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We develop lower and upper bounds on the prices
of American call and put options wriiten on a
dividend-paying asset. We provide two option
price approximations, one based on the lower
bound (termed LBA) and one based on both
bounds (termed LUBA). The LUBA approxima-
tion bas an average accuracy comparable to a
1,000-step binomial tree with a computation
speed comparable to a 50-step binomial tree. We
introduce a modification of the binomial method
(termed BBSR) that is very simple to implement
and performs remarkably well. We also conduct
a careful large-scale evaluation of many recent
methods for computing American option prices.

A wide variety of traded options are American op-
tions and therefore may be optimally exercised before
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the maturity of the contract. Commodity options, commodity futures
options, call options on dividend-paying stocks, put options on divi-
dend- or nondividend-paying stocks, foreign exchange options, and
index options are examples of contracts for which early exercise may
be optimal. The optimality of early exercise presents considerable
difficulties from a computational viewpoint. Closed form or analyt-
ical solutions are not available to price these American options, so
numerical approximation methods are required.

Our article has two aims. First, we propose new methods for com-
puting lower and upper bounds on American option values. Based
on the bounds, we provide two option price approximations, termed
LBA and LUBA. We also introduce a simple modification of the bi-
nomial method, termed BBSR. Second, we conduct a computational
study to compare many existing American option price approxima-
tion techniques. Methods are compared on the basis of the speed of
computation and the accuracy of the approximation.

Our computational results show that our LUBA approximation,
which uses both lower and upper bound information, has a root mean
squared (RMS) relative error of 0.02% on a sample that represents a
wide range of option parameters. This RMS error is slightly better than
the RMS error of a 1,000-step binomial tree. Furthermore, the LUBA
approximation can be computed as fast as a 50-step binomial tree (or
about 500 times faster than a 1,000-step binomial tree). Our LBA and
LUBA approximations are not dominated in terms of speed and accu-
racy by any of the other methods that we tested. Furthermore, these
two approximations are sufficiently simple that they can be computed
in a spreadsheet.

The valuation of American options on dividend-paying assets is an
important problem in financial economics. Early work focused on the
case of discrete dividends for which analytical solutions can be de-
rived [Geske (1979), Roll (1977), and Whaley (1981)]. When closed
form solutions cannot be derived, numerical methods have been em-
ployed to compute the value of the option and the optimal exercise
boundary. Brennan and Schwartz (1977, 1978) and Schwartz (1977)
introduced finite difference methods and Cox, Ross, and Rubinstein
(1979) introduced the binomial method for the valuation of American
options. These methods discretize both the time and state spaces in
order to approximate the option price. The methods are very easy to
implement and are quite flexible in that they can be easily adapted to
price many nonstandard or exotic options. Analysis and comparison of
these early methods is given in Geske and Shastri (1985). Convergence
of the Brennan and Schwartz method is proved in Jaillet, Lamberton,
and Lapeyre (1990). Convergence of the binomial method for pricing
American options is proved in Amin and Khanna (1994).
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Generalizations of the binomial approach include the multinomial
methods of Boyle (1988), Omberg (1988), Boyle, Evnine, and Gibbs
(1989), and Kamrad and Ritchken (1991). Quasi-analytical solutions
were introduced by Barone-Adesi and Whaley (1987), Geske and
Johnson (1984), and MacMillan (1986). The Geske and Johnson method
gives an exact analytical solution for the American option pricing
problem, but their formula is an infinite series that can only be eval-
uated approximately by numerical methods. The quadratic method
of Barone-Adesi and Whaley (1987) and MacMillan (1986) and the
method of lines of Carr and Faguet (1994) are based on exact solu-
tions to approximations of the option partial differential equation. In
the method of lines the time derivative is replaced by a finite difference
approximation. Geske and Johnson (1984) introduced the method of
Richardson extrapolation to the option pricing problem. Richardson
extrapolation has also been used in Breen (1991), Bunch and John-
son (1992), Carr and Faguet (1994), and Yu (1993). The accelerated
binomial method of Breen (1991) can be viewed as a method of ap-
proximating the Geske and Johnson (1984) option pricing formula.

Kim (1990) and McKean (1965) provide an integral representation
of the option price [see also Carr, Jarrow, and Myneni (1992), Jacka
(1991), and Yu (1993)!]. Their integral formulas express the value of
the American option as the value of the corresponding European op-
tion augmented by the present value of the gains from early exercise.
The gains from early exercise, in turn, depend parametrically on the
optimal exercise boundary, which is the solution of a nonlinear inte-
gral equation subject to a boundary condition. While the option price
has an explicit representation, the exercise boundary is implicitly de-
fined by the integral equation so that a recursive numerical procedure
is required to solve for the exercise boundary and option price.

In the next section of this article we derive a lower bound for the
American call option price based on a capped option with an appro-
priately chosen constant cap. In Section 2 we provide a procedure,
based on the same class of capped options, to compute a uniform
lower bound, denoted L*, on the optimal exercise boundary of the
American call option. In Section 3 we use the integral representation
of the early exercise premium in conjunction with L* to obtain an
upper bound for the theoretical price of the option. Modifications of
the procedures for American put options are given at the end of Sec-
tion 3. Numerical results and comparisons with existing methods are
given in Section 4. Concluding remarks are given in Section 5. Proofs

! A similar integral representation of the value function which arises in a class of stopping time
problems is derived in El Karoui and Karatzas (1991).
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are collected in Appendix A. Some details of the implementation of
various methods are given in Appendix B.

. A Lower Bound on the American Call Option Value

We consider an American call option with maturity 7" and exercise
price K that is written on an underlying asset whose price S satisfies

as; = Sl(r —8)dt + ad Wy, (1)

where W is a standard Brownian motion process. Here r is the rate
of interest, § is the dividend rate, and o is the volatility coefficient
of the asset price, which are all taken to be constant. Throughout
the article, we assume & > 0, unless otherwise noted. The asset price
process [Equation (1)] is represented in its risk-neutral form. Let C;(5;)
denote the value of the American call option, where the parameters 7,
8,0, K, and T are omitted for brevity. The optimal exercise policy can
be described by a nonnegative continuous function of time which we
denote by B*. The optimal policy corresponding to B* is to exercise
at the first time s < 7 such that S; = B} or at maturity if S7 > K.

The main tool used in approximating the American call option
value is a capped call option written on the same asset. If the price
of the underlying asset is S, the payoff of a capped call option is
max(min(S, L) — K, 0), where K is the strike price and L is the cap.
The payoff is the same as a standard option, except that the cap L
limits the maximum possible payoff. The value of a capped call op-
tion with maturity date T, exercise price K, and constant cap L, with
automatic exercise when the underlying asset price hits the cap L, is
given by

GiSn D) = (L= K) [N N o)) + 33" Nedo + 2T = 1/0)]
+ e TNy (L) —o T —1)—N(dy (K)—oT—1)]

— _ 2
_ A-t 2(r=8)/o Le—S(T—t)

x [N(d (L) — oNT — 1) — N(d}t (K) — o/ T — 1)
— Kem" T [N(d[ (L)) — N(dy (K))

— ATV (1) = N ], @
where

1
do = ﬁ[log@'!) — f(T - 1), €)]
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dE(x) = t[:i: log(A;) — log(L) + log(x) + b(T — 1)), (4

1
oT —

b=3—7’+%0’2, f=\/b2+27'0'2, ¢=%(b-—f),
a=31b+f), and A =5/L 6))

The preceding formula for Gi(S;, L) holds for L > max(S§;, K). For
completeness, we define Ci(S;, L) = max(min(S;, L) — K, 0) when
L < max(S;, K).2 In Equation (2), N(-) denotes the cumulative stan-
dard normal distribution function. Although Equation (2) is long, it is
nearly as easy to compute as the Black and Scholes formula [Black
and Scholes (1973)]. Indeed, Equation (2) is simple enough to imple-
ment in a spreadsheet or hand calculator. Note that Equation (2) holds
only for constant caps L, not for arbitrary exercise boundaries.

