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Abstract

Unlike European-type derivative securities, there are no simple analytic valuation
formulas for finite-lived American options, even when the underlying asset price has
constant volatility. The early exercise feature considerably complicates the valuation of
American contracts. The strategy taken in this paper is to rely on nonparametric
statistical methods using market data to estimate the call prices and the exercise
boundaries. A comparison is made with parametric constant volatility model-based
prices and exercise boundaries. The paper focuses on assessing the adequacy of conven-
tional formulas by comparing them to nonparametric estimates. We use daily market
option prices and exercise data on the S&P100 contract, the most actively traded
American option contract. We find large discrepancies between the parametric and
nonparametric call prices and exercise boundaries. We also find remarkable similarities
of the nonparametric estimates before and after the crash of October 1987.

1. Introduction

American option contracts figure prominently among the wide range of
derivative securities which are traded. An American call option not only
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provides the possibility of buying the underlying asset at a particular strike
price, but it also allows the owner to exercise his right at any point in time before
maturity. This early exercise feature of the contract considerably complicates its
evaluation. Indeed, the option price critically depends on the optimal exercise
policy which must be determined in the evaluation process. The earliest analysis
of the subject by McKean (1965) formulates the valuation of the derivative
security as a free boundary problem. Additional insights about the properties of
the optimal exercise boundary are provided by Van Moerbeke (1976) and more
recently by Barles et al. (1995), Biittler and Waldvogel (1996) and Kuske and
Keller (1998). Bensoussan (1984) and Karatzas (1988) provide a formal financial
argument for the valuation of an American contingent claim in the context of
a general market model, in which the price of the underlying asset follows an It
process. It should not come as a surprise that the distributional properties of the
underlying asset price determine those of the exercise boundary. However, in
such a general context, analytical closed-form solutions are typically not avail-
able and the computations of the optimal exercise boundary and the contract
price can be achieved only via numerical methods. The standard approach
consists of specifying a process for the underlying asset price, generally a geo-
metric Brownian motion process (GBM), and uses a numerically efficient algo-
rithm to compute the price and the exercise boundary. A whole range of
numerical procedures have been proposed, including binomial or lattice
methods, methods based on solving partial differential equations, integral equa-
tions, or variational inequalities, and other approximation and extrapolation
schemes.!

The first purpose of our paper is to suggest a new and different strategy for
dealing with the pricing of American options and the characterization of the
exercise boundary. The paper does not come up with a new twist that boosts
numerical efficiency or a major innovation in algorithm design. Instead, it
suggests a different approach which consists of using market data, both on
exercise decisions and option prices, and relies on nonparametric statistical
techniques. The idea of applying nonparametric methods to option pricing has
been suggested recently in a number of paper, e.g., Abadir and Rockinger (1997),
Abken et al. (1996), Ait-Sahalia (1996), Ait-Sahalia and Lo (1998), Broadie et al.
(2000), Gouriéroux et al. (1994), Hutchinson et al. (1994), Jackwerth and Rubin-
stein (1996), Stutzer (1996) and several others. As there are a multitude of
nonparametric methods it is no surprise that the aforementioned papers use
different methods. Moreover, they do not address the same topics either. Indeed,

! A partial list of contributions to this area includes Brennan and Schwartz (1977), Cox et al.
(1979), Geske (1979), Whaley (1981), Geske and Johnson (1984), Barone-Adesi and Whaley (1987),
Selby and Hodges (1987), Boyle (1988), Breen (1991), Yu (1993), Broadie and Detemple (1996) and
Carr and Faguet (1994), among others. For a review and comparison of these procedures, see
Broadie and Detemple (1996).
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some aim for nonparametric corrections of a standard (say Black-Scholes)
option pricing formula, others estimate risk-neutral densities, etc. So far this
literature has focused exclusively on European type options. By studying Ameri-
can options, our paper models both pricing and exercise strategies via non-
parametric methods.? It is worth noting that the approach taken in this paper is
somewhat similar to that of Hutchinson et al. (1994), except that we use
kernel-based estimation methods instead of neural networks. The approach we
suggest can handle a fairly rich class of processes with multiple state variables,
including stochastic volatility, stochastic dividends and interest rates (see
Broadie et al., 2000).

The second purpose of our paper is to use the nonparametric models to assess
the adequacy of conventional American asset pricing models. Let us illustrate
this intuitively using the case of the exercise boundary. Suppose that we have
observations on the exercise decisions of investors who own American options,
along with the features of the contracts being exercised. Such data are available
for instance for the S&P100 Index option or OEX contract, as they are collected
by the Option Clearing Corporation (OCC).? The idea is that with enough data,
such as ten years of daily observations, we should be able to gather information
about how market participants perceive the exercise boundary. Our approach
can be seen as a way to characterize the exercise boundary for American options
using observations on exercises.* This empirical boundary can then be com-
pared to the boundary computed via the usual algorithms. This idea can also be
applied to the pricing of the option, again assuming that we have data on call
and put contracts and their attributes. Unlike exercise data, option price data
are quite common and figure prominently in several financial data bases. The
empirical application reported in the paper involves three types of data, namely:
(1) time-series data on the asset or index underlying the option contract, (2) data
on call and put prices obtained from the CBOE, and (3) data on exercise
decisions recorded by the OCC.

Section 2 is devoted to a brief review of the literature on American option
pricing. Section 3 covers parametric and nonparametric estimation of exercise

2 Bossaerts (1988) and de Matos (1994) are to our knowledge the only papers discussing some of
the theoretical issues of estimating American option exercise boundaries. We do not know of any
empirical work attempting to estimate such boundaries.

3 Option exercise data have been used in a number of studies, including Ingersoll (1977), Bodurtha
and Courtadon (1986), Overdahl (1988), Dunn and Eades (1989), Gay et al. (1989), Zivney (1991),
French and Maberly (1992) and Diz and Finucane (1993).

*Questions as to whether market participants exercise ‘optimally’, regardless of what the model or
assumptions might be, will not be the main focus of our paper although several procedures that we
suggest would create a natural framework to address some of these issues. For the most recent work
on testing market rationality using option exercise data and for a review of the related literature, see
Diz and Finucane (1993).
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boundaries while Section 4 handles estimation of option prices using similar
methods. In both cases a comparison between model-based and data-based
approaches is presented. Finally, Section 5 concludes the paper.

