅, for e in an open neighborhood of ê. If, on the other hand, f−1
ê (0) �= 0,

the implicit function theorem immediately implies that fe is transversal to zero,
for e in some open neighborhood of ê. Hence, K∗ is open and of full Lebesgue
measure. ��

In the analysis that follows, the set up cost is assumed to be in the generic set of
Lemma 4. Thus, S∗ is a finite collection of points, {r∗

1 , ..., r∗
n} and, by convention,

r∗
i < r∗

i+1.

Proof of Proposition 2

From the proof of Proposition 1, the Planner’s objective function with θ = 1 is:

πs(r) = (ᾱ − r)2/(ᾱ − µr),

whereas the Planner’s objective function with θ = 0 is:

πp(r) = ᾱ − (pL/σ)λp(r) if r ≤ ro ∈ (0, ᾱ)

πp(r) = e(ᾱ)2λp(r)2g(λp(r))/r if r > ro,

where ro ∈ (0, ᾱ) is such that Bp(r) = 1, for r ∈ [0, ro], while Bp(r) < 1, for
r ∈ (ro, ᾱ]. Equivalently, the capacity constraint T (λ) ≤ ᾱ(σ/q)r/pL is binding
for r ∈ [0, ro), while it is not binding, for r ∈ [ro, ᾱ]. Hence, λp(r) is decreasing
in e for r < ro and independent of e otherwise. Then, πp(r) is increasing in e and
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πs(r) is independent of e. Since at r∗
1 we have πp(r∗

1) = πs(r∗
1), πp(r) > πs(r)

for r < r∗
1 , r∗

1 is an increasing function of e.
Now assume that r∗

1 → r∗ < ᾱ as e → ∞. Notice that, for all r, there is a
big enough value e(r) such that (CC) becomes a binding constraint. Hence, for all
e ≥ e(r∗), must be (ᾱ − r)2/(ᾱ − µr) > ᾱ − (pL/σ)λp(r) for all r ∈ (r∗, ᾱ).
However, e → ∞ implies λp(r) → 0. Hence, for e big enough and r ∈ (r∗, ᾱ),
ᾱ > (ᾱ − r)2/(ᾱ − µr) > ᾱ, which is a contradiction. ��

Proof of Proposition 3

Recall that in the proof of Proposition 1 Ip and Is have been defined as the subin-
tervals of [0, ᾱ] such that λp(r) = λs(r) = 1. For r ∈ Is, the optimal contract is
pooling and, for r /∈ Is, πs(r) = (ᾱ−r)/(ᾱ−µr). Hence, we just need to compare
this expression with πp(r). Notice that πp(r) is concave in [0, r̂]∪Ip, while πs(r) is
strictly convex in [0, ᾱ]. Furthermore, πs(0) = πp(0) = ᾱ and ∂πs/∂r < ∂πp/∂r
at r = 0. Hence, there is at most one switching point in r∗ ∈ [0, ρ̂] ∪ Ip. Finally,
recall from the proof of Proposition 1 that Bp(r) = 1, for r ∈ [0, r̂] ∪ Ip and, for
r ∈ (r̂, ᾱ) \ Ip, Bp(r) < 1 and:

G(λp(r)) + λp(r)g(λp(r)) = (ᾱ − r)/(1 − µ)ᾱ.

Now let

A(r) =
pLλ[ᾱ − r − ᾱ(1 − µ)G(λ)]

(σ)(ᾱ − r)2
, N(r) =

r

ᾱ − µr
,

and observe that, for r ∈ (r̂, ᾱ) \ {Ip ∪ Is}, N(r) ≥ A(r) ⇔ πs(r) ≥ πp(r). It
is N ′(r) > 0 and A′(r) ≤ 0 ⇔ sg(s)/G(s) ≤ 1. Hence, if there is a switching
point r∗

