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Abstract

In this paper, we consider American option contracts when the underlying asset has
stochastic dividends and stochastic volatility. We provide a full discussion of the theoret-
ical foundations of American option valuation and exercise boundaries. We show how
they depend on the various sources of uncertainty which drive dividend rates and
volatility, and derive equilibrium asset prices, derivative prices and optimal exercise
boundaries in a general equilibrium model. The theoretical models identify the relevant
factors underlying option prices but yield fairly complex expressions which are difficult to
estimate. We therefore adopt a nonparametric approach in order to investigate the
reduced forms suggested by the theory. Indeed, we use nonparametric methods to
estimate call prices and exercise boundaries conditional on dividends and volatility. Since
the latter is a latent process, we propose several approaches, notably using EGARCH
filtered estimates, implied and historical volatilities. The nonparametric approach allows
us to test whether call prices and exercise decisions are primarily driven by dividends, as
has been advocated by Harvey and Whaley (1992a. Journal of Financial Economics 30,
33-73; 1992b. Journal of Futures Markets 12, 123-137) and Fleming and Whaley (1994.
Journal of Finance 49, 215-236) for the OEX contract, or whether stochastic volatility
complements dividend uncertainty. We find that dividends alone do not account for all
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aspects of option pricing and exercise decisions, suggesting a need to include stochastic
volatility.

JEL classification: C14; C51; D52; G13
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1. Introduction

American option valuation models typically assume (1) a constant dividend
rate and (2) constant volatility. These two critical assumptions are often cited as
restrictive and counter-factual. For the OEX contract, the most widely traded
American-type option written on the S&P100 Stock Index, Harvey and Whaley
(1992a,b) and Fleming and Whaley (1994) underline the importance of the
amount and the timing of dividends. To account for discrete dividend payments
on the S&P100 index portfolio they use a modification of the Cox et al.’s (1979)
binomial method which reduces the index level by the discounted flow of
dividends during the lifetime of the option. Using this approach they show that
ignoring dividends has a significant impact on pricing errors. It is interesting to
note that for European-type options, like the SPX contract on the S&P500
Stock Index, there has been far more interest in studying the stochastic volatility
case.! One may therefore wonder whether it is either stochastic volatility, or
stochastic dividends, or both, which determine American as well as European
options. The purpose of our paper is to address this question. We focus on the
case of American options. The purpose of our paper is to address this question.
We focus on the case of American options but our approach readily applies to
European contracts such as the SPX contract.

We first examine the theoretical foundations of American option pricing and
characterize the exercise boundary assuming stochastic volatility and stochastic
dividend rates.? Then, we test the models empirically to determine whether it is

! See for instance Hull and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987),
Chesney and Scott (1989), Stein and Stein (1991), Heston (1993), among others.

*The early exercise feature of American option contracts considerably complicates their valu-
ation. Even the relatively simple case of an underlying asset with a Geometric Brownian Motion
(GBM) price process and constant dividend rate requires numerical algorithms to value the option
and determine the optimal exercise policy. A whole range of numerical procedures have been
proposed, including finite differences, binomial, multinominal, quasi-analytical, quadratic methods
as well as the method of lines and Richardson extrapolations. A partial list of contributions includes
Brennan and Schwartz (1977), Cox et al. (1979), Geske (1979), Whaley (1981), Geske and Johnson
(1984), Barone-Adesi and Whaley (1987), Boyle (1988), Breen (1991), Yu (1993), Broadie and
Detemple (1996) and Carr and Faguet (1994), among others. For a review of these procedures, see
Broadie and Detemple (1996).
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dividends volatility or both which affect the OEX contract. American option
pricing models with stochastic dividends and volatility are prohibitively com-
plex to conduct a structural econometric analysis. Fortunately, in testing the
impact of dividends and volatility we do not have to handle a fully specified
structural model. Instead, we follow a different approach which bypasses the
computational complexity of the model. This method uses market data, both on
exercise decisions and option prices, and relies on nonparametric statistical
techniques. Let us illustrate this intuitively for the case of the exercise boundary.
Suppose that we have observations on the exercise decisions of investors who
own American options, along with the features of the contracts being exercised.’
The idea is that with enough data, such as ten years of daily observations, we
should be able to gather information about investor’s perceptions of the exercise
boundary and their response to volatility and dividends.* The computation of
exercise boundaries, and in particular the inclusion of stochastic volatility and
dividends in the analysis will be discussed in detail in the paper. The same
approach can also be applied to the pricing of the option, again assuming that
we have data on call and put contracts and their attributes. As noted before, the
latter could apply to American as well as European contracts.

The idea of applying nonparametric methods to option pricing has been
suggested recently in a number of papers, e.g., Abken et al. (1996), Ait-Sahalia
(1996), Ait-Sahalia and Lo (1995), Gouriéroux et al. (1994), Hutchison et al.
(1994), Jackwerth and Rubinstein (1996), Madan and Milne (1994) and Stutzer
(1995). As there are a multitude of nonparametric methods it is no surprise that
the aforementioned papers use different methods. Moreover, they do not ad-
dress the same topics either. Indeed, some aim for nonparametric corrections of
standard (say Black-Scholes) option pricing formulas, others estimate risk-
neutral densities, etc. So far this literature has focused exclusively on European
type options. By studying American options, our paper models both pricing and
exercise strategies via nonparametric methods. In addition, our analysis features
a combination of volatility filtering based on EGARCH models and non-
parametric analysis hitherto not explored in the literature.> This combination

3 Such data are available for the S&P100 Index option or OEX contract, as they are collected by
the Option Clearing Corporation (OCC). Option exercise data have been used in a number of
studies, including Ingersoll (1977), Bodurtha and Courtadon (1986), Overdahl (1988), Dunn and
Eades (1989), Gay et al. (1989), Zivney (1991), French and Maberly (1992) and Diz and Finucane
(1993).

4 Questions as to whether market participants exercise ‘optimally’, regardless of what the model or
assumptions might be, will not be the main focus of our paper although several procedures that we
suggest would create a natural framework to address some of these issues. For the most recent work
on testing market rationality using option exercise data and for a review of the related literature, see
Diz and Finucane (1993).

5In addition to the EGARCH filtered volatilities we will also consider implied volatilities and
historical volatilities.
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has several advantages as it helps to reduce the high dimensionality of non-
parametric methods and is a relatively simple way to introduce conditional
volatility.

In Section 2 of the paper, we provide a rigorous theoretical treatment of
American option pricing with stochastic volatility and stochastic dividends. We
show how option values and exercise boundaries depend on the various sources
of uncertainty in the model. Section 3 is devoted to the nonparametric estima-
tion of American options with stochastic dividends and/or volatility. Formal
tests for the impact of random volatility are presented. We use data on call prices
as well as exercise decisions and study the pricing of options and exercise
decisions assuming random dividends and volatility. Section 4 concludes the
paper. In Appendix A we examine the relationship between the aggregate
dividend process and the equilibrium index value, its volatility, the endogenous
dividend rate and equilibrium interest rate in a general framework with state-
dependent utility. Proofs are contained in Appendix B.

2. American option valuation with stochastic dividends and volatility

Much has been written on the valuation of American options. The earliest
analysis of the subject by McKean (1965) and Van Moerbeke (1976) formulates
the pricing problem as a free boundary problem. A formal justification based on
no-arbitrage arguments for the valuation of an American contingent claim is
provided by Bensoussan (1984) and Karatzas (1988) in the context of a general
market model, in which the underlying asset price follows an It process. It
should not come as a surprise that the distributional properties of the underly-
ing asset price determine those of the exercise boundary. However, in such
a general context, analytical closed-form solutions are typically not available.
The standard approach then specifies a process for the underlying asset price,
generally a Geometric Brownian Motion (GBM), and searches for numerically
efficient algorithms to compute the pricing formula and the exercise boundary.
This particular case is now well understood and its theoretical properties have
been extensively studied by Kim (1990), Jacka (1991), Carr et al. (1992), Myneni
(1992) and Broadie and Detemple (1996).

In this section, we study American options in a more general setting which
allows both for a stochastic dividend yield and stochastic volatility. We consider
a financial market in which the stock price S satisfies

dS, = S{Y, Zo t) — 8(Y,, Z,, )]dt + S[01(Y,, Z,, HdW,,

+ 0:(Yy, Z,, )AWo, + 05(Y,, Z,, t)dW5,], (2.1)
dY, = @'Y, 0)dt + a¥(Y,, )dWy, + ok(Y, )dW,, (2.2)
dZ, = p4(Z,, 0dt + 64 Z,, YdWy, + 6% Z,, )dW,, (2.3)
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for te[0, T] and where Sq, Y, and Z, are given. Here (Y, Z,, t), 6(Y,, Z,, 1),
03(Y,, Z,,t) and 63(Y,, Z,, t) represent the drift and the volatility coefficients of
the stock price process and 8(Y,, Z,, t) is the dividend rate on the stock. These
coefficients depend on time and on the current values of the state variables
Y and Z which satisfy the stochastic differential equations (2.2) and (2.3). Two
state variables are required to model a stochastic dividend yield which is
imperfectly correlated with the volatility coefficients of the stock price process.
We suppose that the coefficients p'(Y,t), 61(Y,,t) and o5(Y, t) which are
functions of (Y, t), and u*(Z,, t), 64(Z,, t), 65(Z,, t) which are functions of (Z,, t)
satisfy standard Lipschitz and growth conditions: this ensures the existence of
a unique solution to (2.2)~(2.3). The processes Wy, W, and W; are independent
Brownian motion processes which represent the uncertainty in the economy.
We also suppose that the interest rate r is constant. As shown in Appendix A,
these assumptions can be supported as the equilibrium outcome in a general
economy with stochastic dividend (level) process and representative agent
with state-dependent utility function. In the remainder of this section, we
operate in the context of this model. In this general economy, the equilibrium
market prices of W;-, W,- and W;-risks are functions of both state variables

Y and Z
0, =6,(Y,Z,1), (24)
05, =0, (2.5)
03, =05(Y,Z,1), (2.6)

which are explicitly related to the characteristics of the underlying dividend
process (see Theorem A.1, Corollary A.1, and model 1 in Appendix A). In this
economy W;-risk is priced since it affects the change in the dividend (level)
process, W,-risk has market price 0 since it is unrelated to dividend (level) risk
and does not affect marginal utility, and finally W;-risk is priced since it affects
marginal utility. The risk neutralized processes for the stock price and the
volatility and dividend rate state variables are given by

ds, = S[r — (Y, Z,, t)]dt + S.[oy(Y,, Z,, ) AW, + oY, Z,, ) W3,
+ 03(Yt9 Zt’ t)dW§1]5 (27)

dY,=[u"(Y, t) — 0(Y,, Z, )o3(Y,, )]dt + 61(Y,, )dW T, + o3(Y,, )dW 4,
(2.8)

dz, = [l‘Z(Zt, 1) —0,(Y,, Z, t)af(Z,, t) — 0x(Y,, Z,, t)o%’(Z,, t)]ds

+ O-{(Zb t)dWTt + O%(Zt’ t)dW§t: (29)
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for te[0, T}, where Sy, Y, and Z, are given, and where W, W% and W% are
Brownian motion processes relative to the equivalent martingale measure Q (i.e.,
the risk-neutral measure).®

The stock price model with stochastic volatility (2.7)~(2.8) is fairly general
since it allows for arbitrary correlation between the volatility process and the
stock price process as well as for a fairly general structure of the drift and
volatility coefficients of the state variable processes Y and Z. We note in
particular that the volatility and the dividend innovations need not be spanned
by the stock price innovations, i.e., the basic model is one in which volatility risk
and dividend risk cannot be hedged away by trading the other securities in the
model (the stock and the bond). In order to price zero net supply contingent
claims, we take a general equilibrium approach [see, e.g., Cox et al. (1985)] in
which the financial market is effectively complete. In this context, the value of
any contingent claim is simply given by its shadow price, i.c., the price at which
the representative agent is content to forgo holding the asset. The equilibrium
risk premium on this claim is therefore the sum of the market prices of W,- and
Wis-risks, each multiplied by the sensitivity of the claim to W,- and W;-risk (see
Theorem A.2 in Appendix A.)

