
MANUFACTURING & SERVICE
OPERATIONS MANAGEMENT

Vol. 7, No. 1, Winter 2005, pp. 20–36
issn 1523-4614 �eissn 1526-5498 �05 �0701 �0020

informs ®

doi 10.1287/msom.1040.0052
©2005 INFORMS

A Method for Staffing Large Call Centers
Based on Stochastic Fluid Models

J. Michael Harrison
Graduate School of Business, Stanford University, 518 Memorial Way, Stanford, California 94305,

harrison_michael@gsb.stanford.edu

Assaf Zeevi
Graduate School of Business, Columbia University, 3022 Broadway, New York, New York 10027,

assaf@gsb.columbia.edu

We consider a call center model with m input flows and r pools of agents; the m-vector � of instantaneous
arrival rates is allowed to be time dependent and to vary stochastically. Seeking to optimize the trade-off

between personnel costs and abandonment penalties, we develop and illustrate a practical method for sizing
the r agent pools. Using stochastic fluid models, this method reduces the staffing problem to a multidimensional
newsvendor problem, which can be solved numerically by a combination of linear programming and Monte
Carlo simulation. Numerical examples are presented, and in all cases the pool sizes derived by means of the
proposed method are very close to optimal.

Key words : capacity sizing; call centers; fluid analysis; multidimensional newsvendor; nonstationarity;
queueing; random environment; stochastic programming

History : Received: September 25, 2003; accepted: May 9, 2004. This paper was with the authors 1 month for
1 revision.

1. Introduction
From an operations research (OR) perspective, the
two central problems of telephone call center manage-
ment are (a) the assignment of agents to work sched-
ules, which we call the staff scheduling problem, and
(b) the dynamic routing of calls to agents given sys-
tem status, which we call the dynamic routing problem.
This paper is directly concerned with the first of those
problems, and because the two problems are inextri-
cably linked, it is indirectly concerned with the sec-
ond one as well.
As usual in OR studies, we view a call center as

a queueing system, frequently referring to callers as
“customers” and to call center agents as “servers.” The
general model that we adopt has m customer classes
and r server pools. Server pool k consists of bk inter-
changeable agents (k = 1� � � � � r), whose capabilities
will be described shortly. Customers of the various
classes arrive randomly over time, and those who can-
not be served immediately wait in a (possibly virtual)
infinite-capacity buffer that is dedicated to their spe-
cific class. An example with m = 3 customer classes
and r = 2 server pools is portrayed schematically

in Figure 1; buffers are represented by open-ended
rectangles and server pools by circles. An important
assumption of our model is that customers of any
given class will abandon their calls if forced to wait
too long before commencement of service; abandoned
calls are represented by the horizontal dotted arrows
emanating from the storage buffers in Figure 1. Our
assumptions regarding speed of abandonment will be
explained later.
The servers in a given pool may be cross-trained to

handle customers of several different classes, and by
the same token, several pools may be able to handle
a given customer class. For the example portrayed in
Figure 1, each server pool can handle two of the three
customer classes; customers of Class 2 can be served
by either pool, but each of the other two classes can
be served by just one pool. In general, we allow the
service time distribution of a customer to depend on
both the customer’s class and on the pool from which
the server comes.
The dynamic routing problem referred to earlier is

the following. First, when a customer arrives and one
or more idle servers can handle that customer’s class,
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Figure 1 A Schematic Model of a Call Center with Three Customer
Classes and Two Agent Pools
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the system manager must choose between routing the
customer immediately to one of them versus putting
the customer into buffer storage for later disposition.
If the customer is routed immediately, there may be
a further choice regarding the server pool to which it
will be routed. Second, each time a server completes
the processing of a customer, and there exist wait-
ing customers of one or more classes that the server
can handle, then the system manager must choose
between routing one of those customers to the server
immediately versus idling the server in anticipation
of future arrivals. These resource allocation decisions
are conditioned on system status information at the
time of the choice, including the number of customers
waiting in the various buffers and the number of
servers that are idle in the various pools.
Generally speaking, the system manager wants to

route calls to servers that can handle them most effi-
ciently, but must also keep in mind the full spectrum
of work to be done and the relative advantage of
the different server pools in doing different kinds of
work. Of course, it is skills acquired through training
and experience that determine which classes of calls
a given server pool can handle, and how efficiently
it can handle them. Thus, the problem laid out in the
previous paragraph is often referred to as one of skills-
based routing; see Gans et al. (2003, §5.1) for further
discussion of skills-based routing.
In describing a call center and the associated

dynamic routing problem, we have suppressed vir-
tually all physical detail. A recent survey paper by

Gans et al. (2003) explains some of the technological
reality that lies behind a standard queueing model
of the kind employed here, and further provides a
good account of the various problems involved in
call center management. As those authors emphasize,
capacity management is a matter of hierarchical deci-
sion making: Decisions about hiring, training, and
retention determine personnel levels over relatively
long time spans; those personnel levels constrain staff
scheduling decisions that fix pool sizes over inter-
mediate time spans; and then pool sizes constrain
dynamic routing decisions that are made and revised
over short time spans.
Ignoring the first or highest level of that hierarchy,

we shall address the following, somewhat stylized
version of the second-level problem in the body of
this paper, explaining afterward how the analysis can
be extended to recognize more of the fine structure
that characterizes real-world staff scheduling. First,
the decision variables in our formulation are the pool
sizes b1� � � � � br identified earlier, which we treat as
continuous variables. The treatment of pool sizes as
continuous variables reflects our primary focus on
large call centers; see §3 for further discussion.
Second, in our formulation of the staff schedul-

ing problem, a system manager must determine in
advance the capacity vector b = �b1� � � � � br 	 to be
employed during a specified planning period; by
assumption, that decision cannot be revised as actual
demand is observed during the period. (In a typical
application, a day would be broken into several such
planning periods.) Third, we express service-level
concerns in our formulation by attaching a penalty
of pi dollars to each class i customer that abandons
his or her call; as we shall explain later (see §6), the
formulation can easily be extended to further incor-
porate a linear waiting cost for each customer class.
Finally, given the personnel cost ck associated with
employing one server in pool k for the duration of the
planning period (k= 1� � � � � r	, our objective is to min-
imize the sum of personnel costs plus expected total
abandonment cost.
The crucial task in addressing this problem is

to estimate best achievable performance with a given
capacity vector b, by which we mean the smallest
expected abandonment cost that can be achieved over
the course of the planning period with the specified
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capacity vector. Our proposed method for call center
staffing is based on a linear programming estimate of
best achievable performance, an estimate that appears
crude but has nonetheless proved surprisingly accu-
rate in a realistic parameter regime (see §3).
Roughly speaking, our method ignores all uncer-

tainty and all variability in the call center environ-
ment except for that associated with average arrival
rates, or average demand rates. We employ a very
general model of call center demand in which the
m-vector � of average arrival rates for the various cus-
tomer classes (expressed in units like calls per minute)
is both temporally and stochastically variable; that is,
we view � itself as a stochastic process. As Gans et al.
(2003) acknowledge in §4.4 of their survey paper, such
a view is realistic, although most published papers
on both call center staffing and dynamic routing treat
average arrival rates as known and constant over the
relevant planning period. (Moreover, to the best of
our knowledge, all commercial software products that
support those functions are based on similar model-
ing assumptions.)
To repeat, we take the view that temporal and sto-

chastic variability of average demand rates, over a
time span that is appropriate for staff scheduling pur-
poses, are not only significant, but actually dominant.
We treat all other sources of variability as essentially
negligible by comparison. (To capture that perspective
mathematically, we adopt a stochastic fluid model in
which arrivals and departures both appear as contin-
uous fluid flows.)
The previous paragraphs suggest that our method

for call center staffing stands in contrast to other
methods that have been proposed in the litera-
ture. That statement is somewhat deceptive, however,
because there is no literature on staffing methods with
multiple pools and multiple customer classes, except
for the fragmentary results reported in §5 of Gans
et al. (2003). The correct statement is that when one
specializes our method to the simple case of one cus-
tomer class and one server pool, which is essentially
the only setting considered in the current literature, it
is clearly distinguished from earlier work. A striking
virtue of our method is that it applies to the general
multiclass-and-multipool problem, which Gans et al.
(2003) characterize in §5 of their survey paper as far
beyond the reach of current theory.

