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conditions under which a linear utility function represents a standard lexicographic rule, and each of the

proposed variants, over a set of discrete attributes. They then: (i) characterize the measurement properties of the
parameters in the representations; (ii) propose a nonmetric procedure for inferring each lexicographic rule from
pairwise comparisons of multiattribute alternatives; (iii) describe a method for distinguishing among different
lexicographic rules, and between lexicographic and linear preference models; and (iv) suggest how individual
lexicographic rules can be combined to describe hierarchical market structures. The authors illustrate each of
these aspects using data on personal-computer preferences. They find that two-thirds of the subjects in the
sample use some kind of lexicographic rule. In contrast, only one in five subjects use a standard lexicographic
rule. This suggests that lexicographic rules are more widely used by consumers than one might have thought in
the absence of the lexicographic variants described in the paper. The authors report a simulation assessing the
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1. Introduction
A lexicographic rule orders alternatives over at-
tributes in the same way that a dictionary orders
words over letters. A consumer using the rule evalu-
ates alternatives first on the most important attribute,
and if there are ties, on the secondmost important
attribute, and so forth. For example, a person buying
a personal computer (PC) displays lexicographic pref-
erences if he or she strictly prefers Microsoft Windows
to any other operating system; among Windows-
based systems, he or she always prefers PCs equipped
with the Intel’s latest microprocessor; and then uses,
in sequence, brand name, memory, and hard-disk
space to break ties among still-tied alternatives.

A lexicographic rule only orders alternatives. It
therefore does not require that consumers make, or
be able to make, cardinal (interval-scaled) judgments.
However, it demands stronger judgments than are
necessary for binary classifications, such as those
obtained using conjunctive, disjunctive, or subset-
conjunctive rules (Gilbride and Allenby 2004, Jedidi
and Kohli 2005).

There is good evidence that people use lexico-
graphic rules. Drolet and Luce (2004) note that con-
sumers use them when they have emotional reasons
to avoid trade-offs. Slovic (1975) reports the use of
lexicographic rules for breaking ties among equally
valued alternatives. Tversky et al. (1988) examine
the rules that consumers use for choice and match-
ing tasks involving public policies, job applicants,
and benefit plans. Although each alternative in their
study is described using only two attributes, they
find that choice is more lexicographic than matching.
Yee et al. (2007) report that approximately two-thirds
of their subjects use lexicographic rules for evaluat-
ing Smart-Phones. A growing literature in psychology
also documents the use of these rules in the formation
of judgments over perceptual cues (e.g., Gigerenzer
et al. 1991; Martignon and Hoffrage 1999, 2002; Broder
2000). For more evidence of, and details about, the
use of lexicographic rules in consumer research, we
refer the reader to Colman and Stirk (1999), Dhar and
Nowlis (1999), Roedder-John (1999), Gonzalez-Vallejo
et al. (1996), Kahn and Baron (1995), Westenberg and
Koele (1994), Ford et al. (1989), and Payne et al. (1988).

380



Kohli and Jedidi: Representation and Inference of Lexicographic Preference Models and Their Variants
Marketing Science 26(3), pp. 380–399, © 2007 INFORMS 381

In contrast with the above literature characteriz-
ing the use of lexicographic rules, there is only lim-
ited work in marketing and consumer research on
the mathematical representation, inference, and test-
ing of lexicographic preference structures. A result
known at least since Debreu (1954) says that it
is impossible to construct a utility function repre-
senting lexicographic preferences over two or more
real-valued attributes.1 However, lexicographic utility
functions can exist over discrete attributes. Martignon
and Schmitt (1999) give a numerical sequence for
representing lexicographic preferences over binary
attributes. Martignon and Hoffrage (2002) prove that
a sequence of weights w1� � � � �wn represents a lexi-
cographic order over binary cues x1� � � � � xn, if wi >
wi+1 + · · · + wn, for all i = 1� � � � �n− 1. In particular,
they prove that if wi = 1/2i, then a lexicographic
ordering of cues is identical to the ordering of the
scores produced by the function w1x1 + · · · + wnxn.
Kohli (1999) observes that all number systems are
lexicographic, and can be used to represent, among
other structures, lexicographic preferences over dis-
crete attributes. He shows that number systems in
which the base (radix) changes from one digit to the
next can represent alternatives defined over attributes
with varying numbers of levels. Substantial theo-
retical research has also examined conditions under
which continuous lexicographic utility functions can
exist (e.g., Fishburn 1974, 1975), the possibility of
representing such preferences by multiple functions
(e.g., Bridges 1983, Chateauneuf 1987, Wakker 1988,
Knoblauch 2000), and the formulation of models for
probabilistic lexicographic preferences (e.g., Tversky
1972, Manrai and Sinha 1989).

The present paper obtains the general conditions
under which a linear model is necessary and suffi-
cient for representing lexicographic preferences over
discrete and/or finitely divisible attributes. The repre-
sentations described by Martignon and Schmitt (1999)
and Kohli (1999) are obtained as special cases. We
show that these representations—indeed, all represen-
tations of lexicographic preferences by a linear model
over a finite number of discrete attributes—are not
unique, in the sense that they allow a larger set of
transformations for the parameter values than are per-
mitted in a linear model representing interval-scaled
preferences. We obtain the associated invariance con-
ditions for the parameters. We then introduce two

1 A formal proof for this result is available in Varian (1984). An intu-
itive explanation is as follows. Every multiattribute utility function
is associated with indifference curves in the attribute space. These
curves determine the marginal rate of substitution between pairs of
attributes. A lexicographic rule has an infinite marginal rate of sub-
stitution. It therefore allows no indifference curves, and no utility
function, over two or more real-valued attributes.

variants of lexicographic preference models. We call
these satisficing and binary lexicographic models.2

Consumers can use the two variants separately or
together. A linear utility function continues to be
sufficient for representing each of these variants.
We describe how each of the lexicographic mod-
els are related to each other, and to a linear com-
pensatory model, in a partially nested structure. We
propose a method for inferring each of the four
lexicographic preference models (standard, satisfic-
ing, binary, and binary-satisficing) from ranking or
paired-comparisons data. Computationally, the pro-
posed procedure is substantially less demanding than
an enumeration of all possible lexicographic order-
ings of the attributes and levels. We then propose
a method for assigning a linear model, or one of
the lexicographic models, to a consumer based on a
sequence of tests comparing nested models. Finally,
we examine how individual-level lexicographic rules
can be combined to construct hierarchical clusters
(segments) and aggregate market structures. There is
a substantial marketing literature on market structure
analysis using brand-switching data (e.g., Grover and
Srinivasan 1987, Kannan and Wright 1991, Russell and
Kamakura 1994, Urban et al. 1984). To our knowl-
edge, the present approach is the first to use conjoint
data for constructing aggregate, hierarchical market
structures.

Organization of the Paper. Section 2 discusses
the representation of lexicographic preferences over
discrete attributes by a linear utility function, and
discusses the invariance properties of the parame-
ters. Section 3 describes the two variants of lex-
icographic preferences and their representation by
utility functions. Section 4 examines the inference
of lexicographic preference structures from paired-
comparisons data, which can be directly elicited from
consumers or inferred from rankings or ratings of
multiattribute alternatives. Section 5 reports empir-
ical tests of the alternative lexicographic models; it
also describes the proposed approach for constructing
hierarchical clusters (segments) and aggregate mar-
ket structures using conjoint data. Section 6 presents
the results of a simulation designed to assess the
accuracy of the proposed algorithm for identifying
the lexicographic rules. It examines the accuracy of a
procedure for distinguishing among alternative lexi-
cographic rules, and between lexicographic and linear
models. It also reports the computational efficiency
of the algorithm used for inferring the lexicographic
rules.

2 While writing this paper, it has come to our knowledge that Yee
et al. (2007) have also independently examined the binary variant,
which they call “lexicographic by aspect.”
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2. Representation Over Finite
Attributes

Let m≥ 2 denote the number of attributes. We assign
the integers 1� � � � �m, to the attributes in decreasing
order of their importance to a given consumer. Let
attribute k have nk ≥ 2 levels, for all k= 1� � � � �m. We
arrange the levels of attribute k in increasing prefer-
ence order, sequentially assigning to them the values

xk = ak1� � � � � a
k
nk
�

where

0≤ ak1 < · · ·< aknk� for all k= 1� � � � �m�

Let
Xk = �ak1� � � � � a

k
nk
�

denote the (ordered) set of values assigned to the lev-
els of attribute k.

Let M denote a set of alternatives. Let x and x′

denote two alternatives in M . Let xk and x′
k denote the

kth elements of x and x′, respectively. We say that x is
lexicographically preferred to x′ if there exists some k,
1≤ k≤m, such that

xk > x′
k and xl = x′

l� for all l= 1� � � � � k− 1� (1)

That is, x is preferred to x′ on the most impor-
tant attribute for which the two alternatives are not
equally preferred.

Let

min�xk =min�akj − akj−1 � j = 2� � � � �nk�

denote the smallest difference in the successive values
of xk, and let

max�xk = aknk − ak1

denote the difference between the largest and smallest
values of xk, for all k = 1� � � � �m. The following
theorem characterizes the necessary and sufficient
conditions under which a linear model represents
lexicographic preferences. A proof for the theorem
appears in the appendix.