Consider now an American call option contract with maturity date T and
payoff (S — K)™* at the exercise time. Let &1, 71 denote the class of stopping times
taking values in the interval [¢, T]. In our representative agent economy, the
value of this contract C, is the maximum present value that can be achieved over
this set of stopping times,

Co= sup E2[e7"* ", — K)"],t€[0, T], (2.10)

€%

where E? denotes the expectation under the equivalent martingale measure 0.
Standard transformations also yield the early exercise premium representation
for the American call option:

T
C, = CE + EQ [ f eSS, — 1K) [] ds], @.11)
t {s=1t(s)}

where H 4 denotes the indicator function of the set A4, CE is the value of
a European call and 1(¢) is the optimal stopping time in S[¢, T] (i.e., the optimal
exercise time) defined by

©(t) =inf{ve[t, T]: C, = (S, — K)*}. (2.12)

Since the economy under consideration is fully described by the triplet
of processes (S, Y, Z) the option price can be written as C, = CS, Y, Z, ).

% Note that since W ,-risk has market price 0 we have W, = W%,
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Assuming the continuity of the strong solution of (2.1)-(2.3) with respect to the
initial conditions (S, Y, Z, t) implies that the option price is also continuous. The
immediate exercise region & is then a closed set. Let B denote its boundary.
Corollary B.2 in Appendix B shows that & is up-connected with respect to the
stock price. We can then define the (Y, Z, t)-section

B(Y,Z,t)=inf{S: C(S, Y, Z,t) = (S — K)*}
and write the optimal exercise time as
o(t) = inf{ve[t, T): S, = B(Y,, Z,, v)}. (2.13)

The event {s = (s)} equals {S, > B(Y,, Z,, ,)}. Summarizing, we have the fol-
lowing result.

Theorem 2.1. Consider the financial market in which the stock price process is
given by (2.1)-(2.3) and the interest rate is constant. In this economy, the price at
date te[0, T] of an American call option is given by

C(Sb Yt’ Zt’ t) = CE(SI? Yt’ Zt’ t) + H(Sb Yb Zts t7 B( ))’ (214)

where CE denotes the value of a European option with maturity date T and
H(S,, Y, Z,, t, B(*)) denotes the early exercise premium,

T
[16S. Y Z 8, B(-)) = E? U e " TNY, Z, 5)Ss — K] [] dS]-
t {S,2 B(YoZ.s)}
(2.15)
The optimal exercise boundary B satisfies the recursive integral equation

B(Yt’ Zt’ t) - K = CE(B(Yt’ Zb t)’ Yt, Zt, t) + H(B(Yb Zta t), Yta Zt’ t5 B())’
te[0, T, (2.16)

B(Yy, Zy, T) = max{ 2.17)

r
—F K, K.
5(YT9 ZTs T) }

It should parenthetically be noted that the price function in (2.14) is para-
meterized by S, Y, Z, B(+) and K. To simplify notation we use C, = C(S, Y, Z, t)

throughout most of the paper but where necessary we include some of the other
arguments. A useful property of the American option price is given next:

Corollary 2.1. Consider the financial market model with stochastic volatility of
Theorem 2.1. The American option valuation formula is homogeneous of degree one
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in the triple (S, B, K),
C(S,Y,Z,B(), K, t) = KC(S/K, B(*}/K, 1, 1), (2.18)
Jor all te[0, T] and SeR™.

This property is important for the econometric evaluation of the model
discussed in Section 3. The property states that the ratio of the option price over
the exercise price is independent of the absolute level of the stock price (equiva-
lently of the absolute level of the exercise price).

Formulas (2.14)-(2.17) for the American option price can be written more
explicitly using the structure of the underlying asset price processes S and Y.
Solving Eq. (2.7) for the stock price gives

Sv = St exp[f [r - 5(Ys7 Zsa S) - %JI(YS? Zs’ S)2 - %JZ(YS’ Zs’ S)2
t
- %03(1’55 Zs’ S)Z:]ds + J‘ [al(Ysa Zs9 S)dWTs
t

+ JZ(Ysa Zss S)dwfs + 63(Ys5 Zsa S)dwgs]_J’ (219)

for v > t. Substituting this into (2.14)-(2.17) produces a valuation formula for the
American option for a fairly general class of diffusion volatility processes. Once
the optional exercise boundary has been determined this formula can be com-
puted by simulating the paths of the Brownian motion processes W¥, W% and
Wi,

More can be said for the following model with a single state variable Y:

dS, = S[(r — 0)dt + (Y, tNp dW¥ + /1 — p? dBF, (2.20)
dY, = [y (Y, O) — 6" (Y, )p0,(Y,, )]dt + ¢"(Y, )dW#, (2.21)

where & and pe(— 1,1) are constants and W* and B* are independent
Brownian motion processes under Q.7 Let

v 1/2
a, , = l:j o4(Y, u)zdu:l , (2.22)

"The model (2.20)(2.21) can be obtained from (2.7)~(2.9) by taking o} = b,o", o} = byo?,
dWi = (b + b3)~V*[b dWT, + b, dW3] and p = (b2 + b2~ 1/2p,, and eliminating the state vari-
able Z and the Brownian motion W%.
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we o = (ay, v)“Uval(Y, u)dW:r] (2.23)

and

S, 1 1
do(S,, B, a, v) = [Iog(ﬁ) +(Fr—30v—1)+ 2 af.,:| - (2.24)

v, t,v

d(SH Bv’ atvv’ p’ th,u) = dO(Sts Bv’ at,v) +

1
—1—\/—__——/)—2 [PW:I,U - p2at,u]'

(2.25)

1t
J1=p?
With this notation we have

Theorem 2.2. Consider the financial market model (2.20)-(2.21). The price at date
tef0, T] of an American call option is

T
C(St’ Yt’ t) = Et[clla'(st, K, at,T9 p’ wtl,T)] + Etl:f GY(Sts Bva at,w P, er,l))dvjl’
t
(2.26)

where
1
C¥(S, K, a, 1, p, wir) =S, exp[ — 0T —1)— 5 prair + pat,Tth,T:|

X N(d(St’ Ka a5 Ps wtl,T))
— K exp[ — H(T — )N (d(S,, K, a,,7, p, Wi,7)

~ 1= a7 (2.27)

and

1
GY(SI’ Bw at,v) P th,v) = 6St eXp[ - 5(1] - t) - E pzarz,v + pat,uwtl,u]

X N(d(Sta Bw at,w pa wtl,v))
—rK exp[ - T(U - t)] N(d (Sta Bw At v P> th,v)

—J1 = p?a.,) (2.28)

The optimal exercise boundary satisfies the recursive integral equation

B(Y, 1) — K = C{(B(Y, ), Y, 1), (2.29)

B(Ys T) = max{% K, K} (2.30)
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subject to the relevant boundary conditions implied by the limiting behaviour of the
state variable process Y.

Expressions (2.26)-(2.28) for the early exercise premium and the value of the
American option are not closed-form expressions. One expectation with respect
to the trajectories of Y (equivalently, with respect to the trajectories of W*)
remains to be taken. If the optimal exercise surface B(-, -) has been identified,
explicit computation of the option value can be performed by simulating the
path of Y. Such calculations are standard for pricing European-type contracts,
ie., computing the formula for E(C}) where C¥ is given in (2.27) (see references
appearing in the Introduction on this subject). The determination of the exercise
boundary, however, is a nontrivial step in this computation. As (2.29) reveals
it involves solving a recursive integral equation in two dimensions. This diffi-
cult step is bypassed in the nonparametric approach developed in the next
section.

3. Nonparametric methods for American option pricing with stochastic volatility
and dividends

Nonparametric analysis of derivative securities cannot be done entirely with-
out theory. Indeed, the theory has to tell us under what conditions and in
particular which transformations of processes yield stationarity which is re-
quired for proper statistical analysis. Moreover, theoretical models identify the
arguments which may affect the call price and the exercise decisions. This was
precisely the role of the previous section. Indeed, the results in Section 2 showed
that the reduced forms for equilibrium American option prices and exercise
decisions depend in a nontrivial way on two latent state processes Y and Z (see
also Appendix A). They also established that the call price is homogeneous of
degree one in (S, K) under relatively mild regularity conditions (see Corollary
2.1). The main obstacle in testing the model using this parametric specification is
that call prices as well as exercise boundaries under stochastic volatility and
random dividends become fairly complex functions of these state processes.
Indeed, considering a fully specified parametric framework would require the
computation of intricate expressions involving conditional expectations and
identifying the exercise boundary which solves a recursive integral equation.
Complexity is the reason why no attempts were made to compute prices and
exercise decisions under such general conditions. Fortunately the task of deter-
mining whether both stochastic volatility and dividends affect the valuation of
the OEX contract can be accomplished by using nonparametric methods.
Moreover, these also yield a method for pricing calls and exercising contracts
conditional on volatility and dividends. In a first subsection, we describe the
generic specification of the model used in the nonparametric approach. Some of
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the technical issues regarding the nonobservability of volatility are discussed in
a second subsection. The third subsection presents the estimation techniques
and results while the final one is devoted to testing the effect of volatility and
dividends on option valuation.