2 ∈ (r̂, ᾱ) \ Ip, A(r∗
2) = N(r∗

2) and, then, πs(r) > πp(r), for r ∈ (r∗
2 , ᾱ),

while πs(r) < πp(r) for r ∈ {(r̂, ᾱ) \ Ip} ∩ (0, r∗
2). However, πs(r) < πp(r)

for r ∈ (r̂, ᾱ) \ Ip ∩ (0, r∗
2) if and only if it does not exists a switching point in

(0, r̂] ∪ Ip, otherwise the inequality is reversed. Hence, the thesis. ��

Proof of Proposition 6

By Proposition 1, Bp(r) = 1, for r ∈ [0, r̂] ∪ Ip, while ∂Bp(r)/∂r < 0, for
r ∈ (r̂, ᾱ] \ Ip. Hence, rp : [0, 1) → [0, ᾱ] is a decreasing function. Bs(r) is
continuous with Bs(0) = 1, Bs(ᾱ) = 0. Hence, for any given w ∈ [0, 1], there
rs(w) is non empty. However, Bs(r) is not monotonic and, hence, rs(w) may be
non unique.

If S∗ = ∅, the optimal contracts are pooling for any r ∈ [0, ᾱ]. Hence, since
Bp([0, ᾱ]) = [0, 1], if S∗ = ∅, there exists a market clearing equilibrium for
each r ∈ [0, ᾱ]. Now suppose that there are n switching points and let r∗

0 = 0,
r∗
n+1 = ᾱ. The closed interval Ii = [r∗

i , r∗
i+1] is called pooling (separating) if the

pooling (separating) contract is optimal for r ∈ Ii. By Proposition 1, I0 is pooling
and, by the definition of switching points, Ii is pooling, if i is even, and separating,
if i is odd. Let wj

i (j = p, s) be defined by r∗
i = rp(wp

i ) and r∗
i ∈ rs(ws

i ). The
following lemma shows that the relative magnitude of these points can be evaluated.
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Lemma 5. wp
i > ws

i .

Proof. By construction, at a separating contract λs(r) < 1. Therefore, since r∗
i ∈

(0, 1), ws
i < 1. Suppose that wp

i < 1 (otherwise, there is nothing to prove). By the
definitions of πs and πp given in Section 4 and since we are assuming wj

i < 1,
(j = s, p), we are only considering switching points r∗

i for which λs(r∗
i ) and λp(r∗

i )
are both less than 1. Then, omitting the index i,πs(r∗) = BL(r∗)(ᾱ−r∗),πp(r∗) =
ᾱwp −pLλp(r∗)/σ. It follows that wp = BL(r∗)(1− r∗/ᾱ)+pLλp(r∗)/σᾱ and:

ws = BL(r∗) + G(λs(r∗))(1 − BL(r∗)).

Using the above expressions along with the definitions of λs(r) and λp(r) we get:

wp − ws =
eᾱ

ᾱ − r∗ [λp(r∗)G(λp(r∗)) − λs(r∗)G(λs(r∗))].

Since λp(r∗) > λs(r∗), we have wp − ws > 0. ��
By the continuity of Bp(r) and Bs(r), both Bp(Ii), i odd, and Bs(Ii), i

even, are intervals contained in [0, 1]. However, by the last claim, wp
i > ws

i , and,
hence, there might not exists deterministic contracts that clear the market for w ∈
(ws

i , w
p
i ). If, for some i, this is the case, consider an optimal random contract offer

(cs, cp, θ)(r∗
i ). For this contract offer, the market clearing condition is:

ϑBs(r∗
i ) + (1 − ϑ)Bp(r∗

i ) = w,

which can be rewritten as ϑws
i + (1 − ϑ)wp

i = w. Hence, for w ∈ (ws
i , w

p
i ) and

for:

ϑ(w) =
wp

i − w

wp
i − ws

i

∈ [0, 1],

(cs, cp, ϑ(w))(r∗
i ) clears the loan market. Since Bp(0) = 1 and Bp(ᾱ) = Bs(ᾱ) =

0, the proof is complete. ��

Proof of Proposition 7

In the previous section we have shown that

λs(r) =
(pL − pH)

ᾱe
RLBL, BL =

ᾱ − pLRL

ᾱ − pHRL
, RL = r/pL.

