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Abstract

High-dimensional pricing problems frequently arise with financial options (examples include bas-

ket options, outperformance options, interest-rate and foreign currency options) and real options.

American versions of these options, i.e., where the owner has the right to exercise early, are partic-

ularly challenging to price. We introduce a stochastic mesh method for pricing high-dimensional

American options when there is a finite, but possibly large, number of exercise dates. The algo-

rithm provides point estimates and confidence intervals and it converges to the correct values as

the computational effort increases. Computational evidence is given which indicates the viability

of the method.

Key words: American options, security pricing, Monte Carlo simulation, option pricing, real

options, multiple state variables.

This is a revised version of an article widely circulated as a working paper starting in 1997 and

presented at numerous seminars and conferences, including talks at IBM, the Board of Governors

of the Federal Reserve, the World Bank, McGill University, University of Warwick, Delft University

of Technology, Aarhus University, Hong Kong University of Science and Technology, ETH Zurich,

CREST (Paris), MIT, University of Minnesota, Purdue University, Courant Institute, the Center

for Applied Finance in Singapore, and several RISK courses and conferences.
∗∗Both authors are at Columbia University, Graduate School of Business, 3022 Broadway, New

York, NY, 10027-6902. Their e-mail addresses are mnb2@columbia.edu and pg20@columbia.edu.



1. Introduction

Increasingly complex and sophisticated financial products continue to be introduced and accepted

in the marketplace. These new products have features designed to isolate ever refined types of

risks, and many of them have payoffs that depend on multiple assets or multiple state variables.

A portfolio manager who wishes to hedge a position in technology stocks no longer needs to buy a

portfolio of options. Instead the manager can purchase a single basket option, e.g., an option on

a technology index or an option specifically tailored to the manager’s portfolio. An investor who

believes that biotechnology stocks will outperform automotive stocks, but wishes to have protection

from the possibility of a significant loss, can purchase an option on the difference of two stock indices,

i.e., a spread option on two baskets. Basket options and spread options are just two examples of

securities whose payoffs depends on multiple assets. Other examples include outperformance options

(i.e., options on the maximum of several assets) and quanto options. Quanto options typically arise

when the underlying is denominated in a foreign currency, and the inclusion of foreign exchange

rates introduces additional sources of uncertainty. Since many recent interest-rate models are

driven by two or more state variables, interest-rate options depending on multiple state variables

also arise naturally. Additional state variables arise when the pricing models include stochastic

volatility, default risk, convenience yields, etc.

Pricing and hedging high-dimensional options is difficult, and the task is further complicated

for American versions of these securities, i.e., where the owner has the right to exercise early.

Although there are many techniques for pricing American options on a single underlying asset, in-

cluding lattices, PDE methods, variational inequalities, and integral equation methods, when these

techniques are generalized to handle multiple state variable, they require work which is exponential

in the number of state variables. This work requirement renders these methods ineffective for more

than about three state variables.

A distinct advantage of Monte Carlo simulation is that the convergence rate is typically inde-

pendent of the number of state variables. Another advantage is the ease with which it can handle

a wide range of models and payoff structures. Until recently, the prevailing view has been that

simulation methods are not applicable to American-style pricing problems. The major obstacle

is that simulation typically generates trajectories of state variables forward in time, while the de-

termination of optimal exercise policies requires backward-style dynamic programming techniques.

That view has started to change as several hybrid simulation–dynamic programming methods for

attacking these problems have been proposed.

Heuristic methods for applying simulation to American option pricing include Tilley (1993),

Barraquand and Martineau (1995), Raymar and Zwecher (1997), and Andersen (2000), among
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many others. These are heuristic in the sense that little if anything can be said about the relation

between the values to which they converge and the desired option price, though they may provide

good approximations in specific cases. Broadie and Glasserman (1997) develop a method with

theoretical support based on simulated trees. Their method generates two estimators, a lower

bound and an upper bound (i.e., one biased low and one biased high1), with both estimators

convergent and asymptotically unbiased as the computational effort increases. A valid confidence

interval for the true American price is obtained by taking the upper confidence limit from the

“high” estimator and the lower confidence limit from the “low” estimator. The main drawback of

this method is that the work is exponential in the number of exercise opportunities. In order to

apply this method to options with continuous exercise or with a finite but large number of exercise

opportunities, some type of extrapolation procedure is required. Broadie, Glasserman, and Jain

(1997) give some encouraging computational results in this direction, but a disadvantage is that

extrapolated lower and upper bounds are no longer lower and upper bounds on the true price. A

further discussion of these and other approaches is given in Boyle, Broadie, and Glasserman (1997).

In this paper we introduce a stochastic mesh method for pricing high-dimensional American

options when there is a finite, but possibly large, number of exercise dates. The method provides

lower and upper bounds, confidence intervals for the true price, and it converges as the computa-

tional effort increases. The work of the algorithm is linear in the number of state variables, linear

in the number of exercise opportunities, and quadratic in the number of points in the mesh. The

linear, rather than exponential, dependence on the number of exercise dates is in marked contrast

to the random tree method. The work requirement of the stochastic mesh method makes it viable

for pricing high-dimensional American options.

Any method for pricing American options by simulation can be viewed as generating random

approximations to the dynamic programming operator that recursively determines the option value.

The method of Barraquand and Martineau (1995) can be viewed as generating an approximation

based solely on the evolution of the option’s intrinsic value. The approximating dynamic program

implicit in Broadie and Glasserman (1997) assigns equal weight to each branch in a randomly

sampled tree. Carrière (1996), Longstaff and Schwartz (2001), and Tsitsiklis and Van Roy (1999)

combine simulation with regression on a set of basis functions to develop low-dimensional approxi-

mations to high-dimensional dynamic programs, in the same spirit as some deterministic numerical

methods (see, e.g., Judd 1998). Those methods are related to the stochastic mesh introduced

here and differ primarily in the strategy used for selecting mesh weights. The stochastic mesh

1 Throughout this paper, a lower bound in the simulation context means that the simulation estimator is biased
low. In other words, E(X) ≤ Q, where the random variable X represents the simulation estimator and Q is the true
American option price. Likewise, the simulation estimator X is an upper bound if E(X) ≥ Q, i.e., if X is biased
high.
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method and a random successive approximation method proposed and analyzed by Rust (1997)

both approximate the dynamic programming operator using values of the transition density of the

underlying process, but the methods differ in the way they use these values and in the scope of

problems to which they apply. Subsequent work on the mesh method introduced here includes

Avramidis and Hyden (1999), Boyle, Kolkiewicz, and Tan (2000,2002) and Broadie, Glasserman,

and Ha (2000). Finally, an interesting new line of research on the pricing of American options by

simulation is the development of dual formulations by Haugh and Kogan (2001) and Rogers (2001).

The next section gives a description and theoretical analysis of the basic stochastic mesh

method. This, however, is just the starting point, as it leaves open several questions of imple-

mentation. Section 3 develops a specific method based on a particularly effective choice of mesh

density. Section 4 develops several enhancements that are crucial in practice to obtaining accurate

in reasonable computing time. Computational results are given in section 5. Proofs are given in

the appendix.

2. The Stochastic Mesh Method

The stochastic mesh method is designed to solve a general optimal stopping problem, of which

the American option pricing problem with discrete exercise opportunities is a special case. Let

St = (S1
t , . . . , Sn

t ) be a vector-valued Markov process on Rn with fixed initial state S0 and discrete

time parameter t = 0, 1, . . . , T . The problem is to compute

Q = max
τ

E[h(τ, Sτ )], (1)

where τ is a stopping time taking values in the finite set {0, 1, . . . , T}, and h(t, x) ≥ 0 is interpreted

as a payoff from exercise at time t in state x.2 More generally, the value starting at time t in state

x is

Q(t, x) = max (h(t, x), E[Q(t + 1, St+1)|St = x]) (2)

for t < T and Q(T, x) = h(T, x). We are interested in computing Q ≡ Q(0, S0). In an important

special case, the vector of state variables St is governed by risk-neutral probabilities and h(t, x) gives

the payoff in state x at time t, discounted to time 0, with the possibly stochastic discount factor

recorded in St. More generally, h could give the payoff in units of an arbitrary numeraire asset

contained in the vector of state variables with the law of the state variables adjusted accordingly.

Examples. For illustration, we give a few selected examples of payoff functions on multiple assets.

For a basket call option, the payoff function is h(t, St) = (a1S
1
t + · · · + anSn

t − K)+ for given

2 See, e.g., Karatzas (1988) for a justification of American option values as solutions to optimal stopping problems.
Some authors restrict the term “American” to continuously exercisable securities and use the term “Bermudan” for
securities that can be exercised on a finite number of dates. We consider only the latter, in some cases viewing it as
an approximation to the former.
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constants a1, . . . , an and strike K.3 For a quanto spread option, h(t, St) = S1
t (a2S

2
t − a3S

3
t − K)+,

where S1
t represents an exchange rate or another random quantity adjustment. For a spread

option on two baskets, h(t, St) = (a1S
1
t + a2S

2
t − (a3S

3
t + a4S

4
t ) − K)+. As a final example,

h(t, St) = (max(a1S
1
t , . . . , anSn

t ) − K)+ for a max-option (also called an outperformance option).

If the Si
t are prices of discount bonds of various maturities (in, e.g., a Gaussian model of interest

rates), then the payoff given above for a basket option becomes the payoff of an option on a

coupon-paying bond.

The stochastic mesh method begins by generating random vectors Xt(i) for i = 1, . . . , b and

t = 1, . . . , T . Methods for generating the stochastic mesh Xt(i) will be described shortly. Since S0

is given, we set X0(1) = S0. The mesh estimator is defined inductively by setting

Q̂(T, XT (i)) = h(T, XT (i)) (3)

for i = 1, . . . , b. For times t = T − 1, . . . , 0 and i = 1, . . . , b, the mesh estimator is

Q̂(t, Xt(i)) = max

h(t, Xt(i)),
1
b

b∑
j=1

Q̂(t + 1, Xt+1(j))w(t, Xt(i), Xt+1(j))

 , (4)

where w(t, Xt(i), Xt+1(j)) is a weight attached to the arc joining Xt(i) to Xt+1(j), which will

be defined in a moment. We use the notation Q̂(t, Xt(i)) to indicate the algorithm’s estimate of

the true American price Q(t, Xt(i)). At time t = 0 only i = 1 is applicable in equation (4) and

Q̂ ≡ Q̂(0, S0) is the final mesh estimator of the true price Q. Illustrations of the mesh are given in

Figure 1 for n = 1, T = 4, and b = 4 and in Figure 2 for n = 2, T = 2, and b = 3.

S0

S

t0 t1 t2 t3 t4

Figure 1. Mesh illustrated for n = 1, T = 4, and b = 4. A generic node in the mesh is denoted

Xt(i); a generic arc from one node to another has weight w(t, Xt(i), Xt+1(k)).

3 The notation x+ is short for max(x, 0).
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t0

t1

t2

S 2

S 1

Figure 2. Mesh illustrated for n = 2, T = 2, and b = 3. The arcs illustrate the calculation of

the weighted average in (4).