2. American option pricing: a brief review

Let us consider an American call option on an underlying asset whose price
S follows an It6 process. The option is issued at t, = 0 and matures at date
T > 0 with strike price K > 0. We adopt the standard specification in the
literature and assume that the dividend rate is constant and proportional to the
stock price. Consider the policy of exercising the option at time € [0, T]. A call
option with automatic exercise at time t has a payoff (S, — K)*. In the absence
of arbitrage opportunities, the price at time t€[0, 7) of this contingent claim,
V.(7), is given by the expected value of the discounted payoff, where the expec-
tation is taken relative to the equivalent martingale probability measure Q, i.e.

Vite) = EQ[exp( - f T ds> (S, — K)ﬂ%], 2.1)

where r, denotes the time s risk-free interest rate in the economy, E2 denotes the
expectation taken with respect to Q (see Harrison and Kreps, 1979) and
Fy ={F;: t >0} is a filtration on (Q,.7) the measurable space on which the
price process S is defined. Since an American option can be exercised at any time
in the interval [0, T], an option holder will choose the policy (i.e. the exercise
time) which maximizes the value of the claim in (2.1). This stopping time solves

max Vy(t) (2.2)

€7 [0.1]

and at any date ¢ the price of the American call is given by

C, = sup EQ|:exp< — Jrrs ds>(Sr — K)*L%} (2.3)

€7 1,1) t

where 7, ,; is the set of stopping times (w.r.t. #.,) with values in [u,v]. The
existence of a t* solving (2.2) has been proved by Karatzas (1988) under some
regularity conditions on S. Furthermore, the optimal exercise time is the first
time at which the option price equals the exercise payoff, i.e.,

v =inf{te[0,T]: C, = (S, — K)*}. (2.4)

This characterization, however, is of limited interest from an empirical point of
view since the option price, which determines the optimal exercise policy, is an
unknown endogenous function.
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A more precise characterization of the optimal exercise policy is obtained
if wic restrict our attcntion to the Black-Scholes economy. In this model,
the underlying asset price follows the geometric Brownian motion (GBM)
process,’

dS, = S.[(r — 8)dt + cdW¥*], te[0,T], S, given, (2.5)

where 0 is the constant dividend rate, r the constant interest rate, ¢ the constant
volatility of the underlying asset price and W* is a Brownian motion on
(Q,7,%.,0). The price process (2.5) is expressed in its risk-neutral form, i.e., in
termis of the cquivalent martingale measure. Under these assumptions, the
American call option value is given by

T
C(S;,B) = Cf(S,) + f [5Ste_6(s_t)(p[d1(st: Bg,s —1)]
t

— rKe " "O@[dy(S,, By, s — t)]] ds, (2.6)

where CE(S,) denotes the price of the corresponding European option, @ is the
cumulative standard normal distribution function and

d(S;, By, s — t) = (0/s — 1) * x [log(S,/B;) + (r — 6 + 6%/2)(s — )],
d,(S;, By, s — )Edl(S,,Bs,s— t)—o./s —t.

In (2.6) the exercise boundary B solves the recursive integral equation,

Bt — K= CI(BtaB)> te [09 T)a (27)
lim B, = maX{K, rK} (2.8)
"T )

This characterization of the option value and its associated exercise boundary is
the early exercise premium representation of the option. It was originally
demonstrated by Kim (1990), Jacka (1991) and Carr et al. (1992).° The early
exercise representation (2.6)-(2.8) of the American call option price is useful since
it can be used as a starting point for the design of computational algorithms. In
this paper, we implement a fast and accurate procedure proposed by Broadie

5 These assumptions, combined with the possibility of continuous trading, imply that the market
is complete. Moreover, in this economy there is absence of arbitrage opportunities. This is the setting
underlying the analysis of Kim (1990), Jacka (1991) and Myneni (1992).

6 This representation is in fact the Riesz decomposition of the value function which arises in
stopping time problems. The Riesz decomposition was initially proved by El Karoui and Karatzas
(1991) for a class of stopping time problems involving Brownian motion processes. This decomposi-
tion is also applied to American put options by Myneni (1992); it has been extended by Rutkowski
(1994) to more general payoff processes.
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and Detemple (1996), henceforth BD, for the parametric pricing of American
options and the estimation of the optimal exercise boundary.”

We now turn our attention to the parametric and nonparametric analysis of
exercise boundaries. Thereafter, option prices will be covered in the same way.

3. Parametric and nonparametric analysis of exercise boundaries

Probably the only study that addresses the issue of finding an estimate of the
optimal exercise boundary is the work by de Matos (1994), which is an extension
of Bossaerts (1988). It proposes an estimation procedure which is based on
orthogonality conditions which characterize the optimal exercise time for the
contract. However, although no particular dynamic equation for S is postulated,
de Matos (1994) assumes that the optimal exercise boundary is deterministic
and continuous, and approximates it by a finite order polynomial in time,
whose parameters are estimated from the moment conditions. In this paper, we
use nonparametric cubic splines and kernel-based estimators to extract an
exercise boundary from the data.® Our approach readily extends to more
general models with additional state variables such as models with random
dividend payments or with stochastic volatility (see Broadie et al., 1998). The
procedure of de Matos is more restrictive and does not generalize easily.

We describe the exercise data for the S&P100 Stock Index American option
contract in Section 3.1 and report summary statistics, plots and finally the
nonparametric estimates of the exercise boundary using market data. Next in
Section 3.2 we use S&P100 Stock Index data to estimate the GBM diffusion and
invoke the BD algorithm to produce a parametric boundary. Finally, in Section
3.3 we discuss comparisons of the parametric and nonparametric boundaries.

3.1. Description of the exercise data and nonparametric boundary estimates

The data on the characteristics of S&P100 Index American contracts (matur-
ity, strike price, number of exercises) is the same as in Diz and Finucane (1993)
and we refer to their paper for a description of the sources. These are end-of-
the-trading-day daily data on S&P100 Index American put and call contracts
which are traded on the Chicago Board Options Exchange. The contract is

7For the boundary estimation, the BD algorithm provides a lower bound on the boundary. We
checked that the difference between the bound and the true boundary was small by comparing the
results with the recursive integral procedure (using a fine discretization) suggested in Kim (1990) and
detailed in Huang et al. (1996).