Existing Modeling Approaches and Related Work.
As indicated above, studies of call center staffing
have focused on the case of a single pool of homoge-
nous agents. Basic queueing models, in particular, the
Erlang-C formula for the M/M/N queueing model
(see Gans et al. 2003), provide the main mathe-
matical analysis tool in that setting. A widely used
rule-of-thumb that emerges from the Erlang-C for-
mula is the square-root safety staffing rule, cf. Kole-
sar and Green (1998), which recommends a server
pool size of the form N = R + �

√
R, where R is

the nominal incoming load measured in Erlangs.
This relationship apparently dates back to early work
of Erlang (1924), see Erlang (1948) and Gans et al.
(2003, §4.1.1) for further discussion and references,
and Halfin and Whitt (1981) for a more rigorous jus-
tification using diffusion limits. A recent asymptotic
analysis of the staffing problem in the context of the
M/M/N single-class/single-pool call center model
was carried out by Borst et al. (2004). They refine
the square-root rule by optimizing over � to bal-
ance queueing and staffing costs. Garnett et al. (2002)
extend the square-root staffing principle to account
for abandonments, while Jennings et al. (1996) adjust
this formalism to account for nonstationary demand
using infinite-server approximations. All of these
results pertain to the single-class/single-pool Marko-
vian queueing model. In the context of temporally
varying demand, heuristics such as pointwise station-
ary approximations (see Green and Kolesar 1991) are
often used. Fluid limits, which take a macroscopic
view of the system dynamics, provide a more rigor-
ous analysis framework for nonstationary queueing
systems; see Mandelbaum et al. (1998) for a treatment
of Markovian service networks that are inspired by
call center models, and Changa et al. (2003), which
studies a web-service system with transient overload
and uncertain demand using stochastic fluid mod-
els. Effects of uncertainty and nonstationarity are dis-
cussed in Chen and Henderson (2001), and Atlason
et al. (2004) uses simulation and cutting plane meth-
ods to optimize costs subject to service-level con-
straints.

Planning Periods and Objective Function. Two
important elements of our problem formulation
deserve further emphasis. With regard to the criti-
cal notion of “planning period,” we implicitly assume
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that one or both of the following conditions pre-
vail: (a) the staffing decision for any given planning
period must be finalized well before the period actu-
ally begins, so there is significant uncertainty at the
time of the decision about the average arrival rates
that will apply; (b) planning periods cannot be made
so short (that is, staff levels cannot be changed so
often) that temporal variation in average arrival rates
within a planning period is negligible. Thus, in the
typical situation that we envision, a call center will
be either clearly overstaffed or clearly understaffed
most of the time, even with optimal decision making,
because the system manager lacks the ability to finely
tune capacity in response to observed demand; one
might say that our modeling assumptions constitute
a reduced-expectations view of system management.
Based on conversations with industry professionals,
we believe this view is consistent with practical reality,
but we have no hard evidence to support that belief.
The system manager’s objective in our formula-

tion is to minimize the sum of staffing costs and
expected abandonment penalties for the various cus-
tomer classes. That is not the standard view of opti-
mal staffing in the call center industry. Call center
managers are much more comfortable with planning
based on percentiles of the waiting time distribution.
For example, a commonly stated goal is to minimize
staffing costs subject to the constraint that 80% of
calls should be answered in 10 seconds or less; with
two customer classes, it might be specified that 90%
of Class 1 customers wait less than 10 seconds, and
80% of Class 2 wait less than 20 seconds. At least
on the surface, it is much more difficult to minimize
staffing costs subject to an array of such performance
constraints than to minimize the objective function
that we propose. In our formulation, abandonment
penalties serve as surrogates for the system manager’s
performance goals. Our hope and belief is that by
iteratively adjusting the abandonment penalties, one
can eventually derive a policy that makes a reason-
able trade-off between staffing costs and customer
service, and between service goals for the different
classes. To put this in another way, we proceed under
the assumption that performance goals can be ade-
quately “dualized” by a suitable choice of abandon-
ment penalties.

The Remainder of the Paper. In §2 we describe
our method, emphasizing data inputs and compu-
tational mechanics rather than model assumptions.
Readers will find that our specification of the method
is less than fully detailed. In a sense, we reduce one
problem to another, without saying exactly how the
latter is to be solved, but the missing elements can
reasonably be characterized as discretionary technical
details. In §3 we provide supporting logic for the pro-
posed method, including a description of the param-
eter regime in which we expect it to work well. In
the course of that discussion, two mathematical con-
jectures regarding limit theory are advanced in rough
form, but we make no attempt to justify our method
in a rigorous mathematical sense, or even to specify
with complete precision just what our model of a call
center is.
Section 4 is devoted to the simple case with one

customer class and one server pool, its goals being to
give readers a clearer understanding of our method’s
essential character and to make connections with
existing literature. In §5 we present a family of closely
related numerical examples that all have the follow-
ing crucial and relatively rare property: There exists
an obvious “dominant strategy” for dynamic routing,
and so one can use brute-force simulation to deter-
mine a nearly optimal staffing plan for each exam-
ple, then compare its total cost against that achieved
by our method. (One cannot make such a compari-
son for an arbitrary example because one does not
know the optimal dynamic routing policy given pool
sizes.) In all cases considered, the vector of pool
sizes determined by our method is nearly optimal,
and our seemingly crude estimate of best achiev-
able performance is very accurate as well. Section 6
contains some concluding remarks, including refine-
ments of our method (described in broad outline) to
account for aspects of real-world staff scheduling that
are ignored in the body of the paper. That section
also identifies several obvious directions for further
research.

