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Information Technology and
Optimal Firm Structure

AMIR ZIV*

1. Introduction

In this paper I use a principal-agent framework to explore the rela-
tion between the hierarchical structure of firms and the accounting in-
formation technologies available to them. My analysis is related to that
in Melumad, Mookherjee, and Reichelstein [1992] and Ziv [1993]. Me-
lumad, Mookherjee, and Reichelstein model a principal who employs
two privately informed agents and chooses either a flat structure where
both agents contract and communicate with the principal, or a hierar-
chical structure in which the principal contracts with only one agent, who
subsequently writes a subcontract with a second agent, creating a two-
layer organizational form.! Melumad, Mookherjee, and Reichelstein use
the revelation principal to prove the general superiority of the flat struc-
ture. They add exogenous restrictions on communication (with respect
to dimensionality and complexity of the message space) to demonstrate
a demand for hierarchy. Ziv [1993], in a moral hazard setting, solves for
the optimal number of agents in a one-layer firm, under different exog-
enously given information structures. In this paper, I take an approach
that allows the principal to choose the number of layers in the firm, the
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Baldenius, Dennis Caplan, Joel Demski, Sunil Dutta, Charles Himmelberg, Doron Nissim,
Stefan Reichelstein, Mark Wolfson, Richard Young, seminar participants at the University
of California, Berkeley, the University of Chicago, Duke University, McGill University,
Ohio State University, and Technion-Israel Institute of Technology, and, above all,
Nahum Melumad, for suggestions and comments. All errors are my own responsibility.

11 define the number of organization layers to be the number of layers of agents; the
principal is not counted as an organization layer.
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number of agents in each layer, and the quantity and quality of infor-
mation in the firm (subject to the available information technology).

This paper also complements Baiman, Larcker, and Rajan’s [1995]
analysis of the optimal allocation of tasks from a parent firm to its busi-
ness units. The determinants of this organizational structure decision
are the parent’s task expertise relative to that of the business unit and the
relative importance of the business unit to the performance of the parent
firm. My paper considers multiple identical agents, who may be assigned
different tasks, and allows for a multitier organizational structure.

Finally, my analysis extends Calvo and Wellisz [1978], who consider a
world where the probability an employee is monitored decreases with
the ratio of employees to supervisors. They show an optimal firm should
consist of either one principal or an infinite number of layers of super-
visors. I show that the number of layers of supervisors is finite, a more
descriptive result. The different result arises because Calvo and Wellisz
assume there is an upper bound on any one person’s effort. This assump-
tion precludes the principal from increasing his/her effort in order to
gain more control, thereby forcing him/her to hire more and more layers
of supervisors. My model, in contrast, does not impose external limits on
the level of effort, thus allowing the principal to increase his/her moni-
toring effort without adding organizational layers. I therefore can exam-
ine the costs and benefits of hierarchical structure.

I find that demand for a layer of supervisors exists only for a limited
set of parameters. Furthermore, only in a few extreme cases do the ben-
efits of additional layers of supervisors outweigh the costs. Obviously,
there are reasons other than supervision for firms to use hierarchical
structure; examples include the motivational effects of providing a lad-
der for promotions, different talent levels across employees, or reducing
communication burdens.? The results of this paper demonstrate that
from an information-gathering perspective, in many cases, the required
information rent associated with a hierarchical structure may outweigh
its benefit, and in this respect “flatter” organizations are optimal. Struc-
tural changes in the economy that make monitoring more difficult might
increase the information rent in a hierarchy (e.g., more complex pro-
duction functions where supervision is not straightforward, or monitor-
ing employees who are working at home). Hence, the analysis in this
paper may help explain the recent trend toward “flatter” organizational
structures.

In section 2, I introduce the basic model. In section 3, I discuss the op-
timal hierarchical structure of the firm. Section 4 provides a summary.
Highlights of the proofs are provided in Appendix A.

