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In hospitals, Step Down Units (SDUs) provide an intermediate level of care between the Intensive Care Units (ICUs)

and the general medical-surgical wards. Because SDUs are less richly staffed than ICUs, they are less costly to operate;

however, they also are unable to provide the level of care required by the sickest patients. There is an ongoing debate in

the medical community as to whether and how SDUs should be used. On one hand, an SDU alleviates ICU congestion by

providing a safe environment for post-ICU patients before they are stable enough to be transferred to the general wards.

On the other hand, an SDU can take capacity away from the already over-congested ICU. In this work, we propose a

queueing model of patient flow through the ICU and SDU in orderto determine when an SDU is needed and what size

it should be. Using first and second order analysis, we examine the tradeoff between reserving capacity in the ICU for

the most critical patients versus gaining additional capacity achieved by allocating nurses to the SDU due to the lower

staffing requirement. Despite the complex patient flow dynamics, we leverage a dimensionality reduction result in our

analysis to establish the optimal allocation of nurses to units. We find that under some circumstances the optimal size

of the SDU is zero, while in other cases, having a sizable SDU may be beneficial. The insights from our work provide

rigorous justification for the variation in SDU use seen in practice.
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1. Introduction

Step Down Units (SDUs) provide an intermediate level of carebetween the Intensive Care Units (ICUs) and

the general medical-surgical wards. These units, which arealso commonly referred to as intermediate care

units and transitional care units, are found in many, but notall, hospitals in developed nations. Typically,

these units are staffed at a higher nurse to patient ratio than general medical-surgical wards but not as high

as ICUs. ICUs care for the sickest patients and consume a disproportionate share of total health care costs

(nearly $82 billion annually (Halpern and Pastores 2010), which amounts to 20-35% of total hospital costs

with ICU beds occupying only 5-10 percent of inpatient beds (Joint Commission Resources 2004)). Con-

sequently, a voluminous literature in both the medical and operations communities exists that addresses the

need to understand and improve how these units function (see, for example, Chalfin et al. (2007), Chan et al.

(2012), Kc and Terwiesch (2012), Kim et al. (2015), Shmueli et al. (2003)). In contrast, very few studies
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address these issues with respect to SDUs, despite the fact that, in hospitals that have them, the SDU plays

an important role in patient flow through the ICU.

The purpose of an SDU is to treat patients who are more severe than the typical ward patient, but who do

not require as intense monitoring as the most critical ICU patients. The basic premise of having an SDU is

that it can both care for sicker patients and, at the same time, take pressure off the ICU, thereby resulting

in both better patient outcomes as well as increased efficiency (Byrick et al. 1986, Zimmerman et al. 1995).

Despite this promise, there is high variation in the presence and size of SDUs as the medical community

debates the use of these units. Our goal in this work is to develop a better understanding of the operational

role SDUs play in the treatment of critically ill patients.

Semi-critical patients who can be treated in the SDU can generally be treated in the ICU without any

impact on their quality of care. Conversely, due to the lowerstaffing requirements in the SDU, Critical

patients who are treated in the SDU will not be able to receivethe high level monitoring and care provided

in the ICU, resulting in substantial degradation of their quality of care. Hence, not only do ICUs provide

care for the sickest patients, they can also be considered ‘flexible servers’ in the sense that they can also

treat moderately severe patients. However, largely due to the high nurse-to-patient ratio requirement, they

are more costly to operate than SDUs. In California, an ICU islegally obligated to have at least one nurse

for every two ICU patients; in practice, many hospitals operate with one nurse per patient. In contrast, SDUs

can be staffed anywhere from one nurse per two to four patients. In particular, the SDU can accommodate

more patients for the same number of nurses. This creates an interesting tradeoff between overall capacity

gains (SDU) for all critical patient severities versus maintaining more capacity for the most severely ill

patients (ICU).

This work was initially motivated by a conversation with thechief intensivist at a large urban hospital.