The preceding formula for C;(S;, L) gives an immediate lower bound
on the value of the American call option C;(S;). Since the policy of
exercising when the asset price reaches the constant cap L is an ad-
missible policy for the American option, C;(S;, L) < Gi(S;) for any L.
Hence a lower bound is still obtained after optimizing over L. That is,
max; C;(S;, L) < Cy(S;). Note that the maximum is achieved for some
L < o0 as long as 8 > 0. Define the optimal solution L(S;) by

L(S)) = argmax C/(S;, ). )
L>5,
Thus
C/(S) = max C(S,, I) < C(S). )

The lower bound in Equation (7) clearly improves over the European
call option value, denoted ¢;(S;). That is, C,’(S,) > ¢(8;) for § > 0,
since ¢;(8;) = limzyo0 Ci(St, L). The lower bound also improves over
the immediate exercise value. This follows by taking L = §;, which
gives

max($; — K, 0) = C/(S, S) < CH(Sy).

The determination of 1(S;) is a simple univariate differentiable op-
timization problem for any given S,.* This problem can be solved

2 Equation (2) is derived in Broadie and Detemple (1995). Option formulas are also available for
capped options with caps that grow at a constant rate. See, for example, Bjerksund and Stensland
(1992), Broadie and Detemple (1995), Chesney (1989), or Omberg (1987).

3 The European call value is ¢,(S5;) = S *TIN(d(K)) — Ke " T N(d(K) — o/T — t), where
d(K) =llog(5,/K) + (r — 8 + 362)(T — 0))/(c /T — 0).

4 A potentially better lower bound could be obtained by optimizing overcaps with a constant
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by any number of methods, from a simple line search to more so-
phisticated algorithms that use derivative information. The derivative
G (S, L)/dL is given in Proposition 2 in Appendix A. Derivative in-
formation is also used to determine a lower bound for the optimal
exercise boundary, as described next.

2. A Lower Bound for the Optimal Exercise Boundary

The procedure relies heavily on the derivative of the capped call op-
tion value with respect to the constant cap L, evaluated as S; ap-
proaches L from below:

3C(S,, L
DL 1) = lim 280 D

8
StL oL ( )

Expressions for dCy(S;, L)/dL and D(L, t) are given in Proposition 2
in Appendix A. Denote by L} the solution to the equation

D(L, t) = 0. )

Note that Equation (9) does not have to be solved recursively. That is,
Equation (9) can be solved for L} without having first solved for L} for
s € (¢, T). Equation (9) represents a simple zero-finding problem that
can be solved easily, for example, using Newton’s method. Derivative
information is often useful in these problems, so dD(Z, ¢)/9L is given
in Proposition 2 in Appendix A.

The idea behind the boundary L* is described next. Suppose one
wishes to approximate B} at some fixed time ¢, without using a recur-
sive procedure. For fixed S} (which we'll assume is below B}), L(S})
is one way to approximate Bf. The exercise boundary I(S}) can be
thought of as the single constant exercise boundary that best approx-
imates B* in the interval [¢, 7]. Since B} is a decreasing function of s,
Bt > I(S!) > B, and B = L(S}) for some t < s < T. One difficulty
is that i(Stl) is probably not a good approximation to B* at time ¢.
However, Z(Stl) is a function of the initial asset price S,l. Choosing a
new asset price S? = L(5}) leads to a new constant exercise bound-
ary 1(S?). Note that £(5?) > I(S}) and B > I(S?) > B}. This process
can be repeated until the iterates i(Sf) converge to some L. Since
the iterates form an increasing sequence that is bounded above by

growth rate. In this case, the cap function can be specified by two parameters, for example, the
starting point and the growth rate. However, because the cap is convex and the optimal exercise
boundary for call options is concave, the improvement in the bound does not appear to be worth
the additional effort and complexity of a two-dimensional optimization.
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Se A
L;=B;

Figure 1 .
Illustration of B*, L*, and L(S,)
The solid line B* is the optimal exercise boundary. The dashed line L* is the approximate

exercise boundary obtained by solving Equation (9). The horizontal dashed line us) =
argmax;, s, Ci(S, L) is the optimal constant exercise boundary at time ¢ corresponding to asset
price S;. The asymptotic values of the boundaries, B} = limr_jjo0 Bf and L} = limr_;e0 L,
coincide and are equal to the optimal exercise boundary for the corresponding perpetual American
option.

B, each successive iterate is closer to B;. The limiting value L} can
be obtained directly by solving Equation (9), that is, the intermediate
iterates L(S}) never have to be computed.

The relationship between B*, L*, and 1(Sy) is illustrated in Figure 1.
At maturity the optimal exercise boundary B* and the approximate
boundary L* coincide. Let B}, = limr_;400 By and L} = limz_spo0 L}
These are the asymptotic values of the boundaries. The boundaries
also coincide for very long times to maturity, that is B}, = L. Figure 1
illustrates By > (s > B3 for §; < Bf. The next theorem summarizes
this comparison of the exercise boundary L* to the optimal boun-
dary B*.

Theorem 1. LetB; denote the optimal exercise boundary for the Amer-
ican call option. Let L} denote the exercise boundary given by the so-
lution to Equation (9). Then

(i) L < Bf
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,
g oo e r
@) TlirtI}OLt = max(aK, K)
b
_bHf gk
b+ f—o?
whereb=8 — r+ 10? and f = V/b* + 2ro? are defined as before.

Gi)  lim If =
T—t1oo

Theorem 1 part (i) says that the approximate exercise boundary
L} lies uniformly below the optimal exercise boundary Bj. Parts (ii)
and (i) show that L} — B} in two limiting cases. Since Bj. =
max((r/8)K, K) [see, e.g., Kim (1990)], part (ii) shows that L}. = Bj.
Similarly, since Bf — K(b+ f)/(b+ f—0?) as T —t 4 oo [again, see
Kim (1990)], part (iii) shows that L} — Bf as T — t 4 oo.

3. An Upper Bound on the American Call Option Value

Consider the class of contracts consisting of a European call option
and a sure flow of payments that are paid at the rate

886" DN (dy(Sy, Bsy s — 1)) — rK N(ds(S;, B, s— 1)) (10)

for s € [¢, T], where

1
dZ(St, BS, S — t) = ﬁ
x[log(8;/Bs) + (r— 8 + 306¥)(s— ], QAD
d3(St1BS1S_t) = dz(St,BS,S_t)_UVS—t, (12)

and By is a nonnegative continuous function of time. Each member of
the class of contracts is parametrized by B. The value of the contract
at time ¢ is

T
Vi(Si, B) = ¢i(S) + f (85, IN(dy(S;, By, s — 1))

s=t

— rKe "TON(ds(S;, Bs, s—t)lds,  (13)

where ¢;(S;) denotes the value at time ¢ of a European call option on
S with strike price K and maturity 7.

The importance of this class of contracts was shown in Carr et al.
(1992) and Kim (1990). The optimal exercise boundary for the Amer-
ican call option is obtained by solving

Vi(B!,B") = B! — K (14)

for BY for all s € [t, T]. Equation (14) is often referred to as the value
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matching condition. The value of the American call option C;(S) is
then given by V;(S;, B¥).

Equation (13), subject to the boundary condition of Equation (14),
can be numerically approximated by a computationally intensive re-
cursive procedure described in Appendix B. We use Equation (13) in
conjunction with L*, the lower bound on the optimal exercise bound-
ary, to obtain an upper bound on the theoretical value of an American
call option.