8 For a discussion on the relationship between cubic splines and kernel methods, see the appendix
to the paper.
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Fig. 1 . Distribution of the number of call contracts exercised, conditional on S/K and .

described in OEX-S&P100 Index Options (1995). To these data we added the
corresponding series of observed S&P100 Index daily closure prices obtained
from Standard and Poors.” The sample we consider runs from 3 January 1984 to
30 March 1990. Fig. 1 shows the sample distribution of the number of exercises
of call contracts, conditional on the current S&P100 Index to strike price ratio
(S/K), and on the time to maturity (t).'°

Table 1 provides summary statistics of the data. N.,; is the number of
exercises of call options, S is the S&P100 Index and ¢ is the dividend rate on S.
The latter is derived from the S&P100 Index dividend series constructed by
Harvey and Whaley (1992)."'' X denotes the sample mean of the series and x%
represents the x% quantile of the empirical distributions, i.e., the observed value
X, such that x% of the observations are less than or equal to X,. More

9 The wildcard feature of the OEX contract, described in detail in Diz and Finucane (1993) for
instance, results in some nonsynchronous effects in the exercise and index data which will be ignored
(at least explicitly). Any systematic nonsynchronous effect will (implicitly) be captured, however, in
our nonparametric analysis.

10 Fig. 1 presents truncated data, since we left aside observations corresponding to high values of
7. The purpose was to obtain a better visualization of what happens when the number of exercises is
significant. However, the complete sample was used at the estimation stage.

11 The series derived by Harvey and Whaley (1992) gives D,, the amount in $ of the dividend paid
on the S&P100 Index at date t. In order to be consistent with Eq. (2.5), we need annualized dividend
rates. The series 0 whose empirical mean and quantiles are reported in Table 1 has been computed as
8, = D,/S,/dt, where S, is the S&P100 Index and dt = 3i5.
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Table 1
Summary statistics of exercise data

Var. X min 5% 25%  50% 75% 95% max

Nen 2697 1 3 24 202 1357 16946 72590

S 236.9 146.5 154495 181.8 2385 280.9 322.838 336.1

) 0.05254 0 0 0 0.00788 0.06046 0.26044 0.79783

formally, this quantile is defined as the value X, € {X;: i = 1,2,...,nx} such that
ny 1Z?i1 l-w.x,1(X:) = x/100, where ny is the number of observations for the
variable X and [, is the indicator function of the set A.

Fig. 1 shows that most of the exercises occur during the last week prior to
expiration. Except for a period of one or two days to maturity, exercise decisions
are taken when the ratio S/K is close to one. During this period, the ratio is
never below one. However, in the last days before maturity, although most
exercise decisions take place at S/K close to one, the dispersion of the observed
ratio is highly increased towards values close one.'?

The objective here is to estimate a boundary by fitting a curve through
a scatterplot in the space (t,S/K). We proceed as follows. Over the entire
observation period, consider the set of observed values for the time to maturity
variable 7 = {0, 1, ..., Tmay J- Over the same period, we observe a total of N call
options indexed by ie .# = {1,2, ..., N}. Each of these options is characterized
by the date of its issue, t}, the date at which it matures, th + T", and its strike
price, K'. In addition to these variables, for te 7, we observe Si = S;: ;. and
nt =ni . . which are respectively the price of the S&P100 Index and the
number of exercises of option i at date th + T' — 1, ie., = {je.s: nl #0}.

The idea underlying the estimation procedure is that observed S:/K' ratios
result from an exercise policy and can therefore be considered as realizations of
the boundary which, besides 7, is a function of the parameter vector 0 = (r, 0, o)’
defined in Eq. (2.5). Accordingly, B(6,1) stands for the value of the optimal
exercise boundary when the vector of parameters is equal to 0 and the time to
maturity is 7. With such an interpretation of the data, to each t corresponds only
one optimal exercise policy, and we should observe only one S:/K' ratio. We
observe several realizations of St/K', however, for a single 7.** A natural way to

12 These stylized facts do not contradict the predictions of the option pricing model when the
underlying asset price is assumed to be a log-normal diffusion. As shown in Kim (1990, Proposition
2,p.558)lim, | B./K = max{r/d,1}, for call contracts, while for puts lim, o B,/K = min{r/,1}. Here
7 denotes time to maturity.

13 The fact that we observe a dispersion in exercise decisions may be viewed as sufficient evidence

to reject the parametric model in Eq. (2.5) and suggests more complex models (see e.g., Broadie et al.,
2000).



summarize the information is to give more weight to ¢ /K’ ratios associated with
high numbers of exercises n.. In other words, we consider the weighted averages

S ! (St
<K>f - Zielt I’li i;( an (39)

as our realizations of B(0,7).'* A nonparametric estimator of B is a cubic spline
estimator for the model

S
<K>r =yg(1) + e (3.10)
For the details of this estimation procedure, see Eubank (1988, pp. 200-207, and
Section 5.3.2). Intuitively, a curve is fitted to the points (z,(S/K),), 1€ 7. It
involves a smoothing parameter /. which is selected by generalized cross valida-
tion (GCV).'> This is the default procedure of the function smooth.spline
in the S-Plus statistical package. The value of A computed from observations
of the S/K ratio is /1 =9.058884x 1073, which gives a GCV criterion
GCV(J) = 5911787 x 10~ *. Details of the choice of the smoothing parameter
are discussed in the appendix; see also Eubank (1988, pp. 225-227) and Wahba
(1990, Sections 4.4 and 4.9).

3.2. Parametric estimation of the exercise boundary

We now exploit the information provided by the dynamics of the underlying
asset price and consistently estimate its trend and volatility parameters. Up to
this point, we did not explicitly introduce the distinction between the process
which generates the data on S, i.e., the probability distribution P from which the
observations are ‘drawn’, referred to as the ‘objective’ probability, and the
risk-neutral representation of the process described by (2.5). The data generating
process (DGP) which is to be estimated is

dS, = S,[udt + cdW,], t>0, (3.11)

where W is a standard Brownian motion on (2, %, %.), P).

Quite a few well-known procedures exist for estimating the parameters of
a general diffusion. Most of them are based on simulations of the DGP;
examples are the simulated method of moments [see Duffie and Singleton,
1993], the simulated (pseudo) maximum likelihood [see Gouriéroux and

14 Hastie and Tibshirani (1990, p. 74) give a justification to the intuitive solution of averaging the
response variable when we observe ties in the predictor.

15 For a definition of the GCV cirterion, see the appendix, especially Eq. (4).
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Monfort, 1995] and indirect inference or moment matching [see Gouriéroux
et al., 1993; Gallant and Tauchen, 1996]. Recently, another approach has been
proposed by Pedersen (1995a,b) based on a convergent approximation to the
likelihood function. In the case of a simple geometric Brownian motion, how-
ever, we take advantage of the existence of an exact discretization. Application
of It6’s lemma to (3.11) gives

t 1 t
InS, =InS, + J‘ <u —202>ds + f odW,, t>0.