The hospital was considering creating an SDU by reducing capacity in the ICU. The main debate centered

on how many SDU beds should be created without modifying the number of nursing staff on budget. The

hospital did not want to increase the number of nursing staffon budget due to cost considerations–any

physical changes would primarily have a one time occurrence(at the time of change), but staffing costs

would perpetuate long into the future. On the other hand, cutting nursing staff would hurt hospital morale

and result in substantial backlash by hospital staff which would make it difficult to implement the new

plan. The goal was to rotate the current ICU nurses between the ICU and new SDU, so that the main

differentiation between the two units would be the nurse-to-patient ratio. The decision to use critical-care

nurses in the SDU was clinically strategic–management wanted to ensure that the nurses were capable

of dealing with any complications which could arise in the unit. Other hospitals have also used critical-

care nurses to staff the SDU (e.g. Eachempati et al. (2004), Harding (2009)). While some hospitals (e.g.

Aloe et al. (2009)) use medical-surgical nurses in their SDU, our primary focus will be on the hospitals

which use critical care nurses in both the ICU and SDU.
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Patient flows into SDUs can come from various sources. For instance, patients can be directly admitted

to an SDU from the Emergency Department if they are deemed toosick for the ward, but not so sick that

they require ICU care. Alternatively, some SDUs are used forpost-operative patients with fairly standard

recovery patterns, but who need additional monitoring in the event of complications due to surgery. While

the original intent of the SDU was to provide ‘Step-Down’ care for patients post-ICU, patients are some-

times placed in the SDU prior to ICU care if the ICU is too congested to immediately admit the patient.

These complex flow patterns make studying SDUs quite challenging. A number of hospitals (e.g. Cady et al.

(1995) and Eachempati et al. (2004)) only admit post-ICU patients into their SDU, while others allow dif-

ferent admission patterns as described above. In order to maintain tractability and gain some insight into

the role of SDUs in the care of Critical patients, we focus on the case where the SDU is a true ‘Step Down

Unit’ and patients are admitted only after being dischargedfrom the ICU.

We introduce a queueing model of Critical patients who arrive to the ICU. If there is an available bed,

a patient will be treated immediately. If there is a long queue of critical patients waiting for an ICU bed,

the patient will immediately balk and be sent for care at another hospital. Otherwise, he will be treated

in another hospital bed while waiting to be admitted to the ICU. If the wait is too long, the patient will

eventually recover and no longer need ICU care or, in the mostextreme case, die due to the long wait–we

refer to such events as patient ‘abandonment’. A Critical patient who is admitted to the ICU will be treated

until reaching either a stable enough state to leave the ICU/SDU system or a Semi-critical state where he

can be treated in the SDU or stay in the ICU. To capture the factthat demand pressures from sicker patients

can lead to patient discharges from the ICU (Kc and Terwiesch2012), we allow for Semi-critical patients

to be bumped out of the ICU if a Critical patient requires a bed.

Our objective is to determine the size of the SDU and ICU and the balking threshold in order to min-

imize the costs associated with patient balking, abandonment, holding in queue, and bumping. Cost min-

imization and reward maximization formulations are commonin the healthcare literature (see for exam-

ple, Green et al. (2006a), Chan et al. (2012), Mills et al. (2013), Mason et al. (2014), Best et al. (2015),

Mills et al. (2015) among others).

Our main contributions can be summarized as follows:

• We start with first order analysis of our queueing system via afluid approximation and provide justifica-

tion for the highly varied use of SDUs observed in practice. In particular, we find there exist two operational

regimes which depend on the relative costs between lack of access for Critical and Semi-critical patients.

In one–the ICU Driven (ID) regime–virtually all nurses are allocated to the ICU (so the SDU is very small

or is of size zero), and the system only incurs costs related to the bumping of Semi-Critical patients. While

in the other–the Capacity Driven (CD) regime–a significant number of nurses are allocated to both units,

and only costs related to Critical patients (balking, abandonment and holding) are incurred. Surprisingly,

this can occur even when these per-patient costs for critical patients are greater than the per-patient cost of
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bumping semi-critical patients. Moreover, our results arevery robust to variation in system parameters as

long as the system is away from the switching point between the two regimes.

• Using second order analysis (via a diffusion approximation), we develop better insight into how a

more refined characterization of system dynamics plays intothe optimal policy. In contrast to the first

order analysis, costs for lack of access to care (via balking, abandonment, queueing, and bumping) forboth

Critical and Semi-critical become significant when considering second order terms. Additionally, fine-tuned

optimization of the balking threshold becomes important.