Theorem 2. Let I* denote the lower bound on the optimal exercise
boundary given by the solution to Equation (9). The value of the Amer-
ican call option C,(S;) is bounded above by the quantity C/(S;) =
Vi(S,, [*). That is,

Ci(S) < CH(Sy). (15)

In practice, the upper bound C/(S;) is computed by approximat-
ing L* at n discrete points in the time interval [, T]. The points are
typically equally spaced throughout the time interval. The intermedi-
ate points on the approximate L* boundary are determined by linear
interpolation. Finally, C*(S;) is computed from Equation (13) taking
B = I*. Thus, computing C*(S;) requires solving Equation (9) # times
(to approximate [*) and performing one numerical integration. Each
of the steps can be done very quickly. In practice, small values of 7,
for example, 7 between 4 and 10, lead to good upper bounds.

The next proposition characterizes the behavior of the bounds in
four limiting cases. It says that the upper and lower bounds become
tight for options approaching maturity, for long dated options, for
deep out-of-the-money options, and deep in-the-money options. It
also says that the bounds become tight for extremely low and high
volatilities, for large dividend rates, and for large interest rates.

Proposition 1. The difference between the upper and lower call op-
tion bounds approaches zero, that is,

CH(S) — Cl(S) 4 0,
when, holding all other parameters fixed, either (i) T—t | 0, (i) T—t 1
oo, (i) §; 1 0, (i) S; 4 o0, (V) o | 0, (vd) o 1t oo, (vil) § 1 oo, or
(viii) r 1 0.
3.1 From bounds to approximations

The bounds in Equations (7) and (15) are used to compute two ap-
proximations to the American call option value. The approximations
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are
C}(S) = A1 C/(S) and
CA(S) = A2 CH(S) + (1 = A CH(S))

for weights ):1 > 1and 0 < ):2 < 1. We use the “hat” notation to
distinguish the true values of A; and A; defined by C;(S;) = A4 C',’(S,)
and CGi(S;) = A, C,I(S,) + (1 — A2)CH(S;). For convenience, we refer to
the approximation based on the lower bound, C}(S;), as LBA. Sim-
ilarly, we sometimes refer to the approximation based on the lower
and upper bounds, C%(S;), as LUBA.

The simple choice of weights A1 = 1and A, = 0.5 usually leads
to good approximations. For example, in a large sample of options,
we never found a value of A; greater than 1.0133. That is, the lower
bound was always within 1.31% of the true option value. However,
the original option parameters, together with information obtained in
the computation of the lower and upper bounds, can be effectively
utilized to quickly compute better weights. We use a weighted re-
gression approach, described in Appendix B, to determine A1 and A,.
Regression techniques have been used in special cases of the Ameri-
can option pricing problem in Johnson (1983) and Kim (1994).

The quality of our bounds and approximations is investigated in
Section 4. Next we show the modifications necessary to bound and
approximate theoretical American put option values.

3.2 Modifications for American put options

The bounds and approximations for call options can be adapted for
put options. Each of the formulas and procedures used for call op-
tions could be rederived for put options. For example, correspond-
ing to the capped call option formula is a similar capped put option
formula. However, a put-call symmetry result for American options,
which holds in the geometric Brownian motion setting, can be used
to avoid this additional effort. McDonald and Schroder (1990) show
that the value of an American call option with parameters S, K, 7, 6,
and T is related to the value of an American put option by

C't(Sta Ka 7, 6, T) = PI(K’ St, 8, 7, T) (16)

[see also Chesney and Gibson (1995)]. That is, an American put price
equals the American call price with the identification of parameters:
S$—> K, K—> 8§, r—> 8§ and§ — r.

The intuition for Equation (16) rests on the duality between the
underlying asset and cash. A call option gives the right to exchange
cash for the asset, while a put option gives the right to exchange the
asset for cash. The symmetry result can also be seen as a variation
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of the international put-call equivalence of Grabbe (1983). The sym-
metry result means that any American call option pricing routine can
be used to price American put options with a simple substitution of
parameters.

Computational Results

In this section we compare several American option pricing methods
on the basis of the speed of computation and the accuracy of the
results over a wide range of option parameters. While speed and ac-
curacy are primary concerns of researchers and practitioners, other
factors can also be important in an option pricing method. These
factors include the economic insights offered by the method, the sim-
plicity of implementation, the ease of adaptability to other types of
options, the availability of derivative information, etc.

The speed and accuracy requirements of a pricing method depend
on the intended application. A trader wishing to price a single option
requires a computation speed on the order of 1 second. However,
dealers or large trading desks may need to price thousands of op-
tions on an hourly basis. Higher accuracy is always better, but not
if economically insignificant price improvements are obtained at an
unacceptable cost in terms of computation time. A simple measure of
economic significance is the tick size (i.e., minimum price fluctuation)
of a contract. For example, some option contracts have tick sizes of
1/8 of a point while others are as little as 1 cent. Generally, option
prices are on the order of $10 (some are less than $1, but few are over
$100), so accuracy on the order of 0.1% (1 cent in $10) is desirable
but clearly not essential in all applications.

In this section we test several existing methods for computing
American option prices. We test the binomial method of Cox, Ross,
and Rubinstein (1979), the version of the trinomial method described
in Kamrad and Ritchken (1991), the quadratic approximation of MacMil-
lan (1986) and Barone-Adesi and Whaley (1987), the two-point Geske
and Johnson (1984) method, the modified two-point Geske and John-
son method of Bunch and Johnson (1992), the accelerated binomial
method of Breen (1991), the method of lines (ML) from Carr and
Faguet (1994), and the integral method of Kim (1990). We test the two
approximations proposed in this article, LBA and LUBA, and also two
simple modifications of the binomial method. The first modification
is the same as the binomial method, except that at the time step just
before option maturity, the Black and Scholes formula replaces the
usual “continuation value.” This method is termed BBS (for binomial
with a Black and Scholes modification). The second modification adds
Richardson extrapolation to the BBS method, and we refer to it as the
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BBSR method. Unlike the accelerated binomial, which extrapolates
based on the number of exercise opportunities, BBSR bases its ex-
trapolation directly on the number of time steps. For algorithms that
require the calculation of the cumulative normal distribution function,
we use the approximation suggested by Moro (1995). Details of the
implementation of several of the methods, including data structures
and pseudocode, are given in Appendix B.

Since true American option values are unknown, how can numer-
ical approximation methods be compared? We solve this problem by
taking a convergent method and computing option values to an error
that is an order of magnitude less than the error in the methods we are
trying to compare. For our results, we use the convergent binomial
method [see Amin and Khanna (1994)] with # = 15,000 as the basis
for comparison. That is, we take values generated by this method to
be the “true” option values. Hence, the “errors” that we report would
not change significantly if we knew the exact option values.

In order to get a preliminary flavor of the results, Tables 1 and
2 give American option values for several methods. The results are
given for call options, but the American put-call symmetry of Mc-
Donald and Schroder (1990) implies identical results for puts after
a renaming of parameters. In particular, the call option results for
r = 0 and § = 0.07 can be more naturally thought of as put option
results for § = 0 and » = 0.07. The results in Tables 1 and 2 sug-
gest that the lower bound approximation (LBA), the lower and upper
bound approximation (LUBA), and the binomial method with 7z = 300
give fairly accurate results. The accuracy of the quadratic approxima-
tion degrades for longer maturity options, consistent with the finding
in Barone-Adesi and Whaley (1987). The modified Geske and John-
son two-point method appears to be more accurate than the original
Geske and Johnson two-point method. This finding is consistent with
Bunch and Johnson (1992).

The 40 options in Tables 1 and 2 do not represent a large enough
sample to draw any firm conclusions about the methods. The tables
do not give summary information about errors, nor information about
computational speed. More thorough and systematic results concern-
ing the speed-accuracy trade-off of various American option pricing
methods are given in Figures 2 through 8. These figures are based on
average results from nearly 2,500 options determined from a random
distribution of parameters. The probability distribution of call option
parameters is described next.

