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In hospitals, Step Down Units (SDUSs) provide an intermediatel of care between the Intensive Care Units (ICUs)
and the general medical-surgical wards. Because SDUssweitdly staffed than ICUs, they are less costly to operate;
however, they also are unable to provide the level of careired by the sickest patients. There is an ongoing debate in
the medical community as to whether and how SDUs should hek @seone hand, an SDU alleviates ICU congestion by
providing a safe environment for post-ICU patients beftwgytare stable enough to be transferred to the general wards.
On the other hand, an SDU can take capacity away from thedsir@eer-congested ICU. In this work, we propose a
gqueueing model of patient flow through the ICU and SDU in otdettetermine when an SDU is needed and what size
it should be. Using first and second order analysis, we exaihia tradeoff between reserving capacity in the ICU for
the most critical patients versus gaining additional capaxchieved by allocating nurses to the SDU due to the lower
staffing requirement. Despite the complex patient flow dyicanwe leverage a dimensionality reduction result in our
analysis to establish the optimal allocation of nurses ftsuliVe find that under some circumstances the optimal size
of the SDU is zero, while in other cases, having a sizable Sy be beneficial. The insights from our work provide

rigorous justification for the variation in SDU use seen iaqgtice.
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1. Introduction

Step Down Units (SDUs) provide an intermediate level of ¢eveen the Intensive Care Units (ICUs) and
the general medical-surgical wards. These units, whiclkala@commonly referred to as intermediate care
units and transitional care units, are found in many, butatiphospitals in developed nations. Typically,
these units are staffed at a higher nurse to patient ratiodbaeral medical-surgical wards but not as high

as ICUs. ICUs care for the sickest patients and consume eogisgiionate share of total health care costs

(nearly $82 billion annuall)J.tHﬂlp_eLn_and_Ba.slHLe_s_£01®)cWamounts to 20-35% of total hospital costs
with ICU beds occupying only 5-10 percent of inpatient belis issi Ie_s_2b04)). Con-
sequently, a voluminous literature in both the medical gperations communities exists that addresses the

need to understand and improve how these units functionf(aesxampl i al.
ZQli)I_KQ_a.ndlemu_e_s_l:}ll_(Zdli)._&m_ejl imbﬂamm&zm&)) In contrast, very few studies




address these issues with respect to SDUs, despite thédacint hospitals that have them, the SDU plays
an important role in patient flow through the ICU.

The purpose of an SDU is to treat patients who are more sevanelhe typical ward patient, but who do
not require as intense monitoring as the most critical ICtiepés. The basic premise of having an SDU is
that it can both care for sicker patients and, at the same take pressure off the ICU, thereby resulting

in both better patient outcomes as well as increased efﬁy:i@rick et aIJ 198H, Zimmerman et lal. 1595).

Despite this promise, there is high variation in the preseartd size of SDUs as the medical community

debates the use of these units. Our goal in this work is toldpebetter understanding of the operational
role SDUs play in the treatment of critically ill patients.

Semi-critical patients who can be treated in the SDU can mdlgebe treated in the ICU without any
impact on their quality of care. Conversely, due to the lostffing requirements in the SDU, Critical
patients who are treated in the SDU will not be able to recieehigh level monitoring and care provided
in the ICU, resulting in substantial degradation of theialify of care. Hence, not only do ICUs provide
care for the sickest patients, they can also be considemdblt servers’ in the sense that they can also
treat moderately severe patients. However, largely dukdadigh nurse-to-patient ratio requirement, they
are more costly to operate than SDUs. In California, an IClédgally obligated to have at least one nurse
for every two ICU patients; in practice, many hospitals eperwith one nurse per patient. In contrast, SDUs
can be staffed anywhere from one nurse per two to four patigmparticular, the SDU can accommodate
more patients for the same number of nurses. This creategexasting tradeoff between overall capacity
gains (SDU) for all critical patient severities versus ntaiiming more capacity for the most severely ill
patients (ICU).

This work was initially motivated by a conversation with tbieief intensivist at a large urban hospital.
The hospital was considering creating an SDU by reducingagpin the ICU. The main debate centered
on how many SDU beds should be created without modifying thmber of nursing staff on budget. The
hospital did not want to increase the number of nursing stafbudget due to cost considerations—any
physical changes would primarily have a one time occurréat¢he time of change), but staffing costs
would perpetuate long into the future. On the other handinguhursing staff would hurt hospital morale
and result in substantial backlash by hospital staff whiculdd make it difficult to implement the new
plan. The goal was to rotate the current ICU nurses betweenGbl and new SDU, so that the main
differentiation between the two units would be the nursedtent ratio. The decision to use critical-care
nurses in the SDU was clinically strategic—managementaatd ensure that the nurses were capable

of dealing with any complications which could arise in thétu®ther hospitals have also used critical-

care nurses to staff the SDU (el.g. Eachempatilet al. Z@th kzoob)). While some hospitals (e.qg.
Aloe et a]. 2009)) use medical-surgical nurses in their SPBW primary focus will be on the hospitals
which use critical care nurses in both the ICU and SDU.




Patient flows into SDUs can come from various sources. Féauieg, patients can be directly admitted
to an SDU from the Emergency Department if they are deemeditafor the ward, but not so sick that
they require ICU care. Alternatively, some SDUs are use@&mt-operative patients with fairly standard
recovery patterns, but who need additional monitoring aetent of complications due to surgery. While
the original intent of the SDU was to provide ‘Step-Down’ €dor patients post-ICU, patients are some-
times placed in the SDU prior to ICU care if the ICU is too cosigel to immediately admit the patient.
These complex flow patterns make studying SDUs quite clgilignA number of hospitals (e.@ al.
) anJLEa.Qh_Qmp_ali_e_tl AL_(ZS[)O4)) only admit post-ICUepds into their SDU, while others allow dif-

ferent admission patterns as described above. In order ittaimatractability and gain some insight into

the role of SDUs in the care of Critical patients, we focustmndase where the SDU is a true ‘Step Down
Unit’ and patients are admitted only after being discharfgewh the ICU.

We introduce a queueing model of Critical patients who arttvthe ICU. If there is an available bed,
a patient will be treated immediately. If there is a long quef critical patients waiting for an ICU bed,
the patient will immediately balk and be sent for care at heotospital. Otherwise, he will be treated
in another hospital bed while waiting to be admitted to th& 1T the wait is too long, the patient will
eventually recover and no longer need ICU care or, in the extséme case, die due to the long wait-we
refer to such events as patient ‘abandonment’. A Criticiepawho is admitted to the ICU will be treated
until reaching either a stable enough state to leave theSOU/ system or a Semi-critical state where he
can be treated in the SDU or stay in the ICU. To capture theliattdemand pressures from sicker patients

can lead to patient discharges from the IML&DQIQMJM), we allow for Semi-critical patients

to be bumped out of the ICU if a Critical patient requires a.bed

Our objective is to determine the size of the SDU and ICU amwedbtalking threshold in order to min-
imize the costs associated with patient balking, abandafrhelding in queue, and bumping. Cost min-

imization and reward maximization formulations are commothe healthcare literature (see for exam-

ple, Green et al. (ZOOLSJ), Chan elt MOJZ), Mills Hﬂé&dMason etAI. 2014), Best eMI. (2})15),
leJJS_el_al ,2Q1£) among others).

Our main contributions can be summarized as follows:

e We start with first order analysis of our queueing system fliaid approximation and provide justifica-
tion for the highly varied use of SDUs observed in practingoarticular, we find there exist two operational
regimes which depend on the relative costs between lackoafsador Critical and Semi-critical patients.
In one—the ICU Driven (ID) regime—virtually all nurses afeated to the ICU (so the SDU is very small
or is of size zero), and the system only incurs costs relatélaet bumping of Semi-Critical patients. While
in the other—the Capacity Driven (CD) regime—a significammhber of nurses are allocated to both units,
and only costs related to Critical patients (balking, almamdent and holding) are incurred. Surprisingly,

this can occur even when these per-patient costs for dniatéents are greater than the per-patient cost of
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bumping semi-critical patients. Moreover, our results\agy robust to variation in system parameters as
long as the system is away from the switching point betweertio regimes.

e Using second order analysis (via a diffusion approximatiove develop better insight into how a
more refined characterization of system dynamics plays tiooptimal policy. In contrast to the first
order analysis, costs for lack of access to care (via ballibgndonment, queueing, and bumping)doth
Critical and Semi-critical become significant when consitgsecond order terms. Additionally, fine-tuned
optimization of the balking threshold becomes important.

Our second order analysis suggests that a consistentiZiuldoes not necessarily imply that the ICU is
the system bottleneck. In some cases, it is the shortage Oft&lds that results in having many ICU beds
being occupied by semi-critical patients.

¢ Via numeric and simulation analysis, we find that the sohgiobtained from our fluid and diffusion
approximations result in good outcomes compared to an atirasearch. This holds even under moderate
traffic. Moreover, we find that in the Capacity Driven regiritgsan be highly suboptimal to not have an
SDU. In the ICU Driven regime, it can be optimal to have a nowigl balking threshold, depending on
the relative magnitude of the per-patient balking verswmdbnment plus holding cost. We also find that

fine-tuning this threshold only has a second order effechercost.

1.1. Literature Review
Our work is most related to three bodies of research: 1) naglitierature on ICU and SDU care, 2) work in
healthcare operations management on capacity and patienthtinagement, and 3) the queueing literature.
While there exists an extensive body of literature in the ic@dommunity on ICUs—there are multiple
journals, includingCritical Care andintensive Care Medicin@evoted to this topic—much less attention has
been directed towards SDUs. The majority of work related@$ has focused on the impact of SDUs on
ICU care. Though there may not be a general consensus astioenB®Us can be cost-effective for treating
semi-critical patientsl. (Keenan ed\al._1998), there are abraurof studies focused on either specific ailments

or at individual institutions which suggest the presenca&n$DU can benefit patients. For instance, having

an SDU can reduce ICU LO ' 86); this is inudtbecause patients do not have to reach as
high a level of stability to be discharged from the ICU to tH&Srather than the general medical/surgical
floor. In a study of patients with Acute Myocardial Infargtidhe presence of an SDU was shown to reduce
cost by $1.5 million a year for the treatment of patients withderate riskl (Tosteson gﬂ Ial._lb%). It is also
argued there that high risk patients should not be treatdueisSDU.

There has been some work in operations management lookstgffihg in healthcare (e. Mt

( 00643), de Veéricourt and Jgnn|J1gL* (2 boé), Yankovic a@r (2011),| Yom-Tov and Mandel baJ

)). Most of the prior work focuses on a single unit andehaot considered the impact of the SDU.

In recent work| IL(ZQIlS) takes a utilization maxewion approach to partitioning hospitals into



different units. The focus is on how many beds to allocateath¢ype of medical service in the general
ward. In contrast, we consider multigevelsof care: the ICU and SDLIL_Qha_n_e_II iL_(ZQI14a) also looks at

patient flows through the ICU and SDU, but takes an empirindlsimulation based approach to consider

how SDU capacity impacts patient outcomes. The authorslii@cvthen the ICU capacity is fixed, adding
more SDU capacity improves patient outcomes, but the gamsnarginally decreasing. In contrast, this
work uses a queueing approach to gain insights into managerhéCU and SDU capacity and patient
flows in a scenario where increasing the capacity of the SDdé¢ssarily results in reduced ICU capacity.
Indeed, we find scenarios where, due to this capacity tréded optimal to have no SDU. Recent work

by[MaLhﬂLs_a.nd_Lang_(ZQhS) uses a simulation model to exathmeole of an SDU in critical care. In

contrast to our work, the authors do not consider the omratimpact of proposed changes. As such, they

find, for example, that allocating all beds to the ICU resiitshe best outcomes; however, they do not
consider the need to hire additional nurses to enable suchfearation.

In capturing the patient flow dynamics through an ICU and atUSe consider a modification to
the commonly used N-model queueing system (see Figure h@m_aﬁl.kzoﬂs)). The N-model arises

in our case due to the fact that the ICU consists of flexibleshgérvers), while the SDU does not. In

our setting, once a Critical patient completes treatmeeivise) in the ICU, he may transition into a
Semi-critical patient who can be treated in either the ICLEBU. This patient flow dynamic introduces

a feedback into our model, which is not captured by existinghddels. In various settings, a thresh-

old priority policy for routing patients to the flexible sens kBgII and Williamuloj)], Tezcan and Dai
|;OL$, Ghamami and WAMlZ), and a generalized geiority policy (Mandelbaum and Stolyar 2004,
MMMMM%) have been showminimize costs for the N-model in

heavy traffic asymptotic regimes. With the exceptimluMth_(ZQ_&)& ar{d_G_um_Qh_a_ndJAJhitt

2010), in all of these works, prioritization and routingaefstomers is the primary concern. In contrast, in

the hospital setting, routing is largely dictated by mebinescessity, so we focus on the question of staffing
and sizing of units while assuming that a prioritization aogting rule is given.