Our second order analysis suggests that a consistently fullICU does not necessarily imply that the ICU is

the system bottleneck. In some cases, it is the shortage of SDU beds that results in having many ICU beds

being occupied by semi-critical patients.

• Via numeric and simulation analysis, we find that the solutions obtained from our fluid and diffusion

approximations result in good outcomes compared to an exhaustive search. This holds even under moderate

traffic. Moreover, we find that in the Capacity Driven regime,it can be highly suboptimal to not have an

SDU. In the ICU Driven regime, it can be optimal to have a non-trivial balking threshold, depending on

the relative magnitude of the per-patient balking versus abandonment plus holding cost. We also find that

fine-tuning this threshold only has a second order effect on the cost.

1.1. Literature Review

Our work is most related to three bodies of research: 1) medical literature on ICU and SDU care, 2) work in

healthcare operations management on capacity and patient flow management, and 3) the queueing literature.

While there exists an extensive body of literature in the medical community on ICUs–there are multiple

journals, includingCritical CareandIntensive Care Medicine, devoted to this topic–much less attention has

been directed towards SDUs. The majority of work related to SDUs has focused on the impact of SDUs on

ICU care. Though there may not be a general consensus as to whether SDUs can be cost-effective for treating

semi-critical patients (Keenan et al. 1998), there are a number of studies focused on either specific ailments

or at individual institutions which suggest the presence ofan SDU can benefit patients. For instance, having

an SDU can reduce ICU LOS (Byrick et al. 1986); this is intuitive because patients do not have to reach as

high a level of stability to be discharged from the ICU to the SDU rather than the general medical/surgical

floor. In a study of patients with Acute Myocardial Infarction, the presence of an SDU was shown to reduce

cost by $1.5 million a year for the treatment of patients withmoderate risk (Tosteson et al. 1996). It is also

argued there that high risk patients should not be treated inthe SDU.

There has been some work in operations management looking atstaffing in healthcare (e.g. Green et al.

(2006b), de Véricourt and Jennings (2008), Yankovic and Green (2011), Yom-Tov and Mandelbaum

(2013)). Most of the prior work focuses on a single unit and have not considered the impact of the SDU.

In recent work, Best et al. (2015) takes a utilization maximization approach to partitioning hospitals into
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different units. The focus is on how many beds to allocate to each typeof medical service in the general

ward. In contrast, we consider multiplelevelsof care: the ICU and SDU. Chan et al. (2014a) also looks at

patient flows through the ICU and SDU, but takes an empirical and simulation based approach to consider

how SDU capacity impacts patient outcomes. The authors find that when the ICU capacity is fixed, adding

more SDU capacity improves patient outcomes, but the gains are marginally decreasing. In contrast, this

work uses a queueing approach to gain insights into management of ICU and SDU capacity and patient

flows in a scenario where increasing the capacity of the SDU necessarily results in reduced ICU capacity.

Indeed, we find scenarios where, due to this capacity tradeoff, it is optimal to have no SDU. Recent work

by Mathews and Long (2015) uses a simulation model to examinethe role of an SDU in critical care. In

contrast to our work, the authors do not consider the operational impact of proposed changes. As such, they

find, for example, that allocating all beds to the ICU resultsin the best outcomes; however, they do not

consider the need to hire additional nurses to enable such a configuration.

In capturing the patient flow dynamics through an ICU and an SDU, we consider a modification to

the commonly used N-model queueing system (see Figure 16 in Gans et al. (2003)). The N-model arises

in our case due to the fact that the ICU consists of flexible beds (servers), while the SDU does not. In

our setting, once a Critical patient completes treatment (service) in the ICU, he may transition into a

Semi-critical patient who can be treated in either the ICU orSDU. This patient flow dynamic introduces

a feedback into our model, which is not captured by existing N-models. In various settings, a thresh-

old priority policy for routing patients to the flexible servers (Bell and Williams 2001, Tezcan and Dai

2010, Ghamami and Ward 2012), and a generalized C-µ priority policy (Mandelbaum and Stolyar 2004,

Dai and Tezcan 2008, Gurvich and Whitt 2009b) have been shownto minimize costs for the N-model in

heavy traffic asymptotic regimes. With the exception of Wallace and Whitt (2005) and Gurvich and Whitt

(2010), in all of these works, prioritization and routing ofcustomers is the primary concern. In contrast, in

the hospital setting, routing is largely dictated by medical necessity, so we focus on the question of staffing

and sizing of units while assuming that a prioritization androuting rule is given.