0 0

Therefore the process In S has an AR(1) representation:

InS, =InS,—y +(u—30%) +0e, t=1, (3.12)

where {¢, =W, — W,_4 ind N(0, 1). The vector = (u,0) can be estimated
by maximum likelihood (ML). The ML estimator (MLE) of f is the solu-

tion of

T, 1 I S, o2\ ?
min 5 o+ 52 2 (lns,_l —H +z>
and denoted by fr. Here T is the sample size and # is the set of admissible
values for f.

However, what is required for the implementation of the BD algorithm are
values for r, d and a. Obviously 61, the MLE of g, will be selected as the required
value for the volatility parameter. But the estimation of (3.11) does not provide
us with values for the risk-free interest rate and the dividend rate. These
parameters are extracted from historical series. An estimate of the nominal
interest rate is the average daily rate of return on 1 month T-bills, expressed in
% per annum, and the constant dividend rate on the S&P100 Index is the sample
average of the dividend series described in Section 3.1 (see also Table 1).
A parametric estimate of the exercise boundary is then derived by implementing
the BD algorithm with 0 = (#7,67,67) as the true parameter value, where
Fr = 0.05915, 5 = 0.05254 and &, = 0.01244. Note that 6 is obtained from
daily returns on the S&P100 Index. An estimate of the annual volatility is then

25067 = 0.1967.

The parametric and nonparametric estimates of the exercise boundary are
shown in Fig. 2. For the moment we will focus exclusively on results which are
based on the full sample of data. Later we will also examine subsamples
consisting of data before and after the October 1987 crash.

As can be seen, the two estimated exercise boundaries appear quite different in
shape. First, the parametric estimate of the boundary lies well above the
nonparametric one. In particular, we note that the exercise boundary at
the maturity date, which equals #4/0; = 1.12325, is considerably above the
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Fig. 2. Parametric (—) and nonparametric (- -) estimates of the exercise boundary.

nonparametric estimate at t = 0. Second, it is interesting to note that the
parametric estimate of the exercise boundary lies above the pairs (t, S/K) ob-
tained from the exercise data. It is clear that the two estimates predict very
different exercise strategies in the few days before expiration, where most of the
exercise decisions take place (see Fig. 1). Ideally, we would like to make a formal
statistical comparison between the two curves appearing in Fig. 2. Unfortunate-
ly, there are several reasons, explained in the next section, why such a compari-
son is not straightforward.

3.3. Nomparametric and parametric boundaries

So far, we engaged only in casual comparison of the two estimated exercise
boundaries drawn in Fig. 2. On the parametric side, there is uncertainty about
the position of the curve because the parameters fed into the BD algorithm are
estimates of unknown parameters. Likewise, there is uncertainty regarding the
position of the nonparametric curve as well. Indeed, the S/K ratios obtained via
(3.10) may not directly reflect the exercise boundary because: (1) there is, in fact,
a dispersion of exercise decisions which was summarized by a single ratio per
time to maturity (see Fig. 1) and (2) the index S in the ratio is the index at the
closure which may not exactly coincide with the value of the index when the
exercise decision was actually made. Even if we ignore these effects, it is clear
that the kernel estimation is also subject to sampling error which we can
characterize at least asymptotically.
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There are at least two ways to tackle the comparison between the parametric
and nonparametric boundaries.’® Given what we know about the statistical
properties of the nonparametric boundary, we could entertain the possibility of
formulating a confidence region which, if it does not contain the entire paramet-
ric boundary, suggests rejecting the model. Such (uniform) confidence regions
were discussed in Hardle (1990), Horowitz (1993) and Ait-Sahalia (1993, 1996).
The former two deal exclusively with ii.d. data, while the latter considers
temporally dependent data. Only the latter would be appropriate since the
exercise data described in Section 3.1 are not i.i.d. There are essentially two
approaches to compute confidence regions with temporally depend data: (1)
using asymptotic distribution theory combined with the so-called delta method
applied to distribution functions of the data (see Ait-Sahalia, 1993) or (2)
applying bootstrap techniques. The former can be implemented provided that
the derivatives of the distribution functions are not too complicated to compute.
Since this is typically not the case it is more common to rely on bootstrap
techniques. Since the data are temporally dependent one applies bootstrapping
by blocks (see for instance Kiinsch, 1989). Unfortunately, our data are not
straightforwardly interpretable as time series since the exercise boundary is
obtained from observations at fixed time to maturity. This scheme does not
amount to a simple sequential temporal sampling procedure. Moreover at each
point in time one records exercise decisions on different contracts simulta-
neously which have very different coordinates in the time-to-maturity and
boundary two-dimensional plane. The conditions on the temporal dependence
in calendar time (such as the usual mixing conditions) do not easily translate
into dependence conditions in the relevant plane where the empirical non-
parametric boundary is defined (see the appendix for more details). Because of
these unresolved complications, we opted for another strategy similar to the one
just described, but concentrated instead on the parametric specification. Under
the assumption that the parametric model is correctly specified, we can use the
asymptotic distribution, namely

JT(Or — 0) ~ N©0,Q)=/T(B(0r.7) — B(6,7))

2 N[0,(6B/30)Q(0B/a0)],

16 One possibility which we do not consider is to calculate implied volatilities by inverting the
BD boundary which best fits the exercise data and test whether this volatility is compatible
with the estimates of the underlying process. The reason why we do not pursue this is that it would
be difficult to compute standard errors for the implied volatilities. Another strategy one could
pursue is to use a Jackknife approach, though one would somehow have to deal with the dependence
in the data.
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(which holds under standard regularity assumptions, e.g., see Lehmann (1983,
Theorem 1.9, p. 344).17 The estimate of 0 is denoted 0 and B(0,7) stands for the
value of the optimal exercise boundary when the vector of parameters is equal to
0 and the time to maturity is 7. However, in our situation the vector 0 is
obtained by stacking estimates of its components, namely 77,0 and ¢, which
were computed from separate series, with unknown joint distribution. Hence,
the asymptotic normality of @ may be questionable, while the covariance matrix
Q would remain unknown.

Clearly, we need to make some compromises to be able to assess the effect of
parameter uncertainty on the boundary. We should note first and foremost that
7 and 67 play a role different from ;. The former two are estimates which
determine the drift under the risk neutral measure. They are sample averages of
observed series and computed from a relatively large number of observations. In
contrast, 6 is estimated from a GBM specification. It is typically more difficult
to estimate, yet at the same time plays a much more important and key role in
the pricing (and exercising) of options. Indeed, 74 and §; primarily determine
the intercept (see footnote 12), while 6 affects essentially the curvature of the
exercise boundary. For these reasons, we will ignore for the moment uncertainty
regarding #; and 7, and focus exclusively on the role played by 6, on the
location of B(0r,7). The confidence bounds appearing in Fig. 3 were obtained
through a Monte Carlo simulation of the GBM volatility parameter empirical
distribution and its impact on that of B(Or, 1).