Theorem 1. Let

u�x�= �1x1 + · · ·+�mxm� (2)

where xk is the kth-most important attribute, k= 1� � � � �m.
Then u�x� represents lexicographic preferences over the m
attributes if, and only if,

�kmin�xk>
m∑

j=k+1

�jmax�xj� for all k=1�����m� (3)

We illustrate the main point of Theorem 1 with an
example using m= 3 attributes, each with nk = 3 lev-
els. For each attribute k, we can select any increasing
sequence of nonnegative values ak1, a

k
2, and ak3. Sup-

pose we set ak1 = a1, ak2 = a2, and ak3 = a3. Then

min�xk=min�a2−a1�a3−a2� and max�xk=a3−a1�

Let x1 denote the most important attribute, x2 the sec-
ondmost important attribute, and x3 the least impor-
tant attribute. Consider the utility function

u�x1�x2�x3�= �1x1 +�2x2 +�3x3� (4)

where �k > 0 and xk ∈ �a1� a2� a3�, for k = 1�2�3.
Theorem 1 says that �4� represents lexicographic pref-
erences if, and only if, the following conditions are
satisfied:

�2 min�x2 >�3 max�x3� and (5)

�1 min�x1 >�2 max�x2 +�3 max�x3� (6)

Condition �5� requires that the smallest change in util-
ity for attribute 2 be no smaller than the maximum
possible change in utility obtained by changing x3.
Condition �6� requires that the smallest change in
utility for attribute 1 be no smaller than the maxi-
mum possible change in utility obtained when both
x2 and x3 are changed at the same time. If satisfied,
these conditions ensure that an alternative with a pre-
ferred level of attribute 1 has a higher utility value,
regardless of the levels of the less-preferred attribute.

Note that the specific values of a1, a2, a3 play no
role in the above example. We can, if we wish, choose
these values from any increasing sequence of nonneg-
ative, real numbers, and then constrain the �k values
so that the conditions in �5� and �6�—more gener-
ally, the conditions in �3�—are satisfied. For example,
suppose we choose a1 = 0, a2 = 10, and a3 = 99 in
the above example, where k= nk = 3. Then min�x1 =
min�x2 = a2 − a1 = 10, max�x2 =max�x3 = a3 − a1 =
99, and so the utility function �4� represents lexico-
graphic preferences if 10�2 > 99�3 (i.e., �2 > 9�9�3)
and if 10�1 > 99�2 + 99�3 (i.e., �1 > 9�9��2 +�3�). The
important thing to note is that this is a weaker rela-
tionship between the parameters than is obtained in a
linear model representing interval-scaled preferences,
where for any fixed measurement scales for xk and
xl, the ratio �k/�l must be a constant, for all k� l =
1�2�3. The reason for this difference, which we dis-
cuss in more detail below, is that �2� and �3) specify
an ordinal utility function. As a result, the � param-
eters permit not only multiplicative transformations,
which alone are allowed for cardinal (interval-scaled)
utility functions, but the larger class of transforma-
tions described by �3�. We therefore caution against
interpreting the values of �kxk as the part worths in
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a conjoint model. Loosely put, one cannot extract the
same information from the parameters of an ordi-
nal, lexicographic utility function as one can from the
parameters of a cardinal utility function. To further
illustrate this point, consider the following two utility
functions, each of which represents the same (lexico-
graphic) ordering of alternatives:

u= x1

n1
+ · · ·+ xm

n1 · · ·nm

�

where xk ∈ �0� � � � �nk − 1�� for all k= 1� � � � �m� (7)

and

u= x1

2n1
+ · · ·+ xm

2n1 · · ·2nm �
where xk ∈ �20� � � � �2nk−1�� for all k= 1� � � � �m� (8)

The successive, within-attribute values of �kxk differ
in �7� by the same amount, 1/�n1 · · ·nk�; but they differ
in �8� by the unequal amounts, 2j−1/�2n1 · · ·2nk �, for
all j = 1� � � � �nk. Thus, a part-worths interpretation for
the �kxk is not appropriate for a lexicographic utility
function.

Kohli (1999) notes that �7� represents a number sys-
tem in which the base (radix) changes from one digit
to the next, and gives the example of time measure-
ments (hours, minutes, seconds) to illustrate its use in
an actual measurement system. He also shows how
lexicographic structures can be represented by wave
functions. Martignon and Hoffrage (2002) examine the
special case of (7) in which ni = 2, for all i= 1� � � � �m.
They prove that (7) assigns values to alternatives so
that these are always lexicographically ordered; and
that any lexicographic ordering over binary cues can
be represented by the function w1x1+· · ·+wmxm, pro-
vided wi > wi+1 + · · · +wm, for all i = 1� � � � �m− 1; a
special case of this function is x1/2+ · · ·+ xm/2m.

Implications for Model Estimation. The fact that
�2� and �3� specify an ordinal utility function for lex-
icographic preferences has implications for how we
estimate the parameters of the model. We cannot use
least-squares regression to infer lexicographic rules
because the method requires interval-scaled data. We
also cannot use standard nonmetric scaling algo-
rithms, such as LINMAP (Srinivasan and Shocker
1973), MONANOVA (Kruskal 1965), and the polyhe-
dral method (Toubia et al. 2004), because these require
an interval-scaled utility function, albeit at the unob-
served (latent) level. For this reason, the measures of
fit minimized by these methods (stress, mean abso-
lute error, minimum error) require that the parameters
be unique up to, and only up to, multiplication by a
positive constant. In contrast, �3� comprises a larger
class of transformations. This larger class includes as a

proper subset multiplicative transformations allowed
for interval-scaled utility functions. Each of the addi-
tional, infinitely many nonmultiplicative transforma-
tions (e.g., transformations satisfying the constraints
in �5� and �6�) represent alternative parameterizations
in a linear utility function. In other words, one cannot
obtain a unique set of parameters from a linear model
assuming interval-scaled preferences when the actual
preferences have a lexicographic structure. The addi-
tion of judgment and response error complicates the
discussion. In §6, we report the results of a simula-
tion that examines the performance of one nonmetric
scaling method, LINMAP, when it is used with lex-
icographic preference data containing error. In most
of these problems, the linear model obtains zero part
worths for all but one (and never more than two)
attributes. The inclusion of error therefore does not
appear to resolve the degeneracy that occurs because
of the violation of the assumption that consumers
have cardinal utility functions.

3. Nonstandard Lexicographic
Preferences

The above discussion assumes that a person evalu-
ates the alternatives one attribute at a time. Here, we
examine two variants of a lexicographic model, which
we call satisficing and binary lexicographic models.
The two variants can be combined to form a binary-
satisficing lexicographic model.

A satisficing lexicographic model allows indifference
among attribute levels. It can occur if a person finds
that any higher value of an ordered attribute, such as
the amount of computer memory, is no more valu-
able beyond an upper threshold (Simon 1956). Anal-
ogously, there can be a minimum threshold below
which an attribute has no value to a consumer;
computer memory is again an example. For nomi-
nal attributes, indifference among attribute levels can
reflect absence of preference over a subset of attribute
levels—for example, among different colors or physi-
cal styles of a product. An attribute with n levels can
have anywhere between 1 to n possible indifference
classes, the former corresponding to the case where
there are no preferences over the attribute levels, and
the latter to the case in which each level is its own
indifference class. The case with n indifference classes
is, of course, just the standard lexicographic model,
and is in this sense a special case of a satisficing model
with s indifference classes, where s is an integer rang-
ing from 1 to n.

A binary lexicographic model relaxes the assumption
that a consumer evaluates alternatives one attribute
at a time. A person using the rule has an importance
ordering over the attribute levels, rather than over
the attributes. This decoupling of the levels from the
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Figure 1 Example of a Consumer Showing Indifference to Compaq and Dell Brands

Rating Speed RAM Brand Price Hard drive

100 300 96 C MP 3

98 300 96 U HP 4

95 300 64 C LP 4
90 300 64 C LP 3

88 300 64 D MP 4

85 300 64 U MP 3

80 300 32 C MP 4

75 300 32 D HP 4

70 266 96 D LP 4

65 266 96 C MP 3

60 266 64 D MP 3

55 266 64 C HP 4
50 266 64 C HP 3

45 266 64 U MP 4

40 266 32 C MP 4

35 266 32 U LP 3

300= 300 MHz 96= 96 MB memory D=Dell LP= Low price 4= 4 GB Hard drive
266= 266 MHz 64= 64 MB memory C=Compaq MP=Med Price 3= 3 GB Hard drive

32= 32 MB memory U=Unbranded HP=High price

attributes allows a consumer to switch back and forth
across the attributes while still making lexicographic
judgments. Thus, a person first classifies alternatives
into two classes: those with the most preferred level
across attributes, and those without it. Each of these
classes is then partitioned into two subclasses: those
with the secondmost preferred level across attributes,
and those without it. A similar process is used to
further discriminate among still-tied alternatives. We
note that the standard lexicographic model is also a
special case of the binary lexicographic model: It coin-
cides with the case where all levels of an attribute are
considered one after another by a consumer.

We illustrate the above two variants of lexico-
graphic models using (full-profile) conjoint data from
two consumers, each of whom evaluates 16 hypothet-
ical notebook computers. These data are described
more fully in §5. Figure 1 shows a consumer who con-
siders speed as the most important attribute, followed
by memory, brand name, price, and hard drive, but
who is indifferent between Dell and Compaq brands.
Either brand is preferred to an unbranded computer.
This consumer first sorts the alternative by speed,
preferring 300 MHz to 266 MHz. Then, she or he
evaluates alternatives within each group by memory,
preferring a higher level of RAM to a lower one. Next,
the consumer uses brand name to further split equally

preferred alternatives, preferring branded (Compaq
or Dell) over unbranded computers. The use of hard-
drive size as the last attribute produces a profile
ordering that is monotonic with the ratings given by
the consumer. Note the significance of pooling Dell
and Compaq into a single (branded) level. If we were
not to do so, we could not predict the preference
ordering of the consumer by a lexicographic ordering
of the attributes (and then of levels within attributes).
Figure 2 shows the data for another consumer, who
uses a binary lexicographic rule. The consumer ranks
notebook computers made by Dell above all others;
considers price next to resolve ties among the Dell
and non-Dell alternatives; and then ranks the non-
Dell computers with the same price higher if they are
made by Compaq than by an unknown manufacturer.
Thus, in this example, the brand-name attribute is
split in such a way that one of its levels (Dell) is more
important than price to the consumer, and another
(Compaq) is less important than price. The remaining
ties are resolved by considering hard-drive size and
memory in a manner that, for simplicity, we do not
show in Figure 2.