3.1. The generic reduced-form specification

In the economy of Section 2 and Appendix A two state variables Y and Z
affect the equilibrium call prices and exercise decisions. Therefore T — t periods
before maturity we have the following relations:

(C/K) =3c(S/K)o T — 1, Y, Z), (B/K), =T —t, Y, Zy). G.1)

The functions gz and Je are viewed as the reduced forms of the general
equilibrium specification discussed in the previous section and in Appendix A.
We deleted on purpose all the parameters which help to determine the relations
appearing in (3.1). Indeed, one of the advantages of the nonparametric approach
is that we will not (have to) specify the preference parameters or the stochastic
process for underlying asset.

Since the reduced forms (3.1) involve two undefined and unobservable state
variables, they are of no interest for the econometrician and the practitioner.
Both would prefer a relation which expresses C/K and B/K as functions of
variables having an economic interpretation. Observing the model derived in
Section 2 in its more general formulation, we see that there are mainly two
channels through which Y and Z affect the call price and exercise decisions,
namely (1) the dividend rate 4 and (2) the volatility of the underlying asset price
o (see Theorem 2.1 and Corollary A.1). Therefore we will be interested in
estimating the relationships:

(C/K), = gc(S/K), T — 1,61, 6, (B/K), = gp(T — 1, 6,, 6), (3.2)

where 6, = &Y, Z, t) and o, = o(Y,, Z,, t). Relationship (3.2) is what one could call
an “empirical reduced form” of the option pricing model developed in Section 2.

The idea is that with enough observations on call prices, exercise decisions,
dividends and volatility, we should be able to recover the reduced forms from
the data. However, by being nonparametric in both the formulation of the
theoretical model and its econometric treatment, there are issues we cannot
address.® Nevertheless, the nonparametric approach does achieve the main goal

8 For instance, suppose that in estimating nonparametrically the relations in (3.2) we find that
both ¢ and § affect B/K and C/K. Then from Appendix A we can note that models 1 and 3 are
possible candidates for the true underlying model. Indeed, model 1 is the most general one which
yields o and 6 as functions of Y and Z. Model 3 is more restrictive in the sense that the underlying
economic model restricts é to be a function of Z. Such issues can only be addressed via a fully
specified structural model.

11
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of our econometric analysis, namely to determine whether the volatility and/or
the dividend rate affect the valuation of the contract and the exercise policy. The
models studied so far in the empirical finance literature on American options
have concentrated almost exclusively on the effect of the dividends and impli-
c¢itly assume that there is only one state variable acting through the dividend
rate, see, e.g., Harvey and Whaley (1992a,b) and Fleming and Whaley (1994).
They used a modified Cox-Ross—Rubinstein algorithm, yielding;

(C/K), = §c(S/K) T — 1,0(Y,, 1)), (B/K), = gp(T —t,0(Y,, 1)), (3.3)

where J. and §p are specific functions related to the GBM specification. Even
restricted to the Harvey and Whaley and Fleming and Whaley framework of
a single state variable and time-varying dividends, our nonparametric approach
does not necessarily assume a GBM process. Moreover, it is also worth noting
that the nonparametric methods not only allow us to price contracts, similar to
Harvey and Whaley (1992a,b) and Fleming and Whaley (1994), but also to
compute exercise boundaries conditional on dividends. Finally, within this
framework we can also cover models with stochastic volatility but a single state
variable:

(C/K)t = gC(S/K)t’ T — f, 5(Yt: t)a O-(Yn t))5
(B/K)t = gB(T — 1, 5( Yt: t)5 O-(Yb t))9

such as model 2 in Appendix A and Theorem 2.2 (which includes the implied
binomial tree models of Rubinstein (1994)). In the next subsection, we devote
our attention to the specification of the latent volatility variable process and the
estimation issues associated with it.

3.2. Volatility measurement and estimation issues

We noted in the Introduction that models often encountered in the literature
on European options feature stochastic volatility; see Hull and White (1987),
Johnson and Shanno (1987), Scott (1987), Wiggins (1987), Chesney and Scott
(1989), Stein and Stein (1991), Heston (1993), among others. The results obtained
for European options, and those for American options with stochastic volatility
discussed in Section 2, show that in order to price a call one has to integrate over
a path of future volatilities for the remaining lifetime of the contract.® The first
step will consist of estimating the current volatility state. Since it is a latent

° This distinction between the current state and its future path over the remaining term of the
contract was also important in the case of dividend series. Indeed Harvey and Whaley (1992a,b) and
Fleming and Whaley (1994) reduce the index by the discounted flow of dividends during the lifetime
of the option.
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process we need to extract it from the (return) data. Once those estimated
volatilities are obtained we will estimate nonparametrically their relationship
with the call prices which are assumed to be functions of the expected value of
future volatilities, given current values of the state variables. Obviously, even
with an explicit model for volatility, the computation of this expectation for
European and certainly American-type contracts is extremely challenging. It is
this difficult step which is bypassed here via the use of market data and
nonparametric methods.

In principle, one could filter o, from the data using a sample of observations
on the series S,. We obviously need a parametric model if we were to do this in
an explicit and optimal way. This however would be incompatible with a non-
parametric approach. Hence, we need to proceed somehow without violating
the main results of Section 2 and at the same time without making specific
parametric assumptions. One could consider a nonparametric fit between o, and
(S/K), and past squared returns (log S,_; ~log S,—;_1)%, j = 1,..., L, for some
finite lag L, resulting in the following (L + 2)-dimensional nonparametric fit:

(C/K) = gcl(S/K), T —t, 6, (log S—; — log S,—j—- )% j = 1,2,..., L1,(3.5)
(B/K)t = gB[(S/K)b T — t 515 (log St—j - log St—j— 1)27j = 15 27 tees L]9 (36)

considered for instance by Pagan and Schwert (1990). It is clear that this
approach is rather unappealing as it would typically require a large number of
lags, say L = 20 with daily observations. Hence, we face the typical curse of
dimensionally problem often encountered in nonparametric analysis.'® A more
appealing way to proceed is to summarize the information contained in past
squared returns (possibly the infinite past). We will consider three different
strategies: (a) historical volatilities, (b) EGARCH volatilities and (c) implied
volatilities. Each are discussed in detail in a first subsection. The final subsection
elaborates on nonparametric estimation issues.

3.2.1. Volatility measurement
(a) Historical volatilities: practitioners regularly use the most recent past of the
quadratic variation of § to extract volatility. Typically, these estimates amount

1°The nonparametric estimators of regression functions Y =f(X), where X is a vector of
dimension d, are local smoothers, in the sense that the estimate of fat some point x depends only on
the observations (X, Y;) with X; in a neighborhood A47(x) of x. The so-called curse of dimensionality
captures the fact, if we measure the degree of localness of a smoother by the proportion of
observations (X;, Y;) for which X; is in A4(x), then the smoother becomes less local when d increases,
in the sense that the .47(x) corresponding to a fixed degree of localness loses its neighboring property
as the dimension of X increases. A consequence of this is that unless the sample size increases
drastically, the precision of the estimate deteriorates as we add regressors in f. For more details on
the curse of dimensionality and how to deal with it, see Hastie and Tibshirani (1990), Scott (1992,
Chapter 7) and Silverman (1990, pp. 91-94). We propose here a different approach.
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to a 20 or 30 day average of past squared returns. Such a statistic is obviously
easy to compute, does not involve any parameters and solves in a rather simple
way the curse of dimensionality problem alluded to before. In using historical
volatilities, we replace (Y, Z, t)> by L™ 'Y i ¢ (log S,—; —log S;—;-1)* and
obtain a nonparametric estimation problem similar to that involving dividends.
A slightly more complicated scheme, notably appearing in RiskMetrics™, is to
use the infinite past through an exponentially weighted moving average speci-
fication. This amounts to

6% = 262 | + A1 — Alog S, — 7, 1),

where 7, = (1 — Alog S; + AF,- . Obviously, such a specification involves para-
meter estimation. One can fix 4 at some value, not necessarily obtained via
formal statistical estimation.'! The empirical quantiles of the filtered volatilities
are given in Table 2.

(b) EGARCH volatilities: The ARCH class of models could be viewed as filters
to extract the (continuous time) conditional variance process from discrete time
data. Several papers were devoted to the subject, namely Nelson (1990, 1991,
1992, 1996a,b) and Nelson and Foster (1994,1995) which brought together two
approaches, ARCH and continuous time SV, for modelling time-varying volatil-
ity in financial markets. Nelson’s first contribution in his 1990 paper was to
show that ARCH models, which model volatility as functions of past (squared)
returns, converge weakly to a diffusion process, either a diffusion for log ¢ or
a Constant Flasticity of Variance (CEV) process. In particular, it was shown that
a GARCH (1,1) model observed at finer and finer time intervals
At = h with conditional variance parameters o, = hw, a, = a(h/2)"'* and
By =1 — ofh/2)}? — 6h and conditional mean u, = hca? converges to a diffu-

sion limit
dlog S, = ce? dt + o, dW,, (3.7
do? = (0 — Oc?)dt + 62 dW?. (3.8)

Similarly, it was also shown that a sequence of AR(1)-EGARCH (1, 1) models
converges weakly to an Ornstein-Uhlenbeck diffusion for In o7

dIno? = o — In 62)dt + dW? (3.9)

These basic insights show that the continuous time stochastic difference
equations emerging as diffusion limits of ARCH models were no longer ARCH
but instead SV models. Moreover, the following Nelson (1992), even when
misspecified, ARCH models still keep desirable properties regarding extracting

11 n the case of RiskMetrics™ for daily data, one sets A = 0.94, a value which we retained for our
computations.
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the continuous time volatility. The argument is that for a wide variety of
misspecified ARCH models the difference between the (EG)ARCH volatility
estimates and the true underlying diffusion volatilities converges to zero in
probability as the length of the sampling time interval goes to zero at an
appropriate rate. This powerful argument allows us to use the EGARCH model
as filter which is not necessarily incompatible with the underlying (unspecified)
structural model. Indeed, it is worth noting that setting ¢ = 1 in (3.7) and using
(3.9) yields a stochastic volatility model which falls within the class of processes
described by the equilibrium equation for S in Appendix A.

Volatilities are extracted using the following AR(1)-EGARCH (1, 1) specifica-
tion:

InS;=u+InS,_; +e,.

Ine? =w+ flne?, +yet—1 + B[M— E:|
gy Oi—1 )

The estimation from S&P 100 data is summarized in Table 1, while Table 2
provides a summary of the distribution of extracted volatilities.

(c) Implied volatilities: Last but not least, we can look through the window of
a (modified) Black—Scholes economy pricing formula and compute the implied
volatilities from call prices which are quoted on the market. The computation of
implied volatilities is discussed in Harvey and Whaley (1992a) and Fleming and
Whaley (1994). They do take into account the dividend process. Indeed, they
compute the present value of the dividend stream during the life of the option to
adjust the index and subsequently apply the (constant volatility) Cox-
Ross-Rubinstein algorithm. If there are two state variables we expect that
implied volatilities paired with the observed dividend series reflect the joint
process (Y, Z,). The empirical quantiles of implied volatilities are given in Table 2.