For the reasons explained above, the simulations are performed considering
7+ and 6p as fixed. The parametric estimator of the exercise boundary at
maturity 7 is denoted by B(6wg,7) since the volatility coefficient is obtained
by maximum likelihood estimation. We simulate R = 10,000 samples
((S7,t=1,...,T), y=1,...,R) of the S&P100 Index using f; in (3.12). We then
estimate § by p} = (i}, 6%, its MLE computed from the yth sample, and derive
B’(6wig,7) using the BD algorithm with 0 = 0} = (f1,07,6%), 1€ 7. For
#r and Oy fixed and R large, the sample variance

R R 2
ﬁR(fTagT>BT,’C) = i Z |:By(&MLE;T) - 1 Z BC(5MLEaT):| , 1€T
R RZ
is close to V;, [B(oyLg, )], the variance of B(6yg, ) when 77 and 5p are fixed
and 6 is assumed to be the true value of the volatility coefficient. When T is
large, this can be expected to be a good approximation of V, [B(6yig, 7)), where
g, denotes the true value of a.

17 Please note that the asymptotic distribution could be derived under the assumption of model
misspecification as well, resulting in a QMLE interpretation. Under suitable regularity conditions
this would amount to modifying the covariance matrix of the asymptotic distribution.
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Fig. 3. Parametric (—) and nonparametric (- -) estimates of the exercise boundary with 95%
confidence bounds on the parametric boundary (- - -).

If we further assume that for each 1€ .7 B(Gyig,7) is approximately normally
distributed (recall that 6 is a MLE), we can build a confidence interval for B(0, 7)
at level 1 — o, whose limits are given by B(Or, 1) + ¢, VE(Gr, o7, fr,70)'/%, 1€ 7,
where ¢, satisfies &(c,) = 1 — /2, @ being the cumulative distribution function
(cdf) of N(O, 1).

The confidence bands obtained in this way show clearly that, provided that
7+ and 8 are not too far from their true values and that the normal approxima-
tion is good enough, the two boundaries are significantly different from each
other. Indeed, the nonparametric curve and the data points appearing in Fig. 3
lie outside the parametric curve confidence region. Before we turn to call price
estimation, it is worth noting that the uncertainty on the volatility parameter is
of less importance for the exercise policy when the contract approaches its
maturity. This is expected since the volatility of the underlying asset becomes
less important in the decision of exercising the call contract, or in other words
0B(8,1)/06 ~ 0, for © ~ 0, and for any 6.

There are several issues that emerge from the results we obtained so far.
Clearly, the differences between exercise boundaries drawn in Fig. 2 cannot be
attributed to the uncertainty in the estimation of . Hence, on the parametric
side, there is mostly uncertainty about #; and d; which can be the source of
discrepancy between the parametric and nonparametric curves. These para-
meters, as noted before, determine the risk-neutral density. One may wonder
therefore whether the main reason for the difference between the two ap-
proaches is due to a misspecification of the transformation to a risk-neutral
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Fig. 4 . Nonparametric estimates of the exercise boundary before and after the October 1987 crash.

representation? Before we come to such a conclusion let us revisit the non-
parametric estimates and appraise their robustness. Roughly in the middle of
our sample is the October 1987 crash. This event is without any doubt impor-
tant and often characterized as a breakpoint in some of the stylized facts
regarding derivative securities (see, among others, Bates, 1991). In Fig. 4
we display nonparametric estimates of the exercise boundaries before and after
the crash superimposed on the nonparametric curve obtained from the whole
sample. Before discussing the figure we should first and foremost express
some reservations about this comparison. The nonparametric methods require
large data sets. The full sample considered in the previous section is in fact
relatively small compared with many applications of nonparametric methods.
Moreover, the fact that we apply these methods in a time series context adds
even more strains on data requirements. It is therefore not a trivial exercise to
split up the sample and apply nonparametric methods to the subsamples. With
these reservations in mind we observe that in Fig. 4 the exercise boundaries look
quite similar before and after the crash, particularly keeping in mind the scale of
the plot compared to the scale in Fig. 2.8

When we bring all the evidence together presented thus far, we must conclude
that the parametric model seems to yield very biased estimates of the call

18 Much has been written about the changing behavior of puts since the crash of 1987. The results
in Fig. 4 suggest that the exercise behavior of calls has not been significantly affected by the crash.
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exercise boundary, primarily because the transformation to the risk neutral
density appears to be misspecified.!®

4. Parametric and nonparametric analysis of call prices

We now turn to the estimation of call option prices. As in Sections 3.1 and 3.2,
we consider two types of estimators: (1) a nonparametric estimator entirely
based on the data and (2) a model-based (or parametric) estimator. Along the
same lines, we first describe the data and then present the estimation results.

4.1. The data

We now use data sets (1) and (2) mentioned in the introduction. The period of
observation and the data on the S&P100 Stock Index are the same as for the
boundary estimation (see Section 3.1). For the same period, we observed the
characteristics (price, strike price and time to maturity) of the call option
contracts on the S&P100 Index, described in OEX (1995). They represent daily
closing prices obtained from the CBOE.

4.2. Estimation of call option prices

Since the call option price C depends on the underlying stock price S, we may
have some problems in estimating C, due to the possible nonstationarity of S. To
avoid this, we use the homogeneity of degree one of the pricing formula with
respect to the pair (S,K) [see Eqgs. (2.6)-(2.8)] and focus on the ratio
C(S, K,7)/K = C(S/K, 1,1), which expresses the normalized call option price as
a function of the moneyness and time to maturity.?® Fig. 5 shows the pairs
((C/K),(S/K)) observed at different times to maturity, © = 7,28, 56, 84 days.

Again, we consider two types of estimators depending on our assumptions
about the underlying economic model. The first estimator is entirely based on
the Black-Scholes specification of the economy introduced in Section 2. It is
derived in two steps. First, we estimate the parameters of (3.12) by maximum

19 Similar findings, though in a very different context, namely that of Heston’s stochastic volatility
model, were also reported in Chernov and Ghysels (1998). The techniques used in the latter are very
different from those in the current paper. Instead of comparing nonparametric and parametric
estimates these authors estimate the risk neutral and objective measure representation simulta-
neously using bivariate models of returns and options contracts. These joint estimates allow the
authors to test restrictions on the Radon-Nikodym derivative between the two measures.

20The homogeneity property holds for the GBM as well as for a large class of other processes
featuring stochastic volatility. See Samuelson (1965) and Merton (1973). See also Broadie et al. (1998)
and Garcia and Renault (1996) for further discussion.
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Fig. 5. Observed couples ((C/K),,(S/K),) at different times to maturity. t = 7 days: (a), T = 28 days:
(b), T = 56 days: (c), T = 84 days: (d).

likelihood (see Section 3.2), and second, we use these estimates in the BD routine
to compute C(S/K, 1, 7). We implemented the BD algorithm with 0 = 0, with
S/K running from 0.6 to 1.4 and t from O to 120 days. These values match
the range of the observed values of S/K and 7. The resulting surface is shown
in Fig. 6.

Similarly, we derive a second estimator of the same surface. This estimator
requires no particular assumptions about the economy. We simply express the
normalized call price as a function of time to maturity and of the moneyness
ratio S/K:

C/K = C(S/K,1,7) + & = V(S/K,7) + &, (4.13)

where ¢ is an error term. The unknown function V is estimated by fitting
a surface through the observations ((C/K),,(S/K),,,) using kernel smoothing.*!
The surface appears in Fig. 7.

21 For a discussion on multivariate nonparametric estimation, we refer to Hastie and Tibshirani
(1990) and Scott (1992). We used here a product of Gaussian kernels with bandwidths h, = 5 in the
time to maturity direction and hgx = 0.4 in the S/K direction.
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Fig. 7. Nonparametric estimate of call option price surfaces

The parametric and nonparametric estimates of the relationship between C/K
and (S/K, 1) are very similar in shape, and it is not easy to appraise the differences
that may exist between the two estimates by a direct comparison of Figs. 6 and 7.
Instead, we could select different times to maturity (r = 7, 28, 56 and 84 days)
and extract the relationship between C/K and S/K from the estimated surfaces
in Figs. 6 and 7 for these given 1. It is more appropriate however to re-estimate
the relation between C/K and S/K only, for 1€ {7, 28, 56, 84}. Obviously, this
will produce no change in the parametric estimate. However, for nonparametric
estimation, we avoid some difficulties inherent in multivariate kernel estimation
[see Silverman, 1986; Hastie and Tibshirani, 1990; Scott, 1992]. We used

a smoothing spline where the smoothing parameter is chosen according to
the GCV criterion.?? The resulting difference e(S/K,t) = Cyp(S/K,1,7) —
Cp(S/K,1,7), (t =7, 28, 56, 84 days), between the nonparametric and paramet-
ric fits of the call price is shown in Fig. 8.

22 For a definition of the GCV cirterion, see the appendix, especially Eq. (4).
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Fig. 8. Difference between the nonparametric and parametric fits of call prices (solid line —) and

95% confidence bounds (dash lines - - -). T =7 days: (a); © = 28 days: (b); T = 56 days: (c); T = 84
days: (d).

Several remarks emerge from these figures. We note from Fig. 7 that the
nonparametric estimate captures the dependence of option prices on time to
maturity, i.e., as we move away from the maturity date, the normalized call
option price increases as time to maturity gets larger, for any fixed moneyness
ratio S/K. However, this dependence dampens out as this ratio moves away
from unity. The largest differences occur for ‘near-the-money’ or at-the-money
contracts.

The plots of the differences e(S/K, 1) [see Figs. 8(a)~(d)] reveal some interest-
ing features. First, we see that the parametric estimates tend to underprice the
call option contract, when the nonparametric estimated relation is taken to be
the true one. Although this holds for all the times to maturity we considered
(t =17, 28, 56, 84), it is remarkable that the discrepancy between the two price
predictors diminishes as we approach to maturity. One possible explanation for
this is the following. Suppose the observed underpricing of the parametric
estimator can be attributed to a misspecification in the dynamics of the underly-
ing asset price process, S. Then we see that the effects of this misspecification on
option pricing disappears as t/0. Indeed, as the option approaches its maturity,
the degree of uncertainty on its normalized price C/K vanishes and C/K tends to
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be more and more directly related to the observed difference between S/K and
1 (whent =0, C/K = (S/K — 1)"). This is always true in option pricing models,
irrespective of the specification of the dynamics of S. In particular, this is true for
the GBM specification we adpoted here. A second remark about the estimation
results is that, for a fixed time to maturity, the two estimates of C/K seem to
agree for S/K close to 1. This is in accordance with the stylized facts compiled in
the literature on option pricing [see Ghysels et al., 1996; Renault, 1996]. The
usual practice of evaluating ‘near-the-money’ options not far from maturity
according to models as simple as those of Section 2 seems to be well founded in
the light of the results reported in this section.

To assess statistically the significance of e, we derived some confidence
bounds as in Section 3.3, which measure the effect of the uncertainty in the
estimation of ¢ on the parametrically estimated call prices. Considering
CNP(S/K, 1,7) as fixed and equal to the true pricing formula, and for a fixed 7, we
say that e(S/K, 1) is not significantly different from O for a given moneyness ratio
S/K, if 0 lies in the confidence interval for e(S/K, 7). These intervals, derived in
a similar way as in Section 3.3, are reported in Fig. 8. The results confirm the
previous remark that the two estimates of call prices agree only for S/K close to
1. Finally, we should also note that we computed the nonparametric estimates
for the calls before and after the crash of 1987, similar to the comparison
performed with the excercise boundaries. We do not report the results in a figure
as the estimated curves are literally on top of each other. Hence, under the
reservations about the use of nonparametric estimates in small samples, we find
again stable results, which is compatible with the earlier results regarding
excercise boundaries.

5. Conclusion

In this paper we proposed nonparametric estimation procedures to deal with
the computational complications typically encountered in American option
contracts. We focused on the most active market in terms of trading volume and
open interest. It provided us with a wealth of data on the exercise and pricing
decisions under different circumstances, i.e. differences in time-to-maturity and
strike prices, and enabled us to estimate the functions nonparametrically. In
principle our methods apply to any type of contract, as complex as it may be,
provided the data are available and the suitable regularity conditions to apply
nonparametric methods are applicable. We also reported a comparison of the
nonparametric estimates with the nowadays standard parametric model involv-
ing a GBM for the underlying asset. While the comparison of the nonparametric
and parametric estimated functions raised several unresolved issues, our results
suggest large discrepancies between the two. It obviously raises questions about
the parametric models. Of course, typically, practitioners will ‘calibrate’ their
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parameters to the market data instead of estimating the unknown parameters
via statistical techniques as we did. This may improve the fit, yet it remains
limited to the constant volatility framework modified through time-varying
(implied) volatilities. The advantages of the framework we propose is that it can
be extended to deal with state variables such as random dividends, etc. (see
Broadie et al., 2000). One remaining drawback of the approach we suggested in
this paper is that it does not lend itself easily to imposing absence of arbitrage
conditions. However, the advantages in terms of computing exercise boundaries
and call pricing overshadow, at least in the single asset case, this disadvantage.

Appendix on nonparametric estimation

In this appendix, we briefly present the nonparametric estimation techniques
used in the paper. We also provide references with more details on the subject.

In this paper, we mainly used two kinds of nonparametric estimators, namely
kernel and spline smoothing. Since the issues related to these estimation tech-
niques are similar, we present the kernel estimator first and then digress on the
smoothing spline estimator.

Nonparametric estimation deals with the estimation of relations such as

Yi=fZ)+u, i=1,....n (A.1)

where, in the simplest case, (Y;,Z;),i =1,...,n) is a family of i.i.d. pairs of
random variables, and E(u|Z) = 0, so that f(z) = E(Y|Z = z). The error terms
u;,i =1,...,n, are also assumed to be independent, while f is a function with
smoothness properties which have to be estimated from the data on the pair
(Y,Z). Kernel smoothers produce an estimate of f at Z =z by giving more
weight to observations (Y;, Z;) with Z; ‘close’ to z. More precisely, the technique
introduces a kernel function, K, which acts as a weighing scheme (it is usually
a probability density function, see Silverman, 1986, p. 38) and a smoothing
parameter /. which defines the degree of ‘closeness’ or neighborhood. The most
widely used kernel estimator of f'in (A.1) is the Nadaraya-Watson estimator
defined by

Z?: 1K((Z; — 2)/2)Y;
Yi=1K(Zi —2)/4) 7

so that (fi(Z,), ..., f(Z,)) = WEA)Y, where Y =(Y,,...,Y,) and WX is a
n x n matrix with its (i, j)th element equal to K((Z; — Z;)/2)/Y =1 K(Zy, — Z;/4).
WK is called the influence matrix associated with the kernel K.

The parameter 4 controls the level of neighboring in the following way. For
a given kernel function K and a fixed z, observations (Y, Z;), with Z; far from z,
are given more weight as A increases; this implies that the larger we choose 4, the

fi@) =

(A.2)
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less f3(z) is changing with z. In other words, the degree of smoothness of
f, increases with 4. As in parametric estimation techniques, the issue here is
to choose K and A in order to obtain the best-possible fit. A natural measure
of the goodness of fit at Z =z is the mean squared error (MSE(4,z) =
E[(f(z) — f(2))*]), which has a bias/variance decomposition similar to paramet-
ric estimation. Of course both K and A have an effect on MSE(/, z), but it is
generally agreed in the literature that the most important issue is the choice of
the smoothing parameter.?® Indeed, A controls the relative contribution of bias
and variance to the mean squared error; high s produce smooth estimates with
a low variance but a high bias, and conversely. It is then crucial to have a good
rule for selecting 4. Several criteria have been proposed, and most of them are
transformations of MSE(4,z). We may simply consider MSE(4,z), but this
criterion is local in the sense that it concentrates on the properties of the
estimate at point z. We would generally prefer a global measure such as the mean
integrated squared error defined by MISE(/1) = E[j( fi(z) — f(2))*dz], or the sup
mean squared error equal to sup, MSE(4,z), etc. The most frequently used
measure of deviation is the sample mean squared error M,(1) =
(I/n)> -y [fi(Z)) — f(Z)]*o(Z;), where o - ) is some known weighing function.
This criterion only considers the distances between the fit and the actual
function f at the sample points Z;. Obviously, choosing /. = 7, = argmin,; M,(1)
is impossible to implement since f is unknown. The strategy consists of finding
some function m,( - ) of A (and of (Y}, Z;),i = 1,...,n)) whose argmin is denoted
. such that |7, — 1| - 0 a.s. as n — oo. For a review of such functions m,,, see
Hirdle and Linton (1994, Section 4.2).>* The most widely used m,, function is the
cross-validation function

12 .
m,(2) = CV,(4) = PR SRR VA (A.3)

i=1
where f{~?(z) is a Nadaraya-Watson estimate of f(z) obtained according to (A.2)

but with the ith observation left aside. Craven and Wahba (1979) proposed the
generalized cross-validation function with

Y LY — f(Zo]?
[1—n (W) °

where W, is the influence matrix.?®

ma(2) = GCV,(J) = (A4)

23For a given Z, the most commonly used kernel functions produce more or less the same fit.
Some measures of relative efficiency of these kernel functions have been proposed and derived, see
Hérdle and Linton (1994, p. 2303) and Silverman (1986, Section 3.3.2).

24 See also Silverman (1986, Section 3.4) and Andrews (1991).

25 This criterion generalizes CV,, since GCV,, can be written as n™ 'Y, [Y; — f\")(Z;)]%a;;, where
the a;s are weights related to the influence matrix. Moreover, GCV, is invariant to orthogonal
transformations of the observations.
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Another important issue is the convergence of the estimator f; (z). Concerning
the Nadaraya-Watson estimate (A.2), Schuster (1972) proved that under some
regularity conditions, f; (z) is a consistent estimator of f(z) and is asymptotically
normally distributed.?® Therefore when the argmin 4, of m,(4) is found in the set
A, (see footnote 26), we obtain a consistent and asymptotically normal kernel
estimator f} (z) of f(z), which is optimal in the class of the consistent and
asymptotically Gaussian kernel estimators for the criterion M, (4).%”

While kernel estimators of regression functions (or conditional expectation
functions) are based on kernel estimates of density functions (see for instance
Hardle and Linton, 1994, Section 3.1), spline estimators are derived from
a least-squares approach to the problem. One could think of solving the
following problem:

min ) [Y; —g(Z)]> (A.5)

ged ;=1
where .# is a class of functions satisfying a number of desirable properties (e.g.,
continuity, smoothness, etc.). Obviously, any ge.# restricted to satisfy
g(Z) =Y, i=1,...,n,is a candidate solution of the minimization problem, and
would merely consists of interpolating the data. Even if we restrict g to have
a certain degree of smoothness (by imposing continuity conditions on its
derivatives), functions g such that g(Z;) = Y;,i = 1, ...,n, may be too wiggly to
be a good approximation of f. To avoid this, the solution of the problem is
chosen so that functions not smooth enough are ‘penalized’. A criterion to
obtain such solutions is

min Y [Y; — g(Z)]* + % J [¢¥(x)]* dx. (A.6)
gedl ;=1 I
I is an interval [a,b] such that a<min{Z:i=1,...,n} <
max{Z; i=1,...,n} <b,and g* denotes the kth derivative of g. The integral in
the second term of (A.6) is a measure of the degree of smoothness of the func-
tion ¢ since it can be interpreted as the total variation of the slope of g. Then for
high 4, we penalize functions which are too wiggly and we move away from
solutions that tend to interpolate the data. If 4 becomes too high, we decrease
the goodness of the fit. In the limit, if 2 —» oo, the problem tends to minimizing
the second term of (A.6), whose solution is a function that is ‘infinitely smooth’.