A consumer can use a binary-satisficing lexicographic
model by combining the above two variants. Such
a consumer is indifferent among the levels of some
attributes; and orders alternatives over the combined
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Figure 2 Example of a Consumer Switching Across Attribute Levels
D-LP-MP-HP-C-U

Rating Brand Price Brand

90 D LP

85 D MP

80 D HP
75 D HP

70 LP C
65 LP C

60 LP U
50 LP U

45 MP C

40 MP U
35 MP U
30 MP U

25 HP C
20 HP C

10 HP U
5 HP U

D=Dell LP= Low price
MP=Med price C=Compaq
HP=High price U=Unbranded

(pooled) levels, possibly switching across attributes
in the process. This is the most general lexicographic
model we examine. Figure 3 shows the hierarchical
relationship among the four lexicographic models and
a linear model.

Representations. The binary lexicographic model
is obtained by treating each attribute level as a dis-
tinct (binary) variable in a utility function. Let N =∑m

k=1 nk denote the total number of levels across the
m attributes. Let l= 1�2� � � � �N denote an ordering of
the N attribute levels, in increasing preference order.
We associate the 0-1 integer xl with level l� and set
xl = 1 if level l appears in an alternative; otherwise,

Figure 3 Relationship Between Linear Model and Four Lexicographic
Models

1. Linear model

2. Binary, satisficing model

3. Binary model 4. Standard, satisficing model

5. Standard, lexicographic model

xl = 0� In this way, we can describe each multiattribute
alternative by a vector �x1� � � � � xN � in which xl = 1 for
(some) m values of l; and xl = 0 for all other N −m
values of l. We denote the associated utility for an
alternative as u�x1� � � � � xN �. Then

u�x1� � � � � xN �=
N∑
l=1

�lxl (9)

represents a lexicographic utility function if

�l >
N∑

t=l+1

�t� (10)

For example, we can use the values

�l =
1
2l
� for all 1≤ l≤N� (11)

because

N∑
t=l+1

1
2t

<

∑

t=l+1

1
2t

= 1
2l
=�l� for all 1≤ l≤N−1� (12)

The binary lexicographic model subsumes the stan-
dard lexicographic model in the following sense. We
can associate the first n1 terms of �9� with the levels of
attribute 1, arranged in descending preference order;
the following n2 terms with the levels of attribute 2,
also arranged in descending preference order, etc.
Then the binary lexicographic model produces the
same rankings for a set of alternatives as does the
corresponding standard lexicographic model in which
the alternatives are evaluated one attribute at a time.

The satisficing condition is represented in both the
standard and binary lexicographic models by assign-
ing the same integer xk to two or more tied lev-
els of an attribute. Which common integer value is
assigned to the tied levels in a nonbinary model does
not matter. The only requirement is that we assign the
numbers 0� � � � �nk − 1 to the levels in nondecreasing
preference order.

4. Inference
We describe a procedure for inferring lexicographic
rules from data on pairwise comparison of alterna-
tives, obtained directly, or inferred from rankings or
ratings of a set of alternatives.

Let � denote the set of pairwise comparisons. As in
the above discussion, we assume that each alternative
x ≡ �x1�x2�x3� � � � � xm� is defined over m attributes,
and that attribute k has nk levels. We write �x�x′� ∈
� to denote that x is preferred to x′. We assess the
goodness of fit of a candidate lexicographic solution
by a concordance measure that counts the number
of pairs of alternatives for which the actual and esti-
mated preference orderings are the same. Maximizing
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this measure is equivalent to maximizing the value
of Kendall’s tau and Goodman and Kruskal’s gamma
between the actual and estimated rankings for a set of
alternatives.3 The problem of finding a lexicographic
solution that maximizes this concordance measure is a
combinatorial optimization problem, which cannot be
efficiently solved by enumeration unless the number
of possible orderings is small. Schmitt and Martignon
(1999) show that the inference problem is NP-Hard
when the preference data have error. Efficient solu-
tion procedures are therefore unlikely for problems in
this class, unless P = NP (see, e.g., Garey and John-
son 1979). We therefore use the following polynomial-
time approximation algorithm to find a solution to the
problem of inferring a lexicographic preference struc-
ture from pairwise comparisons data.

We begin by describing the proposed algorithm for
a standard lexicographic rule over ordered attributes.
After that, we describe the changes to the algorithm
that allow nominal attributes, and that permit the
inference of binary, satisficing, and binary-satisficing
lexicographic rules.

Initialization step. Let

S0 = �1� � � � �m� (13)

denote the set of attributes. Arrange the levels of each
attribute k ∈ S0 in increasing preference order, and
assign to them the sequence of integers 0� � � � �nk − 1.
Each level of attribute k ∈ S0 is thus identified by a
unique value xk ∈ �0� � � � �nk − 1�. Let x = �x1� � � � � xm�
denote a product profile in which attribute k ∈ S0 has
the level associated with xk. For each alternative x,
compute4

u1k�x�=
xk
nk

� for all k ∈ S0� (14)

Let � denote the set of all pairwise comparisons
�x�x′� in which x is preferred to x′. For each �x�x′� ∈�,
for all k ∈ S0, compute

d1k�x�x
′�=




1 if u1k�x� < u1k�x′��

0 otherwise�
(15)

Let
Z1k =

∑
�x�x′�∈�

d1k�x�x
′�� for all k ∈ S0� (16)

3 Kendall’s tau= 1− �2Z/NC�, where Z is the number of reversals
and NC is the total number of pairwise comparisons.
4 As discussed in §2, the � parameters do not have metric properties
and are unique only up to the class of transformations in (3). In
this algorithm, we use the utility function representation in (7) for
simplicity. In general, however, we can use any other representation
that satisfies the conditions in (3).

Let k1 denote an attribute for which Z1k has the small-
est value across all k ∈ �1� � � � �m�� That is,

Z1k1 =min�Z1k � k ∈ S0�� (17)

Select attribute k1 as the first lexicographic attribute,
arbitrarily breaking ties if necessary. Set

u1�x�=
xk1
nk1

� (18)

and
S1 = S0\�k1�� (19)

Thus, S1 is the set of attributes remaining after k1 is
eliminated from S0.

Recursion step. For each alternative x� compute

utk�x� = ut−1�x�+
xk

nk1
nk2

· · ·nkt−1
nk

�

for all k ∈ St−1� (20)

where
St−1 = �1� � � � �m�\�k1� � � � � kt−1� (21)

is the set of attributes still not selected after step t−1,
and

ut−1�x�=
xk1
nk1

+ · · ·+ xkt−1

nk1
· · ·nkt−1

� (22)

For each �x�x′� ∈�� and for all k ∈ St−1� let

dtk�x�x
′�=




1 if utk�x� < utk�x′��

0 otherwise.
(23)

Compute

Ztk =
∑

�x�x′�∈�
dtk�x�x

′�� for all k ∈ St−1� (24)

Let kt denote an attribute for which Ztk has the small-
est value across all k ∈ St−1. That is,

Ztkt
=min�Ztk � k ∈ St−1�� (25)

Select attribute kt as the tth lexicographic attribute,
arbitrarily breaking ties if necessary. Set

ut�x�=
xk1
nk1

+ · · ·+ xkt
nk1

· · ·nkt

� (26)

and
St = St−1\�kt�� (27)

Termination step. Stop when there are no further
alternatives left (in which case the attributes not con-
sidered are irrelevant to the problem), or if t =m (in
which case all the attributes have been considered).

We call the above procedure a greedy algo-
rithm. The following theorem characterizes the solu-
tion obtained by the procedure. It is valid for all
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lexicographic rules we have considered in this paper.
A proof of the theorem for a standard lexicographic
rule appears in the appendix. With slight modifica-
tion of terminology, the same proof can be used to
prove analogous results for the binary, satisficing, and
binary-satisficing lexicographic rules.

Theorem 2. Suppose there exists an attribute ordering
that perfectly reproduces an input rank ordering of product
profiles; then the greedy algorithm finds such an ordering.

The algorithm is not guaranteed to find an optimal
solution if the preference data contain error. In §6, we
evaluate how well it recovers a lexicographic prefer-
ence model when the data contain error.

Incorporating Nominal Attributes. Consider the
recursion step of the algorithm. If attribute k is nom-
inal, we compute (20)–(24) for each possible prefer-
ence ordering of the attribute levels, and select that
ordering for which the value of �25� is the small-
est. This enumeration over all possible permutations
of attribute levels is feasible because nk is typically
small for conjoint analysis. For example, the applica-
tion described in the next section has no more than
three levels for any attribute. In this case, enumerating
all 3! = 6 possible attribute-level orderings is simple.
In the unlikely instance when nk is large, we can use a
greedy algorithm, similar to the one described above,
for selecting the optimal ordering of an attribute level.

Inferring Nonstandard Lexicographic Models.
The greedy algorithm can be modified in a straight-
forward manner to accommodate inferences about
the structures of the nonstandard lexicographic mod-
els discussed earlier. The binary lexicographic model
simply requires the use of the above greedy algo-
rithm by treating each of the N = ∑m

k=1 nk attribute
levels as a binary attribute (indicating the presence
or absence of the attribute level). The satisficing ver-
sions of the standard and binary lexicographic models
additionally compute Ztk for all possible ways of pool-
ing of attribute levels, provided we maintain at least
two pooled levels for each attribute. This requires
less computational effort for ordered attributes than
it does for nominal attributes, because one can then
restrict the pooled levels to a sequence of successively
preferred attribute levels. For nominal attributes, one
can enumerate all possible groupings if the number
of levels, nk, is small. Otherwise, one needs an algo-
rithm for grouping the levels. We again use a greedy
heuristic: First, select nk groupings, each with a single
attribute level. Next, eliminate one grouping, placing
two levels in one common subset; to do so, evaluate
all possible nk�nk − 1� pairs of attribute-level group-
ings. This successive, greedy merging of levels contin-
ues until only two groupings remain. The partition for
which the number of reversals is minimized is then
selected.