We chose a distribution of parameters that is a reasonable reflection
of options that are of interest to academics and practitioners. Volatil-
ity, denoted o, is distributed uniformly between 0.1 and 0.6. Time to
maturity is, with probability 0.75, uniform between 0.1 and 1.0 years
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American Option Valuation

and, with probability 0.25, uniform between 1.0 and 5.0 years. We fix
the strike price at K = 100 and take the initial asset price S =  to be
uniform between 70 and 130. Relative errors do not change if § and
K are scaled by the same factor, that is, only the ratio §/K is of inter-
est. The dividend rate § is uniform between 0.0 and 0.10. The riskless
rate r is, with probability 0.8, uniform between 0.0 and 0.10, and with
probability 0.2, equal to 0.0. By American put-call symmetry, the roles
of r and & and the roles of § and K are reversed between puts and
calls. Hence, when we price call options with this distribution of pa-
rameters, we are also pricing put options with a similar distribution. In
particular, the put option dividends are, with probability 0.8, uniform
between 0.0 and 0.10, and with probability 0.2, equal to 0.0. Each
parameter is selected independently of the others.

The main error measure that we report is root mean squared (RMS)
relative error. RMS error is defined by

is the relative error, C; is the “true” option value (estimated by a 15,000-
step binomial tree), and C; is the estimated option value.> To make
relative error meaningful, the summation is taken over options in the
data set satisfying C; > 0.50. Out of the 2,500 options, 2,271 satisfied
this criterion. For option values less than 50 cents, the RMS absolute
error measure yielded qualitatively similar results.

Computation speed is measured in option prices calculated per sec-
ond. The exact hardware is inconsequential, since only relative speeds
matter.® Care was taken to “tune” the methods as best as possible. That
is, many methods have several choices that affect the speed-accuracy
trade-off. For example, to implement a method that requires the solu-
tion of a nonlinear equation, the programmer must select a solution
algorithm and must set iteration and/or tolerance parameters. Similar
choices are required if the method requires one or more numerical in-
tegrations. Even in the simpler methods, significant computation time
can be saved by eliminating redundant or unnecessary computations.
Some methods take advantage of the computation of a critical stock

The RMS error criterion seems to be very reasonable. Mean absolute error does not penalize large
errors enough. Maximum absolute error penalizes large errors too much. Even so, we obtained
similar qualitative results when we used the mean absolute relative error and maximum relative
error measures.

® The results were computed on a 25-MHz 68040 NeXTstation. The methods were all compared
using the same compiler settings.
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Figure 2
Speed-accuracy trade-off for all observations with true price > 0.50

RMS relative error is defined by \/lm ZZ]((&, — C;)/ Ci)?, where C; is the “true” option value

(estimated by a 15,000 step binomial tree), C; is the approximate option value estimated by the
corresponding numerical method, and m = 2,271 is the number of options satisfying C; > 0.50.
Speed is measured in option prices calculated per second (on a 25-MHz 68040 NeXTstation).
Numbers next to some of the methods indicate the number of time steps. Preferred methods are
in the upper-left corner.

price or boundary. We priced options at five stock values for a given
set of other parameters.

The overall results are given in Figure 2. Because of the extreme
differences in speed and accuracy, the results are plotted on a log-log
scale. Numbers next to the methods indicate the number of time steps.
(These numbers are identical in the later graphs, but are not repeated
for clarity of presentation.) The integral method results are based on
the discretizations 4, 8, and 16, in order of decreasing error and speed.
Figures 3 and 4 break the results down by option maturity, Figures 5
and 6 by S/K (the “moneyness” of the option), and Figures 7 and 8
by option volatility.

Two independent samples of option parameters, both drawn from
the distribution described earlier, were used in the computational
study. The first sample was used to estimate the 5»1 and )22 functions,
while the results in Figures 2 through 8 were computed with the sec-
ond sample. This eliminates the bias that would result from using
the same sample to estimate and test the approximations. However,
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Speed-accuracy trade-off for short maturity options (7 < 1.0) and true price > 0.50
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Speed-accuracy trade-off for long maturity options (7 > 1.0) and true price > 0.50
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Speed-accuracy trade-off for at-the-money options (0.9 < S/K < 1.1) and true price > 0.50
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Figure 6
Speed-accuracy trade-off for in- and out-of-the-money options (S/K < 0.9 or S/K > 1.1)
and true price > 0.50
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the results may still be influenced by the choice of the distribution
of option parameters. A comparison of the results for various subsets
of option parameters provides an indication of the sensitivity of the
results to this choice. Figures 3 through 8 show that the performance
of the LBA and LUBA approximations is fairly consistent across these
subsets. Also, Proposition 1 shows that the LBA and LUBA approxima-
tions converge to the true American option value for extreme parame-
ter values. These observations suggest that the LBA and LUBA results
are not extremely sensitive to the particular distribution of option pa-
rameters. In reality, practitioners could face a different distribution
of option parameters. In this case, the functions A1 and A, could be
reestimated to achieve the best performance.

4.1 Discussion of results

The binomial method is striking in its elegance and simplicity and is
very useful because it is a convergent method. Computation time with
the binomial method is quadratic in the number of time steps. The
binomial method plots as a nearly straight line in Figures 2 through 8,
that is, the binomial error decreases linearly with the number of time
steps. As a result, to get one extra decimal point in RMS accuracy
using the binomial method requires increasing the number of time
steps by a factor of 10, which results in computation time increasing
by a factor of 100.

The quadratic method is by far the fastest method, with an RMS
error of about 0.6% for options with less than 1 year maturity. The
two-point Geske and Johnson methods are dominated by the bino-
mial method. The American option formula given in Geske and John-
son (1984) is an exact representation of the option value in terms of
an infinite series. Evaluation of #™ order terms requires the computa-
tion of n-dimensional cumulative normals. The two-point Geske and
Johnson methods require only the evaluation of bivariate cumulative
normals, which is very reasonable in terms of speed. However, two
exercise points do not capture enough of the early exercise opportu-
nities of American options to give high accuracy.

The accelerated binomial curve in Figure 2 requires explanation.
As the number of time steps increases, the accelerated binomial con-
verges to the three-point Geske and Johnson approximation, not to
the American option value. To have convergence to the American
option value, both the number of time steps () and the number of
exercise points (7) must increase to infinity. In Figure 2, large values
of n, with m fixed at 3, lead to an RMS error of about 0.3%. The
accelerated binomial approximation is faster to compute but less ac-
curate than the binomial for each » (with m = 3). Surprisingly, the
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binomial method dominates the accelerated binomial in the overall
speed-accuracy trade-off.

We tested a variation of the binomial method that is common among
practitioners. In this variation, the result of the binomial method with
n time steps is averaged with the »# 4 1 time step result. The idea is
to take advantage of the well-known oscillatory convergence of the
binomial. In the speed-accuracy figures, this variation plots almost di-
rectly on top of the binomial method. That is, this variation used with
a given value of # and 7+ 1 has the same speed and accuracy as the
original binomial method with a larger value of #. In other words,
this binomial variation has little to recommend. We also tested several
other variations of the binomial method, including Amin (1991), Tri-
georgis (1991), and the binomial method with the parameter choices
described in Hull and White (1988), and the original parameters in
Cox, Ross, and Rubinstein (1979). These methods were all essentially
identical in the speed-accuracy trade-off. Convergence properties and
additional variations of the binomial method are investigated in Leisen
and Reimer (1995).

The trinomial method slightly edges out the binomial method, ex-
cept for long-maturity options. Likewise, the BBS method described
earlier is slightly better than the trinomial method. The binomial Black
and Scholes method with Richardson extrapolation (BBSR) is signifi-
cantly better than the other binomial-type methods. Indeed, the BBSR
method for # = 100 (which extrapolates prices from the # = 50 and
n = 100 BBS results) is about as accurate as the binomial method with
n = 1, 000 and is about 55 times faster. The oscillatory convergence of
the binomial is dampened by the use of the Black and Scholes formula
at the penultimate time step. (See Figures 14 and 15 in Appendix B
for an illustration of this point.) Two-point Richardson extrapolation
is then able to significantly improve the option price estimates. Higher
order Richardson extrapolation does worse than two-point extrapola-
tion in this application.