2Mookherjee and Reichelstein [1997] show in a participating budgeting model that
hierarchies of varying depth can be equally effective in terms of incentives and perfor-
mance, and speculate that a communication burden argument can give an advantage to a
multitier hierarchy.
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2. The Model

Consider a risk-neutral principal who operates a firm and wishes to
maximize its expected profits, II. The firm owns a production function
gn(a) where g is vector of the inputs of the firm’s employees, and n =1 is
the number of employees. The mean of the firm’s output, ¥, which is
randomly distributed, is provided by the production function. Formally,
this is £(Y) = g,(a). I assume the firm can replace the input (effort) of
one agent with the input of another. Specifically, I make the following
assumption about the production function:

ASsUMPTION 1 (Production Function). g,(a) = (X7 a;)®, where € (0, 1).

Under this production function, the firm’s output depends on the
sum of the agents’ efforts, regardless of their source. The parameter B
represents the concavity of the production function.® The firm hires
employees from a large pool of identical workers, each of whom is both
risk- and (increasingly) work-averse. Each agent has a utility function
u(z, a), where zis the monetary compensation and a is the agent’s effort.
Each agent has a market alternative, 4, with a strictly positive certainty
equivalent, denoted #. For tractability I make the following assumption:

AsSUMPTION 2 (Utility Function). u(z, a) = —exp™*%"), where © > 1.
Agents’ effort is bounded from below by an arbitrary small constant, «.

The coefficients r and ® measure the agents’ risk and work aversion,
respectively. I assume that any agent hired provides a strictly positive
level of effort.* This assumption prevents the principal from hiring
infinitely many agents, each of whom is doing essentially nothing.

To compare different organizational designs (for example, with re-
spect to optimal contracts or tasks assigned), I assume that agents em-
ployed as supervisors are identical to the production agents, i.e., all the
agents employed by the firm are chosen from the same pool. The prin-
cipal can thus use the same employee for different tasks. Also, when the
principal or any supervisor exerts monitoring effort, his/her personal
costs are identical to a production agent’s costs of effort, i.e., a®.

Agents are subject to moral hazard. Their effort is not observable
and therefore cannot be contracted upon. Thus, the principal must use

% A slightly more general case involves a Cobb-Douglas production function, g,(g) =
(£ a;)P1nPe, where there may exist mutual disturbance among agents (Bg < 0), or agents’
efforts are not perfect substitutes. Here, the more agents there are, the less productive
they are, so the same level of total effort produces less. I elected not to use this production
function because an important focus of this paper is the information-related trade-off
between effort and organization size. The production function I use is neutral to this de-
cision. It is easy to show the qualitative nature of the results is not affected by generaliza-
tion to a Cobb-Douglas production function. In n. 10, I provide an example for a solution
under a Cobb-Douglas production function.

*I use this technical assumption only in the proof of Claim 2 in Theorem 1.
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compensation schemes based on performance measures, like signals pro-
duced by the accounting system, to motivate the agents. When accounting
signals are generated by supervisors, it seems reasonable that more su-
pervision (either in terms of the number of supervisors or in terms of
their total effort) increases the precision of the signals generated. I as-
sume the set of available information (signals) is normally distributed,
specifically, x ~ N (g, ¥). The covariance matrix, X, is a function of the in-
formation technology available to the firm. Specifically, it is a function of
monitoring inefficiency, &, the impact of control reduction, 6, and returns

.. k .
on supervision effort, 8. I assume x; ~ N(a;, n"—8 ), where ¢is the total effort
e

employed by all supervisors (monitors), k = 0 reflects the inefficiency of
the monitoring system (for k£ = 0 monitoring is perfect, while for k£ — oo
monitoring provides no useful information), and 6 > 0 captures the returns
on monitoring effort. To compare the owner’s monitoring with alternative
monitoring arrangements, I assume the same monitoring technology is
available to all monitors. Later, I allow for different monitoring ineffi-
ciencies for production, k, and supervision, kg, activities.

Finally, n° captures the possibility that the precision of each agent’s
signal decreases with the number of agents observed, even when total
input is unchanged. The impact of the reduced control on signals’ pre-
cision is captured by 6 = 0. When 0 = 0, there is no reduced control (and
the precision of the signal is independent of the number of agents em-
ployed); as 6 increases, so does the reduction in control due to the pres-
ence of multiple agents. In some cases, it is possible to derive the value of
0 from the properties of the accounting information system. For exam-
ple, consider a principal whose capacity is ¢ identically, independently
distributed (iid) observations, each with variance s2. Now, vary the num-
ber of agents in the firm, n. Increasing the number of agents reduces
the average number of observations per agent, implying that the vari-
ance of the mean of each agent’s observation is higher or the signal is
less accurate. Formally, I show that holding the monitoring capacity
constant at ¢ observations, the variance of the signals in the firm in-
creases linearly with the number of the agents; hence, 6 = 1.