There is a rich literature on flexibility in queueing systefesg. I_G_Le_énl_(l&& pp et|aj._£25[)04),

Iravani gtal.[(_o_ds Ata and Van Miegh lﬂ@b@w ;OjZ),Tgltslklls! and)LJL(;QHZ)).An

important aspect discussed in this literature is how togiefie network topology (pairing, chaining, full

flexibility, etc.). Another focus is quantifying how to spthe resources between flexible and dedicated

servers. For example, there has been a series of recent wick wonsiders this question with respect to

tandem systemg (Andradottir gJ al. 2“13, Zhang and AL{haé,@ikizlar et aIJ 201B). Our work is related

to this second category as we determine how to allocate tisesbetween the ICU (flexible) and the SDU

(dedicated). While we also look at a tandem system, the flateipe exhibit different dynamics, such as

bumping, which arise in a hospital setting.



In developing an understanding of the hospital system, Wizauta number of analytic methods. To

start, we examine the system using fluid analysis ), 010)),
that uses law-of-large-number principles to evaluate tarshs that are of the order of the arrival rate.

Next, we refine our analysis by using diffusion approximasias irLlag.eth:.(lSJ?LL)ﬂ_Qa.m_e_n:ilJ_a.L_dZOOZ),

Mandelbaum and Zeltyn (2 Ko n rd (2010), evatrbge central-limit-theorem type results
to evaluate fluctuations about the fluid limit that are of orsiguare-root of the arrival rate. Through the

diffusion analysis, we establish a state-space collapmdtreimilar t rvich and Whitt (2009a), albeit
for different dynamics in a different queueing system. dsimese methodologies, we are able to evaluate
the average abandonment, holding, balking and bumping emst optimize the balking threshold and the
size of the units to minimize these costs. In our asymptatalysis we take formal fluid and diffusion
limits of the nurse allocation problem and then analyze tireesponding fluid and diffusion optimization
problems directly. Using simulations we demonstrate tfieady of the asymptotic solutions for the original

system. This approach is similar to the one taken by Har@ eevi 4 i 09),
Kostami and Wi 2 d),Akan gtgl. (2J)13) éng Ata et al. 801
2. Model

During a patient’s hospital stay, his health state evolwes tme. For tractability, and in order to highlight
the main tradeoffs, we consider two possible health statesdch patient: Critical or Semi-critical (such

an approach to patient classification was also consideljmmgws and nglg_(;O_ILS)). If a patient is in
the Critical state, henustbe treated in the ICU. Once the patient is admitted to the IBg time he is
physiologically considered to be in the Critical state ip@xentially distributed with rate.. Once a patient

is no longer considered to be in the Critical state, he willdree a Semi-critical patient with probability
p; with probability 1 — p he leaves the system, which can practically correspond taraer of different
situations, such as the patient being transferred ancetteéatthe ward, being discharged home, or dying.
Semi-critical patients can be treated in the SDU or ICU. Relgas of the type of bed, the time a patient
is considered to be Semi-critical is exponentially disttéal with rateus-. Note that these rates specify
‘service times’, defined as the expected time a patient issipegific health state when being treated in one
of the units; these times do not necessarily corresponcettrtie a patient is treated in any particular unit.

We consider a system with a fixed numbeMNdofhiurses. These nurses are flexible in the sense that they can

work in either the ICU or SDU. While not all hospitals useicat-care nurses to staff the SDU, many—such

as that irl_Ea.Qh_Qmpﬂli_e_tIAL_(Zil)O@—do. For safety reas@tschnurse-to-patient ratio must be maintained
in each unit. Let; (< rs) be the given number of patients each nurse can manage i€th¢SDU). Our
goal is to determine how to allocate nurses between the tits, which is analogous to determining the
number of ICU and SDU bed$3; and Bs. We considebudget neutrahllocations of nurses, so that we
must allocate up té&V nurses on salary. No additional nurses can be hired. Thissrtbat

B + Bs <N 1)

rr s



so that we allocate up t&/ nurses to the ICU and SDU while satisfying the nurse-togmatiatios. We
refer to any pail B;, Bs) of non-negative integers that satisfy (1) as a feasible badsé) allocation. As

critical-care is often a bottleneck in the hospibuammﬁbmﬁ_mmmﬁﬁbﬁ&dom

we will assume there is ample space in the general medicgiesiiward. This will allow us to focus on

the flow of critical and semi-critical patients.

See Figur¢ll as an example of an allocation of nurses amdreggEEU and SDU. The nurse-to-patient
ratio—i.e. the maximum number of patients a nurse can tteat@—in the ICU is:; = 1 and in the SDU it
isrg = 3. There areV = 8 nurses who are allocated I8y = 6 ICU beds and3y = 6 SDU beds.

( ICU 1:1 w ( SDU 3:1 W S

v

Figure 1 Nurses are depicted as circles, patients are depict ed at squares. Critical patients are served in the
ICU. A Critical patient may become a Semi-critical patient u pon finishing service in the ICU. Semi-
critical patients are depicted in gray and are served in the S DU or ICU. One Semi-critical patient is
currently being served in the ICU.

New Critical patients arrive to the ICU according to a Pomspmcess with rata. If there is space in the
ICU, the patient will begin treatment immediately. If théseno space in the ICU, he will wait in a virtual
gueue. For instance, the patient could wait for ICU admis#iothe Emergency Department (ED). This
queue has length of up t& € [0, oc|, which is a design parameter the system administrator naletts
Thatis, if a new Critical patient arrives and there are alyefd Critical patients waiting for ICU admission,
the new patient will balk and be sent to a different hospitaldare. A cost ofwé is incurred for each
Critical patient who balks from the queue.

Each Critical patient in the queue incurs a holding cost wétte w’ to capture the undesirability of
making Critical patients wait. This is undesirable in termfi@atient care as well as operationally, as these
patients must be treated elsewhere—often in the ED, comgumany resources. If the Critical patient waits
too long, he will abandon the queue after an exponential tivitle rate & and an abandonment cost of
w$ is incurred. Note that abandonment corresponds to a patigiting for ICU care and then eventually

rescinding the request after receiving care elsewhereyeging or dying. This is in contrast to balking



which occurs when a patient’s request for ICU care is imntetliacancelled upon arrival. For tractability,
we use costs for patient balking, abandonment, and holdingpture the undesirability of lack of access

to ICU care. Other adverse events of patient wait, such ascaeadse in Loé (Chan et EI. ZJMB), could also
be considered.

If there is a Semi-critical patient in the ICU and all ICU bexds occupied, he can be bumped out by an
incoming Critical patient. If there is space for him in the $RQhis bumping comes at no cost. However, if
there is no space in the SDU, a current semi-critical patigihbe bumped to the general ward resulting in
costwgc. Our queueing model is depicted in Figlfe 2.

SDU

Wsc
A
i =
» e P /?\
\:/

l ICU p

\ /
Hsc Hsc

Figure 2 ICU-SDU queueing model: The ‘?’ represents the assi  gnment decision of a Semi-critical patient.
Solid lines depict Critical patient flows while dotted lines depict Semi-critical patient flows.

Our objective is to minimize the long time average balkinglding, abandonment, and bumping costs.
Let Z-(t) andZsc(t) denote the number of Critical and Semi-critical patientthiICU or SDU at time
t. Q(t) denotes the number of Critical patientsiting in a (virtual) queue. We define a balking function
£(Q(t)) : Z, — {0,1} as a function which specifies whether a new arrival would retfite queue given
queue lengtiQ(t). In particular, ifQ(t) > K, the patient balks anfl= 0; if Q(t) < K, the patient enters
the queue and = 1. Y(Q(t), Zc(t), Zsc(t)) : Z3. — {0,1} is a function which specifies whether a Semi-
Critical patient will be bumped given system sta@(t), Z-(t), Zsc(t)). Note that a patient cannot be
bumped if he departs the system without becoming a Senwariatient (either by balking, abandoning or
leaving after completing ICU service). Additionally, a jgait cannot abandon if he balks upon arrival. Our
objective is thus to determine the allocation of nurses &x#p the number of ICU and SDU beds as well
as the balking thresholds’, in order to minimize the following cost function:

limsup / [WEAE(Q(E)) + w@Q(E) + wse (b Br A Ze (8)] + N(Q1), Zo(t), Zsc ()] dt, (2)

T—o0

wherewcc2 £ wl +wAf, andA denotes the minimum function. The first componen{®f (2) egponds to
the balking costs; the second component represents the tpregth costs, which is the sum of the holding
plus the abandonment costs; and the third captures the hgropsts.



9

In this work, we examine a stylized model of the ICU and SbthiEsLel_all. k19_8|5) found that having
an SDU can reduce ICU LOS-this reduction is captured by awicgerequirements of Critical and Semi-
critical patients. With an SDU, the mean LOS of a patient i i8U will be 1/ plus some additional
time depending on if there is space in the ICU to treat him evinil the Semi-critical state. However,
without an SDU, more Semi-critical patients will be treatedhe ICU, thus increasing overall ICU LOS.
While there are some practical elements our model does pbireg such as external arrivals to the SDU,
readmissions, or treatment of Critical patients in the Sibthes capture the essence of the tradeoff between
increasing capacity for all patient severities versus méaing capacity for the most vulnerable patients.
For tractability, we focus on the patient flows describedhis section and find that, in doing so, we can
gain many insights into the role of the SDU. In Secfibn 6, wesider some extensions to this initial model.

In considering the possible types of patient dynamics in system, we found a general consensus
amongst physicians we consulted with that Critical pasieme typically given priority over Semi-critical
patients in the ICU. In what follows, we will assume thattpriority is given to Critical patients, so that
a Semi-critical patient will be bumped out of the ICU if a newtiCal patient needs the bed. Formally, we

make the following assumption throughout the paper:

Assumption 1 Critical patients obtain strict preemptive priority ovee®i-critical patients in the ICU.

Note that Assumptidnl 1 implies that a Critical patient ndaadks or queues if there are Semi-critical patients
in the ICU.

Remark 1 In theory, having a single large unit where the level of cafeach bed can be dynamically

flexed up or down is likely to result in lower costs than fixing hurse allocation. While a few hospitals

have tried to implement units with these flexible capabditiachieving such benefits in practice has been
m 11) and

related references). Unit reconfigurations typically oconce or twice a year, if they happen at all. As such,

extremely challenging due to a number of logistical hurdkg. scheduling staff) (s

we focus on the strategic decision of nurse allocation teieine the fixed ICU and SDU capacity.

2.1. Motivating our asymptotic approach

In theory, one could calculate the steady-state distaudif balking, waiting, abandonment and bumping
given a balking threshold and a fixed allocation of nurseb¢d€U and SDU. Then, an exhaustive search
would reveal the balking threshold and the allocation theaim the lowest cost. Unfortunately, the numer-
ical approach provides little intuition for the general mbds to the impact of various system parameters
on the optimal solution. In fact, calculating steady-sfaeformance via exact analysis is also extremely
difficult because while Critical patients follow & /M /B;/ K + M queueing model, the number of Semi-
critical patients strongly depends on the number of Clifgeients in a non-trivial way. The result is a

2-dimensional Markov chain with no known closed-form exgsien for the steady-state distribution. Hence,
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our goal is to develop an understanding of the main drivesysfem performance by considering different
operational regimes of our ICU and SDU hospital system. Hyenptotic regime we consider is one with
many nurses. In particular, we consider a sequence of sgstelaxed by the number of nurs&s with N
and\ growing tooo, while the rest of the parameters do not change. While theageehospital has 15-40
ICU beds (8-40 ICU nurses), we will see via numeric exampieSectiori b that the asymptotic analysis
can be quite accurate even with a moderate number of nurge§r€d-order analysis relies on fluid scaling
which considers terms of the order &t Our second-order analysis relies on diffusion scalingyhich we

consider fluctuations of the order ¢fN.