2. Description of the Proposed
Staffing Method

To describe server capabilities in our call center
model, we shall use the previously established notion
of processing “activities” as in Harrison and Lopez



Harrison and Zeevi: A Method for Staffing Large Call Centers Based on Stochastic Fluid Models
24 Manufacturing & Service Operations Management 7(1), pp. 20–36, © 2005 INFORMS

(1999); see also Harrison (2002) for a broader discus-
sion of this concept and its role in stochastic systems
theory. A total of n processing activities are avail-
able to the system manager in our general call center
model; each corresponds to agents from one partic-
ular pool serving customers of one particular class.
(Thus, the total number of activities is n = 4 for the
system portrayed in Figure 1.) For each activity j =
1� � � � �n we denote by i�j	 the customer class being
served, by k�j	 the server pool involved, and by �j the
associated mean service rate (that is, the reciprocal of
the mean of the associated service time distribution).
Let R and A be an m×n matrix and an r×n matrix,

respectively, defined as follows: For each j = 1� � � � �n
set Rij = �j if i = i�j	 and Rij = 0 otherwise, and set
Akj = 1 if k = k�j	 and Akj = 0 otherwise. Thus, one
interprets R as an input-output matrix, precisely as in
Harrison and Lopez (1999). Its (i� j)th element speci-
fies the average rate at which activity j removes class i
customers from the system. Also, A is a capacity con-
sumption matrix as in Harrison and Lopez (1999). Its
(k� j)th element is 1 if activity j draws on the capacity
of server pool k and is 0 otherwise. In addition to the
matrices R and A, our method for call center staffing
requires as data the vector p = �p1� � � � � pm	 of penalty
rates, and the vector c = �c1� � � � � cr 	 of personnel costs
(see §1). The only other input required is a probabil-
ity distribution F on �m

+ that is associated with the
demand process; this will be explained in the para-
graphs that follow.
In the following discussion of demand modeling,

time t = 0 represents the start of the planning period
and time t = T is its end. For the sake of concreteness
we shall speak initially in terms of a doubly stochastic
Poisson model of demand, which means the follow-
ing. There is given a stochastic process �= ���t	� 0≤
t ≤ T 	 taking values in �m

+, and given that ��t	= �=
��1� � � � ��m	, the conditional distribution of arrivals in
customer classes 1� � � � �m immediately after time t is
that of independent Poisson processes with average
arrival rates �1� � � � ��m respectively �0 ≤ t < T 	. It is
the distribution of the stochastic process �with which
we shall be concerned.
For each � ∈�m

+ and b ∈�r
+ let us denote by �∗��� b	

the optimal objective value of the following linear
program (LP): choose an n-vector x to

minimize � = p · ��−Rx	 (1)

subject to

Rx ≤ �� Ax ≤ b� and x ≥ 0� (2)

This LP problem represents what might be called
a local fluid version of the system manager’s dynamic
scheduling problem. Attaching to � and b the same
meanings as before, one interprets x as the number
of servers dedicated to activity j in the immediate
future ( j = 1� � � � �n); Rx is the vector of output rates
from the various customer classes generated by that
program of activities, and Ax is a vector whose com-
ponents show how many servers in the various pools
are occupied (as opposed to idle). Additional interpre-
tation and motivation of the LP problem (1)–(2) will
be provided in the next section.
The initial specification of our proposed method for

call center staffing, to be simplified shortly, is the fol-
lowing. Choose the capacity vector b to

minimize c · b+ Ɛ

{∫ T

0
�∗���t	� b	 dt

}
� (3)

where Ɛ�· denotes expected value over possible real-
izations of the stochastic process �. Again, the rea-
soning that supports this recommendation is delayed
until the next section. However, because the initial
term c · b in the objective function (3) represents
the total personnel cost associated with capacity vec-
tor b, readers may have already inferred that the
second term in (3) is the LP-based estimate of best
achievable performance that was referred to in §1.
This is indeed the case.
To recast the optimization problem (3) in a stan-

dard form, let us define the cumulative distribution
function

F ��	 �= 1
T

∫ T

0
����t	≤ � dt for � ∈�m

+� (4)

One interprets F ��	 as the expected fraction of time
(within the planning period under study) during
which ��·	 ≤ �. It is now an elementary exercise to
prove that (3) is equivalent to the following (if � is
a finite-valued process, this is just a matter of defi-
nition, and then one can use monotone, finite-valued
approximations to establish the general equivalence):

minimize c · b+ T
∫
�m+

�∗��� b	dF ��	=� !�b	� (5)
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In the literature of stochastic programming, this kind
of problem is called a two-stage LP with recourse. At the
first stage a system manager chooses the capacity vec-
tor b and incurs cost c · b; then a random demand
vector � with distribution F is observed, and given
that observation, the system manager chooses at the
second stage a vector x of activity levels that solve the
linear programming problem (1)–(2). The particular
kind of two-stage problem embodied in (5) is some-
times called a multidimensional newsvendor problem;
see, e.g., the recent survey by Van Mieghem (2003).
With regard to numerical solution techniques, two

distinct computational approaches appear in the lit-
erature of stochastic programming, cf. Birge and
Louveaux (1997). First, various exact methods can be
used when the distribution F concentrates its mass on
a relatively small number of points. Second, approx-
imate methods based on Monte Carlo simulation can
be used in the general case. To elaborate on the lat-
ter approach in our particular context, observe that
�∗��� ·	 is convex for each fixed � (this is a standard
result in linear programming theory), which directly
implies the following.

Proposition 1. The minimand ! in (5) is a convex
function on �r

+.

Given that our problem is one of convex optimiza-
tion, the gradient-descent method can be used for
its numerical solution, with Monte Carlo simulation
providing the means to estimate "!�b	 for each trial
value of b; see Shapiro (2003) for a recent survey of
such methods. This approach will be applied to a
small-scale example in §5, but it looks to be practical
for problems of the size encountered in real call center
applications.
As stated earlier, the central feature of our call

center model is the assumption of a random demand
environment, meaning that the vector of average or
expected arrival rates is itself viewed as a stochastic
process �. We have thus far spoken in terms of
doubly stochastic Poisson arrivals, but the Poisson
assumption has not actually been used. The method
that we propose for call center staffing does not
depend on the fine stochastic structure of customer
arrival processes given � (it would make no differ-
ence, for example, if arrival streams were correlated

given �	 because we treat routine stochastic variabil-
ity given � as insignificant compared to variations in
� itself.
Thus far, nothing has been said about how to esti-

mate the distribution F , which summarizes all that
is relevant about demand variability for purposes of
our method, from operational data in a given call cen-
ter environment. That could be the subject of a paper
by itself, and we cannot claim to have even thought
through the various alternatives systematically as yet.
However, one relatively simple and widely applicable
approach will be described in §6.

3. Supporting Logic
To motivate the staffing method described in §2, we
need to justify the second term in (3) as a reasonable
estimate of best achievable performance for a given
capacity vector b. First, more must be said about the
abandonment mechanism in our call center model.
We assume there exist abandonment rates #1� � � � � #m > 0
such that, when there are qi customers waiting for ser-
vice in the class i buffer at time t, the expected num-
ber of class i abandonments in the interval (t, t + h	

is approximately (#iqi	h for small h > 0 (i= 1� � � � �m).
This may be viewed as a consequence of the following
more detailed assumption, which is standard in call
center modeling, see Garnett et al. (2002), Harrison
and Zeevi (2004), and Gans et al. (2003). There is asso-
ciated with each class i caller an exponentially dis-
tributed random variable ' that has mean 1/#i, and
the customer will abandon the call when his or her
waiting time (exclusive of service time) reaches a total
of ' time units.
To justify the performance estimate embodied in

(3), let us first consider a scenario where the vec-
tor � of average arrival rates is known and con-
stant (that is, not time-varying) and the time horizon
for the dynamic routing problem is infinite. Assum-
ing that the arrival rates �i are large enough to
make large pool sizes (on the order of tens, say) eco-
nomically desirable, the law of large numbers pro-
vides a rough justification for the following fluid
model of dynamic routing, cf. Maglaras (2000). First,
the total number of class i customers at any given
time t is modeled as a continuous variable zi�t	 ≥
0, and the state of the system at time t is repre-
sented by the vector z�t	 = )z1�t	� � � � � zm�t	*. Second,
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having observed z�t	, the system manager chooses a
control vector x�t	= )x1�t	� � � � � xn�t	* that satisfies the
constraints