OBSERVATION 1. When the principal has limited monitoring capacity
of ¢ observations, the variance of each agent’s signal, V, increases linearly

. . S
with the number of agents, i.e.,0 =1, or V= no?, where 62 = = .

q
The discussion regarding the distribution of the signals is summarized
by the following:

ASSUMPTION 3. Signals are generated by the normal distribution;
specifically, x~ N (g, ), where X is a diagonal matrix and each of its ele-

k
ments equals 7°— .
eﬁ
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Finally, I consider only linear compensation rules. This assumption
has become standard in the literature and can be justified descriptively
(see, for example, Demski and Dye [1999]) and, in certain settings, the-
oretically (see Holmstrom and Milgrom [1987; 1991]).

ASSUMPTION 4 (Compensation Contracts). The principal offers each
1

agent a linear contract s,(x) =7 + a”x.

As long as there is no correlation on different agents’ signals, the
principal contracts individually with each agent and offers him/her a
contract that depends only on his/her own signals. The optimal contract
does not depend on other agents’ signals.> Given his/her contract, each
agent selects an optimal level of effort.

To summarize, the time line for a one-layer firm is as follows. The
principal chooses the number of agents to employ, n, and offers each
the linear contract, s;(x). Given their contracts, agents simultaneously
choose their effort. Next, the accounting system generates a report (the
set of signals x) which is observed by the principal and all agents. The
precision of the report depends on the monitoring system efficiency and
on total supervision effort. The compensation paid to the employees
depends on these signals.® Finally, output and the resulting payoffs are
realized.

I conclude this section by describing the principal’s problem. The
principal chooses the expected production level, the number of agents
employed, their effort, and the contracts that induce this level of effort
in order to maximize his/her expected profits. In the current setting,
however, the problem of optimal expected production level is separable
from that of efficient production. In particular, I initially focus on the
problem of cost minimization for a given level of expected production
and then solve for optimal expected production level.

5When the covariance matrix is not diagonal, one can transpose it into a diagonal ma-
trix. However, even though all covariances of the transposed matrix are zero, the principal
needs all signals in contracting with each individual agent. I thank Anil Arya for suggest-
ing this explanation.

6 Another source of information may be the realization of the output, ¥. Inclusion of ¥
in contracts may provide further information on the agents’ performance and reduces the
information cost for the principal. This complicates the discussion with no effect on qual-
itative results. Either of the following assumptions will eliminate these complications: (1)
The realization of output, ¥, conveys no new information beyond the information in the
signals (Y'is not informative in the sense of Holmstrom [1979]). This is the case, for exam-
ple, if Yis the sum of all observed individual signals. (2) The principal cannot contract on
Y with the agents. This may happen if Yis realized after the payment of compensation, or
if the principal himself is subject to moral hazard on the reporting of Y, and Y is unob-
servable to individual workers. (See Williamson [1985, p. 139] for a discussion of a related
case.)
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PROGRAM 0. Minimization of Production Costs.”

n
7=

subjectto: V;=1,...,n
Individual Rationality (IR): Ju;(si(x), a;) flx, a)dx = i
6ui(si(gc),ai)
Incentive Compatibility (I/C): —aa———fai(a_c, a)dx =0
)

Production: g.(a) =Y.

Program 0 includes three constraints. The first is that of individual ra-
tionality (participation). To hire agents, the firm must provide expected
utility at least as high as their outside opportunities. The second con-
straint is incentive compatibility. When agents privately choose their
effort, the effort level designed by the principal must be part of each
agent’s best response set; otherwise, the agent will choose a different
action. The third constraint is the level of expected production.

Solving Program 0, and throughout the paper, I treat the number of
agents, n, as a continuous variable, thereby avoiding the technical
difficulty of solving for an optimal integer. A possible interpretation
could be that the principal may hire at most one part-time agent.®

As a benchmark, I present the solution to the first-best case, where
the incentive compatibility constraint does not exist:?