3.2.2. Estimation issues
The purpose of this section is to point out several issues regarding the
nonparametric estimation of

(C/K), = gA(S/K), T — t, 0y, 6,) and (B/K), = gs((S/K),, T —t, 8, 6,),(3.10)

Table 1

EGARCH(1, 1) filtering of the volatility

Parameter Estimate Estimated standard error
u 0.00043 0.00025

@ —0.93279 0.10280

B 0.89609 0.01133

y —0.11361 0.01045

4 0.22466 0.02026
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Table 2
Empirical quantiles of filtered conditional variances (62)

Quantiles Type of volatility extraction
G lZZGARCH 6 l%iskMelricsm & lzmplied

min 0.00005 0.00003 0.00002

5% 0.00006 0.00004 0.00006
25% 0.00008 0.00006 0.00009
50% 0.00010 0.00007 0.00012
75% 0.00013 0.00010 0.00017
95% 0.00023 0.00033 0.00039
max 0.00917 0.00326 0.00364

where o, is now replaced by &, which represents any of the volatility estimations
discussed in the previous section. It is beyond the scope and purpose of this
paper to provide all the technical details. Instead, we will briefly touch on the
issues and provide the relevant references to the literature. The purpose of
applying nonparametric statistical estimation is to recover gq or gg from the
data. This estimation method can only be justified if it applies to a situation
where the regularity conditions for such techniques are satisfied. To discuss this
let us briefly review the context of nonparametric estimation. In general it deals
with the estimation of relations such as

Yi = g(Z,) + U;, i= 1, I (X (311)

where, in the simplest case, (Y, Z)),i=1,...,n) is a family of iid. pairs of
random variables, and E(u|Z) = 0, so that g(z) = E(Y|Z = z). The error terms
u,i=1,..., n are assumed to be independent, while g is a function with certain
smoothness properties which is to be estimated from the data. Several estima-
tion techniques exist, including kernel-based methods, smoothing splines, ortho-
gonal series estimators such as Fourier series, Hermite polynomials and neural
networks, among many others. Most of the applications involving options data
cited in the Introduction involve the use of kernel-based methods. Kernel
smoothers produce an estimate of g at Z = z by giving more weight to observa-
tions (Y;, Z;) with Z; “close” to z. More precisely, the technique introduces a
kernel function, K, which acts as a weighting scheme (it is usually a probability
density function, see Silverman (1986, p. 38)) and a smoothing parameter A which
defines the degree of “closeness” or neighborhood. The most widely used kernel
estimator of g in (3.11) is the Nadaraya-Watson estimator defined by

Yr_ K G5y,
i KED)

g:z) = (3.12)
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so that (§AZ)),..., d:Zn)) = WKQA)Y, where Y =(Y4,...,Y,) and WX is a
n x n matrix with its (i, j)th element equal to

() Ex(5)

WX is called the influence matrix associated with the kernel K. The parameter
A controls the level of neighboring in the following way. For a given kernel
function K and a fixed z, observations (Y;, Z;) with Z; far from z are given more
weight as A increases; this implies that the larger we choose 4, the less §,(z) is
changing with z. In other words, the degree of smoothness of §; increases with 4.
As in parametric estimation techniques, the issue here is to choose K and 7 in
order to obtain the best possible fit. Nonparametric estimation becomes more
complicated when the errors are not i.i.d. Under general conditions, the kernel
estimator remains convergent and asymptotically normal. Only the asymptotic
variance is affected by the correlation of the error terms (see for instance
Ait-Sahalia (1996) on this matter). It is still not clear in the literature what
should be done in this case to avoid over- or undersmoothing.’? The character-
ization of the correlation in the data may be problematic in option price
applications, however. The relevant time scale for the estimation of g is not
calendar time, as in a standard time series context, but rather the time to
expiration of the contracts which are sampled sequentially through the cycle of
emissions. It becomes even more difficult once it is realized that at each time
t several contracts are listed simultaneously and trading may take place only in
a subset of contracts. To choose the bandwith parameter we followed a proced-
ure called generalized cross-validation, described in Craven and Wahba (1979)
and used in the context of option pricing in Broadie et al. (1995).

Another technical matter to deal with is the estimation of reduced forms using
implied volatilities, historical volatilities or EGARCH volatilities which all
amount to different filtering devices to surpass the complicated multidimen-
sional nonparametric fit involving past squared returns. However, choosing and
working with a measurement of the latent volatility variable raises a more

12 When the observed pairs of (Y, Z) are drawn from a stationary dynamic bivariate process,
Robinson (1983) provides conditions under which kernel estimators of regression functions are
consistent. He also gives some central limit theorems which ensure the asymptotic normality of the
estimators. The conditions on the bivariate process (Y, Z). For a detailed treatment, see Gydrfi et al.
(1989). This reference (Chapter 6) also discusses the choice of the smoothing parameter in the context
of nonparametric estimation from time series observations. When the autocorrelation function of
u is unknown, one has to make the transformation from sample estimates obtained from a first step
smoothing. Altman (1987,1990) presents some simulations results which show that in some situ-
ations, this so called whitening method seems to work relatively well. However there is no general
result on the efficiency of the procedure. See also Hérdle and Linton (1994, Section 5.2) and Andrews
(1991, Section 6).

17
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serious problem of errors in the variables generated by using filtered volatility.
There are different ways of dealing with this issue. Some amount to kernel
regression estimation procedures proposed by Muus (1994) involving kernels
based on a characteristic function specification. As these procedures are rather
complicated we will refrain from applying them. More interestingly, Rilstone
(1996) studies the generic problem of generated regressors, which is a regressor
like 6,, in a standard kernel-based regression model and shows how it affects the
convergence rates of the estimators while maintaining their properties of con-
sistency and asymptotic normality.

3.3. Estimation results

We focus our attention on the OEX contract which was also studied by
Harvey and Whaley (1992a,b) and Fleming (1994). The empirical investigation
rests on a combination of five different data sets. They are: (1) time series data of
the daily closure of the S&P100 Index, (2) data on daily call option prices at the
market closure obtained from the Chicago Board Option Exchange (CBOE), (3)
observations on the daily exercises of the OEX contract as recorded by the
Option Clearing Corporation (OCC), (4) dividend series of the companies listed
in the S&P100 Index and (5) series of filtered volatilities described in Section
3.2.1."3 The sample we consider runs from January 3, 1984 to March 30, 1990.

We consider first call prices normalized by the strike price K. The degree of
moneyness is measured via the ratio S/K. The empirical results are reported in
two sets of six figures. To summarize the results we classify the options in three
classes of maturity (see, e.g., Rubinstein (1985)): (1) very short maturities which
are less than one month, denoted TTM1 in the figures, (2) maturities between
one and two months, denoted TTM2 and finally (3) maturities between two and
three months denoted TTM3. Regarding volatility we classified the data accord-
ing to the empirical quartiles of the volatility distribution appearing in Table 2.
The same strategy is applied to the dividend rate process, except that we took
a roughly 50-50 percent cut of the distribution which conveniently was separ-
ated as 6, = 0 versus J, > 0, where J, denotes observations of the dividend rate.
Fig. 1 consists of six graphs. It can be interpreted as a 3 x 2 matrix, the rows
corresponding to the three time-to-maturity classes, TTM1 (top) to TTM3
(bottom), and columns to the two classes of observed dividend rates, 3, = 0 (left)
and J, > = O(right). Each graph contains four curves representing the quartiles
of the volatility distribution. Fig. 1 covers the case of EGARCH volatilities.

The first thing to note is that the cases 6, = 0 and J, > 0 look quite similar
across the different maturities. As time to maturity increases, there is a larger

13 The implied volatilities series for the OEX contract is that calculated by Fleming and Whaley
(1994). The data refered to in (3) is described in Diz and Finucane (1993), while the dividend series are
those calculated by Harvey and Whaley (1992b).
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Fig. 1. Estimated call prices conditional on dividend and EGARCH volatility quartiles: (—) first
quartile; () second quartile; (- - -) third quartile; (---) fourth quartile.

impact of volatility. This is obviously not surprising as the option price is more
sensitive to change in volatility and to the volatility level itself over longer time
horizons. What is more surprising perhaps is that, particularly with TTM3,
there is a distinct pattern emerging for the fourth volatility quartile while the
first three seem to be lumped together. For at-the-money options the difference
is roughly a two to three percent upward shift in the price ratio C/K. In Section
3.4 we will actually discuss how this translates into actual option prices. For
smaller maturities this difference disappears, as expected. The results so far seem
to suggest two things: (1) conditioning on J, does not displace pricing of options
and (2) the volatility effect seems to be present only for large (fourth quartile)
volatilities. We also report results using implied volatilities rather than
EGARCH ones. These appear in Fig. 2 and show that the results are robust with
regard to the specification of volatility.

Since graphical appearances may be deceiving we must rely on explicit
statistical testing to find out whether volatility and/or dividends matter in
pricing OEX index options. Indeed, the graphs only make the distinction,
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Fig. 2. Estimated call prices conditional on dividend and implied volatility quartiles: (—) first
quartile; (-) second quartile; (- - ~) third quartile; (---) fourth quartile.

adopted for convenience, §, = 0 versus &, > 0. We therefore consider now
a formal procedure for testing whether volatility and/or dividends should be
included in relations (3.10). Ait-Sahalia et al. (1994) proposed a test for the
exclusion of variables in a regression function estimated by kernel methods. If
we consider a relationship like g in (3.10), we may wish to test whether the
dividend rate ¢ is a variable which contributes to the variation of (normalized)
call prices. We are therefore considering the test of Ho(0): C/K = g2((S/K), 1, 0)
against H,(0): C/K = g(S/K), t, 5, §). Alternatively, we may also test for the
presence of an impact of volatility on call prices by considering a test of Ho(o)
against H,(o), where these hypotheses are defined in a similar way reversing the
role of § and .

The test statistic proposed by Ait-Sahalia et al. (1994) is based on the mean
square difference of prediction errors by the two competing models g and
gc: B =06 or o. It is shown that a normalized version of the test statistic is
asymptotically normally distributed, under some regularity conditions bearing
mainly on the kernel function, the convergence of the bandwidth and the joint



COLUMBIA BUSINESS SCHOOL 21

Table 3
Goodness of it test statistics

t, ts
Full sample 675.8855 73.2789
Obs. with § > 0 378.5861 82.2617

distribution of the variables involved in the relation defined by H,(f). The test
results appear in Table 3 where t; represents the statistic used for testing Ho(f)
against H,(B), where B stands for ¢ and §.!* Since t4 is asymptotically N(0, 1)
under H(f) we find a rejection of the null hypothesis in all cases. In other words,
neither the volatility nor the dividend rate can be omitted from the relationship
gcin (3.10). Hence, based on this evidence we have to conclude that the emphasis
on dividends alone in the pricing of OEX options, as articulated in Harvey and
Whaley (1992a,b) and Fleming and Whaley (1994), is not enough to characterize
option pricing in this market.!?