By direct computations, ∂λs(r′)/∂r < 0 for r > r̃(µ) = ᾱ
µ

(
1 − (1 − µ)1/2

)
.

Moreover, by Proposition 2, the first switching point r∗
1 is a strictly increasing

function of e. Hence, there exists ê such that, for e ≥ ê, r∗
1(e) ≥ r̃(µ). By the

definition of the map Bs(.) and by the implicit function theorem, ∂λs(r′)/∂r < 0
implies ∂Bs(r′)/∂r < 0. Then, since As(e) ⊂ [r∗

1(e), ᾱ], ∂Bs(r′)/∂r < 0 for
r ∈ As(e), e ≥ ê. The latter and the definition of market clearing imply the thesis.

��
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Proof of Proposition 8

If S∗ = ∅, the proposition is trivial. Hence, suppose that S∗ = {r∗}. By Proposition
1, optimal contracts are pooling for r ∈ [0, r∗) and separating for r ∈ (r∗, ᾱ).
By Proposition 6, wp > ws, for wκ = Bκ(r∗) and κ = s, p. Hence, for w ∈
[0, ws) ∪ (wp, 1], the optimal contracts are deterministic and r(w) = rp(w) for
w ∈ (Bp(r∗), 1], r(w) = rs(w) for w ∈ [0, Bs(r∗)), while r(w) = r∗ for
w ∈ [Bs(r∗), Bp(r∗)]

Consider w ∈ (ws, wp). Contract cθ(w) = (cs(r∗), cp(r∗), θw) is optimal for
all θw ∈ [0, 1] and it clears the credit market for ϑw = (w − wp

1)/(wp
1 − ws

1).
Thus, it remains to show that there does not exists any other deterministic optimal
contract clearing the market for w ∈ (ws, wp). This follows immediately from the
fact that rs(w) ∩ As(e) is, under the stated assumption, unique and decreasing.
Hence, rs(w) < r∗ and rp(w) > r∗ for w ∈ (ws, wp). However, for r < r∗,
optimal contracts are pooling, while, for r > r∗, they are separating. ��

Proof of Proposition 9

By the assumptions, S∗ is either empty or it contains a unique point r∗. If ϑ(w) = 0,
λϑ(w)(r(w)) = λp(rp(w)) and, hence, it is an increasing function of w (just recall
that λp(r) is decreasing and rp(w) is decreasing in w). If ϑ(w) = 1, λϑ(w)(r(w)) =
λs(rs(w)) where, by the assumption e ≥ ê and Proposition 7, λs(r) is decreasing
and rs(w) is decreasing. It follows that λϑ(w)(r(w)) is again an increasing function
of w. Now let ϑ(w) ∈ (0, 1), r(w) = r∗, then, by the law of large number and
Proposition 6, we have

λ = λϑ(w)(r(w)) = λp(r∗) − ϑ(w) (λp(r∗) − λs(r∗)) , (13)

where ϑ(w) is the linearly decreasing function defined in Proposition 6.
Now we can show that, if S∗ �= ∅, λp(r∗) > λs(r∗). In fact, by the definition

of switching point, r∗ = pLRp(r∗)[1 − (1 − µ)G(λp(r∗))] = pLRL(r∗). Then,
Rp(r∗) > RL(r∗). Using again the definition of a switching point

πL(cL(r∗)) = (ᾱ − r∗)BL(r∗) = πL(cp(r∗) = (ᾱ − pLRp(r∗))Bp(r∗).