3. First Order Analysis
We begin our analysis via a fluid modeling approach. Becabbks land SDUs are so expensive to operate,
hospital administrators do not want to have many empty betissise units at all times. As a consequence,

these units are often operated at or above capi@itd@ P@onovost et HI. 20l)4). With that in mind,

we consider a system that is heavily loaded, even if all ofatailable nurses are optimally allocated

between the ICU and the SDU. This assumption is in line wittu&ng on minimizing costs incurred for
limited access to care under the worst-case scenario of patients being unable to obtain access to a bed.
Clearly, during less congested periods the correspondiats avill be lower. If, hypothetically, there were
no capacity constraints, it would reasonable to treat atidat patients in the ICU and all Semi-Critical
patients in SDU to minimize the number of busy nurses. Thespffered load of Critical patients in the

ICU (i.e. the mean number of nurses needed in the IC%, while for Semi-Critical patients in the

SDU itis Tsff’sc. Our overloaded assumption is such that there are not emaurghs to satisfy this demand.

More formally, we postulate the following assumption:

Assumption 2 The system operates in overload. That is,

)\< L, >>N. 3)

e Tspsc

Our asymptotic approach is to consider a sequence of systefaged by the number of nursés,
in which both N and A grow without bound, while the rest of the system parametensain fixed. For
notational compactness, we omit the indexing\dfy N. The following proposition justifies our definition

of the overloaded regime.

Proposition1 1. If A (TILC + Tsisc) < N, then there exists a feasible bed allocation and balking

threshold such that the total cost rate in Eq®) is o(N), wheref (z) := o(x) if f(x)/z — 0 asz — oc.

2. Otherwise, ifA (ﬁ + L ) > N, then for any feasible bed allocation and balking threshblel

TSHSC

total cost rate in Eqn(@) is at leastO(N), wheref (z) := O(z) if f(x)/z <c¢>0asz — .
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Under the overloaded assumption, we wish to examine thenaptallocation of nurses and balking
threshold given the balking, queue length, and bumpingmarstimeters. To do this, we turn to fluid analysis.
The fluid analysis is based on scaling the arrival rate anduh&er of beds and nurses byN and ignoring
quantities that are(N). This way, we can focus on the main drivers of the balkingsheéd and nurse
allocation. We begin by defining our fluid scaling. Let= A\/N, b, := B;/N for i = I, S and note that by
@.

br | bs

—+—<L (4)
rr Ts

3.1. Balking Threshold
In this section we consider an arbitrary nurse allocatiahsrow that, in the fluid scaling, the optimal balk-
ing threshold is eitheso or 0, independent of this allocation. In determining tharopt balking threshold,
K*, we must consider two cases depending on a relationshipeketthe abandonment rate, the balking
cost and the queue length cost.

e Queue-Dominated Casez(Jg/O < wk): Because the queue length cost is less than that of balking, it
is easy to see that patients should never balk. By allowirty €aitical patient into the system, at worst,

he will wait and abandon, incurring expected co$t/6, rather than the larger? if the patient is blocked

upon arrival. Indeed, following Proposition 1 L ) we have that, in this cagé" = co.

e Balking-Dominated Case @3/9 > wh): Due to the overloaded assumption, for any fix€d the
queue length will be equal tA” as long ask is small enough, i.eK < Gimax, WNEreGmax = A — pcb; >0
denotes the maximum queue length on the fluid scale if balkiexg not allowed. Then the corresponding
queue length cost incurredis? I . The balking cost i$\ — b, e — 0K )wZ. Because we are in the over-
loaded regime, the ICU ialwaysfilled with Critical patients. As such, the balking thresthohly impacts
the queue length and balking costs, but not the bumping .cé&sdetermine threshold™, which min-
imizes the cost functioming< x . { (wg@ — 0wE) K +wE (X —bruc)}. Sincewd /6 > wE, we have that
K*=0. That s, having no queue is optimal.

The following proposition summarizes the above discussion

Proposition 2 In the fluid model, under the overloaded regime, the optina#itibg threshold is given as:

K* = o0, if wc:wg/ngg;
K*=0, ifwe=wg <wZ/0.

The proof is embedded in the above discussion and is hendtdmi

3.2. Nurse Allocation

We now consider the optimal nurse allocation. We start byndejia critical cost as:

we =min{w? /0, w5}
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Note thatw- captures the costs of lack of ICU access for Critical pasiefftws = wg/e (Queue-
Dominated Case), there is no balking. Under our overloadsdraptions we have that < ﬁ This is
because further increasing the number of nurses allocaté tiCU increases the bumping costs without
affecting the queue length cost. Thus, the fluid scaled alranént rate is equal to the scaled arrival rate
minus the scaled service capacity,(ar— b;.c). Under this allocation, the ICU is always full with Critical
patients as there is not enough (or just enough) capacigrie sl Critical patients. Hence, there is no room
for Semi-critical patients in the ICU. Thus, the fluid-sahlgueue length is equal to the scaled aggregate
abandonment rate divided by the individual abandonmeat (At b; 1) /6. This results in an expected
scaled queue length cost equaﬁg%(X —brpe) = we (X — brue). Using a similar argument, i = wg
(Balking-Dominated Case), then there is no queue and, undesverloaded assumptions, the fluid scaled
balking rate is equal taéX — bmc)- Thus, in both cases, the total balking and queue lengtls costirred
will be: we (A —brpuc).

The fluid-scaled bumping rate from the SDU is equal to thetpespart of the scaled SDU arrival rate
minus its service ratéb; ucp — bspsc) ™. Combining these two expressions together gives us thageer
cost. Recognizing that constraiht (4) is satisfied as anliguader the optimal allocation, we can specify
our fluid objective in terms o0f;. Our goal is thus to determing,< b; < (7“1 A ﬁ) and0 < bg <rg, the

allocation of nurses to ICU and SDU beds, respectively, 40 asnimize the cost function:
. . by i
min We ()\ - bl,uc) +wsc | bipep—rs | 1—— | psc (5)
ogb,g(rm%) Tr

We can solve the preceding optimization problem to detegrhiow to allocate nurses between the ICU and
SDU. We find that the optimal policy is highly dependent onrlationship betweew. andwg-. More

formally, we have:

Proposition 3 In the fluid model, under the overloaded regime, the optirtlatation of nurses can be split

into two cases. The cost minimizing allocation of nurse€id beds is given by:

T;Ai, if“’—c>w,lDregime .

. ne wso rruc . by

b[ = ) N ) and bS =Ts — T—

TITSHSC , If wo S rrpcp TSV‘SC7 CD reglme I
rIRCPTSISC wsc TIRC

Our proposed nurse allocation to ICU and SDU beds, respdgtivased on fluid analysis is thus:
B;=b;N, B{=0biN.

Note that for notational simplicity, from here on we igndne integrality constraints. Naturally, our numer-
ical solutions in Sectionl5 will incorporate integralityrgiraints. The proof of Propositidh 3 is trivial and,
hence, omitted. Note that one must verify that the valu&;afnder the second scenario does not exceed

M\ e, which is true due to the overloaded condition. We have tvgimes of interest. When the cost for
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lack of ICU accessu(¢) is very large, we see the optimal policy is to allocate asymanses to the ICU
as needed in order to satisfy all Critical patients demahgddssible). If there are not enough nurses to
meet all of this demand (i.e; . < \), then all nurses should be allocated to the ICU. We callréggme
the ICU-Driven (ID) regime. On the other hand, when the cdsack of access to care for Semi-Critical
patients {vsc) is close to that for Critical patients, then the optimalippls to allocate some nurses to the
SDU and reduce access to care for Critical patients. Welgalfégime the Capacity-Driven (CD) regime:
the larger the capacity gained by transferring a nurse fr@@U to the SDU (increasinrg%), the more
likely the CD regime is to be optimal. Additionally, if manyri@cal patients become Semi-critical (large
the SDU becomes more beneficial.

We observe that the regimes are set such that, wheneveblgssie would incur either Critical patients
related costs or Semi-critical patients related costsnbtiboth. Indeed, in the ID regime only bumping
costs are incurred, as long as there is enough capacity torecodate all Critical patients. In contrast, in
the CD regime, the system will only incur Critical patiengdated costs. Moreover, in the latter regime,
the system incurs either balking costs or queue costs, litiotb. We additionally observe that the bed-
allocation scheme proposed by our fluid analysis is vebystwith respect to the system parameters, as
long as the system operates away from the thresﬁségd: T”’“fj%

In further interpreting the results of Propositidn 3, wedthat in the CD regime, the SDU size is selected
such that the SDU isritically loaded,Aspy ~ Bjucp ~ Biusc, while the ICU is strictly overloaded
(by Propositior1L). This is surprising because it occursievken lack of access to the ICU, via balking
or queue length costs, is more costly than bumping an SDW@ntatvet, this allocation results in having
balking rate (or queue length costs) which is of ordeand bumping rate which is of ordefN). In the
CD regime, the capacity gains of allocating nurses to the &@nore substantial than the gain of keeping
the nurses in the ICU to serve the high priority (Criticaljipats. In the ID regime, the needs of the Critical
patients dominate. In fact, we see that in both the ID and @ine, if it is possible, the optimal solution is
such that enough nurses should be allocated to one of thertitgta make it critically loaded, necessarily
making the other unit overloaded. The dominating unit delgean the relationship between the system
parametersy. = min{w? /0, w5} andwgc.

In practice, we see that some hospitals have SDUs while ©tth@mot. We expect hospitals to have
differing system parameters based on varied patient mirdgegulations; moreover, they may view the
relative costs between balking, abandonment, holding antping differently. Our analysis suggests then,
that the variation of SDU use in practice may be warranted.

4. Second Order Analysis

In this section, we consider refining our analysis from S&¢8 by examining the impact of reallocating a
small number of nurses to either the ICU or SDU. Our startioigtds the analysis of the fluid approxima-
tion in Sectior B. Under the ID regime it is optimal to have apdf an ICU as necessary/possible, while
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in the CD regime, it is optimal to have an SDU which is compbeai size to the ICU. In this section,
we consider how the reallocation of a small number of nursag help. We find that in some cases, this
reallocation can be quite helpful. The fluid analysis finds dptimal allocation of nurses to the ICU and
SDU up to an order of(N). In particular, the fluid analysis excludes these lower mde¢erms and so it
might still be beneficial to reallocate a small number of eersay of orde©(+/N) to the SDU or ICU.

We will usediffusionanalysis to examine these two regimes.

4.1. Diffusion Analysis in the ID regime

Recall that in the ID regime, the fluid solution allocatesraitses possible/required to the ICU so that the
queue plus balking cost ig N) (if possible), or negligible in fluid scale. We now explore thenefits of
reallocating asmallnumber of nurses, of ordé?(v/N) between the ICU and the SDU. In this section we

assume that

We < rriieP +rspsc
Wsc [y %]

)

and therefore, on a fluid level, it is optimal to operate thstem in the ID regime. Additionally, suppose

that the number of nurses is large enough to satisfy

Nr; > A +o(N). (6)
2%e}

That is, the number of beds allocated to the ICWis= \/uc + o(N), and the ICU is critically loaded
with respect to the Critical patients.

We now postulate the following refinement of the above nuliseaion scheme:

SO SV Y TV
C

He

whereg is only restricted by the non-negativity constraintsi®nand Bs. In particular, the ICU is criti-
cally loaded when focusing on Critical patients and workdearrthe QED regimel_LHal[m_a.ndMIilLIEJSL
IQ_a.m_elI_el_aJII._ZQ_&)Z) with respect to the same patients. Aséimee time, due to our overloaded condition
and by Propositiohl1, the SDU is overloaded.

It is not clear that in this operating regime, the ICU and SDiUalways be full with Critical and Semi-
critical patients, respectively, as is the case under thd flcaling. Because the ICU may not be full of
Critical patients, the dynamics of our queueing system spekifically, the flow of the Semi-critical patients
is more complex. Before we can determine the optimal alionaif nurses, we must first understand more

precisely when and to what extent Semi-critical patientshvei treated in the ICU.
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4.1.1. State-Space Collapsén order to develop an understanding of the patient flow dyiognone
can examine the two-dimensional process with t@te- Z, Zs¢) (recall that) denotes the queue length
and Z- (Zsc) denotes the number of Critical (Semi-critical) patientewupying a bed). This process is
clearly a Markov process under the strict priority of Calipatients over Semi-critical patients in the ICU;
however, the dynamics of this process are intricate. Whigedynamics of the Critical patients follow that
of a fairly standard multiserver queue with finite/infiniteiing room and abandonment, the dynamics
of the Semi-critical patients cannot be analyzed sepgratai the Critical patients; the dynamics of the
Critical patients determine precisely the arrival rate itte Semi-critical state and also how many beds are
available in the ICU to treat these patients.