In order to complete the description of the algorithm, we need to specify the details of how

the random vectors are generated and how the weights on the arcs are determined. Let f(t, x, ·)
denote the density of St+1 given St = x and let f(t, ·) denote the marginal density of St (with

S0 fixed). In the simplest implementation, for t = 1, . . . , T , the vectors Xt(i), i = 1, . . . , b, are

generated as independent and identically distributed samples from the density function g(t, ·). We

require g(t, u) > 0 if f(t−1, x, u) > 0 for some x. The choices for the mesh density functions g(t, ·)
for t = 1, . . . , T are crucial to the practical success of the method. A seemingly natural choice is

to set the mesh density functions to the marginal density functions, i.e., to set g(t, u) = f(t, u)

for t = 1, . . . , T . As shown in the next section, this choice can lead to estimators whose variance

grows exponentially with the number of exercise opportunities. Another choice for the mesh density

functions which avoids this problem is described in the next section.

In order to motivate the weights on the arcs, recall that the American option value at time t

in state St = x is

Q(t, x) = max (h(t, x), E[Q(t + 1, St+1)|St = x]) .

We need to approximate Q(t, x) at all points x = Xt(1), . . . , Xt(b) using the available information

from the mesh, i.e., using Q̂(t+1, Xt+1(j)) for j = 1, . . . , b. To do this, we need to estimate all of the

quantities E[Q(t + 1, St+1)|St = Xt(i)], i = 1, . . . , b, using the same information Q̂(t + 1, Xt+1(j)),
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j = 1, . . . , b. The main difficulty is that the density of St+1 given St = x is f(t, x, ·) while the mesh

points Xt+1(j), j = 1, . . . , b, were generated from the density function g(t+1, ·). However, observe

that

E[Q(t + 1, St+1)|St = x] ≡
∫

Q(t + 1, u)f(t, x, u) du

=
∫

Q(t + 1, u)
f(t, x, u)
g(t + 1, u)

g(t + 1, u) du

≡ E

[
Q(t + 1, Xt+1(j))

f(t, x, Xt+1(j))
g(t + 1, Xt+1(j))

]
. (5)

The final expression allows us to approximate the expectations E[Q(t + 1, St+1)|St = Xt(i)] for

i = 1, . . . , b even though the points Xt+1(j) for j = 1, . . . , b were generated according to the density

g(t + 1, ·) and not according to f(t, Xt(i), ·). Define

Q̂(t, x) = max

h(t, x),
1
b

b∑
j=1

Q̂(t + 1, Xt+1(j))w(t, x, Xt+1(j))

 , (6)

where w(t, x, Xt+1(j)) = f(t, x, Xt+1(j))/g(t + 1, Xt+1(j)). The mesh estimator approximates

Q(t, Xt(i)) by Q̂(t, Xt(i)).4

The computational effort in generating the mesh is proportional to n× b×T . The effort in the

recursive pricing of equation (6) is proportional to n×b2 ×T . Hence the overall effort is polynomial,

not exponential, in the problem dimension (n), the mesh parameter (b), and the number of exercise

opportunities (T + 1).

We make the dependence of Q̂(0, S0) on b explicit by denoting the mesh estimator Q̂b(0, S0).

For any b ≥ 1, the mesh estimator is an upper bound on the true price, i.e., the bias of the mesh

estimator is always positive:

Theorem 1 (Mesh estimator bias): The mesh estimator Q̂b(0, S0) is biased high, i.e.,

E[Q̂b(0, S0)] ≥ Q(0, S0)

for all b.

Theorem 1 can be proved using Jensen’s inequality (in particular, E[max(a, Y )] ≥ max(a, E[Y ]))

and an induction argument. Details are given in the appendix.

4 This choice of weights assumes that the transition density f of the underlying state variables is known or can
be evaluated numerically. In practice, complicated diffusions are usually simulated using an Euler discretization
(as described in, e.g., Kloeden and Platen 1992) with simpler transition densities approximating the true transition
densities, and these can be used in the mesh. An alternative strategy for selecting weights that avoids densities
entirely is proposed in Broadie, Glasserman, and Ha (2000).
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In order to state the convergence result for the mesh estimator, we give some additional

notation and assumptions. For t = 1, . . . , T and k = 0, 1, . . . , T − t define

R(t, t + k) =

(
k−1∏
i=0

f(t + i, Xt+i(1), Xt+i+1(1))
g(t + i + 1, Xt+i+1(1))

)
h(t + k, Xt+k(1)) (7)

(where
∏−1

i=0 ≡ 1). We require three moment assumptions, stated below for some constants r >

p > 1.

Assumption 1:

E

[(
g(t1, St1)
f(t1, St1)

)
h(t2, St2)

r

]
< ∞

for all t2 = t1, . . . , T .

Assumption 2:

E[Rr(t1, t2)] < ∞

for all t2 = t1, . . . , T .

Assumption 3:

E

[(
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

)q]
< ∞ (8)

for all x and t = 0, 1, . . . , T − 1, for all q ≥ 1.

Write ‖ · ‖p for the p-norm E[(·)p]1/p of a random variable. Convergence of the mesh estimator

is given by:

Theorem 2 (Mesh estimator convergence): Let r > p > 1. Under assumptions (1)–(3),

‖Q̂b(t, x) − Q(t, x)‖ → 0

as b → ∞, for all x and t.

Convergence in p-norm implies Q̂b(0, S0) converges to Q(0, S0) in probability and thus Q̂b(0, S0) is

a consistent estimator of the option value. A consequence of this result is that

E[Q̂b(0, S0)] → Q(0, S0)

as b → ∞, so the mesh estimator is asymptotically unbiased.
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Path estimator

Next we develop an estimator based on simulated paths which is biased low. By combining the

high-biased mesh estimator with a low-biased path estimator, we can generate a valid confidence

interval for the American option price. The path estimator is defined by simulating a trajectory of

the underlying process St until the exercise region determined by the mesh is reached. Denote the

simulated path by S = (S0, S1, . . . , ST ). The path S is simulated (independent of the mesh points

Xt(i)) according to the density function of the process St, i.e., the density of the simulated point

St+1 given St = x is f(t, x, ·). Along this path, the optimal policy exercises at τ∗(S) = min{t :

h(t, St) ≥ Q(t, St)} for a payoff of h(τ∗, Sτ∗). The approximate optimal policy determined by the

mesh exercises at

τ̂(S) = min{t : h(t, St) ≥ Q̂(t, St)}, (9)

where Q̂(t, St) is given in equation (6). Define the path estimator by

q̂ = h(τ̂ , S
τ̂
). (10)

An illustration of the path estimator is given in Figure 3.

t0

t1

t2

S 2

S 1

x

x

x

x

x

x

x
x

x
xS0

S1

S2

Figure 3. Path estimator illustrated for n = 2, T = 2, and b = 5. Each mesh point is labeled

with an ‘x.’ The simulated path S = (S0, S1, S2) is shown with dashed arrows. The solid arrows

illustrate the points used in the computation of Q̂(t, St).
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We make the dependence of q̂ on b explicit by denoting the mesh policy τ̂b and the path

estimator q̂b = q̂b(τ̂b). Since the stopping time τ̂b defined in (9) is not necessarily an optimal

stopping time, an immediate consequence is that the path estimator is a lower bound on the true

price:

Theorem 3 (Path estimator bias): The path estimator q̂b is biased low, i.e.,

E[q̂b] ≤ Q(0, S0)

for all b.

Convergence of the path estimator is given by:

Theorem 4 (Path estimator convergence): Suppose the conditions in Theorem 2 are in effect

and that E[h(t, St)1+ε] < ∞ for all t = 1, . . . , T , for some ε > 0. Suppose also that P (h(t, St) =

Q(t, St)) = 0 for all t = 0, 1, . . . , T − 1. Then

E[q̂b] → Q(0, S0)

as b → ∞, i.e., q̂b is asymptotically unbiased.

Equation (9) shows that the mesh estimator must be computed before the path estimator.

Once the mesh estimator has been computed, the additional effort to generate the path estimator

is proportional to n × b × T . In our numerical implementation, we average the results from np

independent paths to give the final path estimator for each mesh. For the path and mesh estimators

to have comparable variances, we take np proportional to b. Hence, the overall work associated

with the path estimator is proportional to n × b2 × T , the same as the mesh estimator.

Interval estimation

In order to give a confidence interval for the option price Q, generate N independent meshes with

corresponding mesh estimates Q̂(i) = Q̂
(i)
b (0, S0), i = 1, . . . , N , and then combine them to give

Q(N) =
1
N

N∑
i=1

Q̂(i).

For each mesh i, i = 1, . . . , N , generate np independent paths and corresponding path estimates.

Average these individual estimates to give the path estimates q̂(i) = q̂
(i)
b (0, S0), i = 1, . . . , N .5

These N path estimates, each based on np paths, are combined to give

q(N) =
1
N

N∑
i=1

q̂(i).

5 It is convenient, though not necessary, for np to be a constant independent of the mesh. Likewise, it is
convenient to have the same number of mesh and path estimates.
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With Q(N) and q(N) replacing Q̂b and q̂b, respectively, Theorems 1–4 hold for any N ≥ 1. Finally,

form the confidence interval [
q(N) − zα/2

s(q̂)√
N

, Q(N) + zα/2
s(Q̂)√

N

]
, (11)

where zα/2 is the 1 − α/2 quantile of the standard normal distribution, and s(q̂) and s(Q̂) are the

sample standard deviations of q̂ and Q̂, respectively.6 Theorems 1 and 3 show that taking the

lower confidence limit from the path estimator together with the upper confidence limit from the

mesh estimator as indicated in (11) yields a valid 100(1 − α)% confidence interval for Q. In fact,

the expected coverage of the interval will exceed the nominal coverage of (1 − α) depending on the

extent of the bias in the estimators, i.e., the interval in (11) is conservative.

3. Selection of the Mesh Density

As described in the previous section, the stochastic mesh method leaves a lot of latitude in im-

plementation. For the method to be practically viable, it is essential to exploit efficiencies in the

computation of the estimators wherever possible. This requires, in particular, careful choice of the

density used to generate the mesh. It also motivates the use of control variates, a topic discussed

in the next section.

In order to illustrate the impact that the mesh density function can have on the mesh estimator

variance, consider pricing a European option on the stochastic mesh. Since early exercise is not

allowed, the mesh estimator of the European option price from equation (6) simplifies to

Q̂(t, Xt(i)) =
1
b

b∑
j=1

Q̂(t + 1, Xt+1(j))
f(t, Xt(i), Xt+1(j))
g(t + 1, Xt+1(j))

,

with Q̂(T, XT (i)) = h(T, XT (i)) as before. For ease of notation, we consider the case T = 3 and

see that Q̂(0, S0) can be written as

1
b

b∑
j1=1

f(0, S0, X1(j1))
g(1, X1(j1))

Q̂(1, X1(j1))

=
1
b

b∑
j1=1

f(0, S0, X1(j1))
g(1, X1(j1))

1
b

b∑
j2=1

f(1, X1(j1), X2(j2))
g(2, X2(j2))

Q̂(2, X2(j2))


=

1
b

b∑
j1=1

f(0, S0, X1(j1))
g(1, X1(j1))

1
b

b∑
j2=1

f(1, X1(j1), X2(j2))
g(2, X2(j2))

1
b

b∑
j3=1

f(2, X2(j2), XT (j3))
g(T, XT (j3))

h(T, XT (j3))


6 This implicitly assumes the estimators have finite second moments. Increasing the exponents in Assumptions

1–3 by 1 more than suffices to ensure this for Q̂; requiring E[h2(t, St)] < ∞ for all t ensures it for q̂.
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=
1
b

b∑
j3=1

h(T, XT (j3))

1
b

b∑
j2=1

f(2, X2(j2), XT (j3))
g(T, XT (j3))

1
b

b∑
j1=1

f(1, X1(j1), X2(j2))
g(2, X2(j2))

f(0, S0, X1(j1))
g(1, X1(j1))

 .

(12)

The last equality shows that the mesh estimator is simply a linear combination of the terminal

payoffs. Generalizing the previous expression for arbitrary T and simplifying, the mesh estimator

of the European value can be written as Q̂(0, S0) = (1/b)
∑b

jT =1 h(T, XT (jT ))L(T, jT ), where the

coefficients L(T, jT ) are given by

L(T, jT ) =
1

bT−1

b∑
j1,...,jT −1

(
T∏

i=1

f(i − 1, Xi−1(ji−1), Xi(ji))
g(i, Xi(ji))

)
, (13)

with the convention X0(j0) ≡ S0. Thus the likelihood ratio L(T, jT ) can be interpreted as the

weight associated with the jT th terminal point in the mesh.

It is natural to expect that the main contribution to the variance of the estimator Q̂(0, S0)

comes from the likelihood ratio multiplying the payoff function, rather than the payoff function

itself. We therefore analyze the variance of L(T, j) (for fixed b > 1). Because the points in the

mesh at each time slice are identically distributed, L(T, j), j = 1, . . . , b, are identically distributed,

though not independent. To simplify notation, we write L(T ) for L(T, 1) (or any other L(T, j) with

fixed j). For all T , E[L(T )] = 1. However, we will now argue that the variance of each L(T, j)

often grows exponentially in T .

Observe that

E

[
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

]
=
∫

f(t, x, y)
g(t + 1, y)

g(t + 1, y) dy

=
∫

f(t, x, y) dy = 1,

for all x. Unless f(t, x, Xt+1(j)) = g(t + 1, Xt+1(j)) with probability 1, the strict form of Jensen’s

inequality gives

E

[(
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

)2
]

>

(
E

[
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

])2

= 1.

An additional condition that we now impose is that this strict inequality hold uniformly in x and

t. We also require that likelihood ratios involving the same mesh point Xt+1(1) at time t + 1 but

different mesh points at time t be positively correlated.
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Proposition 1 (Variance build-up): Suppose that b > 1, that

inf
t=0,1,...

inf
x

E

[(
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

)2
]

> 1, (14)

and that

E

[
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

f(t, y, Xt+1(1))
g(t + 1, Xt+1(1))

]
≥ 1, (15)

for all t, x, and y. Then there is an a > 0 and λ > 1 (both possibly depending on b) for which

Var[L(t + 1)] ≥ aλt (16)

for all sufficiently large t.

Remark. Replacing the lower bound in the proposition with aλt − 1 makes the inequality valid for

all t.

Whether or not the conditions of this proposition hold may be difficult to determine for specific

choices of g. However, the importance of the result lies in showing that if the mesh density

is not chosen carefully there is a risk of an exponential growth in variance. The average density

method defined below is significant because it eliminates this risk. Indeed, it reduces the potentially

exponential variance of the L(T, j) to zero!

As noted above, Proposition 1 suggests that for the stochastic mesh to be practically viable,

the distributions used to sample the mesh points must be chosen carefully to avoid exponential

growth in variance. Fortunately, by inspecting equation (12) or (13), we see that the coefficients

L(T, j), j = 1, . . . , b, will be constant (and equal to one) if we choose

g(t, u) = f(0, S0, u) for t = 1 (17)

and

g(t, u) =
1
b

b∑
j=1

f(t − 1, Xt−1(j), u) for t = 2, . . . , T . (18)

We refer to the mesh density functions in equations (17) and (18) as the average density functions.

A mesh generated with the average density function has the attractive feature that the estimate it

provides of the European value of an option is simply the average of the terminal payoffs:
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Proposition 2: Using the average density function, each L(T, j) is identically equal to 1. Conse-

quently, the mesh estimate of a European option price is

1
b

b∑
i=1

h(T, XT (j)),

and each XT (j) has the distribution of ST .

Taken together, Propositions 1 and 2 show that judicious choice of mesh density can have an

enormous impact on the performance of the method.

Using the average density method to generate the mesh can be interpreted in the following

way. Suppose that from each of the mesh nodes Xt−1(j), j = 1, . . . , b, we generate exactly one

successor Xt(j) from the underlying transition density f(t − 1, Xt−1(j), ·). If we then draw a value

randomly and uniformly from {Xt(1), . . . , Xt(b)}, the value drawn is distributed according to the

average density g(t, ·) in (18), conditional on {Xt−1(1), . . . , Xt−1(b)}. Using the average density is

thus equivalent to generating b independent paths of the underlying and then “forgetting” which

nodes were on which paths.

Taking this observation one step further leads to the following implementation: simulate b

independent paths (X0(i), . . . , XT (i)), i = 1, . . . , b, as in an ordinary simulation and then apply the

weight
f(t − 1, Xt−1(i), Xt(j))

b−1
∑b

k=1 f(t − 1, Xt−1(k), Xt(j))

to the transition from Xt−1(i) on the ith path to Xt(j) on the jth path. These weights define the

mesh; recall equation (6). Since this construction generates exactly one successor from each of the b

transition densities f(t−1, Xt−1(i), ·), i = 1, . . . , b, it may be viewed as a stratified implementation

of the average mesh density. This is the construction we use in our numerical experiments.

The idea of simulating independent paths and then interconnecting them with weights in order

to apply dynamic programming is also implicit in the methods of Longstaff and Schwartz (2001) and

Tsitsiklis and Van Roy (1999); their weights are produced implicitly by a least squares procedure.

Thus, although arrived at by a different argument, those methods may be viewed as stochastic

mesh methods with different choices for weights.

4. Algorithm Enhancements

This section describes enhancements to the basic mesh algorithm that can substantially improve its

efficiency. We first explain the use of control variates with the mesh estimate and then enhancements

to the path estimator.
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Control variates with the mesh estimator

We detail two applications of control variates for improving the mesh estimator. In the first

application, control variates are used to improve the estimates Q̂(t, Xt(i)) of the option value at

each mesh point. These are called the inner controls, because they are applied within each mesh.

We also use control variates to improve the mesh estimates Q(N). These are called the outer

controls because they are applied after the N individual mesh estimates at time t = 0 in state S0

are computed.

We begin by describing the inner controls. From equation (6), the mesh estimate Q̂(t, Xt(i))

depends on the continuation value C(t, i) ≡ E[Q(t + 1, St+1)|St = Xt(i)], which is estimated by

1
b

b∑
j=1

Q̂(t + 1, Xt+1(j))w(t, Xt(i), Xt+1(j)).

Suppose that there is a known formula for v = E[v(t + 1, St+1)|St = Xt(i)] or that an accurate

numerical estimate of v can be obtained very quickly. For example, v could represent the expected

future value of the first underlying asset, E[S1
t+1|St = Xt(i)], or it could represent the value of the

related European option, E[h(t + 1, St+1)|St = Xt(i)]. We can also construct the mesh estimate

of v:

v̂ =
1
b

b∑
j=1

v(t + 1, Xt+1(j))w(t, Xt(i), Xt+1(j)).

By the argument leading to equation (5), it follows that E[v̂] = v. Information about the known

error, v̂ − v, can be used to reduce the unknown error in the estimate of the continuation value.

However, the presence of the weights complicates the procedure. We use the controlled estimator

of the continuation value C(t, i) defined by

1
b

∑b
j=1 Q̂(t + 1, Xt+1(j))w(t, i, j) − β

(
1
b

∑b
j=1 v(t + 1, Xt+1(j))w(t, i, j) − v 1

b

∑b
j=1 w(t, i, j)

)
1
b

∑b
j=1 w(t, i, j)

,

(19)

where the notation w(t, i, j) is short for w(t, Xt(i), Xt+1(j)). This expression can be explained

in several ways. First, note that the term in the numerator,
∑b

j=1 v(t + 1, Xt+1(j))w(t, i, j)/b −
v
∑b

j=1 w(t, i, j)/b has expectation zero. If β is positive, then the estimate of the continuation

value will be decreased if
∑b

j=1 v(t + 1, Xt+1(j))w(t, i, j)/b > v
∑b

j=1 w(t, i, j)/b, and will be in-

creased otherwise. Second, the denominator has expectation one, and if the average of the weights,∑b
j=1 w(t, i, j)/b, is greater than one, the estimate of the continuation value will be deflated by this

amount (or inflated by the corresponding amount if the average is less than one). We choose β to

solve the weighted least-squares problem:

min
α,β

1
b

b∑
j=1

w(t, i, j)
[
Q̂(t + 1, Xt+1(j)) − (α + βv(t + 1, Xt+1(j)))

]2
.
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With this choice for β, it can be shown that the controlled estimator in (19) simplifies to α + βv.7

The outer controls are fairly standard. We use N independent meshes to generate estimates

Q̂(i), i = 1, . . . , N , of the option price, Q = Q(0, S0). Suppose that quantity u = u(0, S0) is known

in closed form or can be quickly computed. For example, u might represent the European option

value E[h(T, ST )]. We then use each mesh to generate unbiased estimates û(i), i = 1, . . . , N , of u,

using, for example, equation (12) or (13). Then we form the controlled estimator of Q:

1
N

N∑
i=1

Q̂(i) − β

(
1
N

N∑
i=1

û(i) − u

)
. (20)

Sometimes it will be useful to use multiple controls, u1, . . . , uK , giving the analogous controlled

estimator:
1
N

N∑
i=1

Q̂(i) −
K∑

k=1

βk

(
1
N

N∑
i=1

û
(i)
k − uk

)
. (21)

The coefficients βk can be estimated by solving a least-squares problem or the equivalent multiple

linear regression problem.

Path estimator enhancements

We briefly describe three techniques that can be used to improve the path estimator: (i) control

variates, (ii) antithetics, and (iii) policy fixing. In determining whether to stop or continue, the path

estimator compares the exercise value h(t, St) with the estimated continuation value Q̂(t, St). The

latter estimate can be improved using inner controls exactly as described for the mesh estimator.

Similarly, outer controls can be used to improve the np independent path estimates in each mesh.

However, since the path estimator stops at a random time, we use controls that stop at the same

random time. The controlled path estimator is given by equation (20) or (21), with Q̂(i) replaced

by q̂(i).

7 In contrast, consider the usual (unweighted) control variate procedure. Suppose we want to estimate E(Y ) and
we know that the random variable X has expectation x. Given a sample (Xj , Yj), j = 1, . . . b, the usual procedure
is to form the controlled estimator

1
b

b∑
j=1

Yj − β

1
b

b∑
j=1

Xj − x

 ,

where β is chosen to solve

min
α,β

1
b

b∑
j=1

[
Yj − (α + βXj

)]2
.

In this case, the controlled estimator simplifies to α + βx. The effectiveness of this procedure depends on the
correlation of X and Y . In the case with weights above, we could follow the usual procedure with the iden-
tification Xj = Q̂(t + 1, Xt+1(j))w(t, i, j) and Yj = v(t + 1, Xt+1(j))w(t, Xt(i), Xt+1(j)). However, the ef-
fectiveness of the procedure depends on the correlation of the weighted products Q̂(t + 1, Xt+1(j))w(t, i, j) and
v(t + 1, Xt+1(j))w(t, Xt(i), Xt+1(j)). It is usually easier to find a control v(t + 1, Xt+1(j)) that is correlated with
Q̂(t + 1, Xt+1(j)), and that is the reason for the procedure described in the text.
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The use of antithetic variates with the path estimator is fairly standard. For each simulated

path S = (S0, S1, . . . , ST ) we also generate an antithetic path S′ = (S′
0, S

′
1, . . . , S

′
T ). For example,

if the original path is driven by standard normal increments, then the antithetic path is driven by

the negative of the normal increments. The two option estimates, which in general involve different

stopping times, are then averaged to give the path estimate. When controls are used, they are

computed in the same way for the antithetic paths. More detailed discussion of the antithetic

technique is given in Boyle, Broadie, and Glasserman (1997).

The path estimator stops at the first time at which the exercise value equals or exceeds the

estimated continuation value, i.e., when h(t, St) ≥ Q̂(t, St). Bias is introduced whenever the esti-

mator stops earlier or later than is optimal. Suppose that we have an easily computed lower bound

P (t, St) on the option price Q(t, St), i.e., Q(t, St) ≥ P (t, St). Then if P (t, St) > h(t, St) it must be

that the optimal decision is to continue. In this case there is no need to even compute Q̂(t, St). This

saves computation time and reduces bias, since there is some possibility that h(t, St) ≥ Q̂(t, St), and

the original path estimator would stop when it is not optimal to do so. We call this enhancement

policy fixing, since it uses the lower bound P (t, St) to set the exercise policy where possible.8

5. Computational Results

In this section we first give numerical examples to illustrate the degree of variance reduction possible

with the estimator enhancements described in the previous section. Then we test the stochastic

mesh method on two types of high-dimensional options. These numerical results illustrate the bias

and convergence results of Theorems 1–4, illustrate the convergence rate of the method, and also

demonstrate the practical viability of the method.

Comparison of mesh estimator variance with two mesh density functions

We illustrate that the theoretical variance build-up described in Proposition 1 has severe practical

implications. We examine the impact of the two different choices for the mesh density functions

in a particular example. We compare the marginal density functions (i.e., g(t, u) = f(t, u), for

t = 1, . . . , T ) with the average density functions (given in equations (17) and (18)). For simplicity,

consider pricing a European call option on a single asset under the usual Black-Scholes assumptions.

That is, the risk-neutral process for the underlying asset St satisfies

dSt = St[(r − δ)dt + σ dzt], (22)

8 We could also use policy fixing to determine when to stop. For example, suppose that we have an easily
computed upper bound P (t, St) on the option price Q(t, St), i.e., Q(t, St) ≤ P (t, St). Then if P (t, St) < h(t, St) it
must be that the optimal decision is to stop. Again, this eliminates the need to compute Q̂(t, St) and it reduces bias
as well. However, in most of our applications, it seems to be difficult to determine easily computed and relatively
tight upper bounds on the option price. A similar policy fixing idea could be applied to the mesh estimator as well.
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where zt is a standard Brownian motion process, r is the riskless interest rate, δ is the dividend rate,

and σ > 0 is the volatility parameter. Under the risk-neutral measure, ln(Sti
/Sti−1) is normally

distributed with mean (r − δ − σ2/2)(ti − ti−1) and variance σ2(ti − ti−1). In the example, we set

r = 3%, δ = 10%, σ = 30%, and S0 = 100.9 The call option payoff is h(T, ST ) = (ST − K)+. With

K = 100 and an expiration of three years, the European option value is 0.777.

Table 1. Comparison of Mesh Estimator Variance with Two Mesh Density Functions

European Estimator Variance American Estimator Variance
Marginal density Average density Marginal density Average density

d function function function function

2 (1.1, 1.5) (0.54, 0.55) (1.1, 2.0) (0.7, 0.7)
4 (3.2, 115.0) (0.54, 0.55) (6.9, 305.4) (0.7, 0.7)
8 (13.2, 540.1) (0.55, 0.55) (93.3, 6366.9) (0.7, 0.7)

16 N/A (0.55, 0.55) N/A (0.8, 0.8)
32 N/A (0.55, 0.55) N/A (1.1, 1.1)
64 N/A (0.55, 0.55) N/A (1.8, 1.8)

128 N/A (0.55, 0.55) N/A (3.0, 3.0)

The call option parameters are r = 3%, δ = 10%, σ = 30%, S0 = 100, K = 100 with an
expiration of Tmat = 3 years. All results are based on a mesh parameter of b = 20. Equal
time steps are used, with exercise opportunities at iTmat/d, i = 0, 1, . . . , d. The variance
is estimated by taking the sample variance of 100,000 independent replications of the mesh
estimators. Because the error in the variance estimates is so large in some cases, the process
was repeated seven times. In the notation (x, y) used in the table, x represents the minimum
and y the maximum of the seven variance estimates.

In order to keep the European option value constant, in Table 1 we fix the maturity of the option

at three years while increasing the number of exercise opportunities, denoted by d in the table.10

Consistent with the insights of Propositions 1 and 2, Table 1 shows that the difference between the

two choices of mesh density functions can be enormous. For the European case, the variance of

the mesh estimator with the marginal density function is too large for practical computations with

d as small as four. The variance with the average density function is independent of d (the only

contribution is from the variance of the payoff function). In the American case, we allow exercise

at each of the time steps iTmat/d, i = 0, . . . , d, with Tmat = 3 years. The variance in the American

case is greater for both mesh density functions. However, the growth in variance with the average

density function is slow enough to be practical for large values of d. In all of the numerical results

that follow, we use the average density function as the mesh density function.

9 A large dividend rate could arise with foreign currency options, where r represents the domestic interest rate
and δ the foreign interest rate.

10 Similar results are obtained if we let both the number of time steps and the maturity increase, as in Proposi-
tion 1.
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Comparison of mesh estimator variance with various inner and outer controls

Control variates can be a powerful tool for reducing estimator variance, but the choice of good

control variates is an art — the best choices are problem specific. In order to illustrate the type

of process one might follow, we pick a particular example and examine several choices for inner

and outer controls. We consider pricing an American call option on the maximum of five as-

sets under the usual Black-Scholes assumptions. The payoff upon exercise of this max-option is

h(t, St) = (max(S1
t , . . . , S5

t ) − K)+. Under the risk-neutral measure asset prices are assumed to

follow correlated geometric Brownian motion processes, i.e.,

dSi
t = Si

t [(r − δi)dt + σi dzi
t], (23)

where zi
t is a standard Brownian motion process and the instantaneous correlation of zi and zj is

ρij . For simplicity, in our numerical results we take δi = δ and ρij = ρ for all i, j = 1, . . . , k and

i �= j. We allow exercise at equally spaced dates.

We test three inner controls and two outer controls. The first inner control we test is

v(1) = E[e−r∆t(Si∗
t+1 − K)+|St = Xt(i)], (24)

where i∗ = argmax{Si
t , i = 1, . . . , 5}. That is, the first control is a European option on a single

asset with a time to maturity of ∆t, and v(1) is easily evaluated using the Black-Scholes formula.

The second inner control we test is

v(2) = E[Si∗
t+1|St = Xt(i)] = Si∗

t e(r−δ)∆t, (25)

where i∗ = argmax{Si
t , i = 1, . . . , 5} as before. The largest underlying asset at the mesh point

Xt(i) is used as the second control. The third inner control is

v(3) = E[e−r∆t(max(Si∗
t+1, S

j∗
t+1) − K)+|St = Xt(i)], (26)

where i∗ = argmax{Si
t , i = 1, . . . , 5} and j∗ = argmax{Si

t , i = 1, . . . , 5, i �= i∗}. Thus, the third

control is a European max-option on two assets with a time to maturity of ∆t. Note that v(3) is

easily evaluated using the formula in Stulz (1982). The first outer control we test is the European

max-option

u(1) = E[e−rT (max(S1
T , . . . , S5

T ) − K)+|S0]. (27)

A formula for this value is given in Johnson (1987). Quasi Monte Carlo methods can be used to

evaluate u(1) quickly and accurately. In particular, we use the low discrepancy Sobol’ sequence

for this purpose. See Boyle, Broadie, and Glasserman (1997) for an overview and Bratley and Fox

(1998) or Press et al. (1992) for implementation details. For the second outer control, u(2), we

replace T by 2T/3 in equation (27). When working backwards through the mesh, we found that

better estimates are obtained by using the inner control as indicated in equation (19) to compute

both the American price estimate Q̂ and the mesh estimates of the outer controls û(1) and û(2).
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Table 2. Comparison of Mesh Estimator Variance with Various Inner and Outer Controls

No Inner Controls Inner + 1 Outer Inner + 2 Outer
S Control 1 2 3 1 2 3 1 2 3

90 3.55 1.22 1.31 0.91 0.17 0.21 0.06 0.08 0.09 0.03
100 5.06 1.85 1.94 1.47 0.24 0.28 0.10 0.10 0.11 0.05
110 6.93 2.53 2.62 2.08 0.35 0.37 0.16 0.14 0.14 0.07

Max-option example with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100,
and three year maturity. The initial vector is S0 = (S, . . . , S), with S = 90, 100, or 110 as indicated in
the table. All results are based on a mesh parameter of b = 100. Equal time steps are used, with exercise
opportunities at t = 0, 1, 2, and 3 years. The variance is estimated by taking the sample variance of
10,000 independent replications of the mesh estimators. Inner controls v(1), v(2), v(3) and outer controls
u(1) and u(2) are defined in the text. Column 2 under the heading “Inner + 1 Outer” refers to using
inner control v(2) together with outer control u(1), column 3 under the heading “Inner + 2 Outer” refers
to using inner control v(3) together with outer controls u(1) and u(2), etc.

The results in Table 2 show that considerable reductions in variance are possible using control

variates. The relative magnitudes of the variances are important for comparing various controls; the

absolute levels are often difficult to interpret. Inner control 3, i.e., v(3), consistently outperforms

inner controls 1 and 2. The best combination tested is inner control 3 together with the two

outer controls. This combination reduces estimator variance by about a factor of 100. Even this

impressive figure understates the true gains in performance, because the inner controls also reduce

estimator bias. Including controls increases computation time, typically by a factor two to three,

but the estimator improvement far outweighs this increased computational effort.

Comparison of path estimator enhancements

We continue with the previous max-option example on five assets to illustrate the process of eval-

uating path estimator enhancements. Based on the previous experiment, we use the inner control

v(3) defined in equation (26) for all path estimator tests. For outer controls, we test the geometric

average control11

w(1) = E[e−cτ (S1
τS2

τ · · ·Sn
τ )(1/n)|S0] = (S1

0S2
0 · Sn

0 )(1/n). (28)

We also test the underlying asset controls

w(2)(i) = E[e(−r+δ)τSi
τ |S0] = Si

0, (29)

11 The constant c which makes equation (28) hold is

c = −r + δ +
n∑

i=1
σ2

i /(2n) +
n∑

i=1

n∑
j=1

σiσjρij/(2n2).
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for i = 1, . . . , n.

Table 3 shows the results using various combinations of outer controls and antithetics. As

before, while it is difficult to interpret the absolute estimator variance levels, the relative differences

in the table show that the path estimator variance can be reduced by a factor of 10 to 20. The

largest gains are achieved by using both types of outer controls in combination with antithetics.

The improvements in variance are easily worth the additional computational effort associated with

the controls and antithetics.

Table 3. Comparison of Path Estimator Variance with Several Variance Reduction Techniques

No Inner Outer Control Antithetic + Outer Control
S Control 1 2 3 1 2 3

90 295 265 149 64 118 61 23
100 375 335 171 67 173 91 25
110 530 469 223 79 190 111 24
Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%,
ρ = 0, K = 100, and three year maturity. The initial vector is S0 = (S, . . . , S),
with S = 90, 100, or 110 as indicated in the table. All results are based on a mesh
parameter of b = 20. Equal time steps are used, with exercise opportunities at t = 0,
1, 2, and 3 years. The variance is estimated by taking the sample variance of 100,000
independent replications of the path estimators. All results use the inner control
v(3). For the outer controls, column 1 refers to the geometric control w(1), column 2
refers to using the five underlying assets as multiple controls, and column 3 refers
to both types of controls.

In order to test the policy fixing technique, we use three easily computed lower bounds on the

continuation value. The first is the trivial nonnegativity bound, i.e., P (t, St)(1) = 0. The second is

the European option value on a single asset with a time to maturity T − t. Thus,

P (2)(t, St) = E[e−r(T−t)(Si∗
T − K)+|St], (30)

where i∗ = argmax{Si
t , i = 1, . . . , 5}. The third is a European max-option on two assets with a

time to maturity of T − t:

P (3)(t, St) = E[e−r(T−t)(max(Si∗
T , Sj∗

T ) − K)+|St], (31)

where i∗ is as before and j∗ = argmax{Si
t , i = 1, . . . , 5, i �= i∗}. The three bounds satisfy

P (1)(t, St) ≤ P (2)(t, St) ≤ P (3)(t, St) ≤ Q(t, St). We first check if P (t, St)(1) ≥ h(t, St). If so,

we know it is optimal to continue. Otherwise we check if P (t, St)(2) ≥ h(t, St). If so, we know it is

optimal to continue, and otherwise we check if P (t, St)(3) ≥ h(t, St). The same numerical results

would be obtained if we simply used to the tightest bound P (t, St)(3). However, the three bounds
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are progressively more difficult to compute, so checking the bounds in order typically saves compu-

tation time. We measured the computation time corresponding to the last column in Table 3 with

and without policy fixing. The computation time ratios were 39%, 58%, and 86%, corresponding

to the rows S = 90, 100, and 110, respectively. In addition to the computation time savings, policy

fixing also reduces the path estimator bias.

Option pricing results

Next we give numerical results with the stochastic mesh method based on two types of options. The

first type is the max-option on five assets described earlier. The second type is the geometric average

option on five assets. The payoff upon exercise of this option is h(t, St) = ((S1
t · · ·S5

t )(1/5) − K)+.

Since this option payoff is different, we use a slightly different set of inner and outer controls.12

Tables 4–6 show five asset max-option results with, respectively, T = 3, 6, and 9 (and thus 4, 7,

and 10 exercise dates including time zero). Since the true values are not known, the pricing errors

must be estimated. In the columns labeled “Estim error” are based on the confidence intervals

defined in (11). The error estimates in the columns labeled “‘Actual’ error” are based on the most

accurate answers, which are obtained with the greatest computational effort. Tables 7 and 8 show

five and seven asset geometric average option results with T = 10 (i.e., 11 exercise dates). We use

this option because the pricing problem can be reduced to a single-asset American option, which

can be priced accurately using a one-dimensional binomial tree.

The initial parameters b, np, and N were chosen so that the bias of the mesh and path

estimators, and the standard errors of the mesh and path estimators were all the same order of

magnitude. In all of the tables, the mesh parameter b and path parameter np doubles from one

row to the next within each panel. Hence the computational effort increases by roughly a factor of

four from one row to the next. The CPU time for the first row (in each panel) of Table 4 is about

25 seconds (on a 266 MHz Pentium II processor). Computation times for each successive row are

1.5, 5.3, 20, 76, 307, and 1217 minutes. Roughly, the first rows can be computed in seconds, the

middle rows in minutes, and the last rows in hours.

Several features are notable in the tables. Most importantly, the method generally gives good

results for a modest amount of computation time and the convergence of the method is apparent

as the effort increases. For example, in the top panel of Table 4 corresponding to S = 90, the

12 For the inner control we use the European geometric average option with a maturity of ∆t. For the mesh
estimator outer controls we also use European geometric average options, one with a maturity of T and one with a
maturity of 3/5T . For the path estimator outer controls we use the same controls w(1) and w(2) as for the max-
option path estimator. For policy fixing with the path estimator, we use P (t, St)(1) = 0 and P (t, St)(2) equal to the
European option of the geometric average with a time to maturity T − t. Easily computed formulas are available
for these European option controls. However, even if they were not available, they can be computed reasonably
quickly using the Sobol’ sequence or another low discrepancy sequence. The numerical results for this option could
be improved with a better choice of controls.
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estimated error decreases from 2.50% in the first row to 0.20% in the seventh row. Throughout

the seven rows, the point estimates vary from 16.438 to 16.481, a difference of only 4.3 cents. So

even though the half-width of the first confidence interval is over forty cents, the true error of the

point estimate appears to be less than two cents. Throughout the tables, the ‘actual’ or true error

is typically much smaller than the estimated error. In the top rows within each panel, the ratio of

estimated to true error is often a factor of 10 or more. This is consistent with the observation that

the intervals are conservative due to estimator bias. The average of the mesh and path estimators

significantly reduces this bias, leading to smaller errors in the point estimates than are suggested

by the confidence intervals.

Regarding the convergence rate, note that the estimated error decreases by about a factor of

two comparing every other row of the tables. Since the work increases by a factor of about four

from one row to the next, the results are consistent with fourth-root convergence. That is, the

convergence appears to be O(work−1/4). In fact, this convergence result is immediate when the

stochastic mesh method is used to price European options. In this case, the decrease in error is

order b−1/2, the usual simulation result. However, the work is quadratic in b, so the O(work−1/4)

convergence result follows.
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Table 4. American Max-Option on Five Assets, T = 3

Path est Std err Mesh est Std err 90% Confidence Point Estim
S0 q of q Q of Q bounds est error “Actual” error

90 15.867 0.038 16.115 0.038 [15.804, 16.177] 15.991 1.17% (−0.16%,−0.03%)
90 15.929 0.036 16.042 0.022 [15.870, 16.078] 15.985 0.65% (−0.19%,−0.06%)
90 15.979 0.022 16.060 0.017 [15.942, 16.089] 16.020 0.46% ( 0.02%, 0.16%)
90 15.986 0.014 16.042 0.010 [15.963, 16.058] 16.014 0.30% (−0.01%, 0.12%)
90 15.997 0.013 16.029 0.007 [15.976, 16.040] 16.013 0.20% (−0.02%, 0.11%)
90 16.012 0.009 16.014 0.005 [15.997, 16.022] 16.013 0.08% (−0.02%, 0.11%)
90 16.003 0.005 16.010 0.003 [15.995, 16.016] 16.006 0.07% (−0.06%, 0.07%)

100 25.092 0.043 25.378 0.049 [25.022, 25.460] 25.235 0.87% (−0.26%,−0.13%)
100 25.208 0.031 25.379 0.030 [25.157, 25.428] 25.294 0.54% (−0.03%, 0.11%)
100 25.216 0.019 25.342 0.020 [25.184, 25.375] 25.279 0.38% (−0.09%, 0.05%)
100 25.256 0.018 25.312 0.012 [25.226, 25.332] 25.284 0.21% (−0.07%, 0.07%)
100 25.248 0.012 25.305 0.010 [25.228, 25.321] 25.277 0.18% (−0.10%, 0.04%)
100 25.275 0.007 25.275 0.007 [25.265, 25.286] 25.275 0.04% (−0.11%, 0.03%)
100 25.274 0.005 25.294 0.005 [25.267, 25.302] 25.284 0.07% (−0.07%, 0.07%)

110 35.449 0.041 35.943 0.056 [35.382, 36.036] 35.696 0.92% (−0.04%, 0.05%)
110 35.618 0.035 35.811 0.040 [35.561, 35.877] 35.715 0.44% ( 0.01%, 0.10%)
110 35.626 0.023 35.757 0.024 [35.588, 35.796] 35.691 0.29% (−0.05%, 0.03%)
110 35.670 0.015 35.743 0.018 [35.645, 35.772] 35.706 0.18% (−0.01%, 0.08%)
110 35.691 0.011 35.711 0.011 [35.673, 35.730] 35.701 0.08% (−0.03%, 0.06%)
110 35.685 0.007 35.696 0.007 [35.673, 35.708] 35.691 0.05% (−0.05%, 0.03%)
110 35.688 0.006 35.701 0.005 [35.679, 35.710] 35.695 0.04% (−0.04%, 0.04%)

Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, and
three year maturity. The initial vector is S0 = (S, . . . , S), with S = 90, 100, or 110 as indicated in the
table. Equal time steps are used, with exercise opportunities at t = 0, 1, 2, and 3 years. The number
of replications is N = 50 for each row. For each panel, the parameters (b, np) are (50, 500), (100, 1000),
(200, 2000), (400, 4000), (800, 8000), (1600, 16000), (3200, 32000) for each of the seven rows, respectively.
The point estimate is (q + Q)/2. The estimated error is (y − x)/2z, where the 90% confidence interval is
represented as [x, y] and the point estimate is z. The “actual” error is ((z − y7)/y7, (z − x7)/x7), where
[x7, y7] represents the best 90% confidence interval from the seventh row of each panel. The European
values are 14.586, 23.052, and 32.685 for S = 90, 100, and 110, respectively.
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Table 5. American Max-Option on Five Assets, T = 6

Path est Std err Mesh est Std err 90% Confidence Point Estim
S0 q of q Q of Q bounds est error “Actual” error

90 16.159 0.049 16.768 0.082 [16.079, 16.903] 16.464 2.50% (−0.25%, 0.16%)
90 16.257 0.029 16.675 0.042 [16.209, 16.744] 16.466 1.62% (−0.24%, 0.17%)
90 16.294 0.022 16.581 0.019 [16.258, 16.612] 16.438 1.08% (−0.41%, 0.00%)
90 16.351 0.016 16.570 0.015 [16.324, 16.595] 16.460 0.82% (−0.27%, 0.13%)
90 16.439 0.012 16.522 0.009 [16.419, 16.536] 16.481 0.36% (−0.15%, 0.26%)
90 16.441 0.010 16.488 0.005 [16.425, 16.496] 16.465 0.22% (−0.24%, 0.16%)
90 16.448 0.006 16.500 0.003 [16.438, 16.505] 16.474 0.20% (−0.19%, 0.22%)

100 25.469 0.046 26.432 0.072 [25.393, 26.550] 25.951 2.23% ( 0.01%, 0.24%)
100 25.686 0.041 26.203 0.042 [25.619, 26.272] 25.945 1.26% (−0.01%, 0.22%)
100 25.761 0.018 26.059 0.022 [25.730, 26.094] 25.910 0.70% (−0.15%, 0.08%)
100 25.807 0.019 25.987 0.016 [25.776, 26.014] 25.897 0.46% (−0.20%, 0.03%)
100 25.873 0.010 25.942 0.012 [25.857, 25.963] 25.908 0.20% (−0.15%, 0.08%)
100 25.894 0.009 25.965 0.007 [25.880, 25.976] 25.930 0.18% (−0.07%, 0.16%)
100 25.900 0.007 25.940 0.005 [25.889, 25.948] 25.920 0.12% (−0.11%, 0.12%)

110 35.927 0.055 37.070 0.106 [35.836, 37.245] 36.499 1.93% (−0.08%, 0.09%)
110 36.190 0.036 36.882 0.062 [36.131, 36.985] 36.536 1.17% ( 0.02%, 0.19%)
110 36.308 0.027 36.726 0.035 [36.263, 36.783] 36.517 0.71% (−0.03%, 0.14%)
110 36.378 0.018 36.574 0.020 [36.349, 36.607] 36.476 0.35% (−0.14%, 0.03%)
110 36.443 0.012 36.566 0.013 [36.423, 36.588] 36.505 0.23% (−0.06%, 0.11%)
110 36.460 0.008 36.532 0.008 [36.446, 36.546] 36.496 0.14% (−0.08%, 0.08%)
110 36.477 0.007 36.517 0.006 [36.466, 36.527] 36.497 0.08% (−0.08%, 0.09%)

Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, and six
year maturity. The initial vector is S0 = (S, . . . , S), with S = 90, 100, or 110 as indicated in the table.
Equal time steps are used, with exercise opportunities at t = 0, 1, . . . , 6 years. The number of replications
is N = 35 for each row. For each panel, the parameters (b, np) are (50, 500), (100, 1000), (200, 2000),
(400, 4000), (800, 8000), (1600, 16000), and (3200, 32000) for each of the seven rows, respectively. The
point estimate is (q + Q)/2. The estimated error is (y − x)/2z, where the 90% confidence interval is
represented as [x, y] and the point estimate is z. The “actual” error is ((z − y7)/y7, (z − x7)/x7), where
[x7, y7] represents the best 90% confidence interval from the seventh row of each panel. The European
values are 14.586, 23.052, and 32.685 for S = 90, 100, and 110, respectively.
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Table 6. American Max-Option on Five Assets, T = 9

Path est Std err Mesh est Std err 90% Confidence Point Estim
S0 q of q Q of Q bounds est error “Actual” error

90 16.094 0.057 18.252 0.290 [16.001, 18.729] 17.173 7.94% ( 2.77%, 3.44%)
90 16.317 0.037 17.220 0.064 [16.256, 17.325] 16.768 3.19% ( 0.35%, 1.00%)
90 16.412 0.020 16.912 0.033 [16.379, 16.966] 16.662 1.76% (−0.29%, 0.36%)
90 16.471 0.019 16.838 0.014 [16.440, 16.861] 16.655 1.27% (−0.33%, 0.32%)
90 16.546 0.014 16.789 0.010 [16.522, 16.806] 16.667 0.85% (−0.26%, 0.39%)
90 16.573 0.010 16.738 0.007 [16.557, 16.748] 16.656 0.58% (−0.32%, 0.33%)
90 16.613 0.007 16.704 0.003 [16.602, 16.710] 16.659 0.32% (−0.31%, 0.34%)

100 25.362 0.050 28.165 0.455 [25.280, 28.913] 26.764 6.79% ( 2.11%, 2.54%)
100 25.675 0.038 26.618 0.062 [25.612, 26.720] 26.146 2.12% (−0.25%, 0.17%)
100 25.887 0.029 26.660 0.062 [25.840, 26.761] 26.274 1.75% ( 0.24%, 0.66%)
100 25.969 0.017 26.333 0.023 [25.941, 26.370] 26.151 0.82% (−0.23%, 0.19%)
100 26.045 0.010 26.266 0.011 [26.029, 26.283] 26.155 0.49% (−0.21%, 0.21%)
100 26.081 0.011 26.195 0.006 [26.063, 26.205] 26.138 0.27% (−0.28%, 0.14%)
100 26.113 0.007 26.204 0.004 [26.101, 26.211] 26.158 0.21% (−0.20%, 0.22%)

110 35.815 0.062 38.040 0.196 [35.713, 38.362] 36.928 3.59% ( 0.23%, 0.57%)
110 36.293 0.042 37.457 0.162 [36.224, 37.723] 36.875 2.03% ( 0.09%, 0.42%)
110 36.370 0.025 37.083 0.033 [36.329, 37.137] 36.727 1.10% (−0.31%, 0.02%)
110 36.575 0.018 36.958 0.023 [36.546, 36.996] 36.767 0.61% (−0.20%, 0.13%)
110 36.654 0.015 36.944 0.011 [36.629, 36.962] 36.799 0.45% (−0.12%, 0.22%)
110 36.694 0.011 36.880 0.008 [36.676, 36.893] 36.787 0.29% (−0.15%, 0.19%)
110 36.731 0.008 36.832 0.006 [36.719, 36.842] 36.782 0.17% (−0.16%, 0.17%)

Max-option with n = 5 assets. The parameters are r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, and nine
year maturity. The initial vector is S0 = (S, . . . , S), with S = 90, 100, or 110 as indicated in the table.
Equal time steps are used, with exercise opportunities at t = 0, 1, . . . , 9 years. The number of replications
is N = 25 for each row. For each panel, the parameters (b, np) are (50, 500), (100, 1000), (200, 2000),
(400, 4000), (800, 8000), (1600, 16000), and (3200, 32000) for each of the seven rows, respectively. The
point estimate is (q + Q)/2. The estimated error is (y − x)/2z, where the 90% confidence interval is
represented as [x, y] and the point estimate is z. The “actual” error is ((z − y7)/y7, (z − x7)/x7), where
[x7, y7] represents the best 90% confidence interval from the seventh row of each panel. The European
values are 14.586, 23.052, and 32.685 for S = 90, 100, and 110, respectively.
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Table 7. American Geometric Average Option on Five Assets, T = 10

Path est Std err Mesh est Std err 90% Confidence Point Estim Actual
S0 q of q Q of Q bounds est error error

90 1.308 0.025 1.582 0.030 [1.266, 1.631] 1.445 12.63% 6.03%
90 1.361 0.021 1.497 0.032 [1.327, 1.550] 1.429 7.79% 4.88%
90 1.353 0.012 1.388 0.005 [1.333, 1.396] 1.370 2.29% 0.57%
90 1.355 0.008 1.392 0.006 [1.342, 1.403] 1.373 2.23% 0.81%
90 1.348 0.007 1.386 0.002 [1.337, 1.389] 1.367 1.93% 0.33%
90 1.362 0.004 1.380 0.001 [1.355, 1.382] 1.371 0.98% 0.66%
90 1.356 0.003 1.375 0.001 [1.351, 1.376] 1.365 0.90% 0.22%

100 4.166 0.035 4.522 0.034 [4.108, 4.577] 4.344 5.40% 1.23%
100 4.258 0.019 4.439 0.017 [4.226, 4.467] 4.348 2.77% 1.34%
100 4.272 0.017 4.392 0.009 [4.244, 4.407] 4.332 1.87% 0.96%
100 4.282 0.015 4.368 0.005 [4.258, 4.376] 4.325 1.37% 0.79%
100 4.267 0.008 4.348 0.003 [4.253, 4.352] 4.308 1.15% 0.39%
100 4.290 0.007 4.320 0.002 [4.279, 4.323] 4.305 0.52% 0.33%
100 4.283 0.004 4.309 0.001 [4.276, 4.311] 4.296 0.40% 0.12%

110 10.156 0.037 10.527 0.036 [10.096, 10.587] 10.341 2.37% 1.28%
110 10.170 0.018 10.401 0.022 [10.140, 10.436] 10.285 1.44% 0.73%
110 10.192 0.013 10.369 0.017 [10.171, 10.396] 10.280 1.10% 0.68%
110 10.193 0.009 10.240 0.013 [10.178, 10.262] 10.216 0.41% 0.05%
110 10.203 0.007 10.252 0.004 [10.191, 10.258] 10.228 0.33% 0.16%
110 10.199 0.004 10.238 0.002 [10.193, 10.242] 10.218 0.24% 0.07%
110 10.208 0.002 10.230 0.002 [10.205, 10.233] 10.219 0.14% 0.08%

Geometric average option with n = 5 assets. The parameters are r = 3%, δ = 5%, σ = 40%, ρ = 0,
K = 100, and one year maturity. The initial vector is S0 = (S, . . . , S), with S = 90, 100, or 110 as
indicated in the table. Equal time steps are used, with exercise opportunities at t = 0, .1, .2, . . . , 1 years.
The number of replications is N = 25 for each row. For each panel, the parameters (b, np) are (50, 500),
(100, 1000), (200, 2000), (400, 4000), (800, 8000), (1600, 16000), and (3200, 32000) for each of the seven
rows in order. The point estimate is (q+Q)/2. The estimated error is (y−x)/2z, where the 90% confidence
interval is represented as [x, y] and the point estimate is z. The actual error is (z − Q)/Q, where Q is the
true value determined from a single asset binomial tree. The European and American values are (1.172,
1.362), (3.445, 4.291), and (7.521, 10.211) corresponding to S = 90, 100, and 110, respectively.
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Table 8. American Geometric Average Option on Seven Assets, T = 10

Path est Std err Mesh est Std err 90% Confidence Point Estim Actual
S0 q of q Q of Q bounds est error error

90 0.728 0.019 0.763 0.044 [0.697, 0.835] 0.745 9.21% −1.99%
90 0.744 0.008 0.762 0.041 [0.731, 0.831] 0.753 6.60% −0.93%
90 0.741 0.009 0.876 0.028 [0.727, 0.922] 0.809 12.01% 6.37%
90 0.756 0.006 0.772 0.017 [0.747, 0.800] 0.764 3.47% 0.46%
90 0.753 0.004 0.789 0.004 [0.747, 0.796] 0.771 3.17% 1.42%
90 0.758 0.002 0.777 0.001 [0.754, 0.779] 0.767 1.60% 0.91%