To conclude this section we turn our attention to the data on exercise
decisions. Broadie et al. (1995) describe in detail how to extract from the data set
observations on exercise decisions. These observations are used to derive a ker-
nel estimate gy in (3.10). The resulting surface is shown in Fig. 3 for different
filtered volatilities, taking the implied volatility as a representative example
here.'® We also found, but do not report here for the purpose of streamlining the
presentation, that both dividends and volatility again play a significant role (in
statistical sense). It is interesting to study the surface plotted in Fig. 3. We notice
that the surface is relatively insensitive with respect to volatility, except at the
high end scale of volatility. This evidence is in line with the call price functionals
which showed an upward shift only for the upper quartile of the volatility

14 One regularity condition for applying the tests deserves some attention. Namely, if we consider
a test of Hy(8) against H,(d), it is clear that the condition that the density of (C/K, S/K, o, d) is
r (where r is the order if the kernel used in the estimation) times continuously differentiable for some
r > 2is not met as & is a random variable for which the value 0 is a mass point with §, > 0. The latter
should in principle not suffer from a mass point accumulation in the data. Fortunately the results are
invariant to this issue as can be noted from the table.

15One important comment needs to be made to understand the comparison with the Flem-
ing-Harvey-Whaley findings. Namely, there is a difference between our state variable specification
and theirs. Indeed, we use concurrent 3, instead of the future flow of dividend over the lifetime of the
option. The Fleming-Harvey-Whaley approach assumes future dividends to be known to compute
their implied volatilities. In practice they have to be predicted. When the autocorrelation function of
5, is computed we find strong and cyclical autocorrelations. This means that §, contains a fair
amount of information regarding future dividend payments. This makes our approach a reasonable
proxy without having to model explicitly the prediction model for future dividends.

16 Fig. 3 does not involve conditioning on values of §,.
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Fig. 3. Estimated exercise boundary as a function of implied volatility.

distribution. It is important to note that the evidence reported here comes from
a very different and separate data set involving observations regarding exercise
decisions rather than call prices.

3.4. Nonparametric pricing of American call options

In addition to the statistical issues involved in the specification of an option
pricing functional we must also assess option pricing errors. In Table 4 we
report the results of numerical computations which compare the pricing of an
OEX call using (1) the binomial tree approach, (2) the algorithm for American
option pricing developed Broadie and Detemple (1996) and last but not least (3)
the nonparametric functionals retrieved from the data. These are respectively
denoted Bin, B-D and Nonparametric in Table 4. A number of hypothetical
situations were postulated for these calculations. First, we examined prices
quoted on nondividend paying days. Hence, &, is assumed zero and we therefore
compare a nonparametric pricing functional which explicitly conditions on this
event while the parametric approaches do not.'” The B-D algorithm for instance
assumes that the S&P100 index follows a geometric Brownian Motion with
constant volatility and constant dividend flow 6.'® To deal with volatility we

17 Results pertaining to §, > 0 are not reported but yield to conclusions similar to those we report
for 6, = 0.

'8 The dividend rate was set equal to the sample average of the S&P100 dividend series
constructed by Harvey and Whaley (1992a,b) (See also Broadie et al. (1995) for more details).
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Table 4

American call option normalized prices (C/K)

Volatility Low volatilities High volatilities

Moneyness out at in out at in

(a) Time to maturity = 28 days

Nonparametric 0.00114480 0.01666828  0.05533171  0.00285930 0.02091207  0.05696213

Bin lower 0.00096633  0.01371195  0.05142301  0.00389952  0.02006459  0.05465180
upper 0.00174318  0.01579428  0.05228001 0.00824606  0.02660485 0.05931876

B-D lower 0.00097033  0.01372321  0.05142182 0.00390517 0.02008115  0.05464477
upper 0.00174216  0.01580728  0.05228078  0.00823746  0.02662683  0.05930739

(b) Time to maturity = 56 days

Nonparametric 0.00574492  0.02590474  0.06231479 0.01194974  0.03423728  0.06610578

Bin lower 0.00351903  0.01945440 0.05436309 0.00955299  0.02839967  0.06074075
upper 0.00528273  0.02238628  0.05626256  0.01698366  0.03761091  0.06863641

B-D lower 0.00351797  0.01947021  0.05436360  0.00954500  0.02842289  0.06075945
upper 0.00529623  0.02240454  0.05625452  0.01697063  0.03764160 0.06861070

(c) Time to maturity = 84 days

Nonparametric 001017253  0.03236089  0.0684330 0.02033059  0.04318956  0.07282010

Bin lower 0.00625150  0.02386238  0.05735078 0.01458586  0.03477430  0.06610690
upper 0.00881129  0.02743838  0.06003424  0.02425917  0.04601170  0.07630737

B-D  lower 0.00624208  0.02388162  0.05735069  0.01459030  0.03480239  0.06611287
upper 0.00879815  0.02746057  0.06003006 0.02426214  0.04604874  0.07628135

compared two extremes, namely volatility days which reside in the first and fourth
quartile of the distribution.!® From the results in the previous section we know
that this amounts to comparing two typical situations which can be characterized
as low and high volatilities since the first three quartiles appear to be lumped
together (cf. Figs. 1 and 2). Moreover, we examined three maturities, namely 28,

56, and 84 days. These are hypothetical TTM specifications falling in the three
broad categories we studied. The particular choice of days is inconsequential for
our results. The options priced are either at-the-money or else 5% in- and
out-of-the-money. For the nonparametric pricing scheme we computed the aver-
age price over the entire range of the Jow and high volatility quartiles while the
parametric pricing schemes were computed for the upper and lower limits of the
empirical quartile ranges. This provides a pricing bracket which we can compare
with the nonparametric results. All the results in Table 4 refer to the ratio C/K and
can be easily interpreted in a dollar sense by picking K = 100 for instance.
The results in Table 4 show that parametric models consistently misprice the
OEX option. In particular, the average nonparametric estimates are essentially

19 All calculations in Table 4 are made with the EGARCH volatility estimates.
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a smoothed local average of the market prices this reveals that the parametric
models seriously misprice. Moreover, this conclusion is uniform across the
parametric models. In addition, for low volatilities we note underpricing by the
parametric model for nearly all maturities.?° In contrast, for high volatility
we note that the nonparametric pricing schemes belong to the parametric range
for medium maturities (56 and 84 days) while the parametric models overprice
for short maturities out- or at-the-money options. The magnitude of the errors
can be considerable. Taking K = 100 we note that they may be 20 cents or more
per contract. In percentage terms the pricing errors sometimes exceed 30-40%
of the price. Needless to say that such differences are very significant in the
pricing of these options.

4. Conclusion

We considered American option contracts when the underlying asset or index
has stochastic dividends and stochastic volatility. This situation is quite com-
mon in financial markets and generalizes many cases studied in the literature so
far. The theoretical models which were derived in Section 2 yield fairly complex
expressions which are difficult to compute. It motivated us to adopt a non-
parametric approach to estimate call prices and exercise boundaries conditional
on dividends and volatility. Using data from the OEX contract we find that
dividend payments are important, confirming earlier results of Harvey and
Whaley (1992a,b) and Fleming and Whaley (1994), but also uncover a significant
volatility effect hitherto ignored in the literature on American options. In that
respect our results join the extensive efforts undertaken in the case of Euro-
pean-style options. Yet, the nonparametric approach we present is more flexible
since it does not require the specification of an explicit model for the underlying
index. This flexibility inherent in the nonparametric approach applies to Ameri-
can and European contracts, or even more exotic option designs provided
a sufficiently active market yields enough data to compute the estimates. It
allowed us to uncover a rather interesting effect of volatility on option pricing in
the case of the OEX contract. Indeed, it appears that OEX option prices are
relatively insensitive to volatility movements except when the latter starts to
behave in the extreme upper end of the distribution. Our approach also joins the
recent efforts of applying nonparametric methods to option pricing. Yet the
analysis in this paper is novel since it extends the domain of application of
the nonparametric approach to stochastic volatility and to a class of contracts
which involve both exercise timing decisions and pricing determination. The
method proposed in this paper has also substantial practical applications for

20 An exception are the out-of-the money short maturity options.
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users of OEX options. In that regard knowledge of the empirical exercise
boundary and the pricing function can help in decisions involving the purchase
of the OEX contract or its exercise prior to maturity.
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Appendix A. Stock, bond and contingent claim valuation with stochastic volatility

In this appendix, we develop a consistent model of contingent claim valuation
in which the underlying asset price has stochastic volatility and dividend rate.
Our general equilibrium approach endogenizes the equilibrium value of the
stock, its dividend rate and volatility coefficients, the interest rate and the values
of contingent claims. Equilibrium values are expressed in terms of the primitives
of the economy: the dividend process and the preferences of the representative
agent. The model is sufficiently general to deliver the basic stylized facts which
characterize for instance the S&P100 Index process: stochastic volatility and
stochastic, imperfectly correlated, dividend rate. The economy is described in
the first section. Section 2 derives equilibrium formulas for the stock, the interest
rate and market prices of risk. Section 3 discusses the consistency of specific
interest rate-stock price models with equilibrium.

A.1. The economy
We consider a continuous time pure exchange economy with a representative

agent and a finite time period [0, T]. The uncertainty is represented by a
three-dimensional Brownian Motion process W = (W, W,, W) defined on a



COLUMBIA BUSINESS SCHOOL 26

probability space (Q, #, #). The information structure of the representative
agent is the filtration generated by W. The economy has a financial market with
two primitive assets, a risky asset (stock) and an instantaneously riskless bond.
The risky stock is in unit supply. It generates a flow of dividend payments
D which satisfies the stochastic differential equation

dD, = D,[u”(Y, Z, t)dt + p°(Y,, Z,, 1)dW ] (A.1)
dY, = p!(Y, 0)dt + aX(Y,, )dWy, + o3(Y,, )dW 5, (A2)
dZ, = pA(Z,, 0)dt + 6¥(Z,, ) dW 4, + 64(Z,, AW 5, (A3)

for t [0, T], where Dg, Y and Z, are given. The variables Y and Z are state
variables which captures the stochastic fluctuations in the volatility coefficient of
the dividend process. The drift is also affected by Y and Z. We assume that the
coeflicient of (A.1)-(A.3) satisfy standard conditions which ensure the existence
of a strong solution (D, Y, Z). The price of the stock, S, satisfies the stochastic
differential equation

dSt + th = S,[/t, dt + O1¢ dW“ + 0y dWZt + 03¢ dW3t] (A4)

for te [0, T'] and has an initial value S,. The initial value Sy and the coefficients
(4, 0, 05, 03) which appear in (A.4) are determined in equilibrium.