Given our goal is to gain some insights as to how to allocaeatirses between the two units in this case,
it is important to be able to characterize the patient flowsuph the ICU and SDU. Despite the challenges
which arise with the two-dimensional Markovian model, we able to show that this two-dimensional

process may be accurately approximated by a one-dimengimeess. Let
. 1 N 1
ZN .= — (zN—-BN), ZzZN,.=—(zN.—BY),
c \/X ( C I ) SsC \/X ( sC S)

describe the diffusion scaled number of patients occupgibngd within each of the two states, respectively.

Also, let=- represent weak convergence. Then we have:

Theorem 1 (State-Space Collapse) In the ID regime and under the nurse allocation[df (7) we haseate-

space collapse. More formally, assuming that at timg2(0) + ZX,(0) = 0, asN — oo, then
ZN + 7N, =0, asN — oo,

where the convergence is i the space of all RCLL (Right Continuous with Left Limits)diions with
gi;a (2002))

values inR, equipped with the Skorohall metric (se

According to Theorenh]1, in the diffusion scale, all beds dveags full. In particular, it is sufficient to
know the value of the one dimensional proc&ss := Q" + Z in order to figure out the value of the two
dimensional process\), Z2.) (up to ordero(+/N)). For example, if there is no queu&{ < B; so that
Q" = 0), then we know that any ICU bed which is not occupied by a €itpatient will be used to treat
a Semi-critical patient. Hence the term ‘State-space ps#la Specifically, the dynamics of our system can
be summarized as follows:

1. The ICU is operated in the QED-regime with respect to Galtpatients, so the number of Critical
patients can be approximated by the diffusion analysis dEdang-A model with finite or infinite buffer

(Garnett et A .20 £ Kocaga and m}grd 3010) whithservers.

2. The SDU is always full. If there are fewer thah Critical patients in the system, then Semi-critical

patients fill the remaining ICU beds.
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The second point implies that even if the ICU is not overlywied with critical patients it will always be
full and thus appear as if it is operating in the overloadgihne. This raises an important practical insight:
when examining hospital data a unit that is always full mayesp to be a system bottleneck where, in fact,
the reason why it is full could be due to spillover from othaits. In the ID regime this observation applies
to an always full ICU, with some Semi-critical patients wire &reated there due to lack of capacity is the
SDU. While a natural reaction to observing ICUs which arestantly full is to add more ICU capacity, the
real culprit of such congestion may be inadequate SDU cgpaci

The intuition behind Theorefd 1 is as follows: The SDU is avaded. In particular, the rate at which it
is losing patients due to lack of space is of ordérAt the same time the ICU is in the QED regime with
respect to Critical patients. In particular, the number@dIbeds that are not occupied by Critical patients
is at most of orde® (/). As soon as some of these beds are empty they almost instantsin become
occupied by Semi-critical patients. Hence all beds are ydviall.

We now leverage our results from above to examine the nuleeasibn and balking threshold problem.
Our aim is to derive expressions for the cost function usirdiffasion approximation. Given the state-
space collapse result that applies to the pro¢éss- Zq, Zsc), it is reasonable to expect that a similar

state-space collapse applies in steady-state as welblBsiag this requires a formal justification of a

limit interchange argument as in Theorem 9.1 ' .19_8_]5). To avoid a lengthy and rather
technical mathematical argumentation here we simply patgtthat the same state-space collapse holds in
steady-state as well.

LetQY := % and/N = % be the scaled queue length and “idleness” processes, Whésehe number
of ICU beds not occupied by Critical patients. Note that dug&heoreniIL/” is also approximately equal
to the number of Semi-critical patients who are being tréatehe ICU. With a slight abuse of notation we

also letQ™ and/" represent these quantities in steady-state. Alsd,Yebe the steady-state balking rate.

4.1.2. Diffusion cost function: The Queue-Dominated cas®ecall that in the queue-dominated case
(ws /6 < wB) it is never optimal to let a patient balk (Proposition 1 ofdéga et AI. 2014)), and therefore
the optimal balking threshold 5™ = cc. In particular, in this case, the ICU operates as\&\/ /N + M

system with respect to the critical patients. To evaluagestieady-state cost, we begin by stating a result

that follows directly from results il:\ﬁ_am_ell_e_ll MOM&MD&&DMDJHMS). Note, one could

also consider using an alternative approximation, suchatsn Baron and Miln$ 2009).

Theorem 2 (Erlang-A in Steady-State) In the ID regime, and under the nurse allocation [ih (7), wedav

that (QV,IV) = (Q, 1), asN — oo, with
E[Q]=<1+ hByuc/) ) -<—\/‘§B+\/g-h<ﬁ\/%>>

V po/0-h(=B)
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and

N B R R TN A N W
E[I]—\/M_C 1 <1+ F/@-h(—ﬁ)) (B+nh(=8)),

whereh(z) = 1?5;81) is the hazard rate function of the Standard Normal distridnoit

Note that Theorerfll2 states the weak convergence of the sstaigyrandom variablg)™, 7"V) but does
not argue that convergence in expectation applies as whils. rfEquires an additional technical argument
which we omit. We simply postulate the convergence in exgiext applies as well.

We now derive diffusion approximations for the bumping sateet Bm denote the steady-state bumping
rate. The starting point is that the bumping rate is equah&Semi-critical arrival rate minus its total
service rate. The arrival rate may be expresse®as:|uop. Similarly, and assuming that the SSC result
of TheorentlL holds in steady-state, the departure rate mayressed as3sp.sc + E[Ipsc + o(vVN).
Putting all of the above together we see that, under the Ine@nd the nurse allocatiohl (7), the cost
function (centered bwsc ()\p + ’T—f (Nr, - %) /tsc) and scaled by /v/\) may be approximated by:

C@rwszw%kﬁ@+%%§4MmWwwﬂ, @)

where the expressions f&Q] and E[I] are explicitly given in Theoreifd 2.
Let 5* := argmin, C(f3), where we choose the supremum @iif there are multiple values of that
minimize the cosC(3). Then our proposed solution in the ID regime is:

A A A [ A
B} = — 43" —, B;—T—S<Nn———6* —)
2%} Hc Tr 27e] 27e]

Note that we have not imposed upper and lower bounds‘olm particular, it is plausible that* is so small

(including 8* = —o0), that Bj is in fact smaller than what is proposed by the CD regime, éveuagh, by

assumption, the system operates in the ID regime. To renméslyte set a lower bound aB; and an upper
bound onB that are dictated by the fluid solution. In doing so, the @ltamn of nurses is given by:

A A
B :=max{ —+ 0"/ —, _ Tiskse N 3,
He Mo Trpep + pscTs
A A
Bymmind 2w - X g [ A _rorsmer L
T | 1%, 1%, rrfiep +rspsc

In Sectiorl b, we will see through numeric experiments, tha¢ed, in the ID regime the optimal value/®f

and

might be such that a small number of beds should be allocatéetSDU.

In the ID regime, the ICU is operated in QED with respect to@nitical patients. Hence, some Semi-
critical patients will be treated in the ICU, so we can segttiareallocation of beds in this regime translates
to balancing the tradeoff between capacity for the modtatipatients (ICU beds) versus overall capacity
(SDU beds). Note that in the ID regime, this tradeoff onlysasi in this second order analysis.
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4.1.3. Diffusion cost function: The Balking-Dominated cas In this case, the per-patient balking cost
wg is less expensive than the worst-case queuem@;éf). Therefore, in the fluid scale, it is optimal to have
all critical patients for whom an ICU bed is not immediatelya#able balk. In the diffusion scale, things
are more subtle. Here, it might be worthwhile to let critipatients wait in queue and not balk in the hope
that a bed would become available to them after a relatiiedytsamount of time, so that the queue cost
per patient is small. This tradeoff was exploreh in Kgga@\aﬁrgl;l 2010). Consistent with that paper, we
consider a balking threshold™ which is of order®(+v/N). For simplicity assume tha™ = kv/N. The

next result follows directly from results kn Kocaga and M{IM)

Theorem 3 (ID Diffusion performance) In the ID regime, and under the nurse allocation [ih (7) and for
balking thresholds™ = k+/N, we have thatQ™, IV, LY) = (Q,1,L), asN — oo,

| l—exp (S (K 22K) + 2 Fmei (0(2/2) 0 (M (k+2)))

ElQ] = m? -
N s (e (2 ) e (02 ) 2 (247))
and
Em: 1 uc< ts Mlmeucvé(% %)>

T 1 (e (2 )+ e (3 (20 9) -2 (23)))

wherem := Suc ando? = 2. Additionally, we have that the scaled balking rate is:

1 egg(k%z%ik)

P e () e () ()

Similar to the previous case, under the ID regime, the bglkiominated case, and the nurse allocation
(@), the cost function (centered - ()\p—{— :f (Nr, — —) /tsc) and scaled by /v/\) may be approx-

e}

z:

imated by:

~ m r A
C(m.k) —wcL+w§E[Q]+wsc[ pt+mEC — (use + pep) BN
VvV Hc Trilc

(9)

where the expressions fér, E[Q] andE[I] are explicitly given in Theoreifi 3.
Let (m*,k*) := argmin,, , C(m, k), where we choose the supremunver(andk) if there are multiple

values ofm (k) that minimize the cost'(m, k). Then our proposed solution in the ID regime is:

A * A A * A
Br=24 2 B§:T—5<Nn———m —>, K*=k*V/N.
e po | Mo rr he  po | Mo
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Similar to the queue-dominated case, we set a lower bounB;oand an upper bound oB} that are

dictated by the fluid solution. In doing so, the allocatiomafses is given by:

A * A
B :=max SaliL —, _ Tshse ,
e poe \ Be o TipeDP+ pscTs
A A
Bi=min{ -5 [ Ny, - = - J o) TISHCP b
rr B e\ pe Triiep +Trsitsc

In Sectiori b, we see cases where the values of both the optiaram are non-trivial.

and

4.2. Diffusion Analysis in the CD regime
Recall that the fluid analysis identified two operating reggrfor the system: the ID and CD regimes. Now
we take a closer look at the CD regime. In particular, we fanughe case where

We <7’1,Ucp+7"s,usc
Wsc (97 %%;

In this case, according to Propositidn 3, we have that

_ISISCand B = b5 N +o(N), by = — KL
Trpep + Tsisc TrpeP + Tspsc

B =b;N +o(N), b=
In particular, we have that the ICU is overloaded and the S®ttitically loaded. Our aim here is to see
whether an order of/ N refinement for the(V) terms above can lead to a lower cost. We further assume
thatA = O(NV) so that the ICU operates in the efficiency-driven (ED) reg&@gns et g“ 20([)3). Otherwise,

the ICU will be “super” overloaded, and refinements of thidasrwill not make a noticeable difference. Set

A
By =b;N +0o(N) =~vR; + v/ R +o(v/Ry), RI::M—, (10)
C

wherey = Yrirsiscic s |ess than 1 due to our overloaded regime condition. Atso, |
Arrncptrspsc)

B
Bs =b3N +0(N) = Rs + 8v/Rs + o(v/Rs), Rs ::%, (11)
SC

where andd are only restricted by the non-negativity constraints&ynand Bs. R; is the offered load

of the ICU, by definition. We argue thdis is the offered load of the SDU. To see this, note that, since
~v < 1, the ICU is indeed operated in the overloaded regime. Inqudat, all ICU beds are full with Critical
patients all the time, almost surely. Hence, the arriva natto the SDU is equal t&; u-p, and the offered
load is indeed equal t%. Note that, as expected, the SDU is critically loaded, aretates in the QED
regime. Finally, using the relatioﬁli + f—s = N + o(v/N) we obtain that

TSP
5:=8(8) =~ %Bwem Ve

rriiep +rspsc
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We aim to find a value fop that minimizes the expected balking plus queue plus bumgosg

We first argue that in the CD regime, the optimal balking thedsis K* = oo or K* = o(v/N) depending
on whether the queue or the balking dominated case holgscetgely. This implies that the system incurs
either queue or balking cost, but not both (up to an ordex ¢fN'). We have already established that in the
gueue-dominated case the optimal threshold is equal.tdhe balking-dominated case is more involved.
We wish to show that in this cagé* = o(v/N). This requires a few steps. First notice that by Theorem 4.3
of IMandelbaum and Zelt /vlw_(A)IOQ), we have that in this regiwteen no balking occurs

EQN 11—y

I
el A 0

We now argue that whenever the balking thresh&lt is smaller thanEQ", then the queue length is
always equal td<™ up to an order ob(v/N).