5. Empirical Comparisons of Models
We examine the following four questions in this sec-
tion: (1) Do preference data support the use of one or
another lexicographic model by consumers? (2) If so,
is the standard lexicographic model adequate, or does
one or another of the proposed variants provide a
better description of the decision process? (3) Is there
a single lexicographic model that appears to provide
the best description of the data? (4) Can we infer
a hierarchical market structure by combining infor-
mation about the lexicographic rules inferred for dif-
ferent consumers? We address these questions using
data from a conjoint study for laptop computers. We
use the data to estimate each of the individual-level
lexicographic models described above. For compari-
son, we estimate part-worths utility functions for each
consumer using LINMAP (Srinivasan and Shocker
1973). We also examine the adequacy of inferring lex-
icographic structures based on importance weights
derived using a traditional conjoint approach.

Recall that there are always parameterizations of
a linear model that can represent any given lexico-
graphic model. For this reason, one cannot expect a
lexicographic model to provide better fit to data than
does a linear model: All one has to do is choose a
linear model that corresponds to a parameterization
of an estimated lexicographic rule. In practice, it is
possible that a linear model might not find a param-
eterization that exactly reproduces a lexicographic
function. There can be two reasons for this. First, the
true model might be linear and not lexicographic. Sec-
ond, even if it is lexicographic, the presence of error
in the data and the assumption that there is an under-
lying metric utility function might lead to parame-
ter estimates in a linear model that do not reflect a
lexicographic structure. How well an estimated lin-
ear model approximates the lexicographic model is an
empirical question that we examine with actual pref-
erence data in this section, and with simulated data
in the next section.

We use the partial hierarchy in Figure 3 to assign
the linear model, or one of the lexicographic mod-
els, to each individual. We assess the adequacy of this
assignment for both the estimation data and for hold-
out data, for which we obtain preference predictions
using the estimates for the assigned model. We then
illustrate how the lexicographic analysis can be used
for a hierarchical clustering of consumers (segmen-
tation) and for inferring market structure. We briefly
discuss the estimation of a linear model, and the rule
inference procedure, before describing the applica-
tion.

Linear Model. We use LINMAP (Srinivasan and
Shocker 1973) to estimate the linear model because,
like the methods in §4, it uses ordinal (pairwise
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comparisons) data. The difference is that LINMAP
minimizes the sum of absolute errors in utilities,
whereas the proposed greedy algorithm minimizes
the number of reversals. This could lead to a lower
fit for the linear model and may adversely affect the
accuracy of our model assignment procedure, which
we discuss below.5 Simulation evidence, however,
suggests that (i) the fit of the linear model is never
worse than that of the lexicographic models when the
data are generated using the linear model, and (ii) our
procedure does quite well in discriminating among
the models. See §6 and Table 3.

Rule Assignment. We use the nested structure in
Figure 3 for rule assignment. For ease of exposition,
we refer to the various models by the numbers 1–5
assigned to them in this figure. We allow for the pos-
sibility that people differ in which model they use.
We assign a model to a subject in the following way.
We start by comparing Model 1 with Model 2. If
Model 1 has a (statistically) better fit, we assign it to
the subject. Otherwise, we compare Model 2 sequen-
tially with Models 5, 4, and 3. If all three comparisons
yield statistically significant differences in fits, we
assign Model 2 to the subject. Otherwise, we assign to
the subject the last (i.e., the most constrained) model
tested against Model 2 for which there is no statisti-
cally significant difference in fit. We assess statistical
significance using a standard t-test for the equality of
proportions with Bonferroni-adjusted significance lev-
els. Note that because Models 3 and 4 are not nested,
it is possible to assign models in the sequence 5, 3, 4.
This can result in the reassignment of some subjects
to Model 3. For these subjects, both the satisficing and
binary lexicographic models do as well as the binary-
satisficing model.

The above procedure gives unbiased assignments.
To see why, consider again the relationship among
the models shown in Figure 3. If there were no error
in the data, and if the true rule were lexicographic,
we would obtain exactly the same (perfect) fits with
the general model and with a nested model (e.g.,
with a linear model and with the true lexicographic
model). On the other hand, if the true model were
linear and compensatory (i.e., a linear model with
parameters not representing a lexicographic model),
then the linear model would fit better than any lexico-
graphic model. Thus, if there is no error in data, one
should assign (i) a lexicographic model if there are
no differences in the number of correct pairwise com-
parisons; and (ii) a linear model if it gives a higher
number of correct pairwise comparisons. This is what
the proposed assignment procedure does. The addi-
tion of error to data modifies the above argument in

5 We thank an anonymous reviewer for bringing this point to our
attention.

the following way. Suppose we reverse a certain pro-
portion p of pairwise comparisons. Suppose the true
model is linear compensatory. Consider, for exam-
ple, a problem with three attributes where the first
(third) attribute is the most (least) important. Then,
(i) a linear model, L, estimated using the data, has
an expected error rate of E#p̂L �L$= p; and (ii) a lexico-
graphic model, Lex (equivalently, a constrained linear
model with �1 > �2 + �3 and �2 > �3), has a higher
expected error rate E#p̂Lex �L$ > p, because it cannot rep-
resent the trade-off in the linear model. Now suppose
the true model is lexicographic. Then a lexicographic
model will have an expected error rate of E#p̂Lex �Lex$=
p; and a linear model, estimated using the data, will
also have an error rate of E#p̂L �Lex$ = p, because it is
equivalent to a lexicographic model when �1 >�2+�3
and �2 >�3. It follows that the following rule is unbi-
ased: (1) Assign the linear model when it has a lower
error rate than the lexicographic model; and (2) assign
the lexicographic model when the two models have
the same error rate. The remaining issue concerns the
use of the rule using the limited amount of data one
obtains from a respondent. In this case, we use the
above test, but make an assessment of whether or
not the linear model provides a better fit based on
a test of statistical difference in fit. The variance of
the difference in the two estimated proportions (of
correct predictions obtained by a linear and lexico-
graphic model) decreases with sample size, going to
zero in the limit. We note that the sequential assign-
ment of rules that we use is similar to a procedure
by Hauser and Shugan (1980) for classifying respon-
dents to different groups depending on how much
information they are able to provide when answering
conjoint questions. Although this is standard statisti-
cal practice (see, e.g., Broder 2000), we further assess,
in §6, the performance of this procedure for assigning
alternative preference models to consumers.

Conjoint Design and Data Collection Procedure.
Each laptop computer was described using five at-
tributes. The attributes and their levels are as follows:
(1) price: $1,999, $2,599, or $2,895; (2) memory: 32
MB, 64 MB, or 96 MB; (3) brand: Dell, Compaq, or
“no brand;” (4) processor: Intel Pentium at 266 MHz
or 300 MHz; and (5) hard drive: 3 GB or 4 GB.
Sixteen product profiles were obtained as the treat-
ments of an orthogonal fractional-factorial plan in
which the attributes were used as the design fac-
tors. Each product profile was described on a sepa-
rate card. The 16 cards describing the product profiles
were shown in random order to each of 69 MBA stu-
dents at an East Coast university in Spring 2001. All
respondents rated each profile for liking on a 1–100
scale, assigning a higher rating to a preferred alterna-
tive. We use the ratings data to estimate individual-
level part-worths estimates from LINMAP (Srinivasan
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Figure 4 Comparision of Kendall’s tau Value for Linear Model and Four Lexicographic Models
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and Shocker 1973).6 We compare these estimates to
the various lexicographic models below. We also dis-
cuss the adequacy of inferring lexicographic struc-
tures based on importance weights derived using a
traditional conjoint approach.

Results. The overall results are in agreement with
the partial, hierarchical description of the models in
Figure 3. Figure 4 shows the Kendall’s tau values
for each lexicographic rule, sorted in ascending order
across the 69 subjects. For comparison, we plot the
Kendall’s tau value for the linear model in each of
these graphs. For the two nonnested models in Fig-
ure 3, the plots in Figure 4 suggest the superiority of
the satisficing lexicographic model to the binary lex-
icographic model. There are some cases in which the
Kendall’s tau value is higher for a binary-satisficing
lexicographic model than for the linear model. This
is not possible if the two models are estimated using
the same objective function: As we discussed in §4,
each lexicographic model is a constrained version of
a linear model. The explanation for the discrepancy

6 We also use OLS regression to estimate the individual-level part
worths. Full details of the OLS analysis are available from the
authors. Here, we focus on LINMAP estimates for two reasons.
First, like our proposed methods, LINMAP only considers the ordi-
nal properties of the data for estimation. Second, LINMAP esti-
mates typically give higher values for Kendall’s tau, which is the
measure we use to evaluate the fits for lexicographic models. This
allows for a more conservative evaluation of the proposed lexico-
graphic models than does a comparison with the results of the OLS
regression.

is that LINMAP maximizes a goodness-of-fit measure
that is not directly related to Kendall’s tau, whereas
our estimation procedure, as noted in §4, is equivalent
to maximizing Kendall’s tau.