There is a rich literature on flexibility in queueing systems(e.g. Green (1985), Hopp et al. (2004),

Iravani et al. (2005), Ata and Van Mieghem (2009), Bassambooet al. (2012), Tsitsiklis and Xu (2012)). An

important aspect discussed in this literature is how to design the network topology (pairing, chaining, full

flexibility, etc.). Another focus is quantifying how to split the resources between flexible and dedicated

servers. For example, there has been a series of recent work which considers this question with respect to

tandem systems (Andradottir et al. 2013, Zhang and Ayhan 2013, Kirkizlar et al. 2013). Our work is related

to this second category as we determine how to allocate the nurses between the ICU (flexible) and the SDU

(dedicated). While we also look at a tandem system, the flow patterns exhibit different dynamics, such as

bumping, which arise in a hospital setting.
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In developing an understanding of the hospital system, we utilize a number of analytic methods. To

start, we examine the system using fluid analysis (e.g. Whitt(2006), Bassamboo and Randhawa (2010)),

that uses law-of-large-number principles to evaluate costterms that are of the order of the arrival rate.

Next, we refine our analysis by using diffusion approximations as in Jagerman (1974), Garnett et al. (2002),

Mandelbaum and Zeltyn (2009), Kocaga and Ward (2010), that leverage central-limit-theorem type results

to evaluate fluctuations about the fluid limit that are of order square-root of the arrival rate. Through the

diffusion analysis, we establish a state-space collapse result similar to Gurvich and Whitt (2009a), albeit

for different dynamics in a different queueing system. Using these methodologies, we are able to evaluate

the average abandonment, holding, balking and bumping costs and optimize the balking threshold and the

size of the units to minimize these costs. In our asymptotic analysis we take formal fluid and diffusion

limits of the nurse allocation problem and then analyze the corresponding fluid and diffusion optimization

problems directly. Using simulations we demonstrate the efficacy of the asymptotic solutions for the original

system. This approach is similar to the one taken by Harrisonand Zeevi (2004), Rubino and Ata (2009),

Kostami and Ward (2009), Akan et al. (2013) and Ata et al. (2013).

2. Model
During a patient’s hospital stay, his health state evolves over time. For tractability, and in order to highlight

the main tradeoffs, we consider two possible health states for each patient: Critical or Semi-critical (such

an approach to patient classification was also considered inMathews and Long (2015)). If a patient is in

the Critical state, hemustbe treated in the ICU. Once the patient is admitted to the ICU,the time he is

physiologically considered to be in the Critical state is exponentially distributed with rateµC . Once a patient

is no longer considered to be in the Critical state, he will become a Semi-critical patient with probability

p; with probability1− p he leaves the system, which can practically correspond to a number of different

situations, such as the patient being transferred and treated in the ward, being discharged home, or dying.

Semi-critical patients can be treated in the SDU or ICU. Regardless of the type of bed, the time a patient

is considered to be Semi-critical is exponentially distributed with rateµSC . Note that these rates specify

‘service times’, defined as the expected time a patient is in aspecific health state when being treated in one

of the units; these times do not necessarily correspond to the time a patient is treated in any particular unit.

We consider a system with a fixed number ofN nurses. These nurses are flexible in the sense that they can

work in either the ICU or SDU. While not all hospitals use critical-care nurses to staff the SDU, many–such

as that in Eachempati et al. (2004)–do. For safety reasons, astrict nurse-to-patient ratio must be maintained

in each unit. LetrI (< rS) be the given number of patients each nurse can manage in the ICU (SDU). Our

goal is to determine how to allocate nurses between the two units, which is analogous to determining the

number of ICU and SDU beds,BI andBS. We considerbudget neutralallocations of nurses, so that we

must allocate up toN nurses on salary. No additional nurses can be hired. This means that

BI

rI
+
BS

rS
≤N (1)
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so that we allocate up toN nurses to the ICU and SDU while satisfying the nurse-to-patient ratios. We

refer to any pair(BI ,BS) of non-negative integers that satisfy (1) as a feasible bed (nurse) allocation. As

critical-care is often a bottleneck in the hospital (Ryckman et al. 2009, Kc and Terwiesch 2012, Beck 2011),

we will assume there is ample space in the general medical-surgical ward. This will allow us to focus on

the flow of critical and semi-critical patients.