The riskless bond with instantaneous maturity is in zero net supply. It pays an
interest rate r per unit time which is also determined in equilibrium.

The representative agent has preferences represented by the von Neumann-
Morgenstern index

Ule) = E[ f Tu(Z,, Cu t)dt] (A.5)

0

where w(Z, c, t) is a state-dependent instantaneous utility function and Z repres-
ents a utility shock. The function u(-) satisfies standard conditions: it is twice
continuously differentiable with respect to ¢, strictly concave and increasing
with respect to ¢ and has the limiting values lim w(Z, ¢, t)=0 and
lim, o'(Z, ¢, t) = oo for all Z in R™ and te[0, T].

The preference model (A.3)—~(A.5) is fairly general. It includes, in particular, the
standard model with constant subjective discount rate u(c, t) = ¢~ #u(c) which is
obtained by setting p? = — Z,,0% = 6% =0 and u(Z,c,t) = Zu(c). It also
includes models with stochastic discount rate obtained for wu(Z,c,t) =
exp([6Z, dv)u(c) where Z follows the stochastic process (A.3). The consideration
of state-dependent utility functions gives us the additional degree of freedom
required to model equilibrium dividend rate processes (6; = D,/S,) which are
stochastic and partially correlated with the price volatility process.
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The representative agent consumes and invests in the stock and the riskless
asset. A consumption policy is a progressively measurable process ¢ such that
§ Tc, dv < oo (P-a.s.). An investment policy is a progressively measurable process
7 such that [§n2(o3, + 03,)dv < oo, (P-a.s.). Here n represents the investment in
the stock. The investment in the bond is X — n where X denotes the wealth of
the agent. A consumption-investment policy (c, #) generates the wealth process

dX, = [rX, — ¢]dt + ml(u, — r)dt + 01, AWy, + 05, AWy, + 03, dW3,]
(A.6)

where X is given. A consumption-investment policy is admissible if the asso-
ciated wealth process satisfies

X, 20, te[0,T] (A7)

A consumption—-investment policy (¢, ) is optimal for the preferences U(c) if it
cannot be dominated by any other admissible policy. A collection of processes
((S, ), ¢, m) is an equilibrium if (i) taking prices as given the policy (c, =) is optimal
for the agent and (i) markets clear: c= D, r =S and X —n=0.

A.2. Equilibrium stock price, interest rate and contingent claims values

In this subsection we provide equilibrium valuation formulas for the stock,
the bond and zero net supply contingent claims for the general economy
described above. Our first theorem below and its corollaries state standard
pricing results which hold in pure exchange economies [see, e.g., Lucas (1978),
Duffiec and Zame (1989), Karatzas et al. (1990); see also Cox et al. (1985) for
production economies].

In order to state these results we introduce the following notation. Let
b, = exp{ — [or, dv) denote the discount factor for date t cash flows. Let
0 = (64, 0, 03) denote the market price of risk associated with the Brownian
motion W = (W, W,, W) and define the exponential process

t 1 t
ét = bt eXP( - J\ [le dle + 02!} dWZv + 931) dW3v] - EJ ”911”2 dU)
0 0

where ||0,]|2 = 62, + 05, + 03.. The process ¢ represents the state price density. In
equilibrium the values of # and r (and therefore b and &) are endogenous. We
shall assume that the following standard condition is satisfied.

Assumption A.1. The process § = (04, 0,, 05) satisfies

E exp(%f”é),,”z dv) < © (A.8)
0
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This condition, known as the Novikov condition, ensures the existence of an
equivalent martingale measure (see Karatzas and Shreve, 1988, Chapter 3) Since
our focus is on the competitive equilibrium we only need to consider the class of
economies which satisfy Assumption A.1 in equilibrium. As we shall see this
places restrictions on the exogenous structure of the model.

For convenience we also use x,, = x,/X; to denote the ratio between the
values of a process x at two different dates v and ¢, and u; = 0u/0Z, u, = du/dc,
u;, = 0%u/dZ?, etc., to denote the partial derivatives of the utility function. We
have

Theorem A.1. Consider the economy with stochastic dividend process (A.1)-(4.3)
described above and suppose that Assumption A.1 holds in equilibrium. The
equilibrium interest rate is given by

l
= =25z, 0 - 22Dy, Z, 1) — = P (642, O]
U, Uy
1 Usso 2 Uzz1 g4 D
2 [D (Yt’ Z!a t)] - —u_ O-I(Zt’ t)p (Yb Zt’ t)Df (A9)
2

where [6%(Z,, t)]2 = 0%(Z, 1)* + 65(Z,, t)*. The price of the dividend paying asset

is
T
S, = E?[J b, D, dv] (A.10)

Jor te[0, T. The expectation in (4.10) is taken relative to the equilibrium equiva-
lent martingale measure based on the equilibrium market prices of risk

u
0, = — ﬂ DY, Zt) — 2 64Z, 1), (A.11)
2
6, =0, (A.12)
03 = — — ¥Z,1), (A.13)
Uz

for all te[0, T). The equilibrium risk premium on the stock is given by
3
He — 1 = Z 004, tel0,T]. (A.14)
i=1

Formulas (A.11)-(A.13) clarify the restriction imposed by the Novikov condi-
tion. Note that this joint restriction on the utility function, the dividend process
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and the state variable process is automatically satisfied when the preference
coefficients ( — (uz,/u;)D, — uy1/u,) and the coefficients (p?(Y,, Z,, t), 64 Z,, t),
64(Z,, 1)) are bounded.

Proof of Theorem A.1. Under Assumption A.1 the process b~ £ is a martingale,
the measure Q(A) = E[b7'¢71,], Ac % 5 is a probability measure which is
equivalent to P and the process W* = W + {0, dv is a Q-Brownian motion
process (see Karatzas and Shreve, 1988, Chapter 3).

Results of Karatzas et al. (1987) and Cox and Huang (1989) then enable us to
focus on the static (consumption) optimization problem associated with the
dynamic (consumption-portfolio) problem described in Section A.1. Necessary
and sufficient conditions for the static problem are

uZ(Zt’ C, t) = yét (A].S)

E[ f T«:,c, dt] =X, (A.16)
0

where y > 0. Substituting the equilibrium condition in the goods market
(¢, = Dy) in (A.15) implies u5(Z,, D,, t) = y&,. Applying Ito’s lemma on both sides
of this equation leads to

ydé, = u1(Z,, Dy, )AZ, + us5(Z,, Dy, t)dD, + u,3(Z,, D,, t)dt

1 1
+ 3 uz1(Zy, D, )A[Z], + 3 Uz22(Zy, D,, )d[ D],

+ 2“212(Zb Dt9 t)d[za D]t

where [-] (resp. [ -, -]) denotes the quadratic variation (resp. cross variation)
process. Substituting the expressions for dD, dZ, and d¢&,, and equating terms in
dtand dW,,i = 1, 2, 3, leads to the formulas for the interest rate and the market
prices of risk,

Under the equivalent martingale measure the stock price process is

dS, + dD, = S,[r,dt + 01, AW, + 6,5, AW, + 03, dW]] (A17)

for t [0, T] where dW# = dW,, + 0,,dt, i = 1, 2, 3. Combining this representa-
tion with (A.4) leads to the expression for the risk premium of the stock.

Optimal wealth satisfies &X, = E[j,T £, ds]. Substituting the equilibrium
conditions ¢ = D and X, = S, leads to the present value formula for the stock
price. O
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In the competitive equilibrium of Theorem A.l zero net supply contingent
claims can be easily valued. Suppose that we add to the basic economic model of
Section A.1 a zero net supply claim with maturity date T',, terminal cash-flow
B and flow of payments f,, ve[0, T,]. Adjusting the definitions of admissible
policies and equilibrium in the obvious manner to account for this additional
security and paralleling the proof of Theorem A.1 we obtain,

Theorem A.2. Consider the economy with stochastic dividend process (4.1)—(4.3)
and suppose that a zero net supply contingent claim with characteristics (f, B, T,) is
marketed. Also suppose that Assumption A.1 holds in equilibrium. The equilibrium
values of (u, r, 0, S) are given in Theorem A.1. The equilibrium contingent claim
value V is

T
V,= E?I:J b, df, + b,,TlB], (A.18)
t

Jor te[0, T, where the expectation is taken relative to the equivalent martingale
measure based on the equilibrium market prices of visk (A.11)—(A4.13). The equilib-
rium risk premium on a zero net supply contingent claim with volatility coefficients
P1, P2 and p3 is

3
O —Fe = z gitpib te [Oa T]’ (A.19)
i=1
where o represents the drift of the contingent claim price.

Let us consider the equilibrium stock price. Simplyfying (A.10) leads to the
following expression:

T
S, = E,Q[ J b,.D, dv]
t
T v v 1 5 v
= E?[f D, exp[ — f rods + j (uf -3 p? )ds + j p? dWls]dv]
t 1 t t

T v 1 , v
= DtE?[J‘ epr:J‘ - (rs - :ug + Hlsp.? + ip.? )dS + J‘ psD dWTsjldvjl
t t t

= DtW(Dt’ Yt’ Zts t)

where W(D, Y, Z, t) denotes the conditional expectation appearing in the pre-
vious line. Note that this function depends on the level of the dividend payment,
D, since the equilibrium interest rate in (A.9) depends on D for a sufficiently
general specification of preferences. The third equality above follows from the
the definition of the Q-Brownian motion W*.



COLUMBIA BUSINESS SCHOOL 31

The equilibrium dividend rate ¢ is given by
6,=0D,Y,Z,)=D)/S, = WD, Y, Z,,t)" L (A.21)

Summarizing, we have
Corollary A.1. In the equilibrium of Theorem A.1, the stock price is

St = DIW(DU Yta z, t) (A22)

where

T v
W(Dta Yt’ Zt’ t) = E?[J exp|:J\ - (rs - ﬂf + Glsp£ + %p.?z)ds
t t

+ J pP dWTs]dv] (A.23)
t

and r and 0, are given in (A.9) and (A.11) respectively. The stock price satisfies
ds, = S,[(r; — 6(D,, Y,, Z, ))dt + 61, dW T, + 62, dW 3, + 03, dW ],

(A.24)

where the volatility coefficients can be written as
01 = (1 + I;VV> XY, Z,0)+ V;} oY, t) + % 64(Z,, 1), (A.25)
Oy = % o3(Y, 1), (A.26)
O3 = % o3(Y,, t). (A27)

For economies in which the interest rate is independent of the dividend level,
the equilibrivm dividend rate becomes

6, =8Y,Z,ty=W(Y,Z,0)"" (A.28)

a function of (Y, Z) solely. The term W), in the volatility expression (A.25) is then
equal to zero. This property of equilibrium holds, for instance, when preferences
are of the power form with multiplicative state variable effect:
wZ, c, t) = v(Z)(1/y)c".