Our implementation of the integral method appears to be compet-
itive with the binomial method. Because the integral method requires
equation solving and numerical integration, there are many choices
that affect the speed-accuracy trade-off. Yu (1993) implemented the
integral method with a less accurate but quicker step function ap-
proximation for the integrals. Our implementation is slower and more
accurate, and it is not clear which is the better choice.

The method of lines (ML) is a slight improvement over the BBSR
method. The method of lines also uses Richardson extrapolation to
improve its estimates, and this technique is responsible in a large part
for the good results obtained by this method. Although not shown in
the figures, the binomial method dominates the method of lines when
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Richardson extrapolation is not used. The convergence rates of the ML
and BBSR methods appear to be faster than the binomial method, as
shown by the slopes of the lines in Figure 2.

The two approximations developed in this article, LBA and LUBA,
are undominated in the overall speed-accuracy trade-off in Figure 2.
The LUBA method has an accuracy comparable to a 1,000 time step
binomial tree and a speed comparable to a 50 time step tree. This
represents an average error of about 0.02% and a computation speed
on the order of 100 options per second (on a 25-MHz 68040 CPU or
comparable 486-based PO).

Although these results focused on option prices, a similar analysis.
could be done for the “Greeks,” that is, the partial derivatives of the
option prices with respect to the option parameters. For all of the
methods tested, there are straightforward ways to quickly compute
derivatives once the prices have been computed.

. Conclusion

The theoretical values of many European options can be computed by
evaluating a simple formula. The computation of theoretical American
option values is considerably more difficult because of the possibility
of optimal early exercise. In this article, lower and upper bounds on
the theoretical American option value were developed. These bounds
were shown to become tight for extreme values of the parameters.

Based on the bounds, we developed two option value approxi-
mations. LBA, the approximation based on the lower bound, has an
RMS error of about 0.1% on a large range of option parameters, which
is comparable to a 200-step binomial tree. LUBA, the approximation
based on the lower and upper bound, has an RMS error of 0.02%,
which is comparable to a 1,000-step binomial tree. Both methods are
more complicated to implement than the binomial method. However,
they are simple enough that they can be directly implemented in to-
day’s spreadsheets. One drawback of the methods is that they are not
convergent, that is, there is no parameter than can be increased to
give arbitrarily high accuracy. The bounds could be improved, but
the resulting algorithm would likely resemble the integral equation
approach.

We compared many existing American option approximation tech-
niques based on speed and accuracy. The binomial method has stood
the test of time for its combinations of speed and accuracy. In addi-
tion, the binomial method is valuable for its simplicity, elegance, and
adaptability to other options. Among the other methods tested, the
main results are that the LBA, LUBA, ML, and BBSR approximations
are all significant improvements over existing methods. Among these
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four methods, the BBSR method introduced in this article is the sim-
plest to program. The ML method slightly improves over the BBSR
method and is a quite promising approach. The LUBA method intro-
duces a new idea to option price approximation and it is the only
method that also gives tight bounds on the option price.

In principle, the LBA and LUBA methodology developed in this
article based on capped option values can be used to obtain bounds
for other American-style contracts. However, the quality of the bounds
and approximations for other contracts remains to be investigated.

Appendix A

Proof of Theorem 1. (i) Fix time ¢. Without loss of generality, consider
the case where § < r. In this case, B} = (r/8)K. (The case § > r with
B} = K is similar.) Consider some arbitrary asset price S} < (r/8)K.
The value of the capped option with constant cap L is C;(S}, L). Max-
imizing the value of the option with the constraint Z > S} yields the
first-order condition
AG(SL, D)
aL

for L > S} or dC,(S}, )/dL < 0 for L = S}. The first-order condition
admits a solution Z,(S}) such that S} < I,(S!) < B*. The fact that
1,(S}) is bounded above by B follows from Lemma 1 below. Indeed
Lemma 1 implies that for constant boundaries I! and I? such that
I* > I' = B we have G(S;, I*) < C(S;, I'). The optimal strategy,
if one is restricted to a constant exercise barrier, will necessarily lie
below B. Now set S? = I,(S!) and repeat the procedure, that is,
select the cap Z,(S,Z) that maximizes the capped option value when
the asset price is S2. Clearly, S? < L,(S?), for otherwise value is lost.
(The exercise value in the case S? > L,(5?) would be Z,(5?) — K which
is less than S?—K.) By Lemma 1, 1,(5?) < B}. Following this procedure
we construct an increasing sequence Z;(S”) which is bounded above
and therefore converges to a limit Z}. Hence inequality (i) follows.

(i) As t 1 T clearly Lf — max((r/§)K, K).

(iii) Using the analytic expression for D(Z, t) given in Proposition 2,
it can be shown that

b+ 1)

o2

DL, ) — 1— (1-K/L)

as T —t 1 o0. The result follows by solving Equation (9) for that case.
|
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Lemma 1. Supposethat ' and I* are any continuous time-dependent
boundoin‘es satisfying I* > I} > B! foralls € [t, T). Then C/(S;, [%) <
Q(St1 L )

Proof of Lemma 1. Let E; denote the expectation at time ¢ under the
risk-neutral probability measure. Denote the first time that S hits L
by ;, for i = 1, 2. Let the operator x* denote max(x, 0). Then

Ci(Si, IP) = Ele "™ (L2 = K) (<))

+Ele™" T (Sr — K) 1,21y

= E{e7" "y B le "W = K)lir,<ny

+ e " T(Sr — K) M1, yl}

+Ele”" " (Sr — ) 121y lin2 1))

< Et[e_’("_')(Lil — K)lj,<nyl
+Ele”" T 0(Sr — K) Y 1iz,2 1y

= G(S, LY.

The first equality follows from the risk-neutral representation of the
option value with deterministic cap L. The second equality follows
from the law of iterated expectations and from the fact that 1{;,<7)
is measurable relative to information at time 7;. The next inequality
follows from the fact that at time 7; for §;, = L:l > B;"l immediate exer-
cise dominates any waiting strategy. Thus, L} — K > G, (S;,, I%). The
second term on the right-hand side of the inequality also makes use of
the relationship 1{¢,>7}1{r,>7) = l{r,> 7). The last equality follows from
the risk-neutral representation of the option value with deterministic
cap L. .

Proof of Theorem 2. Consider the class of contracts whose value at
time ¢ is given by
T
Vi(St, B) = () +f ®,(Bs, S, s)ds

s=t

where
®/(Bs, Si,8) = 85,7 CTIN(dy(S;, By, s = 1)
— rKe "STON(ds(S;, Bs, s — ).

The functions d, and ds are defined in Equations (11) and (12),
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respectively, and Bs is a continuous function. For each s, consider
®,(x;, S, 5) : RTY > R as a function of x;. It can be verified that
D, (x5, S;, 5) is single peaked with global maximum at x; = (7/8)K,
strictly decreasing for x;, € [(r/8)K,00), and satisfies limy oo
(x5, S;,8) = 0. Recall that the theoretical value of the American
option is V;(S;, B*), where B* solves Equation (14). Since By > L} >
(r/8)K an upper bound for the American option value is obtained
by pointwise maximization of the function ®,(xs, S;, s) over the set
X € [L¥, 00):

T
Vi(St, BY) < ci(S) + | max @,(x;, S, )ds.

s=1t X5 Ls

By the monotonicity property of the function ®,(xs, S, s) for x; >
(r/8)K, the solution to the pointwise maximization problem is x; = LY.
It follows that

T
Vi(Si, BY) < a(S) +/ O,(L, S;, 8)ds
§:

=t

= Ctu(St). u

Proof of Proposition 1. A sketch of the proof for each of the cases
is provided. Details of each step can be checked directly using the
functional forms for each quantity.