1
o-1\lVo 53 < U )1/‘9 0%
_ (o=l R (2 (x) =
n ( '17, ) Y ’al (D—l )Sl(’zc) (i)—l’and

o-1

_oyeslfo1
TC = m((;?‘—f) © | yB.10

71 use the local IC constraint. As pointed out by Mirrlees [1999], this being a weaker
constraint may be incorrect. Jewitt [1988] provides a set of sufficient conditions for the
first-order approach to be valid in a single-agent setting. These conditions are satisfied for
a broad set of distributions, including the exponential family. For all cases discussed in
this paper, it is also possible to show directly that the first-order approach is valid.

81f one restricts the number of agents, n, to be an integer, one should use a continu-
ous extension of 7 in the program. Otherwise, the first-order condition with respect to n
involves abuse of notation. When solving this continuous approximation of the problem, a
noninteger may be the solution. In this case, under certain regulatory assumptions, the
solution is a nearby integer.

9The first-best is a special case of Proposition 1, where k = 0. Hence, its derivation is
omitted.

OWhen the production function is g,(a) = (Ta)P1nP2, the optimal effort is a; =

(Bl + ’32) o)z
(B; +By) 0 —By

EBI 1o . . .
(Bl -1+ BQO)) and the optimal compensation is s;(x) =

see that qualitative results are not affected.

. It is easy to
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The compensation is independent of the signal’s realization; i.e.,
signals are not used for the first-best contracting (as in Holmstrom
[1979]). This is because the principal is interested in the agent’s input
and not in the realization of x. Optimal risk sharing imposes all the risk
on the (risk-neutral) principal with constant compensation for the agents.
Also, the optimal effort level is independent of the expected output ¥.!!
Simple economic intuition underlies this result. Since inputs are perfect
substitutes, the principal may change either the number of agents or the
effort induced from each agent when s/he wants to change expected pro-
duction level. Changing the number of agents, %, has the expected fixed
cost £(s;(x)) per agent, while the cost of changing each agent’s effort, q,
is increasing (o > 1). Hence, once an agent reaches the optimal level of
effort, it is less costly to increase the number of agents than to increase
that agent’s effort.

This discussion demonstrates that treating the number of agents as
given, as is often done in agency models, may lead to erroneous conclu-
sions. For example, if there is a change in market conditions, like an in-
crease in the competitive output price, and the number of agents is
exogenous, then the response of the principal is to increase the effort level
required from each agent. This paper shows that the principal’s optimal
response may be to change the number of employees rather than their
effort level.

In the next section I solve the principal’s problem, taking into account
supervision costs, when the hierarchical structure of the firm is altered.

3. The Firm’s Hierarchical Structure

This section deals with the optimal hierarchical structure of the firm.
I begin with the case where the principal conducts all necessary moni-
toring (a one-layer firm). Then, I analyze the case where the principal
hires and monitors supervisors, who in turn monitor the production
agents (a two-layer firm). I solve the principal’s optimization program for
each of these two organization designs, compare the two solutions, and
find conditions under which the principal prefers, for a given level of
expected output, to hire supervisors. In analyzing the two-layer firm I
distinguish between nonstrategic and strategic supervisors (who work
under conditions of moral hazard), and demonstrate the effect of these
two types of supervision on the induced organization structure. Finally, I
demonstrate the organization design choice as a function of a competi-
tive output market price. ‘

' This independence holds only if the number of agents is a continuous variable. If the
number of agents must be an integer, the principal may need to adjust slightly the optimal
effort when the change in the expected output, ¥, does not exactly correspond to an inte-
ger change in the number of agents (e.g., s/he needs to hire “half” an additional agent).
When the principal optimally hires many agents, this change in the optimal effort is neg-
ligible. A similar comment applies for other comparative statics, throughout the paper.
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3.1 A ONE-LAYER FIRM

Consider a one-layer organization where the principal conducts all
monitoring. Denote the principal’s monitoring effort by a;, and recall
that the principal’s cost of effort is identical to the agents’ cost, i.e., aj“,’.m

The principal minimizes the total cost of production and monitoring:

PROGRAM 1.13

) o rho? a?(w_l) n’
Mlnl_l,ap,n E u+ a(%) + 5 + a;;’
i=1 2a
4
subject to: (S ?ai)ﬁ =Y [Production].

The solution to Program 1 is characterized below.