Hence, Rp(r∗) > RL(r∗) implies Bp(r∗) > BL(r∗) and the proposition follows.
��

Proof of Proposition 10

First we show that the map Φe is increasing in [0, 1]. By direct computations,
m

′
e(w) = eλg(λ)(∂λ/∂w) < 1. Hence, by Proposition 9, Φe(w) is increasing in

the intervals [0, Bs(r∗)) and (Bp(r∗), 1]. To conclude this part of the argument we
have to show that, at the switching point r∗,

Φe(wp) − Φe(ws) = wp − ws − (me(wp) − me(ws)) > 0.
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As we have shown in the proof of Proposition 6, at the switching point, it is

wp − ws =
eᾱ

ᾱ − r∗ [λp(r∗)G(λp(r∗)) − λs(r∗)G(λs(r∗))] > 0.

Furthermore, integrating by parts (and taking into account that λp(r∗) > λs(r∗),

me(wp) − me(ws) =
∫ λp(r∗

1 )

λs(r∗
1 )

esdG(s) =

= e(λp(r∗)G(λp(r∗)) − λs(r∗)G(λs(r∗)) −
∫ λp(r∗

1 )

λs(r∗
1 )

eGds.

Hence,

Φe(wp) − Φe(ws) ≥ er∗

ᾱ − r∗ [λp(r∗)G(λp(r∗)) − λs(r∗)G(λs(r∗))] > 0.

Since at both w = 0 and w = 1, me(w) = m0(w), theAssumption 6 guarantees
the existence of a fixed point of Φe, for e ≥ 0. This assumption also shows that
Φ

′
e(w

∗
e) < 1 for at least one fixed point w∗

e . Finally, w∗
e < w∗

0 for e > 0 follows
from Φ0(w) > Φe(w) for e > 0. ��

Proof of Proposition 12

It is sufficient to analyze the case n = 2. It is immediate from the argument, that
this is without loss of generality. Since the case in which rs(w) is not a singleton
for r ∈ As can only make multiple equilibria and discontinuous selections more
likely, we will also assume e ≥ ê. By Proposition 7, this assumption guarantees
that rs(w)∩As is a decreasing function. Finally, to save notation, we just use rs(w)
to denote rs(w) ∩ As.

For n = 2, [0, 1] is partitioned in three intervals, Ij = [r∗
j , r∗

j+1], j = 0, 1, 2,
with r∗

0 = 0 and r∗
3 = ᾱ. Furthermore, A = I0 ∪ I2 and As = I1. By Lemma

5 and Proposition 7, wp
i > ws

i for all i and both wp
i and ws

i are decreasing in i.
Hence, either (a) ws

1 ∈ (wp
2 , wp

1) or (b) ws
1 ≤ wp

2 .
To prove (i), observe that, if (a) holds, for w ∈ (ws

2, w
p
2) the contracts

C(rs(w)) with θ(rs(w)) = 1,

C(rp(w)) with θ(rp(w)) = 0,

C(r∗
2) with θ(r∗

2) = ϑ∗
i (w),

are all optimal and they all satisfy the market clearing requirement.
To prove (ii) we argue by contradiction. Evidently, if there exists a continuous

selection for all w ∈ [0, 1], it must be

C(r) =




(cp(rp(w)), cs(rp(w)), 0) for w ∈ [wp
1 , 1],

(cs(r∗
1), cp(r∗

1), ϑ∗
1(w)) for w ∈ (ws

1, w
p
1),

(cs(rs(w)), cp(rs(w)), 1) for w ∈ [ws
2, w

s
1].
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However, since I2 is pooling, the only possible contract that we can select for
w ∈ [0, ws

2) is C(r) = (cs(rp(w)), cp(ρp(w)), 1). Hence, for such a selection,
there is a discontinuous regime switch at ws

2. ��

Proof of Proposition 13

By the market clearing conditions:

Bp(rp(w̄)) = (1 − G(λs(rs(w̄)))BL(rs(w̄))) + G(λs(rs(w̄)) = w̄.