D AsT—t|0,L; — B} Also C/(S) = c¢(Sy). Note that ¢(5;) —
max(S, — K,0) as T — t | 0. Similarly, C'(S;) = c/(S;) as T —t | 0.
Combining these straightforward results gives C//(S;) — C,’(S,) J 0as
T—1t}0.

(iD) For a perpetual call option, the optimal exercise boundary is
B = K(b+ f)/(b+ f—0?). For any t and any S;, the optimal solution
to max; C;(S;, L) is achieved at I(S;) = K(b+ f)/(b+ f — ¢2). Since
L(Sy) is independent of S;, it follows that I* = I(S;) and therefore
I* = B* and CX(S) = Gi(S,, I*) = Ci(S) = C/(S). Hence, CH(S;) —
Cl(S) L 0as T—1t1 oo

(i) As S; | 0, both C/(S) — <¢(S;) and C,’(S,) — (8. (Also
i (8;) = 0as & | 0.) Hence, CH*(S;) — C,’(S,) J0assS; | 0.

(iv) As S; 1 o0, both C/(S5;) — S;— K and C,’(S,) — S; — K. Hence,
CH(S)) — Cl(S) L 0as S, 1 oo.

(v) For o | 0, consider two cases: (a) § > r and (b) § < r. For case
(a), the boundaries B* and L* approach the constant K as o | 0. For
S < K,L— Kandfor S, > K, L - 8. Thus, C'(S,) = 0 or C/(S) =
S: — K, respectively. Also, for §; < K, V(S;, L*) = ¢,(S;) — 0. For
S, > K, V(S, [*) > S, — K.
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For case (b), the boundaries B* and L* approach the constant
(r/8)K as o | 0. For §; < (r/§)K, 1— (r/8)K and for S; > (r/8)K,
I — S, Now there are several subcases to consider, depending
on the direction of the inequality between rK/(8S;) and e~®=-n(=9
and between K/S; and e~ ®~"U=9 For example, if S, < (r/8)K
and K/S; > e ¥=NT=D (and hence rK/(8S;) > e ¢=UT=D) then
C’(S,) — 0 and V(S;, L*) — 0. In another subcase, if S; < (r/§)K,
rK/(8S;) > e ¢ NT=D and K/S, < e ¢=T=D then C/(S;) and
V(S;, I*) both approach e 3(7=9s, — Ke "T=0, The other subcases
follow similarly.

(vi) As o 1 00, C/(8) = (L — K)S;/L. Since L — oo, C/(S;) = S;.
Similarly, as o 1 oo,

T
V(S I¥) = c(S) + f 85,66 N ygs

s=t

—8(T=0) _ 5,80 r
t

— Sie = St‘

(vii) and (viii) As § 1 oo or r 1 oo, both CH¥(S;) — 0 and C’(S,)
— 0.

Proposition 2 gives explicit expressions for various partial deriva-
tives of Cy(S;, L).

Proposition 2. Lett =T —t and:; = S;/L. Suppose L > max($;, K).
Letb=48— r+%02 and f = </ b* + 2ro?, as before. Thend Cy(S;, L)/dL
can be written as

aG(S, D) [ (L- 2 | 4 20/02
7 [1 ( )(2¢/ )]K N(do)

4 [1 - (%) (2a/az)] 2217 N (o + 2f T )

26— 0% _ar_81/0?
+ e—sr(—z)xt 2Ar—8)/o

x [N(d;f (L) — 04/T) — N(d; (K) — 0 /7T)]
— o 2 NG (1) — NG (RO

0C(S;, L)/0S can be written as

aC(S;, L) L—-K

2yq 2¢/0%—1
53 [(2¢/07)A; N(do)
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+ Qa/o A" T N(do + 2/ VT /0)]
+ e " IN(d; (L) — 0+/T) = N(dj (K) — 04/7)]
+ 2(r — 8) /e dTA; TR
x [N(d;f (L) — o/T) — N(dff (K) — a/T)]
+ %e—"x,‘z"“”/”z(l —2(r—8)/c?)
x [N(d;f (L)) — N(dj (K))),

D(L, t) can be written as
L-—K
DL, 1) = [1 - (T) (2¢/az)] N(=f/T/o)

+ [1 - (ﬂ) (2a/az>] N(fT/0)

te —5:2(b (e} )[N(dl (L)—Uf)_N(d+(K)_af)]

_ e Zb—K[Maﬁ(z)) — N(dF (K,

and dD(L, t)/0L can be written as

aD(L, t)
aL

= __[2¢/ 2+ @2f/o*)N(fVT/0)]

2¢7" n(df (K) — 0+/7) /(Lo /7)

26K
+ &7 S IN(E (D) = N ().

Proof of Proposition 2. The expression for dC;(S;, L)/dL follows by
taking the partial derivative of Equation (2) and simplifying. Iden-
tities used in the simplification include AZb/ 7 n(d{ (L)) = n(d (1)),
ALY (@ (1)~ 0 JfT) = n(dy (1) =0 D), n(d; (D=0 /Dh =
n(d; (L)e "= 8” n(df (K)e " \K/L = n(di(K) — 04/1),
" n(dy () = n(do)A2¢/d , and e~ n(d; (L) = n(dy + 2f/T/0)
)»f“/ " In the previous identities, 7(-) denotes the density function of a
standard normal random variable. The expression for D(L, t) follows

by taking the limit as S; increases to L. The other expressions follow
similarly using standard calculus. u
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Appendix B

In this appendix we provide details of the implementation of various
American option pricing methods. Although the binomial method is
easy to program, we begin with this method in order to present a
particular implementation that is easily adapted to the accelerated
binomial method and the trinomial method.

B.1 Binomial method

The binomial method was proposed in Cox, Ross, and Rubinstein
(1979) [see also Rendleman and Bartter (1979)]. The parameters that
we use for the binomial procedure are modified from Hull and White
(1988, footnote 4) to account for dividends.

Because a binomial tree with 7 time steps has O(#?) nodes, the
computation time increases as O(#?). Our implementation of the bi-
nomial method uses only O(#) storage. It is not necessary to store
the entire tree in memory; only information related to the current
time step is required. Our implementation computes the stock price
values Sw/d"~/ recursively. This approach uses only multiplications
and hence avoids the use of the more time-consuming power func-
tion. In addition, these 2# stock price values need only be computed
once. The parameters p' and ¢ are the binomial up and down prob-
abilities, respectively, deflated by the discount factor. Adjusting the
probabilities initially means that discounting is done automatically at
each node as part of the present value computation. This saves one
multiplication at each node.

A pseudocode expression of our implementation is given in Fig-
ure 9. The inputs to the routine are the option parameters S, K, 7, r,
and 8, and the binomial time step parameter 7. The output of the rou-
tine is the American call option value C. In order to clarify our routine,
a small binomial tree indicating the indexing of time and stock price
states is given in Figure 10. Our indexing scheme avoids the need for
a separate temporary storage vector. Finally, note that this code will
not be correct for extremely large values of § (which lead to negative
probabilities in the tree).