Referring to Figure 4, we observe that the fit of
the standard lexicographic model is the poorest when
compared to the fit of the linear model. On average,
the value of Kendall’s tau is 0.75 for the standard lex-
icographic model and 0.9 for the linear model. If we
did not consider the other lexicographic models pro-
posed in this paper, we would reject the hypothesis
of no differences in fit between the two models. The
binary lexicographic model has an average Kendall’s
tau value of 0.78 and therefore does slightly better
than the standard lexicographic model. The satisfic-
ing lexicographic model performs substantially bet-
ter, obtaining fits very similar to those achieved using
the linear model (average Kendall’s tau= 0�84). How-
ever, there is little additional improvement in fit from
using a binary-satisficing model (average Kendall’s
tau= 0�86). Overall, if one were to select a single lex-
icographic model or a linear compensatory model to
describe the data across subjects, the satisficing model
would appear to be the most appropriate: It is the
most constrained of the tested models, and it does
about as well as a linear model.

A series of statistical comparisons support this
conclusion. Across subjects, we find that the differ-
ence in the proportion of discordant pairs between
the standard lexicographic and binary lexicographic
models is insignificant �p > 0�32�. The fits of both
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Table 1 Average Kendall’s Tau Values for Models Assigned to
Subjects

Average deviation
Number of of tau from

Model subjects Average tau linear model

Linear 23 0�94 0�00

Lexicographic
Binary satisficing 1 0�95 0�00
Binary 3 0�89 −0�03
Satisficing 28 0�88 0�02
Standard 14 0�80 0�06

models, however, are significantly worse than those
obtained from the satisficing lexicographic model and
the binary-satisficing model �p < 0�01�. In addition, a
t-test comparing the proportion of discordant pairs
between the linear model and the binary-satisficing
model fails to reject the null hypothesis of no differ-
ence in fit between these two models �p > 0�1�. Finally,
the proportion of discordant pairs are not statistically
different for the binary-satisficing and the satisficing
lexicographic models �p > 0�35�.

We now turn to rule assignment by allowing for
the possibility that subjects differ in terms of which
model they use. Table 1 shows the distribution of
subjects across models when Model 4 is evaluated
before Model 3. As expected, the assigned lexico-
graphic models do not differ substantially in their fits
from the more general linear model.7 The small neg-
ative value for the average difference in values of
Kendall’s tau for the binary lexicographic model does
not mean that the empirical analysis does not sup-
port the theoretical claim that the linear model is more
general than all lexicographic models discussed. As
discussed in §2, there is always a linear model implied
by a lexicographic rule, and for this parameterization,
the linear model gives the same Kendall’s tau value
as the lexicographic model.

Table 2 reports the pooling of the attribute levels by
the 28 subjects who are assigned to the satisficing lex-
icographic model. Forty-six percent of the subjects are
indifferent between the $1,999 and $2,599 price levels;

7 As all four lexicographic models are special cases of the linear
model, a lack of statistical difference in the fits of a linear model
and a lexicographic model implies that the latter does as well as
the former (it obviously cannot do any better). We interpret this as
implying that the lexicographic model is adequate for representing
preferences. Thus, when selected, a lexicographic model’s fit should
always be close (i.e., not significantly different) to that of a linear
model. Hence, the near equality of fit between the selected lexico-
graphic model and the linear model in Table 1 is to be expected.
Note that for the 23 subjects to whom the linear model is assigned,
there is indeed a significant difference in fit. The average Kendall’s
tau for the (selected) linear model is 0.94, whereas that of the
binary-satisficing model (the most general lexicographic model) is
only 0.83.

Table 2 Pooling of Attribute Levels for the 28 Subjects Assigned to
the Satisficing Lexicographic Model

Attribute Levels pooled Frequency Percent

Price None 6 21�43
$1,899/$2,599 13 46�43
$2,599/$2,895 9 32�14

RAM None 3 10�71
32 MB/64 MB 8 28�57
64 MB/96 MB 17 60�71

Brand None 2 7�14
Unbranded/Compaq 2 7�14

Unbranded/Dell 2 7�14
Compaq/Dell 22 78�57

61% consider the 64 MB and 96 MB levels of RAM as
being equivalent; and 79% assigned to the satisficing
lexicographic model are indifferent between the two
brands Dell and Compaq, treating them as a single
branded category. For the 14 subjects assigned to the
standard lexicographic model, where attribute pool-
ing is not permitted, 86% prefer Dell.

As noted earlier, Models 3 and 4 are not nested,
making it is possible to assign models in the sequence
5, 3, 4. This results in the reassignment of 15 sub-
jects to Model 3. Thus, in all, there are 14 subjects for
whom we cannot say whether Model 3 or Model 4 is
the more appropriate. For these subjects, both the sat-
isficing and binary lexicographic models do as well
as the binary-satisficing model.

Adequacy of Inferring Lexicographic Structure
Using Conjoint-Based Importance Weights. We ex-
amine the possibility that the parameter estimates
from a part-worths model, estimated for each subject
using the ratings data, might contain sufficient infor-
mation to infer the ordering of attributes or attribute
levels in a lexicographic model.8 For example, one
might compute the relative importance of attributes,
and then test a standard, or satisficing, lexicographic
model in which the attributes are ordered by the mag-
nitudes of these relative importance. How well will
this method of inferring a lexicographic rule perform,
compared to the greedy algorithm described in §4?
The answer is: not too well. For example, consider
the 28 subjects to whom we assign a satisficing lexi-
cographic model. If we use a lexicographic ordering
implied by the attribute importance in a regression
(as measured by their relative part-worth ranges),
the average (across subjects) Kendall’s tau correlation
between the actual and estimated preference order-
ings is 0.65; the comparable value of Kendall’s tau
correlation is 0.88 for the attribute ordering obtained

8 Following the suggestion of a reviewer, we use regression-based
analysis of the ratings in the present discussion; in all other places
in the paper, we use LINMAP to estimate the linear model.
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Figure 5 Summary of Lexicographic-Preference Structure for 42 Subjects
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using the greedy algorithm (see Table 1). Across sub-
jects, the range of Kendall’s tau values is 0.35 to 0.83
for the regression-based method; it is 0.73 to 1.00 for
the proposed algorithm.

Overall, the regression-based method never pro-
vides a better fit than the proposed algorithm; and
it does substantially worse than the proposed algo-
rithm both on average and in the worst case. We have
also checked the magnitude of correlation between
the attribute ordering obtained using the regression
and the greedy algorithm. Across subjects, the aver-
age Kendall’s tau correlation is 0.65, and it ranges
from −0�40 to 1.00. We will further examine this issue
in the simulation described in §6.

Constructing Hierarchical Clusters and Inferring
Market Structure. We examine the decision rules for
the 42 subjects to whom we assign the standard or
satisficing lexicographic models. Figure 5 summarizes
their decision rules. The sequence of edges from the
root to a terminal node corresponds to the ordering of
attributes for one or more of these subjects. For exam-
ple, the leftmost sequence of edges corresponds to the
decision process for the (one) individual in the sam-
ple for whom price is the most important attribute,
followed by memory, brand name, hard disk, and
speed. Multiplying the proportions along a particu-
lar path in the tree gives the proportion of subjects
using the associated attribute ordering. For example,
the attribute sequence: brand–price–memory–speed–
hard disk is used by five subjects, comprising a 0�5×
0�57× 0�67× 0�63= 12% of the sample.

We can interpret Figure 5 as describing a hierarchi-
cal clustering of the subjects. Each terminal node of
the tree is associated with one or more consumers.
Proceeding upwards in the tree, we obtain a clus-
tering of consumers in terms of the similarity of
their decision rules. For example, the sequence of
nodes labeled P-R-S groups consumers who all use
price, memory, and speed as the three most important
attributes in that order, but who differ in their order-
ing of the last attribute (B or D) shown in the figure.

One step higher, the sequence of nodes P-R groups
consumers who all use price as the most important
attribute and memory as the secondmost important
attribute, but who differ in their ordering of the last
two attributes (B, S or D). At the highest level, we
obtain four segments that differ in terms of the most
important attribute: brand (50% of the consumers),
price (24%), memory (17%), and speed (9%). Simi-
larly, we obtain 11 segments if we focus on the two
most important attributes. For example, the brand-
price (price-memory) segment represents 0�5× 0�57=
28% �0�24×0�9= 22%� of the consumers. Using all the
attributes for classifying consumers results in 25 seg-
ments. As in all hierarchical clustering methods, there
are no definite rules for how many segments to retain,
although there are rules of thumb that we can use.
For example, we can compute an average value of
Kendall’s tau across consumers at different levels of
the tree (i.e., for varying numbers of the most impor-
tant attributes used). The marginal improvement in
the average Kendall’s tau value can then be used to
guide the selection of the level at which to truncate
the tree. In addition, there are managerial issues we
need to consider. In a one-to-one marketing context,
we are likely to retain most of the segments. How-
ever, if the purpose of the analysis is strategic guid-
ance (e.g., positioning), then fewer levels are likely to
suffice.

Figure 5 can also be interpreted as describing an
aggregate, hierarchical market structure for the asso-
ciated 42 subjects. Fifty percent of these subjects use
a brand-first evaluation process; 24% use a price-first
evaluation process; and the rest use a feature-first
evaluation process. Put another way, Dell and Com-
paq have a corner on half the market, and the lowest-
priced sellers are most favorably evaluated by nearly
a quarter of the market. Among those consumers who
first look for a branded computer, 57% use price as the
next attribute. Among those who use price as the first
screening criterion, 90% evaluate the screened alterna-
tives based on memory (RAM). Brand name, if at all
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relevant, is a lower-level consideration in their choice.
One can make other similar deductions by further
interpreting this figure as a hierarchical market struc-
ture. Note that the ordering of attributes is contingent
on the range of values for the attribute levels. Thus,
for example, if we were to include absurdly high
prices, a consumer might use a binary lexicographic
model in such a way that alternatives with the highest
prices are all ranked below alternatives priced within
an acceptable range. The consumer might then switch
to another attribute, and return to price, in one or
more later stages of a binary lexicographic rule. For
nonprice attributes, the satisficing model also allows
consumers a way to ignore excessively high (or very
low) values of attribute levels.