Proposition 4 (balking threshold in the CD regime) In the CD regime and under the nurse allocation of
(10) and [11) if a threshold policy is used with threshéld that satisfies

N

lim sup

————=1-n, 0<n<1, 12
Ay n n (12)

zYN (0)+QN (0)— (BN + kN

)
i =0, as

then, the buffer is always full. More formally, assumingtthaitime 0,

N — 00, then
ZN+ QY — (BN + K")

VN
where the convergence is i the space of all RCLL (Right Continuous with Left Limits)diions with

=0, asN — oo,

values inR, equipped with the Skorohal metric.

Corollary 1 Under the conditions of Propositigh 4, we have that the nurobECU beds that are occupied
by critical patients is equal t@; — o(v/N).

Corollary 2 Under the conditions of Propositidd 4, the optimal threshiol the balking-dominated case
satisfiesk*Y = o(v/N).

An interesting conclusion from the results above is thathenCD regime, the system will either incur
gueue costs or balking costs but not both. In the balkingidataed case the balking rate is equalte-
peBr +o(v/N), and the corresponding balking costi§ - (A — e B;) + o(v/N). In the queue-dominated
case we have that the average queue length satisfles % +o(v/N), and the corresponding queue
cost iswg - 2L+ o(y/N). Thus, recalling thate = min{w¢ /6, wE}, we have that the total queue

plus balking cost in the CD regime is

we - (A= peBr) +o(VN) =we - A <1—7—6/\/Mzc> +o(VN).
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For the bumping rate, fromgmx we have that

1
VBs

Adding the two cost components together, centeringiby (1 — ), scaling byl /+/N, and letting\V — oo,

Pr{Bm} = h(—B) +o(1/V)).

we obtain that the relevant cost function may be approxithaye

Trr T
C(B) = isc V% <wcﬂf¢ +w50h(_5)> - (13)
rrpep +rspsc rrieP + rspisc

Let 3* := argminy C(3), and letd* := §(5*). Analogously to the ID regime, it is plausible that is so
small that the proposeB; is larger than what is proposed by the ID regime. We set anrupmend on

B7 and a lower bound o}, that are dictated by the fluid solution. Then our proposedtswoi in the CD

regime is:
B} =min{vR;+ 0"/ R;,r/N,— ¢, R;:==—, (14)
Mo e
and
B — « e s s A . Biucp
c=max<s R+ "R, — (Nr;—— | ¢, Ri:= . (15)
Ty | %% Hsc

5. Numeric Results

We have utilized fluid and diffusion analysis to determineviio allocate nurses to ICU and SDU beds.
We find that two operational regimes exist: the ID regime inoktthe SDU has very few beds, if any, and
the CD regime in which the SDU is comparable in size to the I@ld.now use numerical approaches to

examine the quality of our approximations.

5.1. Empirical Data

To start, we must first calibrate the parameters of our molieto this, we leverage the existing medi-
cal literature. Given the limited literature on SDUs, weritiged two articles which specify the necessary
parameters for our queueing model. The first article lookb@impact of adding an SDU for the cardio-
thoracic ICU at the University of Missouri Hospitais_(g_a.d;a.d [19_9;45). The second article also considers
the impact of introducing an SDU, but this time for the suadjikCU at New York-Presbyterian Hospital
(Eachempati et M@b@. The parameters from these artarle summarized in Tablé 1. We let- =
1/ICULOS anduc =1/SDULOS. Note that this ignores Semi-Critical patients who may kated in

the ICU as well as censored observations due to abandonme bianping. Based on conversations with
medical professionals who suggested that patients couitdwaverage up to 1 day for an ICU bed, we set

6 = 1. We will vary the cost parameters to see how they impact thiérgpand staffing decisions.
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[Source [ICULOS[SDULOS[ p [r/] s |

Cady et al. (1995) 2.5days| 1.2days|0.65]1"[2-3
Eachempati et al. (2004)4.8 days| 2.3days| 0.8 | 2| 4
Table1  Summary of ICU and SDU patient flow parameters. T The ICU nurse-to-patient ratio is not given in

this article, so we assume it to be one-to-one.

5.2. Simulation Results

We now leverage the parameters from TdBle 1 to simulatergdt@vs through the ICU and SDU. Using
an exhaustive search over simulations which examine thegeeosts incurred under every combination
of nurse allocations and balking thresholds from 0 to 100&lsas oo, we find the optimal number of ICU
and SDU beds and the optimal balking threshold. We then caarthss to the allocation of nurses given by
our fluid and diffusion analysis.

We start by assuming the arrival rate is such that the ICUiigally loaded in case all the nurses are
allocated to the ICU. Specifically, = N ucr;. For the Queue-dominated (Balking-dominated) case, we set
wge =1 andwg = 15 (w& /0 = 15), while we vary the critical costw /0 (wg).

In considering the staffing level in the ICU, we expect the bamof ICU beds to be non-decreasing
in the ratio between the critical cost and bumping casty/wsc. It turns out that because we have two
different solution regimes (ID and CD) at the diffusion IgVeis possible the monotonicity is violated near
the transition between these two regimes, i.e. whepwsc = T* := T“‘Cff% Indeed, we encounter
this issue in our numeric analysis in some scenarios. Fdr scenarios, in order to translate our diffusion
solution to maintain the desired monotonicity/[&t, we assigned the number of ICU beds to be the average
between the ID and CD diffusion solutions. That is, #t(ID,7*) be the ID solution (minimizes Eqn.
@) or (9)) and letB;(CD, T*) be the CD solution (minimizes Eqi.(13)) wher /wsc = T*. Then, our
diffusion solution isB; = £[B; (ID,T*) + B;(CD,T*)], which also serves as a lower (upper) bound for the
number of ICU beds in the ID (CD) regime.

Figure[3 compares the nurse allocation from our analysif¢oehaustive search when there are 20
nurses to split amongst the ICU and SDU in the Balking-domeid@ase. As we can see in these figures,
the solution determined by minimizing the cost[ih (9) dnd) ($3/ery close to the solution determined by
using exhaustive search over simulations. The fluid modgiity accurate for many different weights,
but can be quite coarse at times. Additionally, the accucdayur approximation depends on the size of
the system, with better results for larger systems. Becthesaurse-to-patient ratios in Eachempati $t al.
2004) require fewer nurses per patient thaJn_m_Qa.d;LIeJI_a&h the size of the units is twice as large for

thelEachempati et LI (2(]04) parameters. As such, the yoélihe solution from the diffusion analysis is
more accurate in Figuifd 3b than in Figlile 3a. We also find tliervwe increase the number of nurses

to allocate (for instance, t& = 100), the approximations become even more accurate. Becaeisgittue

cost,w? /6 = 15, is so large compared to the balking cosi§,/ € [0, 10], the optimal balking threshold is
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0 for the fluid and exhaustive search. It is also O for the diffn solution in the CD regime, but ranges from
1to 3in the ID regime. We saw in Sectibn 4]1.3 that it can bé&wgdtto have a balking threshold of order
Vv/N; our numerics confirm this and we explore it further in SetiifC-2.1 of the Electronic Companion
(EC).

CD ID ———>

# of Beds
# of Beds

B
Welwg

(a) Hospital Parameters fr@ 995) (b) Hospital Parameters from

4'
Figure 3  The Balking-Dominated Case: Optimal allocation of nurses to beds via fluid and diffusion analysis

and exhaustive search. N =20 nurses. wsc =1, wg/e =15.

Figurd EC.1 in the EC is the analog of Figlte 3 in the Queuetdat®d case. Again, the diffusion solution
given by [8) and[(I3) is very close to the solution determimgdsing exhaustive search over simulations.

Though we see discrepancies in the number of beds in the 1A$B under the diffusion approxima-
tions, we find that the actual average cost incurred is qlotedo optimal. Figurgl4 compares the simulated
costs under the diffusion and fluid solutions to the minimwat@chieved via exhaustive search. Figure
[EC2 (in the EC) compares the same when split by expectecedaagth, balking and bumping rates. We
also provide a benchmark of not having any SDU. The costrdiffees under the diffusion solutions are
always less than 13% and are typically within less than 1%ptif@al. On the other hand, the fluid solution
can incur more than 4 times as much costs compared to optdepkending on the operating parameter
regime, it may be sufficient to implement the fluid solutiom other instances, the diffusion solution can
provide an important refinement to reduce costs.

We can also see that in the ID regime, it is certainly reaslenabput all nurses in the ICU. When the
system is in the CD regime, it is very important to considémiducing an SDU; not having an SDU can

result in costs which are an order of magnitude higher thahabhieved via the optimal allocation.

5.2.1. Moderately Heavy Traffic Our fluid and diffusion analysis assumed an overloaded regim
where the units were nearly always full. A number of hospittive for a target utilization of 85% and

within New York, the average ICU occupancy level was 7 @). We note that these utilization
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CD ID
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Total Cost

2 4 6 ™ 8 10
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wlw, B

cMsc Wlwg

(a) Hospital Parameters fr@ 9950b) Hospital Parameters from

lood)

Figure 4  The Balking-Dominated Case: Average cost incurred under optimal allocation of nurses to beds

via fluid and diffusion analysis and exhaustive search. N =20 nurses. wsc =1, wg/e =15.

metrics are censored measures of the true demand due tavedephniques—such as balking, abandon-
ment and bumping—which can divert arrivals and reduce fengstay. Still, there may be periods when
the ICU is not in overload, so we also consider the quality wfanalysis in a ‘moderately’ heavy traffic
regime. The traffic load in this case is such that if all nuiwesallocated to the ICU, the nominal load of
patients is 85%, |e% = .85. While the optimal allocation of nurses changes slightlyhiis
case, we see in Figuleé 5 that the diffusion and fluid soluttifigoerform reasonably well in terms of costs
in the CD regime. We notice that in the ID regime, the asymptgiproach can result in poor performance.
This is because, in this moderate traffic, the ICU is very famf operating in the overloaded regime and
the quality of the approximations noticeably degradedl, 8ie see that our solution always outperforms

the simple benchmark of having no SDU.

6. Model Extensions

Thus far, the focus of this work has been on the model predémt8ectioi 2. We now consider a number
of extensions to our initial model which capture additiodghamics which can arise in various hospital
settings. In particular, we explicitly consider readnmiss, variants to the budget neutral nursing constraint,

and time-varying arrivals.

6.1. Returns to Critical State

We start by considering a stylized model which incorpora@ient readmissions. To streamline the dis-
cussion, we focus on the Queue-dominated case, sdsthat oo and there is no balking. When a patient
leaves the ICU-SDU system, there is some probability hereiilirn to the Critical state (note that a patient
can leave the ICU-SDU system, but still remain in the ho$pitthe general medical-surgical ward). The

probability a patient will return to Critical state depermis how the patient left the system. We }et
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Total Cost
Total Cost

- - Fluid

Diffusion
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Figure 5  Average cost incurred under optimal allocation of n urses to beds via diffusion analysis and
exhaustive search. N = 20 nurses. Moderate traffic; ~2zpcptrsusc) — g5 Hospital Parameters from

Nrirspcopnsc
(- wsc = 1. I

andp® denote the return probability for patients who abandonedkparted naturally as Critical patients,

respectively. Similarlyp5, andp%. denote the return to Critical state probability if the patiis bumped

as a Semi-critical patient or if the patient naturally coetetl service as a Semi-critical patient in the ICU
or SDU. As return patients are typically worse off, we wilsame that all return patients are served and

they will not abandon and cannot balk or be bumped. Thus,xpeated length of stay of a return patient,

not including waiting time, is£'|LOSg|Return] = % + H;’C. Finally, the expected readmission load is
thenpr E[LOSR|Return|, wherepr denotes the return risk of the patient and depends on howetienp
departs the system.

In the Electronic Companion, we formally introduce this rabdith patient returns. Additionally, we
establish the stability condition of such a system. Simﬁ&_ha_n_e_t_él.l_(ZQjI.Z), we find that minimizing the

expected readmission load corresponds to maximizing ¢fimoui.

Proposition 5 If the abandonment and bumping costs capturdribeease in readmission loadssociated
with these events, then the allocation of nurses which niiesrthe average abandonment and bumping

costs will also minimize the number of nurses necessarahilige the readmission queue.