See Figure 1 as an example of an allocation of nurses amongst the ICU and SDU. The nurse-to-patient

ratio–i.e. the maximum number of patients a nurse can treat at once–in the ICU isrI = 1 and in the SDU it

is rS =3. There areN = 8 nurses who are allocated toBI = 6 ICU beds andBS = 6 SDU beds.

ICU 1:1 SDU 3:1 

            

Figure 1 Nurses are depicted as circles, patients are depict ed at squares. Critical patients are served in the

ICU. A Critical patient may become a Semi-critical patient u pon finishing service in the ICU. Semi-

critical patients are depicted in gray and are served in the S DU or ICU. One Semi-critical patient is

currently being served in the ICU.

New Critical patients arrive to the ICU according to a Poisson process with rateλ. If there is space in the

ICU, the patient will begin treatment immediately. If thereis no space in the ICU, he will wait in a virtual

queue. For instance, the patient could wait for ICU admission in the Emergency Department (ED). This

queue has length of up toK ∈ [0,∞], which is a design parameter the system administrator must select.

That is, if a new Critical patient arrives and there are alreadyK Critical patients waiting for ICU admission,

the new patient will balk and be sent to a different hospital for care. A cost ofwB
C is incurred for each

Critical patient who balks from the queue.

Each Critical patient in the queue incurs a holding cost withratewH
C to capture the undesirability of

making Critical patients wait. This is undesirable in termsof patient care as well as operationally, as these

patients must be treated elsewhere–often in the ED, consuming many resources. If the Critical patient waits

too long, he will abandon the queue after an exponential timewith rate θ and an abandonment cost of

wA
C is incurred. Note that abandonment corresponds to a patientwaiting for ICU care and then eventually

rescinding the request after receiving care elsewhere, recovering or dying. This is in contrast to balking



8

which occurs when a patient’s request for ICU care is immediately cancelled upon arrival. For tractability,

we use costs for patient balking, abandonment, and holding to capture the undesirability of lack of access

to ICU care. Other adverse events of patient wait, such as an increase in LOS (Chan et al. 2013), could also

be considered.

If there is a Semi-critical patient in the ICU and all ICU bedsare occupied, he can be bumped out by an

incoming Critical patient. If there is space for him in the SDU, this bumping comes at no cost. However, if

there is no space in the SDU, a current semi-critical patientwill be bumped to the general ward resulting in

costwSC . Our queueing model is depicted in Figure 2.

? 
ICU SDU 

 

 

l 

q 

mSC mSC 

mC 

1-p 

p 

 

 

 

 

K 

Figure 2 ICU-SDU queueing model: The ‘?’ represents the assi gnment decision of a Semi-critical patient.

Solid lines depict Critical patient flows while dotted lines depict Semi-critical patient flows.

Our objective is to minimize the long time average balking, holding, abandonment, and bumping costs.

Let ZC(t) andZSC(t) denote the number of Critical and Semi-critical patients inthe ICU or SDU at time

t. Q(t) denotes the number of Critical patientswaiting in a (virtual) queue. We define a balking function

ξ(Q(t)) : Z+ → {0,1} as a function which specifies whether a new arrival would enter the queue given

queue lengthQ(t). In particular, ifQ(t)≥K, the patient balks andξ = 0; if Q(t)<K, the patient enters

the queue andξ = 1. ψ(Q(t),ZC(t),ZSC(t)) : Z
3
+ →{0,1} is a function which specifies whether a Semi-