Hence, Bp(rp(w̄)) is a convex combination of BL(rs(w̄)) and 1. Therefore,

Bp(rp(w̄)) < 1 ⇒ Bp(rp(w̄)) > BL(rs(w̄)).

Furthermore, since w̄ ∈ [0, wp
2) ∩ (ws

2, w
s
1) and rp(w) is strictly decreasing in

(0, 1), it follows that rp(w̄) > r∗
2 , rs(w̄) ∈ [r∗

1 , r∗
2 ]. Hence, rp(w̄) > rs(w̄). By the

definition of Rp(.) and by the inequalities pL > pHG(λp(.)) + pL(1 − G(λp(.))
and rp(w̄) > rs(w̄), we have Rp(r(w̄)) > rp(w̄)/pL > rs(w̄)/pL = RL(r(w̄)).
Then, the definitions of λp and λs imply the thesis. ��

Appendix 2: Borrowers’ endowment

In this appendix we show that the optimal contracts derived in our model would not
change under the assumption that entrepreneurs have some endowment and that
lenders were allowed to use this endowment to secure loans.

Suppose that each borrower s ∈ [0, 1] is endowed with a positive amount E of
the final good. Also, for logical consistency with our model, E can only be used as
an input in the production of materials. All other assumptions defining technologies
and borrower types are maintained. We now characterize contracts allowing for part
of the borrowers’ endowment to be used to ”secure” the loan. More specifically,
we consider a class of contracts defined by the array (B, W, T, V ). Each of the
components of the contract is defined as follows:

– W ∈ [0, E] is the amount of the borrowers’ endowment invested in a secure
deposit yielding the opportunity cost of borrowing r.

– B ∈ [0, 1 − E − W ] is the loan size.
– T and V are, respectively, the payment by the borrower to the lender when the

project succeeds and the payment by the lender to the borrower when the project
fails. Since failure makes the borrower penniless, limited liability implies V ≥
0.

For convenience, we define D = B − W and, from now on, a contract is
characterized with an array c = (D, W, T, V ). A borrower with contract c invest
E +D in one of the two projects. When the project succeeds, the borrower receives
αj(E+D)+rW −T and the lender receives T . When the project fails, the borrower
receives V and the lender receives rW −V . Evidently, by setting W = 0, T = RB
and V = 0, we are back to the loan contracts defined in Section 4. We start the
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analysis by studying a separating contract cs = {(Bj , W j , T j , V j), j = H, L}.
The borrowers’ expected profits from project j = H, L and contract i = H, L is:

πj
s(c

i) = ᾱ(E + Bi) + pj(rW i − T i) + (1 − pj)V i − ᾱejs,

and the lenders’ non negative profit conditions now read:

pjT j + (1 − pj)(rW j − V j) ≥ rBj (j = H, L),

Then, the optimal separating contract maximizes πL(cL) subject to the following
constraints:

E + Bj ≤ 1, j = H, L, (CC)

πH
s (cH) ≥ πH

s (cL), (IC1)

πL(cL) ≥ πL(cH), (IC2)

V j ≥ 0, j = H, L, (LL)

pjT j ≥ rBj + pjrW j + (1 − pj)V j , j = H, L, (ZPS)

where constraints (IC1) and (IC2) are s-invariant and take the following form:

ᾱBj + pj(rW j − T j) + (1 − pj)V j ≥ ᾱBi + pj(rW i − T i) + (1 − pj)V i,

for j �= i and i, j = H, L.
It can be easily show that, at optimality, the lenders’ participation constraint

(ZPS) is binding. Hence, an optimal separating contract must solve the following
programming problem:

max ᾱE + (ᾱ − r)BL s.t.:

E + Bj ≤ 1, (CC)

(ᾱ − r)BH ≥ (ᾱ − µr)BL + (1 − µ)V L (IC1)

(ᾱ − r)BL ≥ (ᾱ − (1/µ)r)BH − (1/µ − 1)V H , (IC2)

where j = H, L. Using the standard arguments, it can be shown that (IC1) must be
binding, BH = 1 − E and V L = 0. Hence,

BL(r) =
ᾱ − r

ᾱ − µr
(1 − E), λs(r) =

(1 − µ)r(ᾱ − r)
ᾱ − µr

(1 − E).