Now, we use simulation to compare the the quality of our nadfmcation derived from our original
model when considering a model which incorporates readomissWe assume the following readmission
probabilities:p2 = .10, p5. = .05, andpd = pY. = .02. We assume the time to return to Critical state is
exponentially distributed with mealryé = 5 days. We consider the nurse allocation for our original nhode
in Sectior 2 which minimizes the return rate on the diffussoale derived in Sectidd 4. We then evaluate
the performance of this solution via a simulation model thwgs have returns to Critical state to the solution

achieved via an exhaustive search for the model with retiesconsider the case withi = 20 nurses.
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Original Model | Exhaustive SearchAll nurses in ICU
(without Returns) via simulation (No SDU)
Eachempati et al. (2004) 18.6% 18.8% 20.5%
Cady et al. (1995) 31.0% 31.4% 36.5%

Table 2 A system with returns to Critical state: Comparison o f return rates for solution which ignores

returns (Original Model) to solution established via exhau stive search.

Table[2 summarizes our simulation results for a system véthrns. We can see that the number of
returns achieved via our diffusion solution for a modéhoutreturns, but with cost appropriately defined
as the increase in return risk due to abandonment and/oribgmg very close to the minimum percentage
of returns. As a benchmark, we see that when there is no SRpeitcentage of returns increases.

6.2.
Thus far, we have considered the ICU and SDU sizing decisimeuthe assumption that the number of

Relaxing the nursing constraint

nurses must be held constant. This budget neutral consaigears in a number of settings. However, it is
conceivable that the joint ICU and SDU sizing decision mayhave such a strict constraint on the number
of nurses. For instance, a hospital may consider hitihgdditional nurses and must determine whether to
allocate them all to the ICU or SDU or split the nurses acradh hnits. Alternatively, a hospital may not
want to completely resize the units and may just want to c@ns? potential options.

Our analysis provides some insight into these other profidemulations. In particular, given an alloca-
tion a specific number of ICU and SDU beds, and Bg, one can easily calculate the number of nurSes
Given the arrival rate\ at the hospital, one can use the analysis from Sedfions Bl amdvaluate the oper-
ational parameter regime and assess the performancemis téibalking rate, queue length, and bumping
rate—of such a configuration. That is, our results are alstulifor performance analysis

6.3. Time-varying arrivals
In practice, hospitals tend to have arrival rates that aghlhitime variable L(QLe_en_e_tJaL_ZD_CLGb,
Armony et a“ﬂO), while the unit sizes remain fixed for alehccounting for this time variation when
determining staffing levels in the Emergency Department)(Edh lead to much better provision of care
I\Mb, Yom-Tov and Mandelbgum JZ013). As many p&tients originate from the ED, the
time-varying arrival rates to the hospital translate togtivarying arrival rates to the ICU. However, unlike

(Green et

the ED, the service times in the ICU are very long2¢4 days as seen in Tallé 1) whereas the varia-

tion in arrival rates is on the order of hours. This differeric time scale suggests that it is not essential

to capture time variation when establishing staffing lewelshe ICU. For more discussion of this see
- rL_(ZQIlB) as well as Section 5.2 andr€if8 inI_Qha.n_e_t_:Lll_(ZQlle).

7. Conclusions and Discussion
Within the medical community, there is a lot of uncertaintylmw to manage and size SDUS. In this work,
we consider the optimal allocation of nurses for the inpdtienits used to treat the hospitals most critical
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patients: the ICU and SDU. In doing so, we provide insight when and how the SDU can be useful in
managing patient flow.

We propose a queueing model which allows us to examine howptinally tradeoff flexibility and
capacity given the costs associated with lack of accessUoal@i/or SDU care. Via our fluid analysis, we
identify two parameter regimes—the ICU-Driven and Capdgiiven regimes—which dictate the optimality
of allocating a very small (including zero) or a substantiaimber of nurses to the SDU. Depending on
the regime, only costs associated with Critical or Semii€ai patients will be incurred, but not both.
On the other hand, costs associated with both Critical amdi-8eitical patients will be incurred at the
diffusion level. We leverage a state-space collapse réswdvaluate and optimize the staffing allocation
and balking threshold in the diffusion scale. We also find thahe ID regime, it can be optimal to have a
non-zero balking threshold on the diffusion level, so treking, queue, and bumping costs are all incurred.
Numerically, we find that our analysis in these asymptotigmes can be quite accurate, even as we relax
some of our initial model assumptions.

In practice, there is high variation across hospitals ashether it has an SDU and if so, how large
the unit is in comparison to the ICU. On the surface, thisatan could be attributed to the fact there
is limited consensus in the medical community as to the mamagt of SDUs. However, our analysis
provides justification for this variation. The optimal siakan SDU is highly dependent on patient mix
(including differences in service times and the likelihadthecoming a Semi-critical patient following ICU
care), staffing requirements in the ICU versus SDU, as wah@selative cost of lack of access to care for
a Critical versus Semi-critical patient. Because thesmfaare likely to vary substantially across different
hospitals and geographic areas, it is reasonable—andyhdgkirable—that hospitals utilize and size SDUs
in a heterogenous manner. One size does not fit all.

This work suggests several potential directions for futeseearch. For instance, if a new hospital were
being built, it would be useful to consider the staffing deeisvithout the budget neutral constraint. In such
a setting, a third tradeoff arises: staffing costs versugiléy and capacity. Another direction would be to
consider other patient flows through the SDU. In this work,omty consider SDU patients who originate
in the ICU; however, some hospitals will admit patients itite SDU who have never visited the ICU. One
could also consider different priority rules, so that in sooases a Critical patient will have to wait (and
potentially abandon), even if there is a Semi-critical guattin the ICU which could be bumped. Finally, in
this paper we have focused on sizing the ICU and SDU, whilerigg the size of the general wards. This
is because the ICU is often considered the hospital bottlerfen interesting direction for future research
is to explicitly model the size and dynamics of the generabvedong with the other two units.

Despite some of these limitations of our model, our work tes an important first step into addressing
the substantial debate in the medical community as to if avd 8DUs should be used. The prevailing

sentiment amongst SDU supporters is that they are a costieffevay to provide care to Semi-critical
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patients. This is true in some cases (CD regime). HowevehanD regime, we see that the need of the
high priority patients outweighs the additional capaci#ygrated by moving nurses to the SDU. Still, even
in this regime, amallSDU can be beneficial in serving as a buffer between the ICUlabospital wards.
The insights from our work will be useful for hospital manegy® assess the pros and cons of SDUs and
whether one is warranted at their hospital. Indeed, we areictly working with a large academic hospital
which treats an underserved population that recently apaneew SDU. This unit will only be used as
a true Step-Down Unit, so that patients will only be admitteliowing ICU discharge. Upon learning
of our findings, the Critical Care team reached out to us f¢p hesessing the management of their new
SDU. We are currently working with them to collect data inertb calibrate system parameters for their
patient population. While we do not expect the hospital teatly implement the precise sizing and balking
threshold decision our model recommends, we do expect thleet@assess i) whether a sizable SDU is
warranted and ii) whether most Critical patients shouldtwaibalk immediately upon arriving to a full
ICU.

Acknowledgements

We are grateful to Feryal Erhun, Linda Green and Avi Mandetbdor providing us with invaluable feed-
back throughout the various stages of this project. We &laokt Alexej Proskynitopoulos for his research

assistance with our numerical study.

References

Akan, M., B. Ata, T. Olsen. 2013. Congestion-based leadtjjmetation for heterogeneous customers with convex-
concave delay costs: Optimality of a cost-balancing pdi@ged on convex hull function®perations Research
60(6) 1505—1519.

Aloe, K., L. Raffaniello, M. Ryan, L. Williams. 2009. Creati of an Intermediate Respiratory Care Unit to Decrease
Intensive Care UtilizationJournal of Nursing Administratio89(11) 494—-498.

Andradottir, S., H. Ayhan, H. Eser Kirkizlar. 2013. Flexébtervers in tandem lines with setup#/orking paper,

Georgia Institute of Technology

Armony, M., S. Israelit, A. Mandelbaum, Y.N. Marmor, Y. Ts$ky, G.B. Yom-tov. 2010. Patient flow in hospitals: A

data-based queueing-science perspectaking Paper, Stern School of Business

Ata, B., B.L. Killaly, T.L Olsen, R.P. Parker. 2013. On haspioperations under medicare reimbursement policies.
Management Scien&)(5) 1027-1044.

Ata, B., J. A. Van Mieghem. 2009. The Value of Partial Reseurooling: Should a Service Network Be Integrated
or Product-Focused¥lanagement Sciend&(1) 115-131.

Baron, O., J. Milner. 2009. Staffing to maximize profit forlaanters with alternate service-level agreeme@iser-

ations Research7(3) 685-700.



29

Bassamboo, A., R. S. Randhawa. 2010. On the accuracy of flodttls for capacity sizing in queueing systems with

impatient customer®perations Research8 1398-1413.

Bassamboo, A., R.S. Randhawa, J.A. Van Miegham. 2012. Aeliiexibility is All You Need: On the Asymptotic
Value of Flexible Capacity in Parallel Queuing Systei@perations Researdd(6) 1423—-1435.

Beck, M. 2011. Critical (Re)thinking: How ICUs are gettingraich-needed makeoveWall Street Journal, March
28.

Bell, S. L., R. J. Williams. 2001. Dynamic Scheduling of a ®ys with Two Parallel Servers in Heavy Traffic with
Resource Pooling: Asymptotic Optimality of a Thresholdi®olAnnals of Applied Probability 1(3) 608—649.

Best, T., B. Sandikci, D. Eisenstein, D. Meltzer. 2015. Mging hospital inpatient bed capacity through partitioning

care into focused wingMSOM, to appear

Browne, S., W. Whitt. 1995. Piecewise-linear diffusion geeses. Dshalalow, edddvances in queueing: Theory,
methods, and open problen@3RC Press, Boca Raton, FL, 463-480.

Byrick, R.J., J.D. Power, J.O. Ycas, K.A. Brown. 1986. Imipafcan intermediate care area on ICU utilization after
cardiac surgeryCritical care medicinel4(10) 869.

Cady, N., M. Mattes, S. Burton. 1995. Reducing IntensiveeQamit Length of Stay: A Stepdown Unit for First-Day
Heart Surgery Patientdournal of Nursing AdministratioB5(12) 29-35.

Chalfin, D. B., S. Trzeciak, A. Likourezos, B. M. Baumann, RDRllinger. 2007. Impact of delayed transfer of
critically ill patients from the emergency department te fhtensive care unit.Critical Care Medicine35
1477-1483.

Chan, C. W.,, V. F. Farias, N. Bambos, G. Escobar. 2012. OpimgilCU Discharge Decisions with Patient Readmis-
sions.Operations Researdd01323-1341.

Chan, C. W., V. F. Farias, G. Escobar. 2013. The Impact of 3etan Service Times in the Intensive Care Unit.

Working paper, Columbia Business School

Chan, C. W., L. V. Green, L. Lu, G. Escobar. 2014a. The role step-down unit in improving patient outcomes.

working paper, Columbia Business School

Chan, C.W.,, G. Yom-Tov, G. Escobar. 2014b. When to use SedduExamination of Service Systems with Returns.
Operations Researdb2(2) 462 — 482.

Chen, L. M., C. M. Matrtin, S. P. Keenan, W. J. Sibbald. 1998idP¢s readmitted to the intensive care unit during the

same hospitalization: clinical features and outcon@rgtical Care Medicine26 1834—-1841.

Dai, J. G., T. Tezcan. 2008. Optimal Control of Parallel 8eSystems with Many Servers in Heavy Traff@ueueing
System$§995-134.

de Véricourt, F., O.B. Jennings. 2008. Dimensioning lesgale membership service@perations Research6(1)
173-187.



30

Durbin, C.G., R.F. Kopel. 1993. A Case-Control Study of &ats Readmitted to the Intensive Care Ur@xitical
Care Medicine21 1547-1553.

Eachempati, S. R., L. J. Hydo, P. S. Barie. 2004. The effeetnointermediate care unit on the demographics and
outcomes of a surgical intensive care unit populatidrchives of Surgerg39(3) 315-319.

Ethier, S.N., T.G. Kurtz. 1985Markov processes, characterization and convergedoén Wiley & Sons.

Gans, N., G. Koole, A. Mandelbaum. 2003. Telephone Call &snifutorial, Review, and Research Prospddian-
ufacturing & Service Operations Managem&fi2) 79-141.

Garnett, O., A. Mandelbaum, M. Reiman. 2002. Designing boeadter with impatient customerdanufacturing &
Service Operations Managemei{8) 208—227.

