
Probabilistic Greedy Heuristics
for Satisfiability Problems

Rajeev Kohli∗

Ramesh Krishnamurti†

September 16, 2005

∗Professor, Graduate School of Business, Columbia University; rk35@columbia.edu.
†Professor, School of Computing, Simon Fraser University; ramesh@cs.sfu.ca.

Probabilistic Greedy Heuristics for Satisfiability Problems

Abstract

We examine probabilistic greedy heuristics for maximization and
minimization versions of the satisfiability problem. Like deterministic
greedy algorithms, these heuristics construct a truth assignment one
variable at a time. Unlike them, they set a variable true or false us-
ing a probabilistic mechanism, the probabilities of a true assignment
depending on the incremental number of clauses satisfied if a variable
is set true. We discuss alternative probabilistic functions, and charac-
terize the expected performance of the simplest of these rules relative
to optimal solutions. We discuss the advantages of probabilistic al-
gorithms in general, and the probabilistic algorithms we analyze in
particular.

1

1 Introduction

Consider a set of clauses, each clause a disjunction of Boolean vari-
ables. The maximum (minimum) satisfiability problem is to find a
truth assignment that maximizes (minimizes) the number of clauses
that are satisfied. For brevity, we refer to the maximization problem as
maxsat, and the minimization problem as minsat. Both maxsat and
minsat are NP-Hard problems (Johnson 1974, Kohli, Krishnamurti
and Mirchandani 1994).

The purpose of this chapter is to examine probabilistic greedy
heuristics for the maxsat and minsat problems, and to describe for
the simplest of these heuristics the bounds on the average number
of clauses satisfied, relative to an optimal solution. We call the algo-
rithms probabilistic greedy heuristics because they set a truth variable
true or false not with certainty, but with a probability that depends
on the number of unsatisfied clauses in which the variable appears in
negated or unnegated form. There are many methods by which the
probabilities can be obtained. We discuss some of these, and give the
known results for the simplest kinds of rules, in which the probabil-
ity is (directly or inversely) proportional to the number of additional
clauses satisfied if a variable were set true.

There are three main advantages that probabilistic algorithms have
over deterministic ones. First, one can often obtain bounds on the av-
erage performance of such algorithms without having to specify the
method by which the problem instances are generated. In such cases,
one is assured of a performance guarantee across all families of sta-
tistical distributions giving rise to instances of a problem. This is a
form of robustness, obtained by probabilistic algorithms because they
can use the structure of a specific problem instance in such a man-
ner as to nullify, at least in part, those peculiarities of data as give
rise to worst-case instances for deterministic algorithms. One still
obtains worst-case bounds for probabilistic algorithms, but these are
bounds on the average performance, which are often higher than the
worst-case bounds of similar deterministic algorithms. The second
advantage is that analyzing the average performance of probabilistic
algorithms is often much simpler than analyzing the average perfor-
mance of deterministic algorithms. Note that this point is distinct
from the possible derandomization of a probabilistic algorithm, an ex-
ample of which in the present context is the algorithm by Mahajan
and Ramesh (1999), which derandomizes the probabilistic algorithm

2

for the maxsat problem due to Goemans and Williamson (1995). The
third advantage is that by selecting the best solution value over a
large number of runs of a probabilistic algorithm, one obtains a solu-
tion that almost certainly has a worst-case bound that is no smaller
than the average performance bound for the probabilistic algorithm.

2 Maxsat and Minsat Problems

Let U = {u1, . . . , un} denote a set of n Boolean variables, where each
variable u ∈ U can be true or false. We denote by ū the negation of a
truth variable u. We use the term “literal” to refer to a truth variable
in negated or unnegated form. Thus, u and ū are both literals. A
truth assignment for an instance of a satisfiability problem (either
maxsat or minsat) comprises a truth setting for each variable, where
each variable is set either to true or to false.

Let C = {c1, . . . , cm} denote a set of m clauses. Each clause c ∈ C
is a disjunction of some, possibly all, of the literals in U. A clause is
satisfied if at least one of the literals it contains is true. For example,
c = u1∨ ū4, a disjunction of two literals, is satisfied if u1 is true and/or
u4 is false.