Since the value of W (secured deposit) is unspecified, we can set W = 0 and
claim that the loan sizes (BL, BH) and the proportion of risky projects λ are the
same as with E = 0, except for the multiplicative factor (1−E). In particular, letting
λs(r, E) be the proportion of risky projects with an optimal separating contract,
we get:

λs(r, E) = λs(r)(1 − E).
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Consider now the pooling case, cp = (D, W, T, V ). The profits to the borrowers
are

πj
s(c

p) = ᾱ(E + D) + pj(rW − T ) + (1 − pj)V − ᾱejs

The lenders’ participation constraint now is:

(T+V − rW )
(
pL(1−G(λ))+pHG(λ)

)
+pL(1 − G(λ))+pHG(λ) ≥ rD+V.

Hence, λ = min{1, σ(T + V − rW )}.
Whenσ(T+V −rW ) ≥ 1, the contractual problem reduces to the maximization

of πH
1 (cp) subject to the capacity and the lenders’ participation constraint. Since

the latter must be binding and λ = 1, we get: pH(rW −T )+ (1− pH)V = −rD.
By plugging this equation into πH

1 (cp), we get πH
1 (cp) = ᾱE +(ᾱ− r)D − ᾱe. In

this case, we have to maximize πH
1 subject to the capacity constraint E + D ≤ 1

and the limited liability constraint V ≥ 0. Evidently, the optimal pooling contract
has D = 1 − E, whereas the values of the remaining components T , V and W are
irrelevant. By setting V = W = 0, the lenders’ participation constraint becomes
pHT = r(1 − E) = rD = rB, i.e., we are back to the optimal pooling contract
described in the text, except that the loan size is now equal to 1 − E.

Now consider the case σ(T +V −rW ) < 1. In this case, λ = σ(T +V −rW ).
Manipulating the objective function and the relevant constraints, the search for an
optimal pooling contract can be reduced to the search of a solution to the following
problem:

max{λ,V } T (λ)−rλ−(σ/pL)(ᾱ−r)V s.to: T (λ) ≤ (σᾱ)/pL)[r(1−E)+V ],

T (λ) ≤ (σᾱ)/pL)[r(1−E)+V ], (CC”)

where T (λ) = ᾱ[1−(1−µ)G(λ)]λ (as defined inAppendix 1). The key observation
is that any solution of the above problem has V = 0. This is trivial when (CC”) is
not binding, since the objective function is non increasing in V , for r ≤ ᾱ. Now
assume that (CC”) is binding and define λV as the value of λ satisfying (CC”) with
equality. Then,

πL(cp) = (σᾱ/pL)r(1 − E) + (σr/pL)V − rλV ,

∂λV /∂V = (σ/pL) (1 − (1 − µ)H(λV ))−1
,

where H(λ) = G(λ) + λg(λ). Notice that (1 − µ)H(λV ) < 1 because of the
second order conditions. It follows that

∂πL(cp)/∂V = −σr

pL

(1 − µ)H(λV )
1 − (1 − µ)H(λV )

< 0.

Hence, we can set V = 0 and restate the optimality problem as:

max
λ

T (λ) − rλ s.t.: T (λ) ≤ (σrᾱ/pL)(1 − E).

The programming problem above is exactly problem (P.p′) (cf. Appendix 1) other
than for the multiplicative factor (1 − E) on the right hand side of equation (CC”).
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Here again, the value of W is irrelevant for the specification of the contract and we
can set W = 0 with no loss of generality.