Critical patient will be bumped given system state(Q(t),ZC(t),ZSC(t)). Note that a patient cannot be

bumped if he departs the system without becoming a Semi-critical patient (either by balking, abandoning or

leaving after completing ICU service). Additionally, a patient cannot abandon if he balks upon arrival. Our

objective is thus to determine the allocation of nurses to specify the number of ICU and SDU beds as well

as the balking threshold,K, in order to minimize the following cost function:

limsup
T→∞

1

T

∫ T

0

[

wB
Cλξ(Q(t))+wQ

CQ(t)+wSC(pµc[BI ∧ZC(t)]+λ)ψ(Q(t),ZC(t),ZSC(t))
]

dt, (2)

wherewQ
C , wH

C +wA
Cθ, and∧ denotes the minimum function. The first component of (2) corresponds to

the balking costs; the second component represents the queue length costs, which is the sum of the holding

plus the abandonment costs; and the third captures the bumping costs.
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In this work, we examine a stylized model of the ICU and SDU. Byrick et al. (1986) found that having

an SDU can reduce ICU LOS–this reduction is captured by our service requirements of Critical and Semi-

critical patients. With an SDU, the mean LOS of a patient in the ICU will be 1/µC plus some additional

time depending on if there is space in the ICU to treat him while in the Semi-critical state. However,

without an SDU, more Semi-critical patients will be treatedin the ICU, thus increasing overall ICU LOS.

While there are some practical elements our model does not capture, such as external arrivals to the SDU,

readmissions, or treatment of Critical patients in the SDU,it does capture the essence of the tradeoff between

increasing capacity for all patient severities versus maximizing capacity for the most vulnerable patients.

For tractability, we focus on the patient flows described in this section and find that, in doing so, we can

gain many insights into the role of the SDU. In Section 6, we consider some extensions to this initial model.

In considering the possible types of patient dynamics in oursystem, we found a general consensus

amongst physicians we consulted with that Critical patients are typically given priority over Semi-critical

patients in the ICU. In what follows, we will assume that strict priority is given to Critical patients, so that

a Semi-critical patient will be bumped out of the ICU if a new Critical patient needs the bed. Formally, we

make the following assumption throughout the paper:

Assumption 1 Critical patients obtain strict preemptive priority over Semi-critical patients in the ICU.

Note that Assumption 1 implies that a Critical patient neverbalks or queues if there are Semi-critical patients

in the ICU.

Remark 1 In theory, having a single large unit where the level of care of each bed can be dynamically

flexed up or down is likely to result in lower costs than fixing the nurse allocation. While a few hospitals

have tried to implement units with these flexible capabilities, achieving such benefits in practice has been

extremely challenging due to a number of logistical hurdles(e.g. scheduling staff) (see Kwan (2011) and

related references). Unit reconfigurations typically occur once or twice a year, if they happen at all. As such,

we focus on the strategic decision of nurse allocation to determine the fixed ICU and SDU capacity.

2.1. Motivating our asymptotic approach

In theory, one could calculate the steady-state distribution of balking, waiting, abandonment and bumping

given a balking threshold and a fixed allocation of nurses to the ICU and SDU. Then, an exhaustive search

would reveal the balking threshold and the allocation that obtain the lowest cost. Unfortunately, the numer-

ical approach provides little intuition for the general model as to the impact of various system parameters

on the optimal solution. In fact, calculating steady-stateperformance via exact analysis is also extremely

difficult because while Critical patients follow anM/M/BI/K+M queueing model, the number of Semi-

critical patients strongly depends on the number of Critical patients in a non-trivial way. The result is a

2-dimensional Markov chain with no known closed-form expression for the steady-state distribution. Hence,
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our goal is to develop an understanding of the main drivers ofsystem performance by considering different

operational regimes of our ICU and SDU hospital system. The asymptotic regime we consider is one with

many nurses. In particular, we consider a sequence of systems indexed by the number of nursesN , with N

andλ growing to∞, while the rest of the parameters do not change. While the average hospital has 15-40

ICU beds (8-40 ICU nurses), we will see via numeric examples in Section 5 that the asymptotic analysis

can be quite accurate even with a moderate number of nurses. Our first-order analysis relies on fluid scaling

which considers terms of the order ofN . Our second-order analysis relies on diffusion scaling, inwhich we

consider fluctuations of the order of
√
N .

3. First Order Analysis

We begin our analysis via a fluid modeling approach. Because ICUs and SDUs are so expensive to operate,

hospital administrators do not want to have many empty beds in these units at all times. As a consequence,

these units are often operated at or above capacity (Green 2002, Pronovost et al. 2004). With that in mind,

we consider a system that is heavily loaded, even if all of theavailable nurses are optimally allocated

between the ICU and the SDU. This assumption is in line with focusing on minimizing costs incurred for

limited access to care under the worst-case scenario of somepatients being unable to obtain access to a bed.