PropoOSITION 1. If the principal conducts the monitoring, then: ()
1
the optimal number of production workers is: n = - Y B, where the opti-

mal effort of the production workers, a, is determined by:

1 bo-3 1
= (0o-1)a"+ (20 -6-3) [8’5(5 7 k)C@208g0(20-2-0)+3y B } o+8 (1)
and the optimal effort of the principal, ap is determined by:

0+1 1

ay = [% Srko an-e-gYT} 043, (2)
(ii) The total costs of production are:!*
1.1 o\ /1 ES N
TC(Y) = (i+ @)z TP+ (1 + g)(§ §rko 2037 P >w+6. (3)

While I do not obtain a closed-form solution for the optimal number of
agents or for the optimal effort of the production agents (equation (1)),
I do provide comparative statics for the impact of different parameters
on the optimal solution. Given any expected production level, Y, the
principal must decide first how to efficiently produce Y (i.e., what com-

12T assume that the principal does not operate under moral hazard. This could be the
case, for example, if the principal’s monitoring effort corresponds to the installment of a
monitoring system, which is observed by the agents before they take their action. Alterna-
tively, given that the principal is risk-neutral, and assuming s/he has sufficient wealth, it is
possible the principal commits to some level of noise (variance) in his/her signals and is
penalized (using an optimal insurance mechanism, not modeled here) for deviations. Note
that as I compare the cases below, where the principal’s effort plays a similar role, the
solution is not biased toward any of the cases.

13 The derivation of Program 1 appears in Appendix A.

4The subscripts used for cost functions correspond to the number of layers in the
organization. Here, there is one layer.



INFORMATION TECHNOLOGY AND FIRM STRUCTURE 305

binations of number of agents and individual efforts to choose) and, sec-
ond, how much information to generate, by exerting supervision effort.
Both decisions are related to the risk premium the principal has to pay
to motivate the agents. Formally:

COROLLARY 1. When the principal monitors the agents, and for a
given expected production level, ¥: (i) The comparative statics for the
optimal number of agents, n, have the opposite sign from those for the
optimal effort of the agents. (i) When 6 < 20 - 3 (6 > 20 — 3), the opti-
mal effort of the production agents is decreasing (increasing) in the
inefficiency of the monitoring system, k. When (20 -6 — 3) (06 - 8) > 0 (<
0), the optimal level of the production agents’ effort is decreasing (in-
creasing) in the expected level of production, Y. When 6 = 20 - 3, the
optimal effort of the agents is equal to the first-best effort and is not
affected by k or by Y. The optimal effort of the production agents is al-
ways increasing in the agents’ certainty equivalent, 4, and in the impact
of reduced control, 0. (i) The optimal effort of the principal is always
increasing in kand in Y. When 0 < 20 - 3 (0 = 20 - 3) the optimal effort
of the principal is increasing (decreasing) in .

The intuition behind the result regarding changes in the inefficiency
of the monitoring system, k%, is as follows. Suppose the firm expects to
produce Y units, and assume the monitoring system becomes less effi-
cient (i.e., k increases), so signals are less precise. Usually, higher vari-
ance implies a lower level of optimal agents’ effort, which increases the
demand for employees. But increasing the number of agents generates
a negative externality—an additional decrease in the overall precision
of the signals. To counteract this effect, the principal would want to
increase each agent’s optimal effort, not the number of employees. The
direction of the overall change in the optimal effort and in the number
of agents is determined by the relative magnitudes of agents’ work aver-
sion, @ (which creates the costs of increasing the optimal effort), and
the impact of reduced control, ® (which creates the costs of hiring more
agents to do the same work). The effects of work aversion and reduced
control exactly offset each other when 6 = 20 - 3; here, the optimal
effort equals the first-best effort level and is not affected by any of the
problem parameters.!®> When 0 > 20 - 3, the optimal effort exceeds the
first-best effort and is increasing in the inefficiency of the monitoring sys-
tem, k. This result is in contrast to most traditional agency results, where
the second-best optimal effort is lower than the first-best effort and is
decreasing in the noise in the system.