Ghamami, S., A. R. Ward. 2012. Dynamic Scheduling of a Two/&eParallel Server System with Complete Resource
Pooling and Reneging in Heavy Traffic: Asymptotic Optimalif a Two-Threshold Policy.Mathematics of

Operations Research (to appear)
Green, L. 1985. A Queueing System with General-Use and kitriise Serverperations ResearcB3 168—182.
Green, L. V. 2003. How many hospital bedsjuiry 39(4) 400-412.

Green, L. V., S. Savin, B. Wang. 2006a. Managing patientseiw a diagnostic medical facilitDperations Research
54(1) 11-25.
Green, L. V., J. Soares, J. F. Giglio, R. A. Green. 2006b. @sjneuing theory to increase the effectiveness of

emergency department provider staffidgzademic Emergency Medicia8 61—68.

Green, L.V. 2002. How many hospital beddaquiry-The Journal Of Health Care Organization Provisiémd
Financing39400-412.

Gurvich, I., W. Whitt. 2009a. Queue-and-ldleness-Ratiot@as in Many-Server Service Systemdathematics of
Operations ResearcB4 363—-396.

Gurvich, I, W Whitt. 2009b. Scheduling flexible servers withnvex delay costs in many-server service systems.

Manufacturing and Service Operations Managentl{p) 237-253.

Gurvich, I, W Whitt. 2010. Service-level differentiation imany-server service systems via queue-ratio routing.
Operations ResearchB(2) 316—-328.

Halfin, S., W. Whitt. 1981. Heavy-Traffic Limits for QueuestiviMany Exponential Serverfperations Research
29567-588.

Halpern, N.A., S.M. Pastores. 2010. Critical care medigirtbe United States 2000-2005: an analysis of bed numbers,
occupancy rates, payer mix, and cosIsit Care Med38 65—71.

Harding, A. D. 2009. What Can An Intermediate Care Unit Do ¥ou? Journal of Nursing AdministratioB89(1)
4-7.

Harrison, J.M., A. Zeevi. 2004. Dynamic scheduling of a neldss queue in the halfin and whitt heavy traffic regime.
Operations Research2 243-257.



31

Hopp, W.J., E. Tekin, M.P. Van Oyen. 2004. Benefits of skilhicting in serial production lines with cross-trained
workers.Managemet Sciencs)(1) 83-98.

Iravani, S.M.R., M.P. Van Oyen, K.T. Sims. 2005. Structdietibility: A new perspective on the design of manufac-
turing and service operationslanagement Scien&i(2) 151-166.

Jagerman, D. L. 1974. Some properties of the erlang losgiimdell Systems Tech. 93525-551.

Joint Commission Resources. 200#proving Care in the ICU Joint Commission on Accredidation of Healthcare

Organizations.

Kc, D., C. Terwiesch. 2012. An econometric analysis of pafilews in the cardiac intensive care uanufacturing
& Service Operations Managemet4(1) 50—-65.

Keenan, S. P.,, W. J. Sibbald, K. J. Inman, D. Massel. 1998. #te®yatic Review of the Cost-Effectiveness of Non-
cardiac Transitional Care Unit€hest113172-177.

Kim, S-H, C. W. Chan, M. Olivares, G. Escobar. 2015. ICU Adsioa Control: An Empirical Study of Capacity

Allocation and its Implication on Patient Outcomé$anagement Scien@&d 19-38.
Kirkizlar, H. Eser, S. Andradottir, H. Ayhan. 2013. Flexétdervers in understaffed tandem linBOMS, to appear

Kocaga, Y. L., M. Armony, A. R. Ward. 2014. Staffing call censtevith uncertain arrival rates and co-sourcing.
Production and Operations Management (to appear)

Kocaga, Y. L., A. R. Ward. 2010. Admission control for a migéirver queue with abandonme@ueueing Systems
65(3) 275-323.
Kostami, V., A.R. Ward. 2009. Managing service systems wittoffline waiting option and customer abandonment.

Manufacturing & Service Operations Manageméf4) 644—656.

Kwan, M.A. 2011. Acuity-adaptable nursing care: Exploritgyplace in designing the future patient rooiealth

environments research & desig(l) 77 — 93.

Loynes, R.M. 1963. The stability of a queue with non-indeget interarrival and service timeBroceedings of the
Cambridge Philisophical Socief8497-530.

Mandelbaum, A, A Stolyar. 2004. Scheduling flexible serveith convex delay costs: Heavy-traffic optimality of the

generalized ¢ -rule. Operations Research?(6) 836—855.

Mandelbaum, A., S. Zeltyn. 2009. Staffing many-server qeevith impatient customers: constraint satisfaction in
call centersOperations Research7 1189-1205.

Mason, J.E., B.T. Denton, N.D. Shah, S.A. Smith. 2014. Usilegtronic health records to monitor and improve

adherence to medicatiomorking paper, University of Virgina

Mathews, K. S., E. F. Long. 2015. A conceptual frameworkiigpioving critical care patient flow and bed utilization.

Annals of the American Thoracic Society, to appear

Mills, A., N. T. Argon, S. Ziya. 2013. Resource-based pdtatoritization in mass-casualty incidents¥ISOM 15
361-377.



32

Mills, A., N. T. Argon, S. Ziya. 2015. Dynamic distributiorf casualties to medical facilities in the aftermath of a
disasterworking paper, Kelley School of Business, Indiana Univgrsi

Pronovost, P.J., D.M. Needham, H. Waters, C.M. BirkmeyBr, Galinawan, J.D. Birkmeyer, T. Dorman. 2004. Inten-
sive care unit physician staffing: Financial modeling of kba&pfrog standard*.Critical care medicine32(6)
1247-1253.

Reiman, M.I. 1984. Some diffusion approximations withatsgpiace collapse. F. Baccelli, G. Fayolle, elftdelling

and Performance Evaluation Methodolo@pringer-Verlag, 209-240.

Rubino, M., B. Ata. 2009. Dynamic control of a make-to-orgarallel-server system with cancellatiof@perations
Researctb7(1) 94-108.

Ryckman, F.C., P.A. Yelton, A.M Anneken, P.E. Kiessling, Bchoettker, U.R. Kotagal. 2009. Redesigning intensive
care unit flow using variability management to improve asa@ sl safetyJoint Commission journal on quality
and patient safety / Joint Commission ResouB®535-43.

Shmueli, A., C.L. Sprung, E.H. Kaplan. 2003. Optimizing assions to an intensive care uniiealth Care Manage-
ment Sciencé(3) 131-136.

Snow, N., K.T. Bergin, T.P Horrigan. 1985. Readmission dfi¢Pds to the Surgical Intensive Care Unit: Patient
Profiles and Possibilities for Preventio@ritical Care Medicinel3961-985.

Tezcan, T., J.G. Dai. 2010. Dynamic Control of N-System$witany Servers: Asymptotic Optimality of a Static
Priority Policy in Heavy TrafficOperations Research8 94—-110.

Tosteson, A., L. Goldman, I. S. Udvarhelyi, T. H. Lee. 1996osteffectiveness of a coronary care unit versus an

intermediate care unit for emergency department patieitisaliest pain Circulation 94(2) 143-150.
Tsitsiklis, J.N., K. Xu. 2012. On the power of (even a litttesource poolingStochastic Systen2sl-66.

Wallace, R.B., W. Whitt. 2005. A staffing algorithm for cakmters with skill-based routingManufacturing and
Service Operations Manageméh?276—294.

Whitt, W. 2002. Stochastic-Process limits: An Introduction to StochaBtiocess Limits and their applications to

Queues Spring-Verlag, New York.
Whitt, W. 2006. Fluid Models for Multiserver Queues with AltlonmentsOperations Researchd 37-54.

Yankovic, N., L. Green. 2011. Identifying Good Nursing LEzeA Queuing Approach.Operations Research9
942-955.

Yom-Tov, G., A. Mandelbaum. 2013. Erlang-r: A time-varyiggeue with reentrant customers, in support of health-

care staffingManufacturing & Service Operations Management (to appear)

Zhang, Bo, H. Ayhan. 2013. Optimal admission control fod@m queues with los$EEE Transactions on Automatic

Control, to appear.

Zimmerman, J.E., D.P. Wagner, W.A. Knaus, J.F. Williams,KBlakowski, E.A. Draper. 1995. The use of risk
predictions to identify candidates for intermediate cariéisu Chest1082) 490.



33

Electronic Companion

EC-1. Miscellaneous Proofs
PROOF OFPROPOSITIONII:
1. Suppose thatmsup, _, . A (nio + TSHSC) < N. Note, this implies that the offered load in the ICU

can be metlimsup,_, ﬁ < N. Consider the case where there is no balking,Ae= co. Then, the

number of Critical patients in the ICU behaves likeliiM / B; + M queue. With traffic |nten3|tyB— <
1, we have that, b)J_(Q_a.m_e_Lt_e_tI la_L_Zs{)OZ Theorem 4) with —oo, the rate of abandonment is equal to
[)\ — B[/,Lc] + O(N) = O(N)

As for the Semi-Critical patients, the arrival rate intostbtate is equal tpuc EZ-, whereEZ stands

for the expected steady-state number of ICU beds that atgpaatby critical patients. The service rate is
equalto(Bs+ Br— EZc)usc. By Little’s law, EZ- = (A—o(N))/uc, where thex(NV) term is contributed

by the Critical patient abandonment rate. The bumping sltence equal to

lpucEZe — (Bs+ By — EZc)use]” = pse [ur(A+o(N)) — (Bs + B;)] " = o(N).

2. Suppose now thatmian_}OO)\< L4 ) > N. We letl/u; = (i + L) be the mean

TIHC TS#SC nc HsC
amount of time a new patient should be treated while in thédatiand Semi-Critical states if the system

has ample capacity. For any bed allocatid?}, Bs), we letpc = 5 A In this case,

= BB
we have that for any sequence of bed allocatiBp, Bs), eitherliminf y_, ., pc > 1, orliminf y_, ., pr > 1,
or both. Iflimsup,_, . pc > 1, then we have that the aggregated abandonment and balkénig & least
A —bruc, which isO(N) (it could be less if Semi-Critical patients are occupyindJIBeds, so that less
thanb; beds are available to treat Critical patients). On the otlaed, iflimsup,_, .. pc < 1, then by 1.

the abandonment ig V). Therefore, the bumping rate is again equal to
prcEZc — (Bs+ Br — EZc)psc]” = psc [pr(A+0(N)) — (Bs + B1)]" = O(N).

If neither of these cases applies, the argument works aoasbg when considering converging subse-

guences such that eitheém y_, .. pc > 1 orlimy_, o, pc < 1.

PROOF OFTHEOREM[I: Suppose that{3) holds in the limit. That is, assume that

. o Arrpep+rspse)
lim inf
N—oo Nrirspcpisc

> 1. (EC-1)

Additionally, assume that the system operates in the IDmegind thaf{6) and@X7) hold. L&t := ZJCV +
ZX... And suppose thdt ™V (0) = 0. It is our goal to show that for any> 0,

P{ inf UN(t) < —e} —0, as N — oc.
0<t<1
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The proof follows along the lines MMM} E¢ 0 and let

v =inf{t > 0; UV (t) < —e} andry = sup{t < 7y; UV (t) > —¢/2}.

During [y, 7n] there are empty beds in either the ICU or SDU (or both), so moging will occur. In
particular, during this interval

Z3 () + Zgo(t) = Z5 (1) + Zgo (i) + AN (v, 1) + @V (1, 8) — Do (T, t) — DTy, 1),

where, fors < t, AV (s,t) is the number of critical patients that arrived directlyoitihe ICU (and did not
wait in queue) durings, t], ®" (s, t) is the number of critical patients arrivals into the ICU froine queue

in (s,t]. Also, DY (s,t] is the number of critical patients who have completed thtaly & the ICU and did
not switch to a semi-critical state duririg, ¢]. Finally, D (s,t) is the number of service completions of
semi-critical patients iris, t]. More specifically, letS;, i = 1,2, 3 be independent unit Poisson processes,
then

A 60)+ 0050 = 51 ([ My 00 ZE O 115, sy ) = () (30
D (ent) = 8o (1= [ 2N dr) = (= 5)- (1= pA+olV) (EC-2)
DY, = S <usc / tZévc(r) -dr) < S, <MSC / t (BY +BY — zJ(r)) -dr>
= (t—s)- (“ST—CITS <Nr1 - M%) +0(A)> .