Ax�t	≤ b� Bx�t	≤ z�t	� and x�t	≥ 0� (6)

where B is an m×n matrix with Bij = 1 if i = i�j	 and
Bij = 0 otherwise. One interprets xj�t	 as the number
of servers devoted to activity j at time t; recall that
k�j	 is the pool to which such servers belong, and
i�j	 is the class of customers that they serve when
engaged in activity j . The first set of constraints in
(6) requires that, for each pool k = 1� � � � � r , the total
number of servers from pool k that are assigned to
various activities is no larger than the number bk that
exist. The second set of constraints requires that, for
each customer class i = 1� � � � �m, the total number of
servers assigned to processing class i customers is no
larger than the number of such customers present in
the system.
Let us define the m-vector q�t	 = z�t	 − Bx�t	, so

that qi�t	 represents the number of class i customers
waiting at time t, excluding the ones being served, as
above. Then yi�t	 �= #iqi�t	 is the instantaneous depar-
ture rate from buffer i at time t due to abandon-
ment. That is, setting - = diag�#1� � � � � #m	, we define
an m-vector

y�t	= -)z�t	−Bx�t	*� t ≥ 0� (7)

and then the dynamic evolution of our fluid control
problem is governed by the following system of ordi-
nary differential equations:

ż�t	= �−Rx�t	− y�t	� t ≥ 0� (8)

Also, the instantaneous cost rate at time t is

��t	 �=
m∑

i=1
pi#iqi�t	= p · y�t	� t ≥ 0� (9)

To avoid technical distractions, we shall restrict
attention from the outset to controls x�·	 for which

x̄ �= lim
T→�

1
T

∫ T

0
x�t	 dt (10)

exists. Because all the abandonment rates #i are
strictly positive by assumption, it is easy to prove that

z�·	 is bounded. Thus, integrating (10) over the inter-
val )0�T *, dividing both sides by T and letting T →�,
one has

1
T

∫ T

0
y�t	 dt → ��−Rx̄	=� ȳ as T →�� (11)

and the long-run average cost rate �̄ that we are striv-
ing to minimize in our fluid control problem is given
by

�̄ �= p · ȳ = p · ��−Rx̄	� (12)

Let �∗��� b	 be the optimal objective value of the
linear programming problem (1)–(2) as in §2. Because
y�t	 ≥ 0 for all t ≥ 0, and hence ȳ ≥ 0, we have from
(11) that Rx̄ ≤ �, and (6) implies Ax̄ ≤ b and x̄ ≥ 0. That
is, x̄ is a feasible solution for the LP problem (1)–(2).
Thus, under any admissible control x�·	 one has

�̄ ≥�∗��� b	� (13)

Fixing an optimal solution x∗ of the LP problem
(1)–(2), it is easy to construct from x∗ an admissible
control that achieves the lower bound in (13). In ver-
bal terms, one simple way to accomplish this is the
following. First, for each j = 1� � � � �n we permanently
dedicate x∗

j servers from pool k�j	 to activity j , which
means that those servers are permanently dedicated
to processing class i�j	 customers. Any servers who
are not permanently dedicated in that first step remain
permanently idle. Second, at each time t we match or
assign as many customers as possible to servers that
have been dedicated to that class, and it is immaterial
just how that matching is done.
To express this mathematically, let us focus specifi-

cally on customer Class 1. Let the n activities be num-
bered in such a way that activities j = 1� � � � � . are the
only ones that have i�j	= 1 and x∗

j > 0. That is, activi-
ties 1� � � � � . are precisely the ones to which servers are
permanently dedicated for the processing of Class 1
customers. Let

fj�z1	 �= )z1− �x∗
1 + · · ·+ x∗

j−1	*
+ ∧ x∗

j

for j = 1� � � � � l and z1 ≥ 0� (14)

with fj�·	= 0 for all j ∈ �l+1� � � � �n such that i�j	= 1.
Now we take

xj�t	= fj�z1�t		� t ≥ 0� (15)
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for all j ∈ �1� � � � �n such that i�j	 = 1. In words, this
means the following. Of the z1�t	 Class 1 customers
who are present at time t, we first allocate as many as
possible to the x∗

1 servers from pool k�1	 who are ded-
icated to Activity 1, then allocate as many as possible
to the x∗

2 servers from pool k(2) who are dedicated to
Activity 2, and so on through the allocation of Class 1
customers to servers from pool k�.	 who are dedi-
cated to activity .; if not all Class 1 customers have
been allocated to a server at that point, the remainder
wait in buffer storage. The assignment of customers
first to servers from pool k�1	� � � �, and last to those
from pool k�.	 is arbitrary. What matters for the argu-
ment below is that we assign or match as many cus-
tomers as possible to dedicated servers.
It is easy to verify that, under the control strategy

just described, the general relationship (8) specializes
to give

ż1�t	= g1�z1�t		� t ≥ 0� (16)

where g1�·	 is piecewise linear and strictly decreasing
on )0��	 with the following properties:

g1�0	= �1 > 0� (17)

g1�z
∗
1	= 0� where z∗1 = �x∗

1 + · · ·+ x∗
l 	

+ 1
#1

��−Rx∗	1� (18)

g1�z1	=−#1�z1− z∗1	 for z1 ≥ z∗1� (19)

It follows that z1�t	 → z∗1 as t →�; in fact, z1�t	 ↑ z∗1
if z1�0	 ≤ z∗1 and z1�t	 ↓ z∗1 if z1�0	 ≥ z∗1. For each j =
1� � � � � . we have fj�z

∗
1	 = x∗

j , implying that xj�t	 → x∗
j

as t →�, and thus x̄j = x∗
j .

Repeating the construction and argument in iden-
tical fashion for other customer classes, one obtains
x̄j = x∗

j for all j = 1� � � � �n, and hence �̄ = ��−Rx∗	=
�∗��� b	 by (11) and (12). In words, �∗��� b	 represents
the best achievable performance (that is, the small-
est achievable long-run average cost rate) in our fluid
approximation to the steady-state dynamic schedul-
ing problem with � known and constant.
To further develop our justification for the objec-

tive function in (3), consider a scenario where sample
paths of the stochastic process ��·	 are constant over
one-hour intervals within the planning period, but the
value of ��·	 that will obtain over each such inter-
val is unknown at the time when pool sizes must be

decided. Let us further suppose that the average ser-
vice rates �1� � � � ��n and average abandonment rates
#1� � � � � #m are all about 60 per hour, which means that
the average service time for each customer class is
something close to one minute, and so is the average
time that a customer will wait before abandoning a
call. In this situation, our dynamic routing problem
evolves on a much faster time scale than does the vec-
tor of average demand rates. Given the value � taken
on by ��·	 at the beginning of a one-hour interval,
and assuming as before that total flow rates are large
enough to justify a fluid approximation, one is led to
approximate the minimum average cost rate achiev-
able over the interval by the steady-state performance
estimate �∗��� b	.
Generalizing that piecewise-constant demand sce-

nario in the obvious way, we assume that average
service rates �j and average abandonment rates #i

are large relative to the time scale on which demand
changes occur. Thus, one can reasonably employ a
steady-state approximation for the lowest cost rate
that is achievable in the dynamic scheduling prob-
lem given the value of ��·	 that pertains at any given
time. Further, assuming that call volumes are ade-
quate to justify a fluid approximation for the prob-
lem of steady-state performance estimation given that
��·	= �, one arrives at (3).
There are two standard means of bolstering user

confidence in approximations like ours. The first is
to analyze numerical examples; that course will be
followed in §§4 and 5. Second, one may strive to
prove that the proposed approximation is in some
sense “asymptotically optimal” in a limiting parame-
ter regime. We shall not attempt such an analysis here,
but it may be worthwhile to at least articulate in a
concrete manner the form of such a result. (For fur-
ther details and a rigorous derivation see Bassamboo
et al. 2004.) Starting with a single call center model
of the kind described in §1, let us denote by b∗ an
optimal solution of the minimization problem (3), and
let f � �+ �→�+ be any nondecreasing and super-linear
function (that is, 2−1f �2	 → � as 2 → �	. Now con-
sider a cognate model defined as follows. First, all ser-
vice and abandonment processes are accelerated by a
uniform factor of 2 > 1. Second, the original cost vec-
tor c is replaced by 2c, which means that the effec-
tive cost of capacity, expressed in terms of potential
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services per time unit, remains constant. Finally, all
arrival processes are accelerated by a factor of f �2	,
meaning that ��·	 is replaced by f �2	��·	.
It is easy to verify that in the cognate model, the

vector of pool sizes recommended by our method is
2−1f �2	b∗. That is, the original capacity choice b∗ is
scaled up by a factor of f �2	 to reflect the accelera-
tion of arrival processes, but then scaled down by a
factor of 2 to reflect the acceleration of service pro-
cesses. In Bassamboo et al. (2004) it is shown that
this choice is asymptotically optimal in the follow-
ing sense: both the expected total cost (over the plan-
ning period being analyzed) with our proposed vec-
tor of pool sizes, and the minimum expected total
cost achievable with any choice, are asymptotic to
f �2	!�b∗	 as 2→�, where !�·	 is defined for the orig-
inal model via (8) and (9). This statement corresponds
to what is called fluid-scale asymptotic optimality in the
literature of applied probability, cf. Maglaras (2000)
and Meyn (1997).

4. A Special Case: Homogeneous
Customers and Agents

Let us consider now the special case with a single
customer class (m= 1) and a single agent pool (r = 1).
There is then a single processing activity (n= 1), and
we denote by � > 0 the associated average service
rate. Recalling that T denotes the length of planning
horizon, we assume that

c < Tp�� (20)

That is, the cost to employ one server for the length
of the planning period is less than the expected total
abandonment cost that the server can prevent if con-
tinuously busy. (If this inequality did not hold, the
optimal pool size would be b∗ = 0.)
In the current context, one can solve the LP problem

(1)–(2) by inspection; the optimal solution is x∗ = �∧
�b�	, and the optimal objective value is

�∗��� b	= p��− x∗	= p��− b�	+� (21)

Of course, F is now a probability distribution on
)0��	, and using (21) one can express the objective
function ! in our optimization problem (5) as

!�b	 = cb+ Tp
∫ �

0
��− b�	+ dF ��	

= cb+ Tp
∫ �

b�
�1− F ��		 d�� (22)

Assuming for simplicity that F is a continuous (atom-
less) distribution, one can differentiate (22) with
respect to b and set the derivative equal to zero to
obtain the following characterization of the optimal
pool size b∗:

F �b∗�	= 1− c

Tp�
� (23)

Minimization of the objective function (22) is the clas-
sical newsvendor problem of operations research: If one
could know the demand � before choosing a capac-
ity b, the best choice would be b = �/�, but lacking
such clairvoyance, one must choose b so as to opti-
mize the trade-off between (linear) overage costs and
(linear) underage costs; the choice which optimizes that
trade-off is the critical fractile solution (23).
To illustrate various features of our proposed

staffing method in the simple context described
above, consider the artificial but illuminating demand
scenario portrayed in Figure 2. In this example, the
planning period is a 480-minute day (that is, T = 480)
and each day’s demand is either HI or LO with equal
probability; the system manager does not know which
case pertains when the pool size must be set. In each
of those cases, the average arrival rate grows and then
dissipates during the course of a day according to the
deterministic pattern portrayed in Figure 2. Thus, the
demand distribution function F , defined in (4), for this

Figure 2 Illustrative Demand Pattern
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example is

F ��	=




1
2
�− 65
40

for 0≤ �≤ 90
1
2

(
�− 65
40

+ �− 90
50

)
for 90≤ �≤ 105

1
2

(
1+ �− 90

50

)
for 105≤ �≤ 140�

and the overall average arrival rate is

�̄=
∫ �

0
�dF ��	= 100 � (24)

The cost of employing one server for one day is taken
to be c = $240, and the abandonment penalty is p= $2
per customer. Finally, assuming the mean service rate
to be �= 1 customers per minute, the critical fractile
formula (23) gives F �b∗	= 0�75, which means that for
this example our staffing method dictates a pool size
of b∗ = 115.
To simplify the analysis of the example, we make

the following assumptions. First, both service times
and interabandonment times are exponentially dis-
tributed, with parameters � = 1 and # = 0�5, respec-
tively. Thus, the average service time is one minute,
and the average time that a customer will wait in
the queue before abandoning is two minutes. Sec-
ond, arrivals occur according to a nonhomogeneous
Poisson process that has an intensity parameter ��·	
that evolves according to the pattern portrayed in
Figure 2. Of course, no dynamic routing decisions are
to be made in this simple system: Servers process
customers on a first-in-first-out basis, and there is no
motivation to interrupt a service once it has begun,
even if one assumes that is possible.
For each of the trial values b = 90� � � � �140, we

simulated system performance over 1,000 statistically
independent days, and recorded the average cost
per day for each b value. Those average cost val-
ues, along with their upper and lower 95% confi-
dence intervals, are plotted in Figure 3, where the
example under discussion is identified as our “vari-
able demand scenario,” to distinguish it from another
case considered below. Also plotted in Figure 3 is
the estimate of the average daily cost (as a func-
tion of b) derived from our fluid approximation (22).
Three important conclusions are to be drawn from

Figure 3 Total Average Daily Cost as a Function of the Number of
Servers: Variable Demand Scenario
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Note. Because of high variability in the simulation results, the plot depicts
the 95% confidence interval (dotted lines).

Figure 3. First, for each b value in the range consid-
ered, our fluid-based performance estimate is accurate
to within about 1%. Second, the pool size of b∗ = 115,
recommended by our fluid-based method, is essen-
tially identical to the optimal staffing level obtained
in the simulation study. To facilitate future discussion,
the first two rows of Table 1 summarize pool size
recommendations and associated daily cost estimates
for our variable demand scenario, first based on the
simulation study, then based on our fluid approxima-
tion. The final conclusion to be drawn from Figure 3
is that system performance is relatively insensitive
to the pool size b in the neighborhood of the mini-
mizer, according to both our simulation results and
the fluid approximation. Finally, statistical variability
in the simulation decreases as the pool size increases,
as seen in the “shrinking” confidence intervals in the
figure, because more customers are served immedi-
ately upon arrival and queueing effects decrease.
It is interesting to contrast the example just dis-

cussed with a “constant demand scenario“ where ��·	
is identically equal to the overall average value, �̄ =
100� which was identified earlier in (24). Figure 4
presents both the fluid-based performance estimate
derived from (22) for that case, and the corresponding
simulation results, again based on a sample of 1,000
independent days for each b value. (In this case the
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Table 1 Staffing Levels and System Average Daily Costs for Variable and Constant Demand Scenarios

Average
Optimal Personnel cost abandonment cost Average total cost
pool size at optimum at optimum at optimum

Variable demand scenario 116 $27,840 $3,220 $31,060
simulation results

Variable demand scenario 115 $27,600 $3,500 $31,100
fluid approximation

Constant demand scenario 105 $25,200 $1439 $26,639
simulation results

Constant demand scenario 100 $24,000 0 $24,000
fluid approximation

Note. The table depicts staffing levels and cost estimates computed by the proposed fluid approximation versus
optimal results obtained via simulation.

95% confidence intervals are so close to the simula-
tion estimates of average daily cost, relative to the
scale of the graph, that we have omitted them.) The
third and fourth rows of Table 1 summarize pool size
recommendations and associated daily cost estimates
for the constant demand scenario, first based on the
simulation study and then based on our fluid approx-
imation. Of course, the staffing level recommended by
our method is trivially b∗ = 100.
For choices of b close to the optimal value, our

fluid-based approximation of average daily cost is
almost 10% lower in the constant-demand scenario
than our simulation estimate. (Recall that the error is
about 1% in the variable-demand scenario.) On the

Figure 4 Total Average Daily Cost as a Function of the Number of
Servers: Constant Demand Scenario
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other hand, the naïve staffing proposal derived by
our method in the constant-demand scenario is still
quite good, producing an average daily cost that is
only 1%–2% greater than the lowest achievable value
according to our simulation study. Of course, the most
striking aspect of the figures presented in Table 1 is
that best achievable performance is much worse in
the variable demand scenario: Both average daily cost
and the prescribed pool size are about 10% higher
with variable demand than with constant demand.
For the constant-demand scenario, we see in

Figure 4 that the fluid-based estimate of average daily
cost is considerably “steeper“ in the vicinity of its
minimizer than the simulation-based estimate. For the
variable-demand scenario, both estimates are much
“flatter” in the neighborhood of their respective mini-
mizers (see Figure 3). Formula (22) for the fluid-based
performance estimate helps one to understand this
phenomenon. Its derivative is

!′�b	= c− Tp��1− F �b�		�

(The existence of this derivative is implied by the
distribution F having no point masses.) Thus, !′�·	
increases monotonically from −�Tp� − c	 to +c, and
the rate of increase depends on how “spread out”
the distribution F is. That is, according to our fluid
approximation, as the demand distribution F becomes
more “spread out,” a larger range of staffing lev-
els b achieves near-optimal performance. The results
depicted in Table 1 and Figures 3 and 4 are consistent
with this observation. In particular, note that average
daily cost in the variable demand case would be quite
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close to optimal even if the fluid-optimal staffing level
were not as close to the true optimum as it turned out
to be.

5. Numerical Examples
Having considered the special case with a single cus-
tomer class, homogenous agents and a simple styl-
ized demand pattern, we now turn to a sequence
of examples that illustrate the performance of the
proposed fluid-based staffing method in more com-
plicated scenarios. In particular, we consider system
models that have two customer classes and an oper-
ation that involves dynamic routing decisions. These
systems will first be analyzed with another stylized
demand pattern, and subsequently a more realistic
demand scenario is introduced and analyzed.
The system models depicted in Figure 5 both have

two customer classes (m = 2) that are served by
a single agent pool (r = 1) and two agent pools
(r = 2), respectively. Callers of Classes 1 and 2 arrive
according to nonhomogenous Poisson processes with
stochastic intensities �1�t	 and �2�t	. There are bk

servers in pool k (k = 1�2), and the possible server-
to-customer matchings are depicted in the figure. In
the terminology of §2, the single-pool model has two
processing activities (one for each customer class),
and the two-pool model has three processing activ-
ities. To simplify the dynamic scheduling decisions

Figure 5 Schematic Models of a Call Center with Two Customer
Classes
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Note. The left model has a single agent pool and the right model has two
agent pools.

that are involved in allocating servers to incom-
ing and waiting calls, we assume that all service
times are exponentially distributed with rate �j = 1
customer per minute (j = 1�2 for the single-pool
system, and j = 1�2�3 for the other). Moreover, in the
interest of simplicity, we assume that services can be
interrupted at any time and later resumed from the
point of preemption without incurring a penalty. Cus-
tomers of class i who are waiting in queue abandon
at rate #i = 0�5 defections per minute, i.e., the inter-
abandonment times are exponentially distributed
with mean 1/#i = 2 minutes (i = 1�2) and are inde-
pendent of the arrival and service time processes.
The abandonment penalties are p1 = $1 and p2 = $2
per abandonment. With these assumptions and input
data, it is always best to give Class 2 priority when a
server allocation decision must be made. The length
of the planning horizon is taken to be T = 480 min-
utes, and the cost of employing a server for a working
day is c1 = $240 in the single-pool system, and c1 =
$160 and c2 = $240 in the two-pool system. These costs
reflect the fact that flexible (cross-trained) agents are
paid more than those who can only process a single
customer class.

5.1. Analysis of a Stylized Demand Scenario
We consider the stylized demand pattern depicted
in Figure 6, for which the demand distribution func-

Figure 6 A Two-Dimensional Stylized Demand Pattern
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Table 2 Staffing Levels and Average Daily Costs for the Two System Models

Average
Optimal Personnel cost abandonment cost Average total cost
pool sizes at optimum at optimum at optimum

Single-pool system 94 $22,560 $5,001 $27,561
simulation results

Single-pool system 93 $22,320 $5,000 $27,320
fluid approximation

Two-pool system (53, 54) $21,440 $2,499 $23,939
simulation results

Two-pool system (54, 52) $21,120 $2,654 $23,774
fluid approximation

Note. The table depicts staffing levels and cost estimates computed by the proposed fluid approximation versus
optimal results obtained via simulation. (The 95% confidence intervals for the total cost derived via simulation
are roughly ±330 for the first system, and ±250 for the second, respectively.)

tion F , defined in (4), distributes mass 1/2 uniformly
on each of the two line segments

���1��2	 � �1 = 2�2+ 5= x� 55≤ x ≤ 95 and

���1��2	 � �1 = 2�2 = x� 35≤ x ≤ 55 �
For both of the system models portrayed in Figure 5,
the fluid approximation produces very accurate esti-
mates of system performance, as well as pool sizes
that are on par with the optimal values derived via
simulation. Table 2 contrasts the staffing level, per-
sonnel costs, and abandonment costs derived using
our fluid approximation and via simulation (based
on 1,000 statistically independent replications of the
planning period). Using our proposed fluid approx-
imation, the optimal staffing decision is obtained by
solving a variant of the newsvendor problem that
has piecewise linear underage cost; in the system
with two server pools there are two design variables
resulting in a two-dimensional newsvendor problem;

Table 3 Simulated Average Total Costs for the Two-Class/Two-Pool System for Various Staffing Levels

Pool 2

Pool 1 49 50 51 52 53 54 55

51 24,171.9 24,349.5 24,220.5 24,048.6 24,054.5 24,295.2 24,318.9
52 24,244.8 24,094.3 24,125.4 24,285.7 24,117.8 24,325.9 23,982.6
53 24,387.0 24,089.2 24,051.8 24,060.5 24,161.3 23,938.7† 23,977.7
54 24,194.8 24,392.9 24,162.8 24,172.1 24,280.2 24,102.0 24,203.3
55 24,112.9 24,209.5 24,226.7 24,220.5 24,085.3 24,190.9 24,135.0
56 24,241.9 24,151.2 24,085.4 24,115.4 24,261.0 24,288.5 24,320.5
57 24,337.3 24,372.3 24,293.1 24,335.7 24,123.0 24,244.4 24,419.9

Note. The 95% confidence intervals are ±250. The optimal cost is denoted with a †.

see Van Mieghem (2003) for examples and further
discussion of multidimensional newsvendor prob-
lems. The simulation results reported in Table 3 for
our two-pool model show that the objective function
is quite “flat” in the vicinity of the optimal staffing
levels. A similar insensitivity was observed in the
single-pool model.

5.2. A More Realistic Demand Scenario
We now restrict attention to the two-class/two-pool
system and consider a more realistic demand sce-
nario. Let Z = �Zn� n ∈ �	 be an i.i.d. sequence of
�2-valued random variables, which are normally dis-
tributed with zero mean and covariance matrix

4=
[
1 q

q 1

]
�

where q ∈ )0�1	. Fix r ∈ )0�1	 and let X = �Xn� n ∈ �	
be given by the recursion

Xn+1 = 6�1− r	e+ rXn +Zn+1�
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Table 4 Average Daily Total Cost for the Two-Class/Two-Pool System with Correlated and Nonstationary Demand as a Function of
Staffing Levels

Pool 2

Pool 1 50 55 58 60 65

45 28,220.2 [27,531.7] 27,865.8 [27,451.3] 27,300.6 [27,226.4] 27,501.2 [27,311.8] 27,493.4 [27,236.3]
50 27,903.6 [27,342.3] 27,395.2 [27,182.8] 27,316.1 [27,132.2] 27,751.7 [27,050.2] 27,438.5 [27,253.5]
52 27,996.3 [27,313.4] 27,299.6 [27,211.1] 27,276.8†[27,054.3] 27,390.4 [27,039.6] 27,434.2 [27,231.4]
55 27,847.3 [27,274.8] 27,362.6 [27,166.4] 27,577.4 [27,112.5] 27,471.4 [27,111.0] 27,602.3 [27,445.3]
60 27,683.8 [27,244.4] 27,526.2 [27,223.2] 27,355.0 [27,264.1] 27,683.6 [27,288.2] 27,835.5 [27,446.0]

Note. Shown in the body of the table are the simulation estimates of average daily total cost, followed by the fluid estimates in brackets. Fluid-
optimal staffing levels and the associated fluid approximation to the total cost are given in boldface, and the optimal simulated cost is denoted
with a †. The 95% confidence intervals for simulated costs are roughly ±400.

where e = )1�1*′. Then X is a stationary autoregres-
sive process in �2 with a marginal distribution that
is bivariate normal with mean )6�6*′ and covariance
matrix 4X = �1− r2	−14. If we consider the first coor-
dinate of X to be the instantaneous arrival rate of
Class 1 calls over a certain interval of time, and the
second coordinate as the Class 2 arrival rate, we have
a demand process that exhibits both interclass corre-
lation, the extent of which is controlled by the value
of q, and temporal correlation, the extent of which
is controlled by the value of r . In real-world sys-
tems the call volumes from different classes typically
increase and decrease together, and temporal correla-
tions are most often positive. With this in mind, we set
q = 0�5 and r = 0�5 so that these correlations are pos-
itive and moderate in value, and set 6 = 3 so that X

takes on nonnegative values with very high probabil-
ity. The demand scenarios we consider in the next two
examples are related to the stylized arrival rate pat-
terns depicted earlier in Figure 6. In preparation, let
us partition the planning period (recall that its length
is T = 480 minutes) into 18 subintervals of length 8=
T /18 minutes, and denote by ai�j	 the expected aver-
age arrival rate for class i customers over the jth
subinterval when using the stylized demand model
portrayed in Figure 6 (i= 1�2 and j = 1� � � � �18). Also,
let ai denote the expected average arrival rate for class
i customers over the entire planning period in the
same demand model.
Example 1: A Nonstationary Demand Scenario.

Consider a model where ��·	 is constant over
each of the 18 subintervals described immediately
above. More specifically, let �X1� � � � �X18	 be consec-
utive observations in the stationary autoregressive
sequence X defined earlier, and suppose that �i�t	 =

ai�j	 · �Xij/3	 for all t in the jth subinterval �i = 1�2
and j = 1� � � � �18). Thus, because ƐXij = 3 for each
i and j , the expected number of arrivals into each
class is the same over each subinterval as in the
stylized demand model portrayed in Figure 6. Table 4
shows the average daily costs with various pool size
combinations, contrasting values predicted by our
proposed fluid approximation with those calculated
using simulation (averaged over 1,000 statistically
independent replications of the planning period).
Example 2: A Stationary Demand Scenario.

Again let the planning period be partitioned into 18
equal-sized intervals, but now set �i�·	= ai ·�Xij/3	 for
all t in the jth subinterval �i = 1�2 and j = 1� � � � �18).
Thus, the expected number of arrivals over the
entire day is the same for each input flow as in the
nonstationary example immediately above. Table 5
depicts the average daily costs, contrasting values
predicted by our proposed fluid approximation with
those calculated using simulation (averaged over
1,000 statistically independent replications of the
planning period).

Discussion. An inspection of Tables 4 and 5 reveals
three noteworthy features that were also present in
the previous examples that focused on a more styl-
ized demand model. First, the cost surface is rel-
atively “flat” in the region of the optimal staffing
vector because of the uncertainty and variability in
demand. Second, the fluid approximation results in
near-optimal staffing-level decisions and accurately
predicts system costs. To elaborate on the results
presented in Table 4, for example, the simulated
cost of lost calls due to abandonments at the fluid-
optimal staffing level (52, 60) is $4,800, while the
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Table 5 Average Daily Total Cost for the Two-Class/Two-Pool System with Correlated and Stationary Demand as a Function of
Staffing Levels

Pool 2

Pool 1 50 55 58 60 65

45 27,432.3 [26,931.1] 26,913.9 [26,751.3] 26,600.7 [26,545.4] 26,742.9 [26,341.8] 26,472.8 [26,037.8]
50 27,277.3 [26,412.4] 26,524.2 [26,223.8] 26,351.7 [26,213.4] 26,358.9 [26,134.4] 26,543.6 [26,163.5]
53 26,880.9 [26,411.2] 26,621.6 [26,148.7] 26,214.9†[26,118.6] 26,411.6 [26,134.6] 26,539.5 [26,331.3]
55 26,946.8 [26,314.0] 26,466.1 [26,194.0] 26,320.5 [26,165.4] 226,799.4 [26,195.3] 26,539.5 [26,238.7]
60 26,740.1 [27,244.4] 26,409.0 [26,226.1] 26,389.9 [26,241.5] 26,759.1 [26,382.9] 27,069.8 [26,459.0]

Note. Shown in the body of the table are the simulation estimates of average daily total cost, followed by the fluid estimates in brackets.
Fluid-optimal staffing levels and the associated fluid approximation to the total cost are given in boldface, and the optimal simulated cost is
denoted with a †. The 95% confidence intervals for simulated costs are roughly ±370.

fluid approximation predicts this cost to be $4,511.
Third, as Table 6 below indicates, the cost of “lost
business” due to abandonments is roughly 15% of
the total cost, a consequence of the fact that the sys-
tem spends a nonnegligible fraction of the day in an
overloaded mode where the incoming rate of work
exceeds capacity. (In contrast, if a system operates
close to “heavy-traffic” yet slightly underloaded, high
service efficiency and arbitrarily small abandonment
probabilities can be achieved; see, e.g., Garnett et al.
2002.) Finally, as is also evident from Table 6, the non-
stationary demand scenario results in a larger overall
cost, due to an increase in “lost business” relative to
the stationary demand scenario, as one would have
anticipated.

5.3. General Comments on Computational
Procedures

The simulation results in all the examples covered in
this section were obtained by generating an appropri-

Table 6 Staffing Levels and Average Daily Costs for the Two Demand Scenarios

Average
Optimal Personnel cost abandonment cost Average total cost
pool sizes at optimum at optimum at optimum

Example 1 (nonstationary demand): (52, 58) $22,720 $4,511 $27,271
simulation results

Example 1 (nonstationary demand): (52, 60) $22,240 $4,800 $27,040
fluid approximation

Example 2 (stationary demand): (53, 58) $22,400 $3,815 $26,215
simulation results

Example 2 (stationary demand): (53, 58) $22,400 $3,719 $26,119
fluid approximation

Note. The table depicts staffing levels and cost estimates computed by the proposed fluid approximation versus
optimal results obtained via simulation. The 95% confidence intervals for the total cost derived via simulation
are roughly ±410 for the first example, and ±370 for the second example, respectively.

ate nonhomogenous Poisson process. (The simulation
of the latter is straightforward using the thinning
procedure described in Ross 1997.) For the two exam-
ples discussed in §5.2, the autoregressive process
was generated first, then rescaled appropriately by
the average rates, and subsequently the nonhomoge-
nous Poisson process was simulated using those rates.
In terms of optimization procedures, the stylized
examples considered in §5.1 are simple enough that
one can calculate the fluid-model optimal staffing
levels b∗ by hand, but for the more complex exam-
ples in §5.2 the fluid approximation objective function
was optimized using gradient descent as follows.
The server allocation LP given in (1)–(2) is two-
dimensional and can therefore be solved graphically.
Given a staffing vector (b1� b2), the LP shadow prices
can be found in a straightforward manner, and it is
not difficult to see that the aforementioned shadow
prices are constant over four regions, which par-
tition �2. (For further details see the recent sur-
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vey by Van Mieghem 2003, which includes various
examples of multidimensional newsvendor problems
of this sort.) Thus, starting from any initial guess of
the staffing vector, the shadow prices can be gener-
ated using the arrival rate over each time interval
)�j − 1	8� j8	 and each region in �2. Using simula-
tion and averaging over a number of such days give
an estimate of the expected gradient of the objective
function and thus the direction of descent. (Implicit
in this is an interchange argument that can be justi-
fied under mild assumptions; cf. Van Mieghem 2003
for further details.) Computing the total average daily
cost of the system using the proposed fluid approxi-
mation was carried out by generating the arrival rate
vector for the whole day, then solving the LP over
each time interval where the arrival rate is constant.
For further discussion of solution methods for such
LP problems with recourse see Birge and Louveaux
(1997) and the recent survey by Shapiro (2003), which
discusses various Monte Carlo simulation-based opti-
mization approaches.

6. Discussion and Concluding
Remarks

We have adopted a formulation in which the only
congestion-related costs are abandonment penalties.
However, our method extends readily to the situa-
tion where, in addition to abandonment penalties, the
system manager incurs a cost of hi > 0 for each unit
of time that a class i customer spends waiting in the
queue. (The term “linear holding cost” is commonly
used to describe this added model element.) By mod-
ifying appropriately the supporting logic described in
§2, readers can verify that one arrives at the same
staffing algorithm as before, except that the abandon-
ment penalty pi that appears in the objective function
(1) of our linear program is replaced by pi +hi/#i �i=
1� � � � �m	 in the case with linear holding costs.
In this paper, we have taken as given the basic

system configuration, including the number of server
pools, the number of customer classes, the possible
matchings of the latter to the former, and the average
service rates embodied in the input-output matrix R.
We have developed a fluid approximation that allows
one to estimate the best achievable system perfor-
mance with a given vector of pool sizes, and used

that estimate to optimize pool sizes given the system
configuration. However, one can obviously extend
this analytical method to evaluate and contrast com-
peting design configurations that propose different
processing activities and agent pool structures. For
example, one can compare the two-class/two-pool
system model depicted in Figure 5 with an alternative
that has two dedicated agent pools, each serving only a
single designated class. In this manner, it is possible to
characterize the value of incorporating cross-trained
agents into a given system, as well as determine the
extent to which such cross-training is necessary to
achieve target operating costs.
At least in principle, our method can be modi-

fied to consider the workforce management consider-
ations described by Gans et al. (2003) in §3.2 of their
paper. When one considers the added structure that
captures shift schedules, etc., one confronts a large
set of discrete staffing alternatives, rather than the
continuum of choices assumed here. It is then possi-
ble to use our proposed stochastic fluid approxima-
tion to estimate costs under each of those discrete
alternatives. Of course, this would require linking
our performance evaluation method to an appropri-
ate discrete optimization technique. (An example of
simulation used for purposes of performance evalu-
ation in conjunction with an integer program that is
used to set staffing levels is found in Epelman et al.
2004.)
To apply our method in a given real-world context,

the main task is to estimate the demand distribution F

defined by (4). A reasonable procedure for doing this,
which accords well with the estimation methods com-
monly used in call center practice, is the following.
First, divide the planning period into L intervals or
“time buckets” of fixed length 8, treating the process
� as piecewise constant over such intervals. (In prac-
tice it is common to take 8= one-half hour.) For each
realization of the arrival process over the planning
period, and each time bucket . = 1� � � � �L, one can
calculate an m-vector ;. of average arrival rates by
taking the total number of arrivals in each class i and
dividing by 8, and then ; �= �;1� � � � � ;L	 describes one
realization of the process �. The empirical distribu-
tion of the finite sequence ;, compiled from repeated
observations of the arrival process over the complete
planning period, then provides the estimate of F for
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purposes of our method. That is, drawing at random
from the distribution F amounts to choosing at ran-
dom among the observed realizations of ;, and then
choosing at random a time bucket . ∈ �1� � � � �L .
Obviously, the staffing method that we have pro-

posed is only valid if one can devise a dynamic
routing policy whose performance with regard to
expected abandonment costs approaches the LP-
based estimate of best achievable performance em-
bodied in (3). In the interest of brevity we have not
attempted a systematic discussion of dynamic routing
in this paper. However, a promising general approach
to dynamic routing is embodied in the “support-
ing logic” described in §3. Roughly speaking, the
idea is to solve the linear programming problem (1)–
(2) in real time, based on a current estimate of the
arrival rate vector �, then allocate servers to customer
classes over a moderate time span based on the solu-
tion obtained, repeating this procedure at the end of
that time span. The asymptotic optimality of such an
approach (in the parameter regime identified in §3),
as well as variants of this basic idea that seem promis-
ing for practical implementation, are the subject of
Bassamboo et al. (2004).
In this paper we have only emphasized uncertainty

about the call center’s demand environment. In a sim-
ilar fashion, call center managers are typically uncer-
tain about actual capacity (in the sense of average po-
tential processing rates) given their staffing choices,
because of factors such as absenteeism, heterogeni-
ety among agents who nominally belong to the same
skill category, learning effects, and a host of other fac-
tors. That is, call center managers are uncertain about
their own internal capabilities, quite apart from the
statistical variation in service times. It seems plausible
that our method of accounting for large-scale demand
uncertainty could be extended or modified to account
for uncertainty regarding internal capabilities, but no
serious effort has been expended in that direction to
date.
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