26 The regularity conditions bear on the smoothness and continuity of f, the properties of the
kernel function K, the conditional distribution of Y given Z, the marginal distribution of Z, and the
limiting behavior of Z,. The class of 1,’s which satisfy these regularity conditions is denoted A,.

27 By definition, the choice A = A¥ is optimal for the criterion D(A) if D(A¥)/inf,c,, D(X) S
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Such a function is a straight line which has a zero second derivative everywhere.
Conversely, if 4 — 0, the solution of (A.6) tends to the solution of (A.5) which is
the interpolant. Therefore, the parameter 1 plays exactly the same role as in
kernel estimation.

When ./ is taken as the class of continuously differentiable functions on I,
with square integrable second derivative on I, the solution of (A.6) is unique and
is a natural cubic spline, which we denote by f; [see Wahba, 1990, pp. 13-14;
Eubank, 1988, pp. 200-207]. By natural cubic spline, it is meant that, given the
mesh on I defined by the order statistic Z(;, < Z@) < -+ < Z,), f; is a poly-
nomial of order three on [Z;),Z;+1)]), i = 1,...,n — 1, with second derivatives
continuous everywhere, and such that f{*(Zy,) = f{*(Z,) = 0. It can be shown
[see Hirdle, 1990, pp. 58-59] that the spline f; is a linear transformation of the
vector of observations Y, i.e.,

wi(z)Y . (A7)

M=

fir =

1

A result of Silverman (1984) proves that the weight functions w} behave asymp-
totically like kernels. If we write (A.7) for observations points Z,,...,Z,, we
have (f3(Z,),...fi(Z,)) = W5()Y where the influence matrix W3(J), has its
(i, j)th entry equal to wi(Z;) [see Wahba, 1990, p. 13]. This matrix is explicitly
derived in Eubank (1988, Section 5.3.2) and is shown to be symmetric, positive
definite.

It appears that, like kernel estimators, spline function estimators are linear
estimators involving a smoothing parameter and are asymptotically kernel
estimators. Therefore, the criteria for selecting A described above also apply for
spline estimation (see Wahba, 1990, Sections 4.4 and 4.9) and Eubank (1988,
pp. 225-227)).

Things are a little bit more complicated when the errors are not spherical.
Under general conditions, the kernel and spline estimators remain convergent
and asymptotically normal. Only the asymptotic variance is affected by the
correlation of the error terms. However, the objective functions for selecting
A such as CV, or GCV, do not provide optimal choices for the smoothing
parameters. It is still not clear in the literature what should be done in this case
to avoid over- or undersmoothing.>® Two kind of solutions have been proposed.
The first one consists of modifying the selection criterion (CV, or GCV,) in order
to derive a consistent estimate of M,,, and the second one tries to orthogonalize
the error term and apply the usual selection rules for . When the autocorrela-

28 Altman (1990) shows that when the sum of the autocorrelations of the error term is negative
(positive), then the functions CV, and GCYV, tend to produce values of 4 that are too large (small),
yielding oversmoothing (undersmoothing).
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tion function of u is unknown, one has to make the transformation from sample
estimates obtained from a first step smoothing. In that view, the second alterna-
tive seems to be more tractable. Altman (1987, 1990) presents some simulation
results which show that in some situations, the whitening method seems to work
relatively well. However, there is no general result on the efficiency of the
procedure. See also Hardle and Linton (1994, Section 5.2) and Andrews (1991,
Section 6).

When the observed pairs of (Y,Z) are drawn from a stationary dynamic
bivariate process, Robinson (1983) provides conditions under which kernel
estimators of regression functions are consistent. He also gives some central
limit theorems which ensure the asymptotic normality of the estimators. The
conditions under which these results are obtained have been weakened by Singh
and Ullah (1985). These are mixing conditions on the bivariate process (Y, Z).
For a detailed treatment, see Gyorfi et al. (1989). This reference (Chapter 6) also
discusses the choice of the smoothing parameter in the context of nonparametric
estimation from time series observations. In particular, if the error terms are
independent, and when £, = argmin,., CV,(2), then under regularity conditions
J, is an optimal choice for A according to the integrated squared error,
ISE(Z) = [[fi(z) — f(2)]* dz (see Gydrfi et al., 1989, Corollary 6.3.1). Although
the function CV,(4) can produce an optimal choice of 4 for the criterion M, (A) in
some particular cases (such as the pure autoregression, see Hardle and Vieu,
1992), there is no general result for criteria such as MISE(A) or M, (A).

The most general results concerning the convergence of nonparametric kernel
estimators of regression functions seem to be found in Ait-Sahalia (1993). In this
work, very general regularity conditions which ensure the convergence and the
asymptotic normality of functional estimators, whose argument is the cdf which
has generated the observed sample, are given (Ait-Sahalia, 1993, Theorem 3,
pp. 33-34). This result is derived from a functional CLT for kernel estimators of
cdfs (Ait-Sahalia, 1993, Theorem 1, p. 23) combined with a generalization of the
delta method to nonparametric estimators. Therefore, provided that the asymp-
totic variances can be approximated, one can apply usual Wald-type tests or
confidence regions to make proper statistical inference. When the asymptotic
distribution is too complex, a block bootstrapping technique, specially adapted
to resampling from dependent data, can be used (see Kiinsch, 1989; Liu and
Singh, 1992; Ait-Sahalia, 1993). Although this method is very general, a mixing
condition is required when dealing with dependent data. Even though this
condition allows for many types of serial dependence, application of these
results in the context of Sections 3.1 and 4.2 is not straightforward. Indeed, in
the case of nonparametric exercise boundary estimation as well as in call price
estimation, the data points from which we derive our estimates are not sampled
via a simple chronological scheme. In the case of exercise boundary estimation,
the data points we use are weighted averages of observations of ordinary time
series. In the case of call price estimation, the difficulty comes from the panel
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structure of option prices and strike prices. In both cases it is not obvious to see
how the original dependences characterized in calendar time translate in the
dimensions we are looking at. This makes the aforementioned approaches
developed for dependent data more difficult to justify and implement.
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