The satisfiability problem is to determine if there is a truth as-
signment that satisfies all clauses in C. The problem is NP-Complete
if each clause contains three or more literals (Even, Itai and Shamir
1976). An optimization problem corresponding to satisfiability is the
maximum satisfiability or maxsat problem. It is NP-Hard (Johnson
1974), and it requires the identification of a truth assignment that
satisfies the maximum number of clauses in C. The complementary
problem, called minimum satisfiability, or minsat, requires the iden-
tification of a truth assignment that satisfies the minimum number
of clauses in C. We note that minsat is equivalent to maximizing the
number of conjunctive clauses, each of which is satisfied only if all its
literals are true.

Minsat is readily solved if there is an assignment that satisfies no
clause, because in this case each variable, or its negation, does not
appear in any clause. However, the general minsat problem is NP-
Hard if each clause contains at least two literals (Kohli, Krishnamurti
and Mirchandani 1994). A deterministic approximation algorithm has
since been provided for minsat by using an approximation-preserving
transformation from minsat to the vertex cover problem (Marathe and

3

Ravi, 1996). Furthermore, an approximation algorithm with a perfor-
mance ratio of ρ for minsat implies the existence of an approximation
algorithm with the same performance ratio for vertex cover. This sug-
gests that it is hard to provide an approximation algorithm for minsat
with a performance ratio better than 2.

Let u1, u2, . . . , un denote an arbitrary ordering of the n truth vari-
ables in U. We consider the following probabilistic greedy heuristic(s)
for solving maxsat and minsat.

Initialization. (step 1): Let C1 = C denote the set of all clauses
in an instance of the maxsat or minsat problem. Let C1(u1)
denote the subset of clauses in C1 that contain variable u1. Let
C1(ū1) denote the subset of clauses in C1 that contain variable
ū1. Let x1 and y1 denote the number of clauses in sets C1(u1)
and C1(ū1). Set

u1 =
{

True with probability p1 = f(x1, y1)
False with probability 1− p1,

where f(x1, y1) ∈ [0, 1]. Eliminate all satisfied clauses. Define
C2, the set of clauses not satisfied at the end of step 1:

C2 =
{

C1 \ C1(u1) if u1 is selected at step 1,
C1 \ C1(ū1) if ū1 is selected at step 1.

Iteration. (step j): Let Cj denote the set of clauses that are not
satisfied at the end of step j − 1. Let Cj(uj) denote the subset
of clauses in Cj that contain uj . Let Cj(ūj) denote the subset of
clauses in Cj that contain ūj . Let xj and yj denote the number
of clauses in Cj(uj) and Cj(ūj). Set

uj =
{

True with probability pj = f(xj , yj)
False with probability 1− pj ,

where f(xj , yj) ∈ [0, 1]. Eliminate all satisfied clauses. Define
Cj+1, the set of clauses not satisfied at the end of step 1:

Cj+1 =
{

Cj \ Cj(uj) if uj is selected at step j,
Cj \ Cj(ūj) if ūj is selected at step j.

4

Termination. Stop if Cj+1 = φ or if j = n.

There are many possible functions f(·) that one can use to determine
the probabilities for each of the maxsat and minsat problems. The
only conditions are that the values of the function increases with xj

(yj) and decreases with yj (xj) for the maxsat (minsat) problem, and
that the probabilities remain bounded between 0 and 1. For example,
we can use the function

f(xj , yj) =
eβxj

eβxj + eβyj
=

1
1 + e−β(xj−yj)

for the maxsat problem. The function has value 1/2 when xj = yj ,
approaches 1 as xj becomes much larger than yj , and approaches
zero as yj becomes much larger than xj . This is a “logit” function,
which has found much use in the statistics and economics literatures
(Maddala 1999). The corresponding function for the minsat problem
is

f(xj , yj) =
eβyj

eβxj + eβyj
=

1
1 + eβ(xj−yj)

.

Perhaps the simplest class of functions we can use is

f(xj , yj) =
xβ

j

xβ
j + yβ

j

=
1

1 + (yj/xj)β
, β ≥ 1,

for the maxsat problem and

f(xj , yj) =
yβ

j

xβ
j + yβ

j

=
1

1 + (xj/yj)β
, β ≥ 1,

for the minsat problem. In both cases, pj = f(xj , yj) = 1/2 if xj = yj ,
and pj approaches the limiting probabilities 1 (0) in the desired man-
ner. Different values of β give different rates at which the probabili-
ties approach their limiting values; as β becomes arbitrarily large, the
probabilities approach the limiting values 0 and 1, and the algorithm
become a deterministic greedy heuristic. In this sense, a probabilis-
tic rule of the above sort is a generalization of a deterministic greedy
heuristic. The only results so far obtained are for the special case of
β = 1 in the above expression; theoretical analysis of the general class
of greedy heuristics remains open. In the next section, we describe
the results that are known for β = 1 in the above expression.

5

2.1 Performance Bound for Maxsat Problem

In the following discussion, xj denotes the number of clauses in which
the literal uj occurs, yj denotes the number of clauses in which the
literal ūj occurs. Let nj = xj + yj . As noted above, we consider
a probabilistic greedy heuristic that sets the jth variable true with
probability pj = xj/nj .

Without loss of generality, let uj , j = 1, . . . , n, comprise the opti-
mal solution. Let zj denote the value of the optimal solution to the
subproblem comprising clauses in set Cj . Let aj denote the value of
the optimal solution to the subproblem obtained by eliminating uj ,
and all the clauses satisfied when uj is true. Similarly, let āj denote
the value of the optimal solution to the subproblem obtained by elim-
inating ūj , and all the clauses satisfied when uj is false. The following
lemma provides a bound on both aj and āj in terms of zj , xj , and nj .

Lemma 1 (Kohli and Krishnamurti 1989)
aj = zj − xj and āj ≥ max {0, zj − nj}, for all j = 1, . . . , k.

Proof. Since uj occurs in xj clauses, the optimal solution to the maxsat
subproblem comprising the set of clauses Cj \Cj(uj) is, trivially, aj =
zj − xj . Also, xj ≤ nj (by definition), so that zj − xj ≥ zj − nj .
Of the zj − xj clauses in set Cj \ Cj(uj), at most nj − xj clauses
contain literal ūj . Hence the maxsat subproblem comprising the set
of clauses Cj \ Cj(ūj) has an optimal solution āj no smaller than
zj − xj − (nj − xj) = zj − nj . As nj can exceed zj , and as the value
of the optimal solution to the maxsat subproblem comprising clauses
Cj \ Cj(ūj) is nonnegative, āj ≥ max {0, zj − nj}, j = 1, . . . , k. �

We now obtain the main result for the maxsat problem.

Theorem 1 (Kohli and Krishnamurti 1989)
On average, the greedy heuristic for the maxsat problem satisfies at
least 2/3 of the number of clauses satisfied by an optimal truth assign-
ment.

Proof. We prove the theorem by induction on the number of variables.
We first prove the result for n = 1. Without loss of generality, assume
that variable u1 is true in an optimal assignment. Then the value of

6

the optimal solution is z1 = x1. The expected value of the greedy
solution is

p1x1 + (1− p1)(n1 − x1),

where p1 = x1/n1. Thus, the expected performance ratio of the heuris-
tic is

E[r1] =
1
z1

(
p1x1+(1−p1)(n1−x1)

)
=

1
x1

(
x1

n1
x1 +

n1 − x1

n1
(n1 − x1)

)
.

Given n1, the lower bound on E[r1] is obtained by minimizing the
above expression with respect to x1, which can be verified to occcur
at x1 = n1/

√
2. Substituting this value of x1 in E[r1] and simplifying

yields

E[r1] ≥ 2
√

2− 2 ≥ 2
3
.

Now suppose

E[rl] ≥
2
3

for all l ≤ k − 1.

We show that
E[rk] ≥

2
3

for all k.

Suppose the probabilistic greedy heuristic sets uk true, satisfying xk

clauses. Then the expected number of clauses satisfied by the proba-
bilistic greedy heuristic is no smaller than

xk +
2
3
ak.

By a similar argument, if the greedy heuristic sets uk false at step 1,
the expected value of its solution is no less than

nk − xk +
2
3
āk.

As uk is selected with probability pk = xk/nk, and ūk is selected with
probability 1−pk, the expected value of the heuristic solution has the
lower bound

E[fk] ≥
xk

nk

(
xk +

2
3
ak

)
+

nk − xk

nk

(
nk − xk +

2
3
āk

)
.

From Lemma 1, ak ≥ zk − xk, which gives

E[fk] ≥
xk

nk

(
xk +

2
3
(zk − xk)

)
+

nk − xk

nk

(
nk − xk +

2
3
āk

)
.

7

Also, from Lemma 1,

āk ≥ max {0, zk − nk}.

Consider zk > nk. Then

āk ≥ zk − nk > 0,

and the above inequality for E[fk] becomes

E[fk] ≥
xk

nk

(
2zk

3
+

xk

3

)
+

(nk − xk)2

nk
+

2(nk − xk)
3nk

(zk − nk).

Simplifying,

E[fk] ≥
(xk)2

3nk
+

2zkxk

3nk
+

(nk − xk)2

nk
+

2(nk − xk)
3nk

(zk − nk).

The right hand side obtain its minimum value when xk = nk/2, which
implies

E[fk] ≥
2zk

3
and E[rk] =

E[fk]
zk

≥ 2
3
.

Now consider zk ≤ nk. Then

āk ≥ 0 (≥ zk − nk),

and therefore

E[fk] ≥
xk

nk

(
xk +

2
3
(zk − xk)

)
+

nk − xk

nk
(nk − xk).

Simplifying

E[fk] ≥
x2

k

3nk
+

2zkxk

3nk
+

(nk − xk)2

nk
.

The right hand side of the above expression can be verified to obtain
its minimum value when

xk =
3nk − zk

4
,

at which value of xk

E[fk] ≥
nk

4
+

zk

2
−

z2
k

12nk
.

8

The right hand side of the above expression takes its smallest value
when nk = zk, for which

E[fk] ≥
zk

4
+

zk

2
− zk

12
=

2
3
zk.

It follows that
E[rk] =

E[fk]
zk

≥ 2
3
.

�

To see that the bound in Theorem 1 is tight, consider the following
problem instance in which there are k variables and 2k clauses.

Clause uk ūk uk−1 ūk−1 . . u2 ū2 u1 ū1

1 0 1 0 1 . . 0 1 0 1
2 0 1 0 1 . . 1 0 0 0
3 0 1 0 1 . . 0 0 0 0
.
.
2k−2 0 1 0 1 . . 0 0 0 0
2k−2 + 1 0 1 1 0 . . 0 0 0 0
.
.
.
2k−1 0 1 1 0 . . 0 0 0 0
2k−1 + 1 1 0 0 0 . . 0 0 0 0
.
.
.
2k 1 0 0 0 . . 0 0 0 0

The expected performance of the probabilistic greedy heuristic is

E[fk] = 2
(

1
2

)
nk

2
+ 2
(

1
2

)2 nk

22
+ . . . + 2

(
1
2

)k nk

2k
+
(

1
2

)k nk

2k

=
2nk

3
+

nk

3

(
1
4k

)
.

As zk = nk, the expected performance ratio equals

E[rk] =
2
3

+ ε, where ε =
1
3
· 1
4k

.

9

As ε can be made to approach 0 arbitrarily closely by increasing k,
E[rk] can be made to approach 2/3 from above arbitrarily closely.
Since the asymptotic upper bound for the probabilistic greedy heuris-
tic is 2/3, the lower bound in Theorem 1 is tight.

2.2 Performance Bound for Minsat Problem

As in the last section, we restrict our analysis to a probabilistic greedy
heuristic for the minsat problem to the case where β = 1; that is, the
heuristic sets the jth variable true with probability pj = yj/nj . The
following theorem gives the lower bound on the expected performance
ratio of the greedy heuristic.

Theorem 2 (Kohli, Krishnamurti and Mirchandani 1996)
On average, the greedy heuristic for the minsat problem satisfies at
most twice the number of clauses satisfied by an optimal truth assign-
ment.

Proof. We prove the theorem by induction on the number of variables
n. If n = 1, the expected number of satisfied clauses is

p1x1 + (1− p1)y1 =
y1

n1
x1 +

x1

n1
y1 =

2x1y1

n1
,

where p1 = y1/n1. Without loss of generality, assume that variable
u1 is true in an optimal assignment. Then the value of the optimal
solution is z = x1. Thus the value of the expected performance ratio
for the probabilistic greedy heuristic is

E(rn) =
2x1y1

n1
=

2y1

n1
≤ 2.

Let l ≥ 1 be an integer such that

E(rn) ≤ 2 for n = l.

We now show that

E(rn) ≤ 2 for n = l + 1.

If the probabilistic greedy heuristic selects u1 at step 1, the value
of the optimal solution at the second step of the greedy heuristic is

10

z − x1, where z is the optimal solution value of the minsat problem
with n variables. However, if the greedy heuristic selects ū1 at step 1,
the value of the optimal solution at the second step is bounded from
above by z. Hence the expected number of clauses satisfied by the
probabilistic greedy heuristic is bounded from above by

p1

(
x1 + E(rl)(z − x1)

)
+ (1− p1)

(
y1 + E(rl)z

)
.

As E(rl) ≤ 2 by the induction hypothesis, the value of the above
expression is no greater than

p1(x1 + 2(z − x1)) + (1− p1)(y1 + 2z).

Thus, an upper bound on the expected performance ratio for the prob-
abilistic greedy heuristic is

E(rl+1) ≤
1
z

(
p1(x1 + 2(z − x1)) + (1− p1)(y1 + 2z)

)
=

1
z

(
2z − p1(x1 + y1) + y1

)
≤ 2.

�

To prove the above bound is tight, consider the following example
with n = 2 variables and m clauses. Let:

c1 = u1 ∨ u2,

c2 = ū1,

ci = ū2, 3 ≤ i ≤ m.

The optimal assignment sets both u1 and u2 true and satisfies one
clause, c1. The probabilistic greedy heuristic sets u1 true or false with
the same probability (which equals 1/2) at its first step. If it sets
u1 true, then it obtains the optimal solution, setting u2 true with
probability 1 at its second step. Otherwise, at the second step, it
sets u2 true with probability 1− (1/(m− 1)), satisfying 2 clauses, c1

and c2; and sets u2 false with probability 1/(m − 1), satisfying (m −
1) clauses, c2, . . . , cm. Thus, the expected performance ratio (which
equals the expected number of satisfied clauses) for the probabilistic
greedy heuristic is

1
2
· 1 +

1
2

(
m− 2
m− 1

· (2) +
1

m− 1
· (m− 1)

)
= 2− 1

m− 1
.

11

As m tends to infinity, the value of this expression approaches from
below the bound derived in Theorem 2. Note that if we interchange
u2 and ū2 in the above example, then each clause has at most one
unnegated truth variable. Such clauses are called Horn clauses, and
so it follows that the above bound on the average performance of the
probabilistic greedy heuristic remains tight if we restrict the problem
instances to Horn clauses. Also note that n = 2 in this example and
that the optimal clause c1 contains s = 2 variables. Thus, the bound
on the average performance of the probabilistic greedy heuristic does
not depend on m or s.

3 Using Probabilistic Algorithms

An average performance analysis does not tell us how well a proba-
bilistic algorithm will do if we stop it after a single run for a given
problem instance. It is very possible that the solution obtained will
be far removed from the average bound. Why then should we be in-
terested in the average performance of a probabilistic algorithm? The
answer is that we do not need to stop after a single run. If we run
the algorithm a very large number of times (say N), then the aver-
age of the solution values will asymptotically converge to a value no
smaller than the bound on the average performance in Theorem 1 or
Theorem 2. The maximum value across these N runs can of course
be no smaller than their average. We can thus select this best solu-
tion and be assured that, with a very high probability, it has a value
that is no worse than the bound on the average performance of the
algorithm. The value of N does not have to be enormously large —
in most instances, several thousand, if not several hundred runs, will
suffice.

There is another way in which probabilistic algorithms can be used.
Suppose we run the algorithm a large number of times (say N), and
select the best solution. We can repeat the process a large number of
times (say M). We then have a sample of M solution values, each the
best solution among N solutions. If we plot the distribution of these
M best solutions, we obtain an empirical distribution of the best so-
lution. This is a useful distribution, from which we can make several
important inferences. First, we note that as N and M become arbi-
trarily large, the distribution approaches the “true” distribution of the
best solution across NM runs. This argument was first used by Fisher

12

and Tippet (1928) to obtain closed form expressions for distributions
of a maximum or minimum value from a sample when it is bounded on
one or both sides. The main assumption for these distributions to hold
is that the samples be drawn from a continuous distribution. This is
not strictly valid for such discrete problems as satisfiability, and so the
exact distributions need not hold. But the essence of the argument
still remains, and one can use repeated runs to obtain a reference dis-
tribution which is asymptotically the entire distribution of interest.
This procedure is akin to bootstrapping methods in statistics, except
that the sampling process uses a probabilistic algorithm. One can use
the reference distribution to make probabilistic statements about a
solution value — that is, obtain estimates for the probability that the
best solution across many runs will exceed a certain numerical value.
Such analyses are not possible for deterministic algorithms; but they
are natural for probabilistic algorithms, although we are not aware of
literature reporting their use.