Predictive Validity. We use the following cross-
validation method to assess the predictive accuracy
of the lexicographic models assigned to each of the
subjects (Mosier 1951). First, we remove each product
profile, one at a time, for each subject. Then we rees-
timate the (assigned) model for a subject using the
remaining 15 profiles. We use the parameter estimate
so obtained to make pairwise comparisons between
the holdout profile and each profile used in the esti-
mation. As each of the 16 product profiles is held out,
one at a time, this gives 16× 15= 240 pairwise com-
parisons per subject. We use these 240 comparisons to
compute a (predicted) value of Kendall’s tau for each
subject. For comparison, we compute the correspond-
ing value of Kendall’s tau for a linear model.

Figure 6 shows these Kendall’s tau values for each
of the 46 subjects who are assigned to a lexico-
graphic model. Across these subjects, the mean value
of Kendall’s tau is 0.77 for the linear model and 0.78
for the lexicographic model. This suggests that there
are no significant differences in holdout predictions
obtained from a (more general) linear model and a
lexicographic model assigned to a subject. The lack of
significant difference in holdout predictions provides
further support for the validity of our procedure for

Figure 6 Predictive Accuracy of Assigned Lexicographic Model and Linear Model
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Notes. In this figure, the 46 subjects are sorted based on which lexicographic model they were assigned: Subject 1 (binary-satisficing model); Subjects 2, 3,
4 (binary lexicographic model); Subjects 5–32 (satisficing lexicographic model); and Subjects 33–46 (standard lexicographic model).

assigning models to subjects. Such a validity would
be questionable if the linear model had better predic-
tive validity.

In summary, the above analysis suggests the follow-
ing answers to the questions noted at the beginning
of this section. (1) The data are consistent with the
use of a lexicographic rule by two-thirds of the sub-
jects in this study. The lexicographic models assigned
to each of these subjects perform as well as a part-
worths model in terms of model fit and holdout pre-
diction of preferences. For the remaining subjects, a
part-worths model provides a better fit than does any
lexicographic model. (2) The standard lexicographic
model is satisfactory for representing the preferences
for only 14 subjects. However, there are 32 subjects
for whom an alternative lexicographic model is more
appropriate. Thus, if we were only testing for the
standard lexicographic model, we would find limited
support for the use of lexicographic rules by the sub-
jects in this study. In this sense, the proposed vari-
ants of lexicographic models are useful. (3) If we were
to select a single lexicographic model for the 46 con-
sumers for whom such a model is adequate, then the
satisficing lexicographic model would appear to be
the most appropriate in terms of both model fit and
holdout prediction. Managerially, the lexicographic
analysis can be useful for the hierarchical segmenta-
tion of consumers and for inferring market structure.

6. Simulated Testing of
Lexicographic Models

We performed a Monte Carlo simulation experi-
ment to assess: (i) the computational time needed to
implement the greedy algorithm; (ii) the accuracy of
the greedy algorithm in recovering a known lexico-
graphic preference model when there are errors in
the pairwise-comparisons data; (iii) the adequacy of
the proposed method for assigning a linear model,
or one of the lexicographic models, to subjects; and
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(iv) the suitability of inferring lexicographic orders
using conjoint-based importance weights. We first
describe the design of the simulation study, and then
the results.

Simulation Design. We estimate lexicographic and
linear models using a �5× 2× 2× 2� factorial design
with the following treatments: true preference model
(standard, binary, satisficing, binary-satisficing, and
linear compensatory); amount of error in pairwise-
comparisons data (5% and 20% error); number of
attributes (m= 5 and m= 8); and number of product
profiles (24 and 32). In problems with five attributes,
we generate the product profiles using a fractional
factorial plan in which two attributes had four levels
each, two attributes had three levels, and one attribute
had two levels. Fractional factorial plans for prob-
lems with eight attributes use three additional two-
level attributes. We perform 20 replications per treat-
ment. Each replication uses a different set of values
(attribute orderings or part worths). The data set for
each replication is used to estimate the linear model
and all four lexicographic structures.

Data Generation. We randomly select a lexico-
graphic attribute ordering and use it to compute a
true (ordinal) preference score for each product profile
in the conjoint design.9 We then convert these rank
orders into paired-comparison data. In each pair, the
higher-ranked product profile is specified as the pre-
ferred alternative. There are 276 pairs in the 24-profile
design (24 × 23/2) and 496 pairs in the 32-profile
design. We add error by randomly flipping this true
preference order in 5% or 20% of the pairs, and use
these data for estimating the parameters of the vari-
ous models.

The procedure for generating data for the linear
model is similar to the one used for the lexicographic
model, but is different in terms of how the preference
scores are computed. We randomly generate (from a
uniform distribution) a part-worth value for each of
the dummy indicators of the m product attributes.
There are 11 (14) such indicators for the five-attribute
(eight-attribute) conjoint design. We use these part-
worth values as weights to compute a (true) prefer-
ence score for each of the product profiles. We then
follow the same procedure above to convert these
preference scores into paired comparison data and to
add error.

9 To generate this attribute ordering, we draw m random num-
bers from a uniform distribution, and assign one number to each
attribute. The attributes are assumed to be ordered in importance
by the assigned numbers. For the binary lexicographic model, we
convert the 5 (8) original attributes into 11 (14) dummy attributes.
For the binary-satisficing model, we pool levels two and three from
the product attributes with three and four levels, which reduces the
number of dummy attributes by four. We used this same pooling
of attribute levels for the satisficing model.

Measures. The performance criteria of interest are:
(i) the recovery of the true attribute orderings for the
lexicographic models and the true part-worth param-
eters for the linear model; and (ii) the robustness of
the proposed method for assigning preference mod-
els to consumers. We use the Kendall’s tau correlation
between the true and estimated attribute orderings as
a measure of bias. As the part-worth coefficients have
metric properties, we use the Pearson correlation coef-
ficient as a measure of recovery of the true parame-
ters for the linear model. We also compute a hit rate
(i.e., percent of correct predictions) as a measure of
fit. For comparison, we report this measure for all the
estimated models. We assess the accuracy of model
assignment by the percent of replications in which it
correctly assigns a true model to a consumer. We also
report the CPU time (in seconds) taken by the greedy
algorithm for estimating the lexicographic rules.

Results. A summary of the results appears in
Table 3. Computationally, the greedy algorithm esti-
mated each of the standard and binary lexicographic
models in less than one second. On average, it esti-
mates each satisficing model in 3.7 seconds, and each
binary-satisficing model in 9.8 seconds.

The average (Kendall’s tau) correlation coefficient
between the true and estimated attribute orderings
is 0�91 across all treatment conditions. The average
hit rate is 0�86� The average tau correlation (hit rate)
across the lexicographic models is 0.90 (0.86) and is
similar to that obtained for the linear model 0.93
(0.83). Note that the hit rates corresponding to each of
the five true models in Table 3 (highlighted in bold-
face) are always greater than or equal to those of
the remaining four competing preference models. For
example, when the standard lexicographic model rep-
resents the true preference structure, all the hit rates
from estimating this model are identical to those from
the binary-satisficing model (see top panel in Table 3).
This is expected, because the former model is a spe-
cial case of the latter model.

Regardless of the preference structure, lower error
is associated with more-accurate recovery of a true
attribute ordering, and with a higher statistical fit for
the true model. The average tau correlation (hit rate)
is 0.97 (0.94) for 5% error, and is 0.85 (0.78) for 20%
error. The number of attributes, and the number of
profiles in the conjoint design, has substantially less
effect on the recovery of the attribute orderings, and
virtually no impact on model fit. The average tau
correlation increases from 0.88 (0.88) if the conjoint
design includes eight attributes (24 profiles) to 0.93
(0.94) when it has five attributes (32 profiles).

The LINMAP goodness of fit is poorer when it is
estimated using data from a true lexicographic model
than when it is estimated using a linear compensatory
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Table 3 Simulation Results: Recovery of Attribute Ordering and Statistical Fit

Fitted model’s hit rate

Number of Number of CPU in Tau Binary
True model Error level (%) attributes profiles seconds correlation Standard Binary Satisficing satisficing Linear

Standard 5 5 24 <1 1a 0�94b 0�94 0�94 0�94 0�89
5 5 32 <1 0�97 0�95 0�95 0�95 0�95 0�76
5 8 24 <1 0�87 0�95 0�95 0�95 0�95 0�72
5 8 32 <1 0�97 0�91 0�91 0�91 0�91 0�50

20 5 24 <1 0�88 0�79 0�79 0�78 0�79 0�75
20 5 32 <1 0�82 0�79 0�79 0�79 0�79 0�63
20 8 24 <1 0�63 0�80 0�80 0�80 0�80 0�72
20 8 32 <1 0�82 0�64 0�64 0�64 0�64 0�49

Binary 5 5 24 <1 0�98 0�80 0�96 0�90 0�96 0�82
5 5 32 <1 1�00 0�80 0�95 0�89 0�95 0�65
5 8 24 <1 1�00 0�80 0�96 0�91 0�96 0�83
5 8 32 <1 1�00 0�79 0�95 0�90 0�95 0�85

20 5 24 <1 0�83 0�69 0�80 0�76 0�80 0�66
20 5 32 <1 0�88 0�68 0�79 0�74 0�79 0�60
20 8 24 <1 0�83 0�67 0�81 0�79 0�81 0�65
20 8 32 <1 0�95 0�67 0�81 0�78 0�81 0�60

Satisficing 5 5 24 1�05 0�99 0�86 0�85 0�94 0�95 0�72
5 5 32 2�75 1�00 0�85 0�84 0�90 0�90 0�79
5 8 24 4�00 0�84 0�87 0�85 0�95 0�95 0�81
5 8 32 7�00 0�98 0�85 0�83 0�95 0�95 0�79