Clearly, during less congested periods the corresponding costs will be lower. If, hypothetically, there were

no capacity constraints, it would reasonable to treat all Critical patients in the ICU and all Semi-Critical

patients in SDU to minimize the number of busy nurses. Thus, the offered load of Critical patients in the

ICU (i.e. the mean number of nurses needed in the ICU) isλ
rIµC

, while for Semi-Critical patients in the

SDU it is λp
rSµSC

. Our overloaded assumption is such that there are not enoughnurses to satisfy this demand.

More formally, we postulate the following assumption:

Assumption 2 The system operates in overload. That is,

λ

(

1

rIµC

+
p

rSµSC

)

>N. (3)

Our asymptotic approach is to consider a sequence of systemsindexed by the number of nursesN ,

in which bothN andλ grow without bound, while the rest of the system parameters remain fixed. For

notational compactness, we omit the indexing ofλ byN . The following proposition justifies our definition

of the overloaded regime.

Proposition 1 1. If λ
(

1
rIµC

+ p
rSµSC

)

≤ N , then there exists a feasible bed allocation and balking

threshold such that the total cost rate in Eqn.(2) is o(N), wheref(x) := o(x) if f(x)/x→ 0 asx→∞.

2. Otherwise, ifλ
(

1
rIµC

+ p
rSµSC

)

>N , then for any feasible bed allocation and balking thresholdthe

total cost rate in Eqn.(2) is at leastO(N), wheref(x) :=O(x) if f(x)/x≤ c > 0 asx→∞.
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Under the overloaded assumption, we wish to examine the optimal allocation of nurses and balking

threshold given the balking, queue length, and bumping costparameters. To do this, we turn to fluid analysis.

The fluid analysis is based on scaling the arrival rate and thenumber of beds and nurses by1/N and ignoring

quantities that areo(N). This way, we can focus on the main drivers of the balking threshold and nurse

allocation. We begin by defining our fluid scaling. Letλ̄ := λ/N, bi :=Bi/N for i= I,S and note that by

(1),
bI
rI

+
bS
rS

≤ 1. (4)

3.1. Balking Threshold

In this section we consider an arbitrary nurse allocation and show that, in the fluid scaling, the optimal balk-

ing threshold is either∞ or 0, independent of this allocation. In determining the optimal balking threshold,

K∗, we must consider two cases depending on a relationship between the abandonment rate, the balking

cost and the queue length cost.

• Queue-Dominated Case (wQ
C/θ≤wB

C ): Because the queue length cost is less than that of balking, it

is easy to see that patients should never balk. By allowing each Critical patient into the system, at worst,

he will wait and abandon, incurring expected costwQ
C/θ, rather than the largerwB

C if the patient is blocked

upon arrival. Indeed, following Proposition 1 of Kocaga et al. (2014) we have that, in this caseK∗ =∞.

• Balking-Dominated Case (wQ
C/θ > wB

C ): Due to the overloaded assumption, for any fixedK, the

queue length will be equal toK as long asK is small enough, i.e.K ≤ q̄max, whereq̄max , λ− µCbI ≥ 0

denotes the maximum queue length on the fluid scale if balkingwere not allowed. Then the corresponding

queue length cost incurred iswQ
CK. The balking cost is(λ̄− bIµC − θK)wB

C . Because we are in the over-

loaded regime, the ICU isalwaysfilled with Critical patients. As such, the balking threshold only impacts

the queue length and balking costs, but not the bumping costs. We determine thresholdK∗, which min-

imizes the cost functionmin0≤K<∞
{

(wQ
C − θwB

C )K+wB
C (λ̄− bIµC)

}

. SincewQ
C/θ > wB

C , we have that

K∗ = 0. That is, having no queue is optimal.

The following proposition summarizes the above discussion.

Proposition 2 In the fluid model, under the overloaded regime, the optimal balking threshold is given as:

K∗ =∞, if wC =wQ
C/θ≤wB

C ;
K∗ =0, if wC =wB

C <w
Q
C/θ.

The proof is embedded in the above discussion and is hence omitted.

3.2. Nurse Allocation

We now consