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Abstract We consider a capacitated max k-cut problem in which a set of vertices is
partitioned into k subsets. Each edge has a non-negative weight, and each subset has a
possibly different capacity that imposes an upper bound on its size. The objective is to
find a partition that maximizes the sum of edge weights across all pairs of vertices that
lie in different subsets. We describe a local-search algorithm that obtains a solution
with value no smaller than 1 − 1/k of the optimal solution value. This improves a
previous bound of 1/2 for the max k-cut problem with fixed, though possibly different,
sizes of subsets.

1 Introduction

Consider a graph with non-negative weights associated with the edges. The capaci-
tated max k-cut problem concerns the partitioning of vertices into k subsets, each of
which has a capacity that specifies the maximum number of vertices it can contain. The
capacities can vary from one subset to another, but their sum must be no smaller than
the total number of vertices in the graph. The objective of the problem is to partition
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the set of vertices into subsets such that the sum of edge weights across all pairs of
vertices that lie in different subsets is maximized.

The proposed algorithm begins with an arbitrary partitioning of the vertices, with
each subset size no greater than its capacity. It searches in a neighborhood comprising
all pairs of vertices that lie in different subsets and evaluates the value of a switch by
comparing the weighted sum of edge weights with and without flipping a pair of ver-
tices. The algorithm stops when no further improvements can be attained in this value
across all possible pairs of flips. We refer to this procedure as “local search” in the rest of
the paper. Similar local-search procedures have been considered by Papadimitriou and
Stieglitz [18] for the maxcut problem. The proposed local-search procedure terminates
in a finite number of steps. However, it is not clear if it terminates in polynomial time.

In general, local-search algorithms that run in polynomial time have proved elu-
sive for combinatorially-hard problems. Johnson et al. [14] introduce polynomial-time
local search (PLS), a complexity class containing problems that are equally hard in the
sense that if a polynomial-time locally optimal solution can be found for one problem,
then such a solution can be found for all problems in the class. Problems in this class are
called PLS-complete. Among these is the problem of finding a locally optimal solution
for the weighted version of the maxcut problem, obtained by setting k = 2 and remov-
ing the capacity constraints in the capacitated max k-cut problem. Thus, not only is
capacitated max k-cut NP-Hard, it also appears unlikely that it admits a polynomial-
time local-search procedure. The complexity of finding a local optimum is an important
open problem [14]. Orlin et al. [17] provide a fully polynomial-time locally optimal
approximation scheme for every combinatorial optimization problem for which the
neighbourhood is “efficiently searchable.” In particular, they provide such a locally
optimal approximation scheme for every problem in PLS. We use this result to show
that the proposed local-search algorithm can be used to obtain a solution within (1 −
1/k)(1 − ε) of the optimal within time polynomial in the input instance size and 1/ε.

Related problems. Ageev, Hassin and Sviridenko [2] give a 1/2 approximation algo-
rithm for the capacitated max 2-cut problem. Ageev and Sviridenko [1] consider a gen-
eralization of capacitated max k-cut for hypergraphs. They give a 1− (1− 1

r )r − ( 1
r )r -

factor approximation for general weighted hypergraphs where r is the cardinality of
the smallest edge, and a (1 − 1/e)-factor approximation for the case when each hy-
peredge has at least three vertices. This implies an approximation ratio of 1/2 for
the max k-cut problem with fixed, possibly different, subset sizes. Both results use a
pipage-rounding technique.

For equal capacities, a 1 − 1/k + �(1/k3) performance guarantee is obtained by
using an algorithm described by Andersson [3]. Feige and Langberg [9] allow unequal
capacities when k = 2. They use semi-definite programming to construct an approxi-
mation algorithm with a lower bound of 1/2 + ε, where ε > 0 is a universal constant.
Karloff [15] considers the problem of partitioning the vertices of a graph into two sets
such that at least half the edges from each vertex go across the cut. He shows that a
simple local search procedure produces such a partition.1

1 We thank an anonymous reviewer for drawing our attention to this result.
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Methods for solving the max k-cut problem without capacity constraints include an
algorithm by Frieze and Jerrum [10] that extends Goemans and Williamson’s [12] ran-
domized-rounding procedure using semi-definite programming. The algorithm obtains
solutions with expected value no smaller than αk ∼ (2 log k/)k2. Frieze and Jerrum’s
algorithm gives a 0.65 approximation for max bisection. Ye [19] describes an algo-
rithm for the same problem with a performance guarantee of 0.699. Goemans and
Williamson [13] use an extension of semi-definite programming to complex space
and device an approximation algorithm for the max 3-cut problem. They obtain a per-
formance guarantee of 7

12 + 3
4π2 arccos2(−1/4) ≈ 0.83601; the same lower bound

is also obtained by de Klerk et al. [8]. Kann et al. [16] show that unless P = NP, the
best possible performance ratio attainable by a heuristic for the max k-cut problem
is 1 − 1/(34k). This result also applies to the more general capacitated version of
the problem we consider in this paper. We obtain a lower bound of 1 − 1/k for the
proposed local-search procedure for solving the capacitated max k-cut problem. This
generalizes the lower bound of 1 − 1/k for local-search for the special case where the
capacities are equal [11].

Applications. The capacitated max k-cut problem has several applications. We
describe below the four problems that motivated our consideration of the problem.

The first application concerns the placement of television commercials in program
breaks [7]. The objective is to obtain a commercial schedule so that competing prod-
ucts are not advertised in the same break. A special case of the capacitated max k-cut
problem is attained by representing each commercial by a vertex, an edge connect-
ing a pair of vertices representing commercials for competing products. The capacity
constraints for the subsets of vertices correspond to the number of commercials that
can be shown in each of the program breaks. A key factor in obtaining the max k-cut
representation is that commercials are typically 30 seconds long and most breaks last
2 or 3 minutes (and so have a capacity for four or six commercials). Observe that all
edge weights are equal in this problem; allowing unequal edge weights corresponds
to allowing differences in the extent to which pairs of commercials are considered to
be in conflict with each other.

The second application considers the placement of containers on a ship with k
bays. Each bay has a capacity for a certain number of containers. The ship uploads
and downloads containers at each of a sequence of ports [4–6]. Let the vertices of the
graph represent containers. Let an edge connect two vertices if placing the associated
containers in the same bay requires moving one or both containers during upload-
ing or downloading. The solution to the capacitated max k-cut problem identifies a
stowage plan that assigns the maximum number of conflicting containers to different
bays.

The objective in the third application is to partition a set of items (e.g., books sold
by Amazon.com) into k subsets. Items that are least often purchased by the same
customer (or items that are least often purchased together) are placed into different
subsets. The max k-cut is obtained by associating the vertices of a graph with items
and assigning to an edge a weight equal to the number of customers who buy at most
one (but not both) of the pair of items identified by the vertices of an edge. The capacity
constraints arise because one wishes to place a small number of similar items—for
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example, four or five books—into each subset, so that the most promising items are
offered for cross-purchase to a customer.

The fourth application concerns the design of product modules. Each vertex repre-
sents a component of a product. An edge connects a pair of vertices if the correspond-
ing pair of components do not interact (e.g., are not connected) with each other. The
problem is to find a partitioning of components into k modules so that the maximum
number of non-interacting components are placed in different modules. The capacity
restriction arises because of the need to construct “balanced” modules.

2 A local-search algorithm

Let G(V, E) denote a graph with |V | = n vertices. Let edge e ∈ E connect vertices
u, v ∈ V . We associate a weight w(u, v) with each edge. We consider the problem of
partitioning the vertices into k subsets, V1, . . . , Vk, where the i-th subset Vi contains
at most si vertices, and where |V | ≤ s1 + · · · + sk . The objective is to find a parti-
tion of the vertices so that the sum of the edge weights across all pairs of subsets in
the partition is as large as possible. We call this the capacitated max k-cut problem.
Observe that equal edge weights corresponds to counting the number of edges that
connect vertices in different subsets in the partition.

Let

wuVi =
∑

v∈Vi , v �=u

w(u, v)

denote the sum of the weights of the edges from a vertex u to the vertices in set Vi .

We examine the performance of the following local-search algorithm.
Initialization. Partition the vertices into k sets, V1, . . . , Vk, arbitrarily assigning

|Vi | ≤ si vertices to set Vi , for all i = 1, . . . , k.

Iterative step. Determine if there is a pair of vertices u ∈ Vi and v ∈ Vl , i �= l,
for which

|Vi |wuVi + |Vl |wvVl > |Vi |wuVl + |Vl |wvVi .

If such a pair of vertices exist, reassign vertex u to Vl , and vertex v to Vi .

Termination. Stop when

|Vi |wuVi + |Vl |wvVl ≤ |Vi |wuVl + |Vl |wvVi , for all u ∈ Vi and v ∈ Vl .

If each set in the partition has the same size |V1| = · · · = |Vk |, then the condition in
the iterative step becomes

wuVi + wvVl > wuVl + wvVi .

However, when the sets in the partitions have different sizes, we assign different
weights to switches into and out of subsets, as is seen by writing the condition in the
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iterative step as

|Vi |(wuVi − wuVl ) > |Vl |(wvVi − wvVl ).

The effect of this, as will become evident below, is to eliminate the influence of the
subset sizes on the performance of the algorithm.

If all edge weights are equal (i.e., if the objective is to maximize the number of
edges across all pairs of subsets), then the above local-search procedure runs in time
O(n3m), where n is the number of vertices and m is the number of edges in the graph.
However, the problem of obtaining such a locally optimal solution for the general
weighted version is PLS-complete.

3 Worst-case analysis

The following theorem characterizes the worst-case bound of the local-search algo-
rithm for all k ≥ 2.

Theorem 1 The solution obtained using the local-search algorithm has a value no
smaller than 1 − 1

k of the optimal solution value.

Proof Let OPT denote the value of the optimal solution. Let V1, . . . , Vk be an arbitrary
solution obtained using the local-search algorithm. Let ALG denote the value of the
solution V1, . . . , Vk .

Let wi i denote the sum of the weights of the edges with both the vertices in Vi . Let
wil denote the sum of the weights of the edges that connect a vertex in Vi to a vertex
in Vl . Let

Ws =
k∑

i=1

wi i and

ALG =
k∑

i=1

k∑

l=i+1

wil .

Recall that wuVi denotes the sum of the edge weights from a vertex u onto set Vi . As
the solution returned by the local-search algorithm is locally optimal,

|Vi |wuVi + |Vl |wvVl ≤ |Vi |wuVl + |Vl |wvVi , for all u ∈ Vi and v ∈ Vl .

We sum both sides of the above inequality over all u ∈ Vi and obtain

|Vi |
∑

u∈Vi

wuVi + |Vi ||Vl |wvVl ≤ |Vi |
∑

u∈Vi

wuVl + |Vi ||Vl |wvVi .
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Next, we sum both sides of the above expression over all v ∈ Vl and get

|Vl ||Vi |
∑

u∈Vi

wuVi + |Vi ||Vl |
∑

v∈Vl

wvVl ≤ |Vl ||Vi |
∑

u∈Vi

wuVl + |Vi ||Vl |
∑

v∈Vl

wvVi .

Setting

∑

u∈Vi

wuVi = 2wi i ,
∑

v∈Vl

wvVl = 2wll ,
∑

u∈Vi

wuVl = wil ,
∑

v∈Vl

wvVi = wli ,

gives

2|Vi ||Vl |(wi i + wll) ≤ |Vi ||Vl |(wil + wli ).

Cancelling the common term |Vi ||Vl | from both sides, we get

wi i + wll ≤ wil .

Summing both sides of the above inequality over all i, l = 1, . . . , k, i �= l, gives

k∑

i=1

k∑

l=1,l �=i

(wi i + wll) ≤
k∑

i=1

k∑

l=1,l �=i

wil .

We simplify the right-hand side by setting wil = wli and obtain

k∑

i=1

k∑

l=1,l �=i

wil = 2ALG.

Thus,

k∑

i=1

k∑

l=1,l �=i

wi i +
k∑

i=1

k∑

l=1,l �=i

wll ≤ 2ALG.

The above inequality can be written as

(k − 1)

k∑

i=1

wi i + (k − 1)

k∑

i=1

wi i ≤ 2ALG,

or

2(k − 1)

k∑

i=1

wi i ≤ 2ALG.
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It follows that

Ws =
k∑

i=1

wi i ≤ ALG

k − 1
.

The optimal solution can contain at most all of the edges. Therefore

OPT ≤ Ws + ALG ≤ ALG + ALG

k − 1
,

or equivalently

ALG

OPT
≥ 1 − 1

k
.

��
We note in closing that the neighbourhood specified by the present local-search algo-
rithm is efficiently searchable. In other words, it is possible to verify that a solution
is locally optimal, and also to improve a locally non-optimal solution, in polynomial
time. Theorem 1, together with the result of Orlin et al. [17], implies that a solution
within (1 − 1/k)(1 − ε) of the optimal solution can be obtained in time that is a
polynomial in the input size and 1/ε.
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