4 Conclusion

There are other probabilistic algorithms for the maxsat problem. The
simplest of these is a ‘random’ algorithm that sets each variable true
or false with probability 1/2. It is easy to see that the average per-
formance of this algorithm is 1/2 (Kohli and Krishnamurti, 1989).
Johnson’s (unweighted) deterministic greedy algorithm with a perfor-
mance ratio of 1/2 can be considered as a derandomization of this
simple random algorithm (Vazirani, 2003). A randomized algorithm
for maxsat using linear programming rounding, where the fractional
value assigned to the variable corresponding to a truth variable is
used as the probability of setting the truth variable true, provides a
performance guarantee of 1 − 1/e (Goemans and Williamson, 1993).
The better of the ‘random’ algorithm and the randomized rounding
algorithm using linear programming provides a performance guaran-
tee of 3/4. Approaches using semidefinite programming for the maxsat
problem have yielded improved approximation ratios (Goemans and
Williamson, 1995). However, algorithms using linear programming
and semidefinite programming have high running times. One bene-
fit of using simple probabilistic algorithms is that the running time is
low, and the probabilistic algorithm may be run many times on a given
problem instance. By retaining the best solution across all the runs,

13

one obtains a solution that, with high probability, is no worse than
the bound on the average performance of a probabilistic algorithm.

Several possible problems remain open, including the following.
How do different probability rules affect the expected performance of
probabilistic greedy heuristics? Is there an optimal choice of the β
parameter for the two rules considered in the paper? Are there some
types of problems for which one or another probabilistic greedy heuris-
tic does better than others? And are there ways in which resampling
methods like bootstrapping (Efron 1979) be used to construct refer-
ence distributions from which one can make probabilistic assertions
about an obtained solution relative to an optimal solution?

14

References

Efron, B., “Computers and the theory of statistics: thinking the un-
thinkable,” SIAM Review, 21, 1979, 460–80.

Even, S., A. Itai and A. Shamir, “On the complexity of timetable
and multicommodity flow problems,” SIAM Journal on Computing,
5, 1976, pp. 691–703.

Fisher, R.A. and L.H.C. Tippet, “Limiting forms ofthe frequency dis-
tribution of the largest or smallest member of a sample,” Proceedings
of the Cambridge Philosophical Society, 24, 1928, 180–190.

Garey, M.R. and D.S. Johnson Computers and intractibility: a guide
to the theory of NP-Completeness, 1979, San Francisco, CA: Freeman.

Garey, M.R., D.S. Johnson and L. Stockmeyer, “Some simplified NP-
complete graph problems,” Theoretical Computer Science, 1, 1976, pp.
237–267.

Goemans, M.X. and D.P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” Journal of the Association of Computing Machinery,
42, 1995, 1115–1145.

Goemans, M.X. and D.P. Williamson, “New 3/4-approximation al-
gorithms for the maximum satisfiability problem,” SIAM Journal on
Discrete Mathematics, 7, 1994, 656–666.

Johnson, D. S., “Approximation algorithms for combinatorial prob-
lems,” Journal Comput. Syst. Sci., 9, 1974, pp. 256–278.

Kohli, R. and R. Krishnamurti, “Average performance of heuristics
for satisfiability,” SIAM Journal on Discrete Mathematics, 2, 1989,
pp. 508–523.

Kohli, R., R. Krishnamurti and P. Mirchandani, “The minimum sat-
isfiability problem,” SIAM Journal on Discrete Mathematics, 7, 1994,
275–283.

Marathe, M. V. and S. S. Ravi, “On approximation algorithms for the
minimum satisfiability problem,” Information Processing Letters, 58,
1996, 23–29.

Maddala, G.S., Limited-Dependent and Qualitative Variables in Econo-
metrics, Econometric Society Monographs, New York: Cambridge
University Press, 1999.

15

Mahajan, S. and H. Ramesh, “Derandomizing approximation algo-
rithms based on semidefinite programming,” SIAM Journal on Com-
puting, 28 (5), 1999, 1641–1663.

Vazirani, V. V., Approximation Algorithms, New York: Springer,
2003.

16