20 5 24 1�05 0�91 0�73 0�73 0�78 0�79 0�62
20 5 32 2�65 0�83 0�74 0�73 0�79 0�79 0�66
20 8 24 4�00 0�79 0�72 0�75 0�80 0�80 0�71
20 8 32 7�10 0�81 0�72 0�73 0�80 0�80 0�59

Binary satisficing 5 5 24 3�70 0�96 0�85 0�93 0�92 0�96 0�77
5 5 32 7�00 1�00 0�75 0�87 0�84 0�94 0�60
5 8 24 10�10 0�97 0�81 0�91 0�92 0�95 0�79
5 8 32 18�45 1�00 0�78 0�89 0�90 0�95 0�66

20 5 24 3�75 0�86 0�74 0�82 0�82 0�84 0�75
20 5 32 7�00 1�00 0�53 0�65 0�61 0�70 0�50
20 8 24 10�00 0�60 0�67 0�77 0�78 0�80 0�68
20 8 32 18�20 0�87 0�67 0�77 0�78 0�80 0�71

Linear 5 5 24 0�95c 0�82 0�85 0�83 0�85 0�89
5 5 32 0�97 0�80 0�83 0�81 0�83 0�91
5 8 24 0�95 0�82 0�83 0�85 0�85 0�90
5 8 32 0�97 0�83 0�83 0�84 0�84 0�92

20 5 24 0�89 0�71 0�73 0�73 0�74 0�75
20 5 32 0�95 0�70 0�71 0�69 0�71 0�75
20 8 24 0�86 0�72 0�71 0�74 0�74 0�74
20 8 32 0�93 0�71 0�71 0�73 0�73 0�76

aFor a Lexicographic model, this column reports the Kendall’s tau correlations between the true and estimated attribute orderings.
bTo be read: The percent of pairs of alternatives for which the actual and predicted preference orderings match is 94%.
cBecause the parameters of a linear model are ratio scaled, we report the Pearson correlations between the true and estimated part worths for LINMAP. The

corresponding Kendall’s tau correlations are, respectively, 0.82, 0.90, 0.82, 0.87, 0.73, 0.84, 0.69, 0.78.

model. As discussed in §2, the reason for this is that
LINMAP assumes an interval-scaled utility function,
and this model is not identified with lexicographic
preference data. Given pairwise comparisons from an
error-free lexicographic model, LINMAP stops after
identifying the first (most important) attribute, and
sets all other part worths to zero values. There were
160 simulation runs in which we used LINMAP to
estimate parameters after adding error to the input
data generated using a lexicographic model. In 53%

of these cases, LINMAP again stopped after identi-
fying one attribute; in an additional 17% of cases,
it obtained nonzero estimates for a second attribute.
No information was obtained in these cases about
the ordering of the other attributes. This situation is
encountered whether we use 24 or 32 product pro-
files, five or eight attributes, and low or high error,
the latter condition reversing 20% of the true pair-
wise comparisons produced by a lexicographic model.
These results suggest that it may not be appropri-
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Table 4 Simulation Results: Model Assignment

Assigned model

Error Number of Number of Binary
True model level (%) attributes profiles Standard Binary Satisficing satisficing

Standard 5 5 24 0�95a 0.00 0.00 0.00
5 5 32 1�00 0.00 0.00 0.00
5 8 24 1�00 0.00 0.00 0.00
5 8 32 1�00 0.00 0.00 0.00

20 5 24 0�95 0.05 0.00 0.00
20 5 32 1�00 0.00 0.00 0.00
20 8 24 1�00 0.00 0.00 0.00
20 8 32 1�00 0.00 0.00 0.00

Binary 5 5 24 0�00 1.00 0.00 0.00
5 5 32 0�00 1.00 0.00 0.00
5 8 24 0�00 1.00 0.00 0.00
5 8 32 0�00 1.00 0.00 0.00

20 5 24 0�00 0.90 0.05 0.00
20 5 32 0�00 1.00 0.00 0.00
20 8 24 0�00 1.00 0.00 0.00
20 8 32 0�00 0.95 0.05 0.00

Satisificing 5 5 24 0�00 0.00 1.00 0.00
5 5 32 0�00 0.00 1.00 0.00
5 8 24 0�00 0.00 1.00 0.00
5 8 32 0�00 0.00 1.00 0.00

20 5 24 0�00 0.00 1.00 0.00
20 5 32 0�00 0.00 1.00 0.00
20 8 24 0�00 0.00 1.00 0.00
20 8 32 0�00 0.00 0.95 0.05

Binary satisificing 5 5 24 0�00 0.00 0.00 1.00
5 5 32 0�00 0.00 0.00 1.00
5 8 24 0�00 0.00 0.05 0.95
5 8 32 0�00 0.00 0.00 1.00

20 5 24 0�00 0.25 0.35 0.40
20 5 32 0�00 0.15 0.00 0.85
20 8 24 0�00 0.30 0.55 0.15
20 8 32 0�00 0.15 0.15 0.70

Linear 5 5 24 0�05 0.05 0.05 0.00
5 5 32 0�00 0.00 0.00 0.00
5 8 24 0�05 0.00 0.10 0.00
5 8 32 0�00 0.00 0.00 0.00

20 5 24 0�30 0.10 0.05 0.00
20 5 32 0�00 0.10 0.10 0.05
20 8 24 0�45 0.05 0.15 0.00
20 8 32 0�25 0.05 0.05 0.00

aNumbers in bold correspond to correct model assignments.

ate to use monotone regression to infer lexicographic
orders.

Table 4 summarizes the findings concerning the
accuracy of the model assignment. The results sug-
gest that the proposed testing procedure is quite
robust. Overall, the method selects the correct pref-
erence model in about 90% of the cases. The accu-
racy of the assignment reduces from 98% to 81%
when the magnitude of error increases from 5% to
20%; and it reduces from 94% to 84% when the num-
ber of profiles decreases from 32 to 24. Increasing
the number of attributes has little effect on accu-
racy, which drops from 91% with five attributes to
88% with eight attributes. In general, model assign-

ment is more accurate for the more constrained stan-
dard, binary, and satisficing models, than it is for the
binary-satisficing and linear models. The accuracy of
the assignment is 98.75% for the former models, and
drops to 75% for the latter models. As expected, the
accuracy of the assignment increases with the number
of product profiles and decreases with the amount of
error in the pairwise comparisons.

There are four instances in Table 4 where the accu-
racy of the rule assignment is poor. These cases occur
when the true model is linear or binary satisficing
with 20% error and eight attributes. We expect the
reason for this to be the small sample size. For con-
firmation, we performed additional simulation runs,
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Table 5 Impact of Sample Size on Rule Assignment Accuracy

Error level Number of Number of % Correct
True model (%) attributes estimation profiles assignment

Linear 20 8 24 35
20 8 32 65
20 8 48 90
20 8 64 100

Binary 20 8 24 15
satisficing 20 8 32 70

20 8 48 90
20 8 64 90

the results of which are summarized in Table 5.
As expected, the error in rule assignment steadily
increases with increases in sample size.10

Finally, we reconsider the issue, discussed in §5,
concerning the adequacy of inferring a lexicographic
attribute ordering using traditional conjoint analysis.
The added advantage of the simulation is that we
can compare the ordering of the importance weights
in a linear model to a true, lexicographic ordering
of the attributes. We use the pairwise comparisons
from a lexicographic model to estimate LINMAP, and
arrange the attributes in decreasing order of their
part-worth ranges. We find that this ordering does not
accurately reproduce the true lexicographic ordering
of the attributes. For example, consider the case of a
true standard lexicographic model. Across experimen-
tal conditions, the average Kendall’s tau correlation
between the true and estimated attribute orderings
is 0.48, its value decreasing from 0.61 to 0.34 as the
error increases from 5% to 20%� The greedy algorithm
obtains, on average, a corresponding tau value of 0.87
(see Table 3).

Summary. The simulation results suggest that the
greedy algorithm does well in recovering the true lex-
icographic structure in the presence of error in the
data. We do not recommend inferring an attribute
ordering for a lexicographic rule using the results of
a standard, part-worths model. The proposed greedy
algorithm does well in recovering a lexicographic
rule, and the assignment procedure we propose is
quite accurate for discriminating among the alter-
native lexicographic models and for distinguishing

10 As suggested by an anonymous reviewer, one can use hold-
out data for rule assignment. The results from additional simula-
tion runs show good improvement in the percent of correct rule
assignments when we use this assignment method. However, the
improvement is substantially better when the holdout data is also
used for estimation, which results in larger sample size. For exam-
ple, suppose the true model is linear, the error rate is 20%, there
are eight attributes, and we use 24 profiles for estimation and
another 24 for holdout prediction. Then the accuracy of rule assign-
ment increases from 35% when we use estimation data to 50% when
we use holdout data. However, such accuracy reaches 90% when
we use all 48 profiles for estimation.

a lexicographic model from a linear compensatory
model.

7. Conclusion
We describe two variants of lexicographic preference
models. A consumer can use the variants alone or
in combination with each other. We obtain neces-
sary and sufficient conditions for a linear utility func-
tion to represent standard lexicographic models and
their variants. We describe an algorithm for inferring
the best-fitting lexicographic model from preference
data over multiattribute alternatives. The algorithm
is similar—in the sense that it does not have an
error model—to the nonmetric methods for prefer-
ence and choice scaling described by Toubia et al.
(2004), Toubia et al. (2003), Srinivasan and Shocker
(1973), and Kruskal (1965). The results of a simula-
tion suggests that the greedy algorithm does well in
recovering the true attribute ordering, and that the
proposed method for assigning alternative preference
models to consumers is robust. We find support for
the use of lexicographic rules by two-thirds of the
subjects in a study of consumer preferences for lap-
top computers. Among the different rules we test,
a lexicographic rule allowing for indifference among
attribute levels appears to be the one most appropri-
ate for describing the preferences of a substantial pro-
portion of the subjects. Finally, we illustrate how the
lexicographic analysis can be used to obtain a hierar-
chical clustering of consumers, and how we can inter-
pret the clustering as an aggregate market structure.