Thus, we can mimic the analysis already performed for the case E = 0. As
before, we denote by ξ1(r, E) the smallest value of λ which makes the lender
participation constraint binding. Evidently, ξ1(r, E) < ξ1(r, 0) = ξ1(r) and there
exists a value r̂E ∈ (0, ᾱ) such that Bp(r, E) = 1 − E, and λp(r, E) = ξ1(r, E),
for r ≤ r̂(E), while

(λp(r, E), Bp(r, E)) = (λp(r, 0), Bp(r, 0)) = (λp(r), Bp(r),

for r ≥ r̂(E). Moreover, r̂(1) = ᾱ, r(0) = r̂ (as defined in Appendix 1), r̂(E) ∈
(r̂(0), r̂(1)) for E ∈ (0, 1) and r̂(E) is increasing in E. The next proposition
clarifies the relation between the profit of the pooling contracts with and without
entrepreneurs endowments.

Proposition 14. πP (r, E) > ᾱE + (1 − E)πP (r), for E ∈ (0, 1) and r ∈ (0, ᾱ)

Proof. For r ≥ r(E), profits are

πp(r, E) = ᾱE + πp(r, 0) = ᾱE + πp(r).

For r ≤ r(E), Bp(r, E) = 1 − E and, hence,

πp(r, E) = ᾱE + ᾱ(1 − E) − (pL/σ)ξ1(r, E).

Consider the interval (0, r̂] ⊂ (0, r̂(E)]. Then, since λp(r) = ξ1(r), r ∈ (0, r̂),
it suffices to show that ξ1(r)(1−E) > ξ1(r, E), which is verified if T (λ)(1−E) <
T ((1−E)λ). But this is equivalent to the condition (1−E)(1−µ)λ[G((1−E)λ)−
G(λ)] < 0, which is surely verified.

For r ∈ [r̂, r̂(E)], it suffices to observe that T (η(r)) > T (ξ1(r, E)) = (1 −
E)(σrᾱ/pL). If η(r)(1 − E) ≤ ξ1(r, E), λ̄ = η(r)(1 − E) is feasible and

T (λ̄) − rλ̄ > (1 − E)[T (η(r)) − η(r)r].

Otherwise, it follows from Bp(r, E) = (1−E) > (1−E)Bp(r) and η(r)(1−E) >
ξ1(r, E). ��

For separating contracts, πs(r, E) = ᾱE + (1 − E)πs(r), for r ∈ [0, ᾱ]. By
the last proposition, (πp(r, E) − πs(r, E))/(1 − E) > (πp(r) − πs(r)). Hence,
we can state the following

Proposition 15. Let U(E) be the collection of sub-intervals of [0, ᾱ] for which
optimal contracts are pooling. Then, U(E) �= ∅ for all E ∈ [0, 1], U(1) = [0, ᾱ]
and U(E) ⊃ U(E′) whenever E > E′.

For the uniform distribution G(s) = s, optimal contracts are always pooling
for E ≥ 1 − e/4(1 − µ).

The analysis in this appendix shows that the introduction of borrowers’ endow-
ment E ∈ (0, 1) does not change the basic properties of the contracts studied for the
case E = 0. Chan and Thakor [8] study the optimal contracts between borrowers
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and lenders in a model with both moral hazard and adverse selection, risk neutral-
ity (of both borrowers and lenders) and unconstrained access to a collateral good.
The authors prove that, when lenders maximize the borrowers’ rent, the optimal
contract involves no rationing of either type of borrowers and fully collateralized
loans. Chan and Thakor study a partial equilibrium model where collateral is a
good that cannot be used for investment. Applying this framework in our setting
would require an additional storable good in the economy. In any case, for credit
rationing to be absent in an optimal contract, it is crucial to assume that the bor-
rowers’ access to the collateral good is unconstrained. When firms have a limited
amount of collateral and this amount is sufficiently low, credit rationing can still
arise. This shows that the result obtained by Chan and Takor is not in contrast with
our findings. In fact, we have rationing only if E < 1.
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