Recall that the ICU is operating in the QED regime with respecCritical patients; thereforg,- ZY =
A+o(\) andB; — ZY = o()). Finally, we have:

A N Nig - DN (s —DN (s
P {infogtsl UN(t) < —6} <P {infOSSStSI A e (S’“/;’C( DD —6/2}

=P 1nf0§s§t§1

— 0, by (EC-1)

t—s
e (A (pripct+iscrs)—iscncrsriN)+o(VX)
ols _
oY < 6/2}

0
PrROOF oFPROPOSITIONE: Suppose that (EC-1) holds. Additionally, assume thasgistem operates

. . ey ZN QN —(BN +KV) N )
in the CD regime and thaf (1.0) arild{11) hold. L&Y := 7 , and suppose that™ (0) = 0.

It is our goal to show that for any> 0,

P{ inf UN(t)<—e}—>0, as N — oo.

0<t<1

The proof follows along the lines MMM} E¢ 0 and let

v =inf{t > 0; UV (t) < —e} andrly = sup{t < 7y; UV (t) > —¢/2}.
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During the intervalry, 7], we have thaZy + Q" < BY + K", so no balking would occur. In particular,

during this interval
Z& () + QY ()= Z5 (1) + QN (y) + AV (14, t) — DE (1yy, ) — @V (14, 1),

where, fors < t, AV (s, t) is the number of critical patients that arrived to the systieming (s, t], D& (s, t]
is the number of critical patients who have completed thialy 1 the ICU and either switched to a semi-
critical state durind s, ¢ or not. Finally,®" (s, t) is the number of abandonment from the queuésirt].

More specifically, letS;, i = 1,2, 3 be independent unit Poisson processes, andlet s <t < ry. Then

AN(s,t) = S, </ AL{oN <k N} -dT) =(t—s)-(A+o(N)),
DY(s,t) = 8 <uc [ 250 'dr> <8 (uoBi(t—s) = (t—5)- (A +0(N),  (EC3)
PV (s,t) = S <0 tQN(r) dr ) <S5 (KN (t—s))

< S (L= (A =n/2)(t=5) +0o(X) = (t—s)- (1 =) (1 =n/2) +0(})).

Finally, we have:

A~ N _DN(st)—aN(s
P{infogtgl UN(t) < —6} Sp{infogsgtgl A (s) D%i) 2 (&8) < —6/2}

=P {infogsgtgl (tis).)\'(l\i/})n/uo()\) < —6/2}
—P {mfogsgSl (t—5) VA (1—7)n/2+0(VA) < —e/z}
—0, by (EC1)

O
PROOF OFCOROLLARY [2Z: By the fluid analysis we have that*Y = o(N). Therefore K *V satisfies
(I2) with » = 1. By Corollary[1, the number of ICU beds available for senitical patients iso(v/N)
and therefore, the bumping cost is independent of the totesavel K (up to o(v/N)). It is therefore
sufficient to focus on the queue and balking costs. As a fancif the threshold levek Y we have that, by

Propositiori %, the total queue plus balking cost rate is egua
w2 KN +wh - (A= peBr —0K™) +0o(VN)=0K" . (wg/O—wg) + w8 - (A= peBr) 4+ o(VN).
Under the balking-dominated case, the cost above is migini® KV = o(v/N). 0

EC-2. Additional Numerics
Figure ECHl and EQ.2 are supplemental to the numericalsinalf Sectio 5]2. Figufe EQ.1 is a parallel

of Figure[3 for the Queue-Dominated case. The qualitatigelte are similar. Because the balking cost,
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wg = 15, is larger than the queue cosis? /6 € [0, 10], the balking threshold i& * = oo for all solutions in

this case. Figure EQ.2 shows a breakdown of the costs inéf@jLinto expected queue lengths, as well as
balking and bumping rates. Since in this scenario the BgHliominated case applies, the expected queue
lengths are, as expected equal to 0, except for high valubde dfalking costvs . As expected, the balking

(bumping) rate is decreasing (increasing) in the cost afigwsc.

CD ID ———>

=== Fluid
Diffusion
©  Simulation

# of Beds
# of Beds

sk - ——Fluid ]
Diffusion
©  Simulation

10 0 2 4 T 6 8 10
Q,
Wwg

(a) Hospital Parameters fr @995) (b) Hospital Parameters frot al.
(2004)

Figure EC.1 = The Queue-Dominated Case: Optimal allocationo  f nurses to beds via fluid and diffusion analy-

sis and exhaustive search. N =20 nurses. wsc =1, wg/e =15.
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Figure EC.2 Performance measures: Average queue length,an  d balking and bumping rates (in # patients per
day) under optimal allocation of nurses to beds via fluid and d iffusion analysis and exhaustive

search. N =20 nurses. w°° =1, w2 /0 =15.
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EC-2.1. Balking Threshold: Balking-dominated case, ID regne

In Sectiof4.113, we found that in the Balking-dominateced@as? < wg/e), ID regime (e /wse > T),

the diffusion solution may have a non-zero optimal balkimgshold. Our previous simulations suggest this
is most likely to occur whem& /6 andw? are close in magnitude.

To examine the impact of carefully optimizing the balkingetshold, we consider the optimal (scaled)
balking threshold and bed allocatiokr; andm*, for the diffusion cost in Eqn[{9) when the queue costs
are 1% larger than the balking cosi@%/e =1.01 x w8. We then compare the cost incurred when using
the optimal bed aIIocationﬁ’kaO}, when the balking threshold is fixed at 0, which is the thréshioe
fluid solution suggests. We consider both the diffusion @vgt the unscaled and un-centered cost (i.e.
VAC(m, k) +wse ()\p—i- :«_f (Nn — ﬁ) MSC)). Table[3 summarizes these findings.

Scaled & Centerel Unscaled & Un-centered
. | COnf_g.0) . C(B] (k=010
we || k C(nzk*.,l(c)*) K*=kVN C(IB}‘IC.,I?*)
5.0||0.5 1.938 3 1.042
52|15 1.756 7 1.097
54|22 1.639 10 1.111
5.6|/3.0 1.566 14 1.116
5.8( 3.7 1.516 17 1.118
6.0|| 3.7 1.479 17 1.119
Table 3  Balking-dominated case, ID regime: Optimal balking threshold and suboptimal cost ratio for having
no queue ( K =0). The scaled and centered results come from the diffusion so lution in Eqn. 9.1The unscaled
and un-centered results transforms the diffusion costs to t he case where N = 20 nurses. Hospital Parameters

given by ta&hgmp_aﬂ_e_t_al_(bb_o_ﬂ.ﬂ wse =1, wd /0 =1.01 x w.

We see that a8 increases, so does the balking threshald, This makes sense as the absolute differ-
ence between the balking and queue costs are increasingelgiige difference is fixed at 1%), making it
more desirable to have a (small) queue. We also see thatysiixiplg the balking threshold at 0 and opti-
mizing the bed allocation can result in very poor perforneaitZhenw’ = 5, the resulting cost is over 93%
higher than the optimal cost in the diffusion scale. Whilefimel that in the Balking-dominated case, ID
regime, it is important to calculate the balking threshaduaately as not doing so can have significant cost
implications on the diffusion scale, we emphasize thessecend order effects. In particular, when con-
sidering the unscaled and un-centered costs, the costatlitfe between optimizing the balking threshold
versus fixing it at 0 is 4.2%-11.9%.

EC-3. A System with Returns to Critical State

We now consider a stylized model which explicitly accoumisgatient returns to the Critical state. Note
that throughout this discussion, we assume mgye < w5, so that no balking occurs. For simplicity,
we also assume thatZ = 0, so that the queue cost includes only the abandonment cestowsider the
following setup:
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1. N nurses are reserved to treat first-time arrivals. Theseeswan be allocated amongdst ICU and
Bs SDU beds as desired. Any reference to system state will beratabd to correspond to the number of
first-timeCritical and Semi-critical patients.

2. Without loss of generality, patients who depart natyréibm the ICU or SDU will not return as
Critical patients.

3. Afirst-time Critical patient who abandons from the ICU gaeeturns for to the Critical state with
probability p2, and has ‘readmission’ ICU LOS which is exponentially distted with mean’.2. We let
wi = paLe.

4. A first-time Semi-critical patient who is bumped from tl@&U returns the Critical state with proba-
bility p5., and has readmission ICU LOS which is exponentially disted with mear£,.. We letw5, =
pscLsc-

5. The return queue is served First-Come-First-Servé€'lipeds. Return patients are treated in the ICU
until they are stable enough to be transferred to the Wagdthey do not go through the SDU. Return
patients will not abandon or balk from the return queue, Rortbey be bumped from the ICU.

In practice, readmitted patients tend to be much sicket \Wwigher mortality rates and longer LOS

(Snow et QH 19&4, Durbin and Kopel 1 éS, Chen & al. h998msTh is desirable to provide high quality

care for these return patients, which we capture by requitiny are treated in the ICU and cannot abandon,

balk, or be bumped.

The total number of ICU beds in this setting(s+ B;. Given theN nurses to treat first-time arrivals,
our goal is to determine the allocation of nurses to the ICH &DBU (B; and Bs) such that we minimize
the number of nurses/r;, required to staff the readmission queue so that the quen@ime stable. That
is, if we let{W, } denote the waiting time the" readmitted patient experiences, we require that for any
subsequence dfiv,, } there exists a sub-subsequence which converges to a rarad@hle which is finite
almost surely.

We start by examining the stability condition of the retutege. Lefo,,, T,,} denote the service require-
ment and interarrival time for readmitted patientinder some allocation of nurses between the ICU and
SDU. Then the stability condition stems from a classicalltesf @ @3), which requires that
Eloy]/E[Ty] < C for the readmission queue to be stable. Werletenote the steady-state distribution of
the first-time patients, where the state is denotes'by (Q, Z¢, Zsc). For notational compactness, we
suppress the dependence of this distribution on the nueEatibn. Relating the stability condition to our

original problem setting of Sectidn 2 we have:
Lemma 1 The return queue is stable if and only if:

lim sup % /0 [we0Q(t) +wseppo[Bi A ZoO(Q(), Zo(t), Zso(t))] dt < C (EC-4)

T—o0
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PrROOF. To start, we denote by, andb,, as indicator variables which equal 1 if patientwho arrives
at timet,,, abandons or is bumped, respectively. It is easy to seettbatandition in[[EC-}) is equivalent

to:

oo

. 1
lljrpjip T nz_o [wéa, +wieb,] Li,<ry | <C

We start by focusing on first-time patients, anddet \ + Q.0 + By max{juc, usc} + Bsusc be the
maximum possible transition rate. We can determine theghitity that the next event is a Critical patient
abandonment or a Semi-critical patient bumping:

0@ + Al{ZC’:BI“‘BS_ZSCvZSC>BS}]
v

(EC-5)

P(Abandonment or Bumping= Zws [
S

If an abandonment (bumping) occurs, the patient’s readomd€U LOS is LE (L) with probability
& (pE.) and 0 otherwise; that is, we formally assume thlhtthe abandoning and bumped patients are
readmitted, but some of them have an ICU LOS of 0. The inteedrtime of events is exponentially dis-
tributed with ratev. Additionally, the number of events until an abandonmeritionping is Geometrically
distributed with mean / P(Abandonment or Bumping Thus, the interarrival time of readmitted patients
is:

v

E|T,| = (EC-6)
[ O] ZS s [HQ + Al{Zc:BI+Bs—Zscvzsc>Bs}]

Finally, the expected service requirement of readmittdbpts is:

Ay,
0Q {Z2¢=Br+Bs—-Zsc:Zsc>Bs}
25 Ts { » W+ — Wse

Eloo] = (EC-7)
’ ZS s [9Q+Al{ZC:BI+BS*ZSCvZSC>BS}]
Combining equation$ (EC-6) and (EC-7) gives the desirdullgyacondition.
Bloo] _ 0 AL
BT Zﬂs [ Quwe + {ZC:BJ+BS—ZSC,ZSC>BS}wSC]
S
1 o0
= 1i;nsup T [Z [UJcan + wgcbn] 1{tn§T} <C (EC-S)
— 00 n=0
0

We can see that given an allocation of nurses, the readmiggieue is stable when there are enough
bedsC to serve the readmission load. By specifying the costs oh@mament and bumping to be the
readmission load associated with these events, the syadwindition is to have enough bedssuch that
it is greater than the optimal average abandonment and Imgngoists. Thus, to minimize the number of
beds (and, subsequently, nurses) necessary to stabilizedldmission queue, thé nurses dedicated to
first-time patients should be allocated such that the agesgndonment plus bumping cost is minimized,
as captured in equatiohl (2).

Note that Propositionl 5 follows directly from Lemih 1.
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