A.3. Consistent stock price and interest rate specifications

We now examine the consistency of joint restrictions on the stock price and
interest rate processes with the equilibrium model above. The first set of
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conditions below leads to the canonic market model which serves as the starting
point of our analysis in Section 2. Further restrictions produce various reduced
forms which are tested in Section 3. Similar questions of consistency are tackled
by Bick (1990) and He and Leland (1993) for models with diffusion stock price
process, and by He (1993) and Pham and Touzi (1996) for models with bivariate
diffusion (stock price, volatility) processes. Our analysis below also incorporates
stochastic dividends and accounts for equilibrium restrictions on the interest
rate.
Canonic option pricing models assume that the interest rate is constant. In the
economic context above, this amounts to the further restriction
Yz _Mezp o lan e Lo paop Won zoop ) (409

U, Us 2 Us 2 Us Uy

for some constant A. This is a joint condition on the preferences of the represen-
tative agent and on the structure of the dividend process (A.1)~(A.3). If (A.29)
holds, we obtain the following model for our primary securities (under the
pricing measure Q):

Model I:

ds; = S[(r — (Y, Z, t)dt + o4(Y,, Z,, )dW ¥, + 6,(Y,, Z,, )W %,
+ o3(Y,, Z, )dW%,],
dY, = (Y, 1) — 0,,06%(Y, t)dt + o¥(Y, ) dWE, + 65(Y,, d W4,
dZ, = (UAZ,, t) — 01,64 Z,, t) — 03,05Z,, t)dt + 6%(Z,, AW},
+ 6%(Z,, )dW#,
where (0, 0, 0;) are given in (A.11)~(A.13), (Y, Z,6) = W(Y,Z, ) ! and r is

constant. The volatility coefficients of the stock are

w w
o1 =p"Y,Z,t)+ WY al(Y, 1) + WZ oX(Z,, 1),

w
Gy = WY ag(Yta t),

w
O3 = WZ O'%(Yt, ).

Model 1 is fairly general to the extent that both the dividend rate and the
volatility coefficients of the stock price depend on Y and Z. This is the structure
which underlies our treatment of American options in Section 2 and our
econometric investigation in Section 3.
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In Section 3 we are led to consider various reduced forms which are subcases
of Model 1. In the remainder of this Appendix we explore conditions on the
structure of the economy which give rise to those special cases.

Suppose that in addition to (A.29) we also require

ue = 01p? = $(Y, 1), (A.30)
PP = p°(Y, 1), (A.31)
01 = Y(Y 1), (A.32)

where ¢ and y are functions of the state variables Y but not Z. Then, it can be
verified from (A.23) that W = W(Y,, t) and that the volatility coefficients (o, )
are functions of Y alone while o3 = 0. Thus, our first subcase is

Model 2:

ds, = S,[{r — (Y, t)dt + o4(Y,, ) AW, + 05(Y,, )dWE,,
dYt = (/'I'Y(Yt’ t) - elto{(Yr’ t))dt + aill(Yb t)dWTt + G)Z’(Yh t)dWEa

where 0, is given by (A.30), 5(Y, t) = W(Y,t)” ! and r is constant. The volatility
coefficients of the stock are

w
= Y1)+ 2 Y, 0,

w
Oz = WY Jg(Y,, 1),
T3 = 0.

This model underlies the reduced form specification (3.4) which is discussed in
Section 3. An alternative case of interest is when (assuming that (A.29) also

holds)
u — 0upr = P(Z, 1), (A.33)
p? = p°(Y, 1), (A.34)
01 = Y(Ys 1), (A.35)
o, =0. (A.36)

Condition (A.33) is satisfied for the multiplicative power utility
WZ, ¢) = u(ZX1/y)c’ provided that the drift of the dividend process u?(Y, Z, 1)
has the appropriate structure. Condition (A.36) implies that Y and Z are
independent processes under the P-measure. Independence under P combined
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with multiplicative power utility function ensures that the market price of risk
0, satisfies (A.35). Note that this preference structure also implies that 6; is
a function of Z alone: the processes Y and Z are then also independent under the
pricing measure Q. For v > t define

1 v , v
M,, = exp( —5| P ds+ J p?dW’{‘s>-
Ji t

Using (A.33)~(A.36) we can write

W(Y,, Z,t) = E? ( f Texp ( —rv—1— fv(b(Zs, s)ds)M,,,, dv]

= E?JTexp < —rv—1t) — rgb(Zs, s)ds)E,Q[M,',,L?" 1do

= E?[ J Texp < —rv—1) — Juqb(Zs, s)ds)dv]

= W(Z, ).

In the equality above we used the measurability of the first exponential with
respect to #7. The third equality follows from the Q independence of Y and
Z and the martingale property of the exponential in question. Our model 3 then
reads

Model 3:

dS, = S,[(r — &(Z,, t)dt + o,(Y,, )dW¥, + 03(Z,, )dW% ],
dy, = (/-‘Y( Y,0)— GltO{( Y, t)dt + O'{(Y,, dw, + O'g( Y, dw,
dz, = (HZ(Zt; 1) — 93t0§(Zt’ H)de + O’%(Z,, Hdwi,

where 6, is given in (A.35) and 05 in (A.13), 5(Z, t) = W(Z, ©)~ ! and r is constant.
The volatility coefficients of the stock are

Ty = pD(Yta t)
Gy = 07

w
G3 = WZ ai(Z,, 1)

In this model the dividend rate is stochastic and depends on Z alone while the
volatility of the stock depends both on Y and Z. A subcase of this model is when
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W = W() is independent of both Y and Z. Then the dividend rate is a function
of time alone and o5 = 0. This subcase is the model with pure volatility risk (and
no dividend yield risk).

Model 4:

ds, = S,[(r — o(1))dt + o4(Y,, )dWT.],
dy, = (I‘Y(Yt, ) — Gltdl{( Y, t)dt + 61{( Y, dWt, + O-g(Yt’ dwi,

where 6, is given in (A.35), 8(t) = W(t)"' and r is constant. The volatility
coefficients of the stock are

o-I(tha 1) = pD(Yt’ t)9

6, =0and o3 =0.

Remark. Bick (1990) provides necessary and sufficient conditions for consistency
of a diffusion price process S with equilibrium. He and Leland (1993) extend the
analysis to a more general complete market model. One of their conditions is
a partial differential equation for the market price of risk which is derived
assuming smoothness of the value function. Both He (1993) and Pham and
Touzi (1996) investigate the consistency of bivariate diffusion processes (S, o),
Pham and Touzi rely on a more general martingale approach, but assume that
an option contract completes the market. Our analysis above complements
these papers in that it combines the following three aspects: (i) it examines the
consistency of trivariate diffusion processes (S, o, 9), (ii) explicitly accounts for
equilibrium restrictions on the interest rate r and (iii) uses a martingale approach
which obviates the need for smoothness assumptions on the derived value
function.

Appendix B. Proofs

We first establish useful properties of the option price and the immediate
exercise set. Consider the strong solution of (2.1)-(2.3) as a function of the initial
conditions (S, Y, Z, ). We shall assume that (S,, Y,, Z,) is continuous with
respect to (S, Y, Z, t) for all ve[t, T].

Corollary B.1. The American option price function C(-,-,","). R* x
R* xR* x[0, T} - R™ is continuous.

Proof. Continuity follows from the continuity of the payoff function (S — K",
the continuity of the discount factor exp( — r(v — t)), and the continuity of the
strong solution of (2.1)-(2.3). O

35
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Let& ={(S,Y,Z,t):C(S,Y,Z,t)= (S — K)*} denote the immediate exercise
region. Its complement % is the continuation region. Continuity of the call price
function implies that the immediate exercise region is a closed set (the continua-
tion region is an open set). Thus, we can meaningfully define the boundary B of
&. The exercise region has the following connectedness property.

Corollary B.2. (Up-connectedness). (S, Y, Z,t)e & implies that (AS,Y,Z,t)e &
forall 2 > 1.

Proof. Let A =1 and suppose that immediate exercise is suboptimal at
(45,7, Z,1). Let 1,(t) be the optimal exercise time at (1S, Y, Z, t). We have the
following sequence of inequalities

C(S, Y, Z, t) = E9exp( — r(t; — HAS., — K)*]
< E%[exp( — r(ty — OXS:, — K)*]
+ (A — DB2lexp( — r(t; — 1)S. ]
<CS, Y, Z, )+ — 1S
=S—K)+(@A—1)S=4iS—K.

To obtain the second line above we use the property (a + b)* <a™ + b*. The
third line follows from the suboptimality of 7, at (S, Y, Z,t) and from the
Q-supermartingale property of the price of a dividend-paying asset. The last line
is a consequence of the optimality of immediate exercise at (S, Y, Z, t). Since we
assumed that immediate exercise is suboptimal at (1S, Y, Z, t) it must be that
C(AS,Y,Z,t) > AS — K . This contradicts the upper bound derived above. [

Up-connectedness of the immediate exercise region implies that we can define
the (Y, Z, t)-section of the exercise boundary as

B(Y,Z,t) = inf{S: C(S, Y, Z, 1) = (S — K)*}

for all (Y,Z,t). Immediate exercise is optimal at data ¢ if and only if
S>=B(Y,Z,01).

Proof of Theorem 2.1. The early exercise premium representation (2.14)—(2.15)
follows from (2.11) and (2.13). The recursive integral equation for the exercise
boundary is obtained since immediate exercise is optimal at S = B(Y, Z, 1):
evaluation of (2.14)-(2.15) at that point leads to (2.16). As t approaches T the
local net benefit of immediate exercise (the exercise premium (2.15)) converges to
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the deterministic amount

(5T—ST— — VK)].{ST7 ?BT;}dt'

Immediate exercise is then optimal if (6r-Sr- —rK)ls, 5, ;>0 and
Sr_ = K. Evaluating this expression at Sy_ = Br_ gives

r
BT— = {;ij 1}K

This establishes the boundary condition (2.17). O

Proof of Theorem 2.2. Define w}, = (a,,)” 1[§fal(Yu, u)dB¥]. Using (2.22), (2.23)
and the definition of w7, enables us to write the solution of (2.20) as

1
Su = St exp|:(r - 5)(0 - t) - E atz,v + pat.thl,v + vV 1 - pzat.thz,uil-

Note that the event {S,> BJY,v)} is equivalent to {w?,>

—d(S;, By, Gy, p, W) + /1 — p*a.,}, where the function d(-) is defined in
(2.24)-(2.25). Since w}, has a standard normal distribution conditional on the
trajectories of Y we can first integrate the representations (2.14) and (2.15) with
respect to w7, conditionally on {Yse[ v]}, and then integrate over the
trajectories of Y. This leads to the expressions in the theorem. [

References

Abken, P., Madan, D., Ramamurtie, S., 1996. Estimation of risk-neutral and statistical densities by
hermite polynomial approximations: with an application to eurodollar futures options. Dis-
cussion Paper, Federal Reserve Bank of Atlanta.