B.2 Accelerated binomial method

The accelerated binomial method was proposed in Breen (1991). The
main “trick” to an efficient implementation of this method involves the
computation of the binomial formula. We use a simple recursion to
avoid redundant computations. As before, the tree parameters for this
implementation are modified from Hull and White (1988, footnote 4)
to account for dividends.
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/* allocate space */
vectors v[jl,s[j], for j = —ntonbyl;

/* initialize parameters */
At =T/n; rinv=e-"8t; g = ¢-0At: p2 _ 52(p0%At _ 1.
tmp =a?+b%+1; u=(tmp++tmp? -—4a2)/2a);d = 1/u;
p =@-d)/(u-d)q=1-p; p' =r.inv*p;
q’ =rinvxgq; s[0]=S;
for j=1tonbyl;

sljil=slj-11*u;

s[=jl=sl-j+1]1*4d;

end;

/* store option values at time index i = n */
v[j] = max(s[j] - K,0), for j = —n to n by 2;

/* work backwards in time */

for i=n—-1to0by-1;
v[jl=max(p’' xv[j+1]1+q *xv[j—-1],s[jl -K), for j = —itoiby 2;
end;

/* return binomial option value */
C =v[0];

Figure 9

Binomial routine pseudocode

This routine estimates the price of an American call option with input parameters S, K, T, o, r,
and é using # time steps.

The binomial formula involves terms of the form 4; = (7) prigl If

the term &; has already been computed, then the next term b;4; can
be computed using the recursion

n i1 n—j+1lgqg
b= n—j=1,5+1 _ b —— =. 1
™ (f+ 1)’” YT )

These binomial terms only need to be computed once.

Using the notation of Breen (1991), the accelerated binomial re-
quires the computation of P(1), P(2), and P(3). For brevity, we il-
lustrate the computation of P(3) only. Recall P(3) is the option value
allowing exercise at T, 27'/3, and 7'/3 only. The pseudocode for our
computation of P(3) is given in Figure 11. The inputs to the routine
are the option parameters S, K, T, r, and §, and the time step pa-
rameter n. We assume that the routine is called with an integer n
that is divisible by 6. The output of the routine is the value P(3). The
accelerated binomial value is given by the Richardson extrapolation
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> . .
0 1 2 n=3 I (time)
Figure 10
Illustration of the binomial tree for n = 3
Time is indexed i =0, ..., #n. At time i, asset prices are indexed by j = —4, —i+2,...,i—2, 1.

formula € = P(3) + 3.5(P(3) — P(2)) — 0.5(P(2) — P(1)). As before,
the nodes of the tree are indexed as in Figure 10. [This leads to a
slightly different indexing of the binomial terms in our routine below
than indicated in Equation (17)].

Since the main computational effort in this routine involves mul-
tiplication, the work is easily shown to be ~ 7/12#%.7 The work in
the binomial routine is ~ #? (2 multiplications at 7%/2 nodes). Thus
the accelerated binomial is faster than the binomial routine for the
same 7.

B.3 Trinomial method
Trinomial methods have been proposed in Boyle (1988), Kamrad and
Ritchken (1991), Omberg (1988), and Parkinson (1977). We test the

7 The symbol ~ means asymptotic to. The computation of P(1) requires » multiplications, P(2)
requires ~ 7?/4 multiplications (/2 multiplications at 7/2 nodes), and P(3) requires ~ n?/3
multiplications (#/3 multiplications at # nodes). Thus computing C in the accelerated binomial
requires ~ n?/4 + #?/3 multiplications.
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/* allocate space */
vectors v[jl,s[jl, blj1, vtimp[j], for j = —n to n by 2;

/* initialize parameters */
At =T/n; rinv=e"T"T3; g = ¢r-0At; p2 _ 52(p0%At _ 1),
tmp =a?+b?+1; u=(tmp++tmp?-4a2)/(2a); d = 1/u;
v =(a-d)/(u-d)q=1-p; s[0]=S5;
for j=2tonby?2;
s[j] = slj — 21 % u?;
s[=j1=s[-j +2] x d?
end;
/* store option values at time index i = n */
v[j] = max(s[j] - K, 0), for j = —n to n by 2;
/* store binomial terms */
m =n/3; bm] = p™;
for j=1tomby]l;

k=m-2j,
blk] = b[k+2] % (m—j+1)/j) % (q/p);
end;

/* evaluate at time index i = 2n/3 = 2m */

for j=-2mto2mby 2;
vtmpl j1 = sumproduct(b[2k — m],v[2k — m + j],k = 0 to m by 1);
vtmp|j] = max(r_inv x vtmp[ j], s[j] ~ K);
end;

v[j] = vtmp[j], for j = -2m to 2m by 2;

/* evaluate at time indexi =n/3 =m*/

for j = -mtomby2;
vtmp| j] = sumproduct(b[2k - m],v[2k - m + jl,k = 0 to m by 1);
vtmp|j] = max(r.inv x vtmp[j], s[j] - K);
end;

v[j] = vtimplj], for j = —m to m by 2;

/* evaluate at time i = 0 */
vimp|[0] = r_inv x sumproduct(b[k],v[k],k = —m to m by 2);

/* return P(3) value */
P(3) = vtmp|0];

Figure 11
Portion of the accelerated binomial pseudocode
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3
2
2
1 1
1
J
0 0
0 0
-1
-1 -1
D) -2
-3
—»>, .,
0 1 2 n=3 1 (time)
Figure 12
Ilustration of the trinomial tree forn = 3
Time is indexed i =0, ..., n. At time i, asset prices are indexed by j = —4, —i+1,..., i—1,14

Kamrad and Ritchken (1991) version. Our trinomial implementation
follows easily from our binomial implementation. A small trinomial
tree indicating the indexing of time and stock price states is given in
Figure 12. The parameters p,, p,,, and p/, are the trinomial up, middle,
and down probabilities, respectively, deflated by the discount factor.

A pseudocode expression of our implementation is given in Fig-
ure 13. The inputs to the routine are the option parameters S, K, 7,
r, and 8, the time step parameter 7, and the trinomial parameter A
(which we set to 4/3/2). The output of the routine is the American
call option value C. As before, note that this code will not be correct
for extremely large values of § (which lead to negative probabilities
in the tree).

Since the main computational effort in this routine involves multi-
plication, the work is seen to be ~ 3/27? (3 multiplications at 7?/2
nodes). This compares with ~ 7? work for the binomial. So the com-
putational work in the trinomial for large 7 should be comparable
to the work in the binomial for 3/27. In Figure 2, the speed of the
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/* allocate space */
vectors v[jl, s[j], vtimp[j], for j = —-nton by 1;

/* initialize parameters */
A =372 At =T/n; rinv=e74t y = e’“’m;
d =1/u; p=7r-35-30% pu =1/(222) + uV/At/(2A0);
Pm =1=1/A% pg=1-py - pa; Py = r-inv * py;
P =T-INV* pm; py = rinv *x pg; s[0] =S;
for j=1tonbyl;
slil=slj-11*xu;
s[=jl=sl-j+1]xd;
end;

/* store option values at time index i = n */
v[j] = max(s[j] — K,0), for j = —n to n by 2;

/* work backwards in time */
for i=n-1to0by-1;
vtmplj] = max(py, * v[j+ 11 + py, x vLjl + p; *x v[j - 1],s[j] - K),
for j=-itoibyl;
v[j]l = vtmplj], for j = -itoibyl;
end;

/* return trinomial option value */
C =v|[0];

Figure 13
Trinomial routine pseudocode

trinomial for 7 = 400 is close to the binomial speed corresponding to
n = 600.

B.4 Binomial Black and Scholes (BBS) method

The BBS method is identical to the binomial method, except that at the
time step just before option maturity the Black and Scholes formula
replaces the usual “continuation value.” Evaluating the Black and Sc-
holes formula involves more work than computing the continuation
value (which involves two multiplications). However, this additional
work is done only at # nodes, so the work of the BBS method is
still ~ n2. Figure 2 is consistent with this observation. For example,
the speed of the binomial and BBS methods are nearly identical for
n = 600.
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Figure 14

Binomial price versus number of time steps

The put option parameters are S = 100, K = 90, r = 0.05, § = 0, 0 = 0.30, and T = 0.5. The
true price is 3.345. The oscillatory convergence of the binomial is quite evident.