The impact of changes in the expected production level, ¥, on the
production agents’ effort is identical to that of changes in the ineffi-
ciency of the monitoring system, k, if ©0 — & > 0, and is reversed when ©6

15To see why the term 20 - 0 - 3 is key, replace the effort in the risk premium term by the
2(0-1)

solution to the production constraint. Then, instead of a?©Vn®*! we have #**320y #
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-8 < 0. Changes in Y have a direct impact on the agents’ effort that is
identical to the impact of changes in k, discussed above. However, an
offsetting effect is the impact of the change in the principal’s effort, in-
duced by the change in the expected production level. This principal’s
effort effect dominates the direct effect when the returns on monitoring
effort are high relative to the principal’s work aversion and to the im-
pact of the reduced control, specifically when & > 8.

As expected, the principal’s effort is increasing in both k and Y. The
principal’s and the production agents’ effort levels move either in the
same direction (when 2w - 0 — 3 < 0) or in the opposite direction (when
20 - 6 - 3 > 0), as a response to changes in k. The reason is that the
principal is the only monitor and cannot share the monitoring effort.

Finally, total production costs (equation (3)) are separable in the costs
of hiring agents and compensating them for their certainty equivalent
and their exerted effort, and the private information costs.

3.2 A TWO-LAYER FIRM

In a two-layer organization, the principal delegates monitoring of the
production workers to a layer of supervisors, which s/he, in turn, moni-
tors. The principal must now consider supervisors’ incentives as well as
those of production workers. Strategic supervisors must be monitored;
hence, an optimal firm structure may have multiple layers of supervi-
sors. The top level of supervisors must of course be monitored by the
principal.!6

The compensation of the production workers is based on the sig-

nek

m

nals produced by the supervisors, x;, ~ N | 4;-
( E] = 1asj

)5 where m = 1

is the number of supervisors hired and a; is the effort of the jth supervi-
sor. The supervisors’ compensation depends on the signals produced by

m

——;) 17 The accuracy of the signals is a func-
(%)

tion of the monitor’s (supervisors’ or principal’s) effort. Since monitor-
ing production and monitoring supervision could necessitate different
activities, and to simplify the nonstrategic supervision analysis below, I

the principal, xg; ~ N(asj,

16 The principal must be able to commit to his/her effort level. Assuming no collusion
or renegotiation, the analysis is not affected by the sequence of action of the supervisors
and the production agents. In particular, the results are identical if the supervisors exert
their effort prior to, simultaneously with, or after the production agents take their action.
The reason is that supervisors’ compensation is a function of their effort and the princi-
pal’s effort and not of the production agents’ effort. Hence, their best response function is
not sensitive to the production agents’ activities.

7 The possibility of additional information relevant for contracting with the supervisors
is discussed in section 3.4.
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allow for different inefficiencies for the two activities. In particular, k&
and k; represent the monitoring inefficiency of production and moni-
toring activities, respectively.

In designing contracts with the production workers and the supervi-
sors under conditions of moral hazard, the principal minimizes costs
(equivalently, maximizes total surplus) for any level of expected output.
The minimization problem is:!8

PROGRAM 2.
n rho> a?(m_l)ne mn
Mg g.,a,n,m 2 |u+af+ 3 + 3 |a+ ag
i=1 m j=1
2 E]: laS
rkst as]?(m_l)me
+ + af,
2a6 4
4
subject to: (ET“i) P>y [Production].

The solution to Program 2 is characterized below.

PROPOSITION 2. Suppose the principal hires one layer of supervi-
sors. Then: (7) whlen 20 - 6 - 3 # 0, the optimal number of production

agents is n = 2 Y8, and the optimal number of supervisors, m, is m =

1
[a—(o)—l)a?’]“”LBE‘S8 00—

(20-0-3)° 3 gk |02 +3g20 (0-1)

, where the implicit solu-

tion for the optimal effort of the supervisors, a;, and of the production
agents, g, is given by:

0
(20 —0-3) ko~ VyP |3
2[u - (0-1)a®]m®

1
m5+1a§3 [2(0-1D)z+a® (0-00-2)] | 20-0-3

0+1
i

(20-6-3) %87]@0)2)7

18 An implicit assumption here is that each supervisor monitors all agents. As shown in
Baldenius, Melumad, and Ziv [2000], as long as supervisors’ observations are uncorrelated
and are not aggregated, any arbitrary deterministic assignment of the monitoring tasks
that involves the same number of observations about each agent results in the same costs
of inducing agents’ effort.