Ait-Sahalia, Y., 1996. Nonparametric pricing of interest rate derivative securities. Econometrica 64,
527-560.

Ait-Sahalia, Y., Bickel, P., Stoker, T., 1994. Goodness-of-fit tests for regression using kernel methods.
Mimeo, University of Chicago.

Ait-Sahalia, Y., Lo, AW, 1995. Nonparametric Estimation of State-Price Densities Implicit in
Financial Asset Prices. W.P., Sloan School of Management, MIT, MA.

Altman, N.S,, 1987. Smoothing data with correlated errors. Technical Report 280, Department of
Statistics, Stanford University.

Altman, N.S., 1990. Kernel smoothing of data with correlated errors. Journal of the American
Statistical Association 85, 749-759.

Barone-Adesi, G., Whaley, R.E., 1987. Efficient analytic approximation of American option values.
Journal of Finance 42, 301-320.

Bensoussan, A., 1984. On the theory of option pricing. Acta Applicandae Mathematicae 2, 139-158.

Bick, A., 1990. On viable diffusion price processes of the market portfolio. Journal of Finance 45,
673-689.



COLUMBIA BUSINESS SCHOOL 38

Bodurtha, J.N., Courtadon, G.R., 1986. Efficiency tests of the foreign currency options market.
Journal of Finance 42, 151-162.

Boyle, P., 1988. A lattice framework for option pricing with two state variables. Journal of Financial
and Quantitative Analysis 23, 1-12.

Breen, R., 1991. The accelerated binomial option pricing model. Journal of Financial and Quantitat-
ive Analysis 26, 153-164.

Brennan, M.J,, Schwartz, E., 1977. The valuation of American put options. Journal of Finance 32,
449-462.

Broadie, M., Detemple, J., 1996. American option valuation: new bounds, approximations, and
a comparison of existing methods. Review of Financial Studies 9, 1211-1250.

Broadie, M., Detemple, J., Ghysels, E., Torrés, O., 1995. Nonparametric estimation of American
option exercise boundaries and call price, Discussion Paper, CIRANO.

Carr, P., Jarrow, Myneni, 1992. Alternative characterizations of American put options. Mathemat-
ical Finance 2, 8§7-106.

Carr, P., Faguet, D., 1994. Fast accurate valuation of American options. Working paper, Cornell
University.

Chesney, M., Scott, L., 1989. European currency options: a comparison of the modified Black-Scholes
model and a random variance model. Journal of Financial and Quantitative Analysis 24, 267-284.

Cox, J., Huang, C.,, 1989. Optimal consumption and portfolio policies when asset prices follow
a diffusion process. Journal of Economic Theory 49, 33-83.

Cox, J.C,, Ross, S.A., Rubinstein, M., 1979. Option pricing: a simplified approach. Journal of
Financial Economics 7, 229-263.

Cox, J.C.,, Ingersoll, J., Ross, S.A., 1985. An intertemporal general equilibrium model of asset pricing.
Econometrica 53, 363-384.

Craven, P,, Wahba, G., 1979. Smoothing noisy data with spline functions. Numerical Mathematics
31, 377-403.

Diz, F., Finucane, T.J., 1993. The rationality of early exercise decisions: evidence from the S&P100
index options markets. Review of Financial Studies 6, 765-797.

Duffie, D., Zame, W., 1989. The consumption-based capital asset pricing model. Econometrica 57,
1279-1297.

Dunn, K.B., Eades, K.M., 1989. Voluntary conversion of convertible securities and the optimal call
strategy. Journal of Financial Economics 23, 273-302.

French, D.W., Maberly, E.D., 1992. Early exercise of American index options. Journal of Financial
Research 15, 127-137.

Fleming, J., Whaley, R.E., 1994. The value of wildcard options. Journal of Finance 49, 215-236.

Gay, G.D., Kolb, R.W,, Yung, K., 1989. Trader rationality in the exercise of futures options. Journal
of Financial Economics 23, 339-361.

Geske, R., 1979. A note on an analytic formula for unprotected American call options on stocks with
known dividends. Journal of Financial Economics 7, 375-380.

Geske, R., Johnson, H.E., 1984. The American put options valued analytically. Journal of Finance
39, 1511-1524.

Gouriéroux, C., Monfort, A., Tenreiro, C., 1994. Kernel M-estimators: nonparametric diagnostics
for structural models. Working paper no 9405, CEPREMAP, Paris.

Gyorfi, L., Hirdle, W., Sarda, P., Vieu, P., 1989. In: Berger, 1., et al. (Ed.) Nonparametric Curve
Estimation from Time Series, Lecture Notes in Statistics, Vol. 60. Springer, Heidelberg.

Hirdle, W., Linton, O., 1994. Applied nonparametric methods. In: Engle, R.F., McFadden, D.L.
(Eds.) Handbook of Econometrics, Vol. 4. North-Holland, Amsterdam.

Harvey, C.R., Whaley, R.E., 1992a. Market volatility prediction and the efficiency of the S&P100
index option valuation. Journal of Financial Economics 30, 33-73.

Harvey, C.R., Whaley, R.E., 1992b. Dividends and S&P 100 index option valuation. Journal of
Futures Markets 12, 123-137.



COLUMBIA BUSINESS SCHOOL 39

Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models. Chapman & Hall, London.

He, H., 1993. Option prices with stochastic volatilities: an equilibrium analysis. Working paper,
Haas School of Business, University of California, Berkeley.

He, H., Leland, H., 1993. On equilibrium asset price processes. Review of Financial Studies 6,
593-617.

Hestom, S.L., 1993. A closed-form solution for options with stochastic volatility with applications to
bond and currency options. Review of Financial Studies 6, 327-343.

Hull, J., White, A., 1987. The pricing of options on assets with stochastic volatilities. Journal of
Finance 3, 281-300.

Hutchison, J.M., Lo, A.W., Poggio, T., 1994. A nonparametric approach to pricing and hedging
derivative securities via learning networks. Journal of Finance 49, 851-889.

Ingersoll, J., 1977. An examination of corporate call policies on convertible securities. Journal of
Finance 32, 463-478.

Jacka, $.D., 1991. Optimal stopping and the American put. Mathematical Finance 1, 1-14.

Jackwerth, J.C., Rubinstein, M., 1996. Recovering probability distributions from option prices.
Journal of Finance 51, 1611-1631.

Johnson, H., Shanno, D., 1987. Option pricing when the variance is changing. Journal of Financial
and Quantitative Analysis 22, 143-152.

Karatzas, 1., 1988. On the pricing of American options. Applied Mathematics and Optimization 17,
37-60.

Karatzas, I, Lehoczky, J.P., Shreve, S.E., 1987. Optimal portfolio and consumption decisions for
a “small” investor on a finite horizon. SIAM Journal of Control and Optimization 25, 1557-1586.

Karatzas, L., Shreve, S., 1988. Brownian Motion and Stochastic Calculus. Springer, New York.

Karatzas, 1., Lehoczky, J.P., Shreve, S.E., 1990. Existence, unigueness of multi-agent equilibrium in
a stochastic, dynamic consumption/investment model. Mathematics of Operations Research 15,
80-128.

Kim, LJ., 1990. The analytic valuation of American options. Review of Financial Studies 3, 547-572.

Lucas, R.E., 1978. Asset prices in an exchange economy. Econometrica 16, 1429-1445.

Madan, D., Milne, F., 1994. Contingent claims valued and hedged by pricing and investing in a basis.
Mathematical Finance 4, 223-245.

McKean, H.P., 1965. Appendix: a free boundary problem for the heat equation arising from
a problem in mathematical economics. Industrial Management Review 6, 32-39.

Muus, L., 1994. A nonparametric analysis of stochastic volatility models through deconvolution.
Discussion paper, University of Aarhus.

Myneni, R., 1992. The pricing of the American option. Annals of Applied Probability 2, 1-23.

Nelson, D.B., 1990. ARCH models as diffusion approximations. Journal of Econometrics 45, 7-38.

Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica
59, 347-370.

Nelson, D.B., 1992. Filtering and forecasting with misspecified ARCH models I getting the right
variance with the wrong model. Journal of Econometrics 25, 61-91.

Nelson, D.B., 1996a. Asymptotic smoothing theory for ARCH models. Econometrica 64, 561-574.

Nelson, D.B., 1996b. Asymptotic filtering theory for multivariate ARCH models. J ournal of Econo-
metrics 71, 1-48.

Nelson, D., Foster, D.P., 1994. Asymptotic filtering theory for univariatt ARCH models. Econo-
metrica 62, 1-41.

Nelson, D.B., Foster, D.P., 1995. Filtering and forecasting with misspecified ARCH models II:
making the right forecast with the wrong model. Journal of Econometrics 25, 61-91.

Overdahl, J.A., 1988. The early exercise of options on treasury bond futures. Journal of Financial
and Quantitative Analysis 23, 437-449.

Pham, H., Touzi, N., 1996. Equilibrium state prices in a stochastic volatility model. Mathematical
Finance 6, 215-236.



COLUMBIA BUSINESS SCHOOL

Rilstone, P., 1996. Nonparametric estimation of models with generated regressors. International
Economic Review 37, 299-314.

Robinson, P.M., 1983. Nonparametric estimators for time series. Journal of Time Series Analysis 4,
185-207.

Rubinstein, M., 1985. Nonparametric tests of alternative option pricing models using all reported
trades and quotes on the 30 most active CBOE option classes from August 23, 1876 through
August 31, 1978. Journal of Finance 40, 455-480.

Rubinstein, M., 1994. Implied binomial trees. Journal of Finance 49, 771-818.

Scott, L.O., 1987. Option pricing when the variance changes randomly: theory, estimation and an
application. Journal of Financial and Quantitative Analysis 22, 419-438.

Scott, D.W., 1992. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley, New
York.

Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall,
London.

Stein, E.M,, Stein, J., 1991. Stock price distribution with stochastic volatility: an analytic approach.
Review of Financial Studies 4, 727-752.

40