100 3.159 0.034 3.929 0.140 [3.103, 4.160] 3.544 14.92% 8.38%
100 3.232 0.026 3.447 0.036 [3.190, 3.507] 3.340 4.75% 2.12%
100 3.220 0.010 3.426 0.011 [3.204, 3.444] 3.323 3.62% 1.62%
100 3.250 0.012 3.408 0.016 [3.230, 3.434] 3.329 3.05% 1.80%
100 3.256 0.010 3.361 0.003 [3.239, 3.367] 3.308 1.93% 1.17%
100 3.260 0.006 3.347 0.002 [3.251, 3.350] 3.304 1.50% 1.03%
100 3.264 0.004 3.314 0.001 [3.258, 3.316] 3.289 0.88% 0.58%

110 9.812 0.072 10.324 0.068 [ 9.693, 10.436] 10.068 3.69% 0.68%
110 9.954 0.046 10.093 0.053 [ 9.878, 10.180] 10.023 1.51% 0.23%
110 10.000 0.000 10.065 0.017 [10.000, 10.092] 10.033 0.46% 0.33%
110 10.000 0.000 10.000 0.000 [10.000, 10.000] 10.000 0.00% 0.00%
110 10.000 0.000 10.000 0.000 [10.000, 10.000] 10.000 0.00% 0.00%

Geometric average option with n = 7 assets. The parameters are r = 3%, δ = 5%, σ = 40%, ρ = 0,
K = 100, and one year maturity. The initial vector is S0 = (S, . . . , S), with S = 90, 100, or 110 as
indicated in the table. Equal time steps are used, with exercise opportunities at t = 0, .1, .2, . . . , 1 years.
The number of replications is N = 25 for each row. For each panel, the parameters (b, np) are (50, 500),
(100, 1000), (200, 2000), (400, 4000), (800, 8000), etc., for each of the rows in order. The point estimate
is (q + Q)/2. The estimated error is (y − x)/2z, where the 90% confidence interval is represented as [x, y]
and the point estimate is z. The actual error is (z − Q)/Q, where Q is the true value determined from
a single asset binomial tree. The European and American values are (0.628, 0.761), (2.419, 3.270), and
(6.201, 10.000) corresponding to S = 90, 100, and 110, respectively.
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Comparing the results in Tables 4–6 shows that increasing the number of exercise opportunities

increases estimator error. This is consistent with Table 1. As the problem dimension increases,

Tables 7 and 8 show that the estimator error also increases.

The enormous computational effort required for the last rows of each panel show that this

method is not generally useful for generating extremely accurate pricing results. However, the

stochastic mesh method can easily be parallelized for implementation on multi-processor computers.

Since the estimates are based on N independent meshes, it is straightforward to parallelize these

computations. This can reduce the work by about a factor of N if there are N or more processors

available. Further speedups are possible if the computations within each mesh are parallelized.13

The results from the bottom rows of the tables could then be computed in seconds or minutes

instead of hours.

In order to place these results in some perspective, consider the convergence of the binomial

method. For single asset pricing problems, Leisen and Reimer (1996) show that the binomial method

converges linearly with the number of time steps when applied to European options. Broadie and

Detemple (1996) offer compelling empirical evidence that linear convergence also holds for the

binomial method applied to American options. Since the computational work is quadratic in the

number of time steps, the convergence rate for the binomial method is O(work−1/2). All of the

multi-dimensional generalizations of the binomial method (e.g., Boyle, Evnine, and Gibbs 1989, He

1990, and Kamrad and Ritchken 1991) have work which increases as mn+1, where m is the number

of time steps and n is the number of underlying assets.14 Hence, the convergence rate of the

multi-dimensional binomial method appears to be O(work−1/(n+1)). Similar convergence results

are to be expected for PDE, integral equation, and other methods. Comparing methods based on

convergence rates shows that the stochastic mesh matches the binomial method in dimension n = 3

and it dominates for dimensions n ≥ 4.

6. Conclusions

American-style securities whose value depends on multiple assets or on multiple state variables are

becomingly increasingly common. With this comes a growing need for methods to price and hedge

these securities. Approximation methods have been proposed for some types of high-dimensional

securities. However, no convergent algorithm has been proposed and tested for any general class of

such securities.

In this paper, we propose, analyze, and test the stochastic mesh method for pricing a general

class of high-dimensional pricing problems with a finite number of exercise dates. The compu-

13 Avramidis et al. (2000) report nearly perfect speed-up in parallelizing this method.
14 Storage is another problem when applying the binomial method to high-dimensional problems. Storing all of

the terminal option values requires order mn storage.
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tational effort increases quadratically with the number of mesh points, linearly with the number

of exercise opportunities, and linearly with the problem dimension. We show that the method

converges as the computational effort increases. Numerical results illustrate this convergence and

demonstrate the viability of the method. Practical success of the method depends critically on the

use of effective variance reduction techniques.

An evident limitation of the method is its reliance on explicit knowledge of the transition

density of the underlying state variables. In many cases, the transition density is unknown or

may even fail to exist. In such settings one may consider using a normal or lognormal density as

an approximation. An alternative strategy for selecting mesh weights is proposed and tested in

Broadie, Glasserman, and Ha (2000). That method does not use a transition density but instead

uses information about moments of the underlying state variables or the prices of easily computed

European options.

Another important topic not investigated here is the calculation of price sensitivities for hedg-

ing purposes. The problem of estimating sensitivities in pricing European options by simulation has

been considered in Broadie and Glasserman (1996), and those method are potentially applicable

in the stochastic mesh as well. There are at least two obvious stragies to consider—estimating

sensitivities of the mesh estimator and estimating sensitivities of the path estimator. The second

of these would be the more straightforward and would likely give better results, but this remains a

topic for investigation.
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Appendix

Proof of Theorem 1: The proof is by induction. At the terminal time we have Q̂b(T, x) = h(T, x) =

Q(T, x) for all x. Take as induction hypothesis that E[Q̂b(t + 1, x)] ≥ Q(t + 1, x) for all x. Now we

have

E[Q̂b(t, x)] = E

max

h(t, x),
1
b

b∑
j=1

f(t, x, Xt+1(j))
g(t + 1, Xt+1(j))

Q̂b(t + 1, Xt+1(j))


≥ max

h(t, x), E

1
b

b∑
j=1

f(t, x, Xt+1(j))
g(t + 1, Xt+1(j))

Q̂b(t + 1, Xt+1(j))


= max

(
h(t, x), E

[
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

Q̂b(t + 1, Xt+1(1))
])

= max
(

h(t, x), E
[

f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

E[Q̂b(t + 1, Xt+1(1))|Xt+1(1)]
])

≥ max
(

h(t, x), E
[

f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

Q(t + 1, Xt+1(1))
])

= max (h(t, x), E[Q(t + 1, St+1)|St = x])

= Q(t, x).

The first three steps use the definition of Q̂b, Jensen’s inequality, and the fact that the mesh

points at each time slice are identically distributed. The fourth uses a basic property of conditional

expectations and the fifth uses the induction hypothesis. The sixth step follows from the identity

E

[
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

Q(t + 1, Xt+1(1)
]

=
∫

f(t, x, y)Q(t + 1, y) dy

and the last step follows from the optimality equation (2). ♦

In order to prove Theorem 2, we prove a preliminary lemma (see assumptions 1 and 2 on p. 7).

Lemma 1: For any r ≥ 1, (i) if Assumption (1) holds then E[Q(t, Xt(1))r] < ∞. (ii) If Assumption

(2) holds then supb≥1 E[Q̂b(t1, Xt1(1))r] < ∞.

Proof of Lemma 1: (i) Repeatedly applying the simple bound

Q(t, x) = max(h(t, x), E[Q(t + 1, St+1)|St = x]) ≤ h(t, x) + E[Q(t + 1, St+1)|St = x],

we find that

Q(t, x) ≤ h(t, x) + E[h(t + 1, St+1)|St = x] + · · · + E[h(T, ST )|St = x]. (32)
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Thus, Q(t, Xt(1)) has finite rth moment if each of the terms on the right does; i.e., if∫
E[h(τ, Sτ )|St = x]rg(t, x) dx < ∞.

Applying Jensen’s inequality and then the definition of f(t, ·), we get∫
E[h(τ, Sτ )|St = x]rg(t, x) dx ≤

∫
E[h(τ, Sτ )r|St = x]g(t, x) dx

=
∫

E[h(τ, Sτ )r|St = x]
g(t, x)
f(t, x)

f(t, x) dx

= E

[
h(τ, Sτ )r

(
g(t, St)
f(t, St)

)]
which is finite by hypothesis.

(ii) Paralleling (32), we have

Q̂b(T − k, XT−k(1)) ≤ h(T − k, XT−k(1))+

1
b

b∑
j1=1

f(T − k, XT−k(1), XT−k+1(j1))
g(T − k + 1, XT−k+1(j1)

h(T − k + 1, XT−k+1(j1))

+ · · · +
1
bk

b∑
j1=1

· · ·
b∑

jk=1

f(T − k, XT−k(1), XT−k+1(j1))
g(T − k + 1, XT−k+1(j1))

× · · ·

× f(T − 1, XT−1(jk−1), XT−k(jk))
g(T, XT (jk))

h(T, XT (jk)).

The r-norm E[Q̂b(T − k, XT−k(1))r]1/r is bounded by the sum of the r-norms of the terms on the

right. The mth term on the right is the average of bm−1 terms, each having the same distribution

as R(T − k, T − k + m − 1). The r-norm of each such average is bounded above by the r-norm of

any one of the terms in the average. Thus,

E[Q̂b(T − k, XT−k(1))r]1/r ≤ E[R(T − k, T − k)r]1/r + · · · + E[R(T − k, T )r]1/r.

The right side is independent of b and finite by hypothesis; we conclude that supb≥1 E[Q̂b(T −
k, XT−k(1))r] < ∞. ♦

Proof of Theorem 2: We prove the result by induction, proceeding backwards from the terminal

time. At T there is nothing to prove because Q̂b(T, ·) ≡ h(T, ·) ≡ Q(T, ·) for all b. Take as

induction hypothesis that ‖Q̂b(t + 1, x) − Q(t + 1, x)‖p′′ → 0 for all x, for some p′′ > p. We will

show that this implies ‖Q̂b(t, x) − Q(t, x)‖p′ → 0 for all x, for some p′ > p. Using the fact that

| max(a, b1) − max(a, b2)| ≤ |b1 − b2| for any real numbers a, b1, b2, we get, for any p′ ∈ (p, p′′),

∥∥∥Q̂b(t, x) − Q(t, x)
∥∥∥

p′
≤
∥∥∥∥∥∥1

b

b∑
j=1

f(t, x, Xt+1(j)
g(t + 1, Xt+1(j))

Q̂b(t + 1, Xt+1(j)) − E[Q(t + 1, St+1)|St = x]

∥∥∥∥∥∥
p′

.
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And now by the triangle inequality,∥∥∥Q̂b(t, x) − Q(t, x)
∥∥∥

p′
≤ ∆b + ∆,

where

∆b =

∥∥∥∥∥∥1
b

b∑
j=1

f(t, x, Xt+1(j)
g(t + 1, Xt+1(j))

[Q̂b(t + 1, Xt+1(j)) − Q(t + 1, Xt+1(j))]

∥∥∥∥∥∥
p′

and

∆ =

∥∥∥∥∥∥1
b

b∑
j=1

f(t, x, Xt+1(j))
g(t + 1, Xt+1(j))

Q(t + 1, Xt+1(j)) − E[Q(t + 1, St+1)|St = x]

∥∥∥∥∥∥
p′

.