B.5 Binomial Black and Scholes method with Richardson
extrapolation (BBSR)

The BBSR method adds two-point Richardson extrapolation to the
BBS method. For example, the BBSR method computes the BBS price
corresponding to n = 25 (say ;) and n = 50 (say ;) and then
sets the approximate price to C = 2C; — ;. This result is called the
BBSR estimate for # = 50. For an extensive treatment of Richardson
extrapolation see Marchuk and Shaidurov (1983).

To gain some intuition about the advantages of this approach, con-
sider pricing a put option with parameters § = 100, K = 90, » = 0.05,
§ = 0,0 = 030, and T = 0.5. The true value of this option is
3.345. Figure 14 shows the binomial approximation as a function of
the number of time steps #. Likewise, Figure 15 shows how the BBS
approximation varies with the number of time steps. The oscillatory
convergence of the binomial is quite evident in Figure 14. This effect
is considerably dampened in Figure 15.

The effect of the oscillations on Richardson extrapolation is signif-
icant. For example, the binomial values corresponding to # = 6 and
n = 12 are 3.611 and 3.374, respectively. Applying two-point Richard-
son extrapolation gives the estimate 3.136 (an error of —0.209) which
is much worse than the binomial estimate at # = 12 (with an error of
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Figure 15

BBS price versus number of time steps

The put option parameters are S = 100, K = 90, r = 0.05, § = 0, 0 = 0.30, and T = 0.5. The
true price is 3.345. The convergence of the BBS method is considerably smoother compared to
the binomial method.

0.028). The BBS estimates are 3.400 and 3.377 at # = 6 and n = 12,
respectively. Two-point Richardson extrapolation gives the estimate
3.353 (an error of 0.008) which is much better than the BBS estimate
at n = 12 (with an error of 0.031). Of course this example is merely il-
lustrative. The results in Figures 2 through 8 indicate the improvement
of the BBSR method over the BBS method.

B.6 LBA: Approximation based on the lower bound

Next we detail the approach that is used to convert the lower bound
C’(S) to the option value approximation C!(S). The relationship be-
tween the bound and approximation is

c'(8) = 1 (),

where ):1 > 1 is a function of the option parameters S, K, T, r, and §.

In order to define 5»1 = ):1(5, K, T, r, 8), we first define some inter-
mediate variables. Let aVv b = max(a, b) and aA b = min(a, b). Define
xi=T,2% =~T,x=S/K,x =71, % =8, % =min(r/(§V107°), 5),
x = 2, x5 = (C(S) — c(S))/K, % = &%, x10 = C'(S)/c(S). Recall
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¢(S) denotes the European call option value. Then define y; by

= 1.002 x 101° — 1.485 x 107%x; + 6.693 x 10™°x;,
— 1.451 x 107323 — 3.430 x 10224 + 6.301 x 10~ % x5
— 1.954 x 1073x5 + 2.740 x 10~%x — 1.043 x 10 'xz
+5.077 x 107 o — 2.509 x 107 3xy.

Finally, define 1, by

. 1 if C'(S)=c(S) or C(S) <S—K
171 max(y A 1.0133,1) otherwise.

The coefficients in the formula for j; were determined from a re-
gression on approximately 2,500 option values, where the option pa-
rameters were sampled from the distribution described in Section 4.

B.7 LUBA: Approximation based on the lower and upper

bound
Next we detail the regression approach that is used to convert the
lower bound C’(S) and upper bound C*(S) to the option value ap-
proximation C%(S). The relationship between the bounds and approx-
imation is

CH(S) = 42C1(8) + (1 = R)C(S),

where 0 < ):2 < 1 is a function of the option parameters S, K, T, 7,
and §.

In order to define iz = ):Z(S, K, T,r38), we first define some
intermediate variables. Let x; = T, x, = /T, X3 = 1, x4 = 9,
ws = min(r/(§ v 107),5), % = x3, 17 = dC(S)/dS, x5 = 5,
X = (CU(S) — c()/K, x10 = x5, X1 = C'(8)/c(S), x12 = (C(S) —
Cl(S))/K, x5 = C*(S)/CI(S), xi4 = S/I, and x;5 = x%. Recall
dC'(8)/ds is defined in Proposition 2. Then define y, by

9y = 8.664 x 107! — 7.668 x 1072x; + 3.092 x 107 x,

—3.356 x 107 a4 1.200 x 1002 — 3.507 x 1025
— 9.755 x 10725 — 7.208 x 107 oy + 6.071 x 10 x5

+ 7.379 x 10M%x% — 4.999 x 10T 20 + 1.148 x 10~ 1oy
—5.037 x 10T x5 — 6.629 x 107 x5
— 4.745 x 107 x4 + 5.995 x 107 5.
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Finally, define A, by

. 1 if C'(S) =c(S) or Cl(S)<S—K
2= max(), A 1,0) otherwise.

The computation of the upper bound is computed approximating
L* at n discrete points in the time interval [0, T]. To compute C2(S),
we use 7 = 8 in the computation of L*. To compute the upper bound
C"(S), we need to evaluate the integral in Equation (13). We do this
using Simpson’s rule with 7 = 8.8 In this way, the evaluations of the
function in the integral in Equation (13) coincide with the computed
values of L*.

The coefficients in the formula for ), were determined from a
weighted regression, which is described next. Suppose we want to
solve the optimization problem min )_[(C? — C;)/ C)?. Applying the
definitions gives C? — C; = (A — )A\)(C“ C l) So instead of a sim-
ple regression of A on the x-variables, we weight each observation
by (C* — €%/ C;. Intuitively this makes a great deal of sense. If the

lower and upper bounds are close, the value of A does not matter in
the prediction C7. The larger the difference between the bounds, the

more important it is to have an accurate estimate A of A.

The coefficients in the formula for j, were determined from a
weighted regression on approximately 2,500 options, where the pa-
rameters were sampled from the distribution described in Section 4.
As noted earlier, practitioners facing a different distribution of op-
tion parameters could reestimate the function A, to achieve the best
performance.

B.8 Integral equation method

Equation (13), subject to the boundary condition Vs(B;, B*) = Bf — K,
can be numerically approximated by d1scret121ng the time 1nterval
(¢, T]. Denote the time intervals by &, < #; < --- < t, with # = ¢ and
tn = T. We take equally spaced intervals: # = t+ (T — t)i/ n. To solve
for the boundary with # equally spaced increments, denoted B”, first
set BY = max((r/8)K, K). Next solve for By by setting the left- hand
side of Equation (13) to B! — K and usé numerical integration to
evaluate the right-hand side of Equation (13). This nonlinear integral

8 For n =8, Simpson’s rule approximates the integral of f over [, %] by
5
/ SWdt=b/3(fi+4A+ 2L+ 4f+2fi +4F+ 25+ 45 + ),
t:

=l
where b= (& — %)/8.
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0 T t

Figure 16

Hlustration of B!, B'®, and I*

The solid line L* is the approximate exercise boundary obtained by solving Equation (9). The
dashed lines B and B'® are approximations to the exercise boundary obtained with the integral
equation method using 4 and 100 time steps, respectively. Note that B* is not monotonic in the
time to maturity.

equation can be solved for the single unknown B}’ . The boundary
between adjacent points of B” is taken to be lmear Continue this
procedure for i = n—2, ..., 0. This procedure is based on Kim (1990).

This method requires solving # integral equations, where # is the
number of time steps. Like the binomial procedure, this procedure
converges to the American option value as 7 increases to infinity.

Even though the optimal exercise boundary B* is monotonic in the
time to maturity, the discrete implementation of the integral method
need not produce monotonic approximations to the boundary. This
situation is illustrated in Figure 16 for a call option. The parameters
used in Figure 16 are 0 = 0.2, » = 0.08, § = 0.12, K = 100, and
T = 3. For n = 4, B" is not monotonic in the time to maturity.
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