The assumption of finite divisibility of attributes
plays a central role in the present research. For most
marketing problems, there is little loss in assuming
that attribute levels are finitely divisible. For example,
we often make this assumption when estimating
part-worth functions in conjoint analysis. In prob-
lems involving continuous attributes, it can often be
convenient, but seldom necessary, to assume that
such attributes as price, pick-up speed, gas mileage,
weight, and length are real valued (or even denumer-
able) variables in the mathematical sense of the term.
Although we think of such variables as being contin-
uous, in reality prices are not discriminated beyond
the smallest unit of currency; and features like time
for acceleration to 60 mph, gas mileage, weight, and
length are not measurable beyond some finite level of
precision. Similarly, our assessment of such psycho-
logical constructs as attitudes and affect is subject to
limitations of both human discrimination ability and
those of our measuring instruments. It is reasonable
to assume that these attributes are real-valued quan-
tities if this assumption allows us to use results that
extend to finite attributes as special cases. However,
in such situations as concern us here, where a utility
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function does not exist for real-valued attributes, it is
appropriate to ask if something useful can be said by
restricting attention to the case of finite attributes.11

One useful area of future research is to examine
an error model for lexicographic preferences, possibly
in a Bayesian framework pooling data across respon-
dents.12 A second related extension is to consider
probabilistic lexicographic preferences, where the
probability of attribute orderings is inferred from the
data using an error model. A third potentially fruitful
area of research is the inference from preference data
of mixed decision strategies, so that the overall judg-
ments of a consumer represent lexicographic prefer-
ences over some attributes and trade-offs among other
attributes. A fourth possible research area is to extend
the present inference procedures to obtain segment-
level estimates of lexicographic rules. A fifth useful
area of research is to assess how consumers com-
bine different rules for product consideration (e.g.,
Gilbride and Allenby 2004, Kohli and Jedidi 2005,
Kohli et al. 2006) and then choice; how the prefer-
ence structure changes over repeated measurements
(DeSarbo et al. 2005); and how knowledge of pref-
erence functions and choice rules can guide user
design of products (Randall et al. 2007). An exam-
ple of this kind of research is the recent work by
Yee et al. (2007), in which a two-step data collec-
tion procedure on the WWW is linked to a Greedoid
method for inferring the structure of noncompen-
satory decision rules. Such work is useful if we are
to develop models that not only predict well but also
provide insight into why consumers make the deci-
sions they do. Sixth, it may be useful to develop and
examine the properties of adaptive conjoint models
(see., e.g., Hauser and Toubia 2005) for inferring lex-
icographic (more generally, noncompensatory) pref-
erence structures. A final area of possible research
concerns the trade-off between model complexity and
fit when comparing multiple lexicographic models.
The methods by Toubia et al. (2003, 2004) and Evge-
niou et al. (2005) might be useful starting points in
extending these considerations from standard conjoint
models to methods for inferring lexicographic prefer-
ence structures.

Appendix. Theorems and Proofs
We use the notation introduced in §2. In particular, we
recall that min�xk = min�akj − akj−1 � j = 2� � � � �m� denotes

11 One can relax the assumption of finite divisibility for the case
of two attributes. In this case, we can allow the less-important
attribute to be defined over the real interval #0�1� and the more
important attribute to be defined over the set of nonnegative inte-
gers 0�1� � � � � The resulting utility function is an “ordinary num-
ber,” the integer (fractional) part representing the utilities for the
preferred (less-preferred) attribute.
12 We note that Tversky’s (1972) elimination-by-aspects model is
a probabilistic lexicographic model, not a model of lexicographic
preference with error.

the smallest difference in the successive values of xk; and
max�xk = aknk − ak1 denotes the difference between the
largest and smallest values of xk, for all k= 1� � � � �m. Theo-
rem 1 characterizes the necessary and sufficient conditions
under which a linear model represents lexicographic pref-
erences.

Theorem 1. Let

u�x�= �1x1 + · · ·+�mxm� (A1)

where xk is the kth-most important attribute, k= 1� � � � �m. Then
u�x� represents lexicographic preferences over the m attributes if,
and only if,

�k min�xk >
m∑

j=k+1

�j max�xj� for all k= 1� � � � �m� (A2)

Proof. Consider two distinct alternatives, x�x′ ∈M . Let x
be lexicographically preferred to x′. We first show that
u�x� > u�x′�. Let k denote the lowest-indexed attribute for
which x and x′ have different attribute levels; i.e., xj = x′j ,
1≤ j ≤ k− 1, xk �= x′k, k= 1� � � � �m. Then

u�x�−u�x′�= �k�xk − x′k�+
m∑

j=k+1

�j�xj − x′j ��

Now xk − x′k ≥ min�xk, and xj − x′j ≥ −max�xj for all j =
k+ 1� � � � �m. Thus,

u�x�−u�x′�≥ �k min�xk −
m∑

j=k+1

�j max�xj > 0�

where the last inequality in the above expression follows
from (A2).

We now show that if u�x� > u�x′�, then xj > x′j on the
smallest index j for which xj �= x′j . We prove the result by
contradiction. Suppose xj < x′j on the smallest index j = k
for which xj �= x′j . Then

xj = x′j for all j = 1� � � � � k− 1� and xk − x′k ≤−min�xk�

and so

u�x�−u�x′� = �k�xk − x′k�+
m∑

j=k+1

�j�xj − x′j �

≤ −�k min�xk +
m∑

j=k+1

�j�xj − x′j ��

The upper bound on the right-hand side of the inequality
is attained when xj − x′j =max�xj , for all j = k+ 1� � � � �m.
Thus,

u�x�−u�x′�≤−�k min�xk +
m∑

j=k+1

�j max�xj �

It follows from (A2) that the right-hand side is always nega-
tive; i.e., u�x�<u�x′�, which is the desired contradiction. �

Theorem 2. Suppose there exists an attribute ordering that
perfectly reproduces an input rank ordering of product profiles.
Then the greedy algorithm finds such an ordering.
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Proof. We prove the result by contradiction. Let k =
1� � � � �m denote the attributes. If the greedy algorithm ter-
minates in t < m steps, we append the m − t “unused”
attributes in any arbitrary order to the end of the greedy
solution. Without loss of generality, we assume that the
greedy algorithm selects attribute k at step k, for all k =
1� � � � �m. Let G denote the sequence of attributes 1� � � � �m
selected by the greedy algorithm. We will sometimes refer to
G as the greedy sequence. Let 1� � � � � s, 1≤ s ≤m, denote the
longest sequence of attributes in G that is also a sequence
in some optimal solution O. That is, O is the sequence

1� � � � � s� �s+ 1�∗� � � � �m∗� where �s+ 1�∗ �= s+ 1�

If s =m, then the greedy solution is identical to an optimal
solution. Also, s = m − 1 is not possible because then the
last attribute in G must also be optimal. We therefore con-
sider 1≤ s ≤m− 2. We show that the sequence of attributes
1� � � � � s+ 1, appears in at least one optimal solution, which
contradicts the claim that 1� � � � � s, is the longest greedy
sequence of attributes that appears in any optimal solution.

Let attribute s + 1 appear in the jth position of the
sequence O, where s + 2 ≤ j ≤ m. Suppose we remove
attribute s + 1 from this position and insert it immediately
before attribute �s + 1�∗ in the sequence O. We denote the
sequence thus obtained as C:

1� � � � � s+ 1� �s+ 1�∗� � � � � �j − 1�∗� �j + 1�∗� � � � �m∗�

We use the following four observations to show that C is
also an optimal sequence of attributes.

(1) As the optimal solution has no associated reversals,
there are also no reversals in any sequence obtained by trun-
cating O. The sequence 1� � � � � s� �s + 1�∗, appears in O and
produces no reversals.

(2) Because attribute �s+ 1�∗ is available but not selected
at step s + 1 by the greedy algorithm, there are also no
reversals in the partitions created by the attribute sequence
1� � � � � s+ 1, which appears in the greedy sequence G.

(3) Let O′ denote the following subsequence in O:

1� � � � � s� �s+ 1�∗� � � � � �j − 1�∗�

Let C′ denote the following subsequence in C:

1� � � � � s+ 1� �s+ 1�∗� � � � � �j − 1�∗�

We claim that C′ produces no reversals. This follows from
three observations. First, from Observation (1) above, O′

produces no reversals. Second, from Observation (2) above,
1� � � � � s+ 1, also produces no reversals. Third, consider the
sets of pairs over which incremental reversals are computed
upon the introduction of

�s+ 1�∗� � � � � �j − 1�∗�

in O′ and in C′. The latter set of pairs comprise a subset
of the former set of pairs, because 1� � � � � s + 1, creates no
fewer partitions than 1� � � � � s. It follows that C′ can have no
more reversals than O′. However, O′ has no reversals, and
so neither does C′.

(4) The number of partitions created by any collection of
attributes is independent of the ordering of these attributes.
Thus, the incremental reversals introduced by the attribute
sequence

�j + 1�∗� � � � � �m�∗�

which we denote T, does not depend on the position of
attributes that precede this sequence in a lexicographic
ordering of the attributes. As this sequence of attributes pro-
duces no incremental reversals in the optimal sequence O
of the attributes, it follows that it also produces no incre-
mental reversals in the candidate sequence C, because the
same attributes, 1� � � � � s + 1� �s + 1�∗, precede T in both O
and C, albeit in a different sequence.

Observations (3) and (4) imply that C is also an optimal
lexicographic ordering of the attributes, which is the desired
contradiction. �
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