We analyze these terms in turn. Because the summands appearing in ∆b are identically distributed,

∆b ≤
∥∥∥∥ f(t, x, Xt+1(1)

g(t + 1, Xt+1(1))
[Q̂b(t + 1, Xt+1(1)) − Q(t + 1, Xt+1(1))]

∥∥∥∥
p′

.

Applying Hölder’s inequality to the expression on the right we get, for any q > 1,

∆b ≤
∥∥∥∥( f(t, x, Xt+1(1))

g(t + 1, Xt+1(1))

)∥∥∥∥
qp′
q−1

∥∥∥Q̂b(t + 1, Xt+1(1)) − Q(t + 1, Xt+1(1))
∥∥∥

qp′
.

In particular, we can choose q > 1 to satisfy qp′ < p′′ because p′ < p′′. The first factor on the right

is finite in light of (8) (assumption 3). To show that ∆b → 0 we need to show that the second

factor converges to zero. By the induction hypothesis

E[|Q̂b(t + 1, Xt+1(1)) − Q(t + 1, Xt+1(1))|qp′ |Xt+1(1)] → 0, a.s. (33)

In addition, for ε > 0 small enough that p′′(1 + ε) ≤ r, with r as in the statement of the theorem,

sup
b≥1

E[(E[|Q̂b(t + 1, Xt+1(1)) − Q(t + 1, Xt+1(1))|qp′ |Xt+1(1)])1+ε]

≤ sup
b≥1

E[|Q̂b(t + 1, Xt+1(1)) − Q(t + 1, Xt+1(1))|qp′(1+ε)]

≤ sup
b≥1

E[Q̂b(t + 1, Xt+1(1))r] + E[Q(t + 1, Xt+1(1))r] < ∞,

with the last inequality ensured by Lemma 1. It follows that the sequence in (33) in uniformly

integrable, and therefore that the expectation of the left side of (33) converges to 0:

E[|Q̂b(t + 1, Xt+1(1)) − Q(t + 1, Xt+1(1))|qp′
] → 0,

from which ∆b → 0 follows.
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For the analysis of ∆, first observe that the b summands appearing in the summation in ∆ are

independent and identically distributed with mean

E

[
f(t, x, Xt+1(j))
g(t + 1, Xt+1(j))

Q(t + 1, Xt+1(j))
]

=
∫

f(t, x, y)
g(t + 1, y)

Q(t + 1, y)g(t + 1, y) dy

=
∫

f(t, x, y)Q(t + 1, y) dy

= E[Q(t + 1, St+1)|St = x].

Hence, ∆ → 0 provided that

1
b

b∑
j=1

f(t, x, Xt+1(j))
g(t + 1, Xt+1(j))

Q(t + 1, Xt+1(j))

converges to its expectation in p′-norm as b → ∞. This holds (e.g., Theorem I.4.1 of Gut 1988)

provided the summands have finite p′-norm. By Hölder’s inequality,

E

[(
f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

Q(t + 1, Xt+1(1))
)p′]

≤ E

( f(t, x, Xt+1(1))
g(t + 1, Xt+1(1))

) rp′
r−p′


r−p′
r

E[Q(t + 1, Xt+1(1))r]p
′/r.

The first factor on the right is finite by (8) (assumption 3) and the finiteness of second factor follows

from Lemma 1 (i). ♦

Proof of Theorem 4: We first show that

P (τ̂b �= τ) → 0, (34)

establishing that the mesh exercise time converges in probability to the optimal exercise time. The

two differ only if the mesh policy either exercises prematurely or fails to exercise at τ . Thus,

P (τ̂b �= τ)

≤ P (Q̂b(t, St) ≤ h(t, St) < Q(t, St), for some t = 1, . . . , T − 1) + P (h(τ, Sτ ) < Q̂b(τ, Sτ ))

≤
T−1∑
t=0

P (Q̂b(t, St) ≤ h(t, St) < Q(t, St) or P (Q(t, St) ≤ h(t, St) < Q̂b(t, St)).

Under the hypothesis in the theorem that the “boundary” {x : h(t, x) = Q(t, x)}, t < T , is hit

with probability zero, there exists an ε > 0, almost surely, for which

|h(t, St) − Q(t, St)| > ε, t = 0, 1, . . . , T − 1.
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Using this together with the previous inequality we get

P (τ̂b �= τ) ≤
T−1∑
t=0

P (|Q̂b(t, St) − Q(t, St)| > ε). (35)

Notice that ε depends on the path S = (S0, . . . , ST ) but is independent of the mesh. Because

convergence in p-norm implies convergence in probability, we know from Theorem 2 that

P (|Q̂b(t, St) − Q(t, St)| > ε|S) → 0, a.s., t = 0, 1, . . . , T . (36)

The dominated convergence theorem further implies that

P (|Q̂b(t, St) − Q(t, St)| > ε) → 0, t = 0, 1, . . . , T,

which, together with (35), establishes (34).

Asymptotic unbiasedness now follows:

0 ≤ Q(0, S0) − E[h(τ̂b, Sτ̂b
)] = E[h(τ, Sτ ) − h(τ̂b, Sτ̂b

)]

= E[h(τ, Sτ ) − h(τ̂b, Sτ̂b
); τ̂b �= τ ]

≤ E[h(τ, Sτ ); τ̂b �= τ ]

≤ E[h(τ, Sτ )1+ε]1/(1+ε)P (τ̂b �= τ)ε/(1+ε) → 0;

the last inequality is Hölder’s. ♦

Proof of Proposition 1: To lighten notation, we write Lb(T ) and Lb(T, i) as L(T ) and L(T, i)

respectively. Let c > 1 be the infimum in (14). We will show that

E[L(t + 1)2] ≥ 1
b
(cE[L(t)2] + (b − 1)E[L(t, 1)L(t, 2)]) (37)

E[L(t + 1, 1)L(t + 1, 2)] ≥ 1
b
(E[L(t)2] + (b − 1)E[L(t, 1)L(t, 2)]). (38)

Here and throughout the proof we assume the expectations are finite; if any of them is infinite,

(16) holds trivially. Set

w(t, i, j) =
f(t, Xt(i), Xt+1(j))
g(t + 1, Xt+1(j))

, t = 0, 1, . . . , i, j = 1, . . . , b.

Then

L(t + 1, j) =
1
b

b∑
i=1

L(t, i)w(t, i, j).
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Consequently,

E[L(t + 1)2] =
1
b2 E[(

b∑
i=1

L(t, i)w(t, i, 1))2]

=
1
b
E[L(t)w(t, 1, 1)(

b∑
i=1

L(t, i)w(t, i, 1))]

=
1
b
{E[(L(t)w(t, 1, 1))2] + E[L(t, 1)w(t, 1, 1)

b∑
i=2

L(t, i)w(t, i, 1))]}

=
1
b
{E[(L(t)w(t, 1, 1))2] + (b − 1)E[L(t, 1)w(t, 1, 1)L(t, 2)w(t, 2, 1)]}. (39)

But

E[(L(t)w(t, 1, 1))2] = E[E[(L(t)w(t, 1, 1))2|{Xu(i), u = 0, . . . , t, i = 1, . . . , b}]]

= E[L(t)2E[w(t, 1, 1)2|Xt(1)]]

≥ cE[L(t)2], (40)

by (14), and

E[L(t, 1)w(t, 1, 1)L(t, 2)w(t, 2, 1)]

= E[E[L(t, 1)w(t, 1, 1)L(t, 2)w(t, 2, 1))|{Xu(i), u = 0, . . . , t, i = 1, . . . , b}]]

= E[L(t, 1)L(t, 2)E[w(t, 1, 1)w(t, 2, 1))|Xt(1), Xt(2)]]

≥ E[L(t, 1)L(t, 2)], (41)

by (15). Combining (39), (40), and (41) gives (37). Similarly,

E[L(t + 1, 1)L(t + 1, 2)]

=
1
b2 E[(

b∑
i=1

L(t, i)w(t, i, 1))(
b∑

j=1

L(t, j)w(t, j, 2))]

=
1
b
E[L(t, 1)w(t, 1, 1)(

b∑
j=1

L(t, j)w(t, j, 2))]

=
1
b
{E[L(t, 1)2w(t, 1, 1)w(t, 1, 2)] + (b − 1)E[L(t, 1)L(t, 2)w(t, 1, 1)w(t, 2, 2)]}

=
1
b
{E[(L(t, 1)2w(t, 1, 1)w(t, 1, 2)] + (b − 1)E[L(t, 1)L(t, 2)]}, (42)

where the last step following from the conditional independence of w(t, 1, 1) and w(t, 2, 2) given

{Xu(i), u = 0, . . . , t, i = 1, . . . , b}. Arguing as in (41), we get

E[L(t, 1)2w(t, 1, 1)w(t, 1, 2)] ≥ E[L(t, 1)2]. (43)
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Combining (42) and (43) yields (38).

In vector-matrix notation, (37) and (38) become(
E[L(t + 1)2]

E[L(t + 1, 1)L(t + 1, 2)]

)
≥
(

c
b

b−1
b

1
b

b−1
b

)(
E[L(t)2]

E[L(t, 1)L(t, 2)]

)
,

with the inequality holding componentwise. Combining this with the bounds

E[L(1)2] ≥ c, E[L(1, 1)L(1, 2)] ≥ 1,

and the nonnegativity of the matrix entries, we get(
E[L(t + 1)2]

E[L(t + 1, 1)L(t + 1, 2)]

)
≥
(

ut+1
vt+1

)
≡
(

c
b

b−1
b

1
b

b−1
b

)t(
c
1

)
. (44)

The eigenvalues of the matrix in this inequality are

λ± =
(b + c − 1) ±√(b + 1 − c)2 + 4(c − 1)

2b
,

so both are positive and λ+ is strictly greater than 1. Write (c, 1)′ = a+w+ + a−w− where w±

are eigenvectors with eigvenvalues λ±. It is easy to see that (c, 1)′ itself is not an eigenvector and

therefore that a+ �= 0. Using the fact that E[L(t+1, 1)2] ≥ E[L(t+1, 1)L(t+1, 2)] (since L(t+1, 1)

and L(t + 1, 2) have the same distribution) and taking norms in (44) we get

E[L(t + 1)2] ≥ 1
2

√
u2

t+1 + v2
t+1 ≥ |a+|

2
λt

+.

Since E[L(t + 1)] = 1,

Var[L(t + 1)] ≥ |a+|
2

λt
+ − 1.

By choosing 1 < λ < λ+ and t0 large enough that

a ≡ |a+|
2

(
λ+

λ

)t0

− 1 > 0,

we get (16) for all t ≥ t0. ♦

Proof of Proposition 2: A simple induction argument applied to (13) verifies that L(T, j) ≡ 1

using the average density function. That each XT (j) has the distribution of ST is also proved by

induction: it clearly holds for T = 1; and if the unconditional distribution of each XT−1(j) is that

of ST−1, then the unconditional distribution of each draw from

1
b

b∑
j=1

f(T − 1, XT−1(j), ·)

is that of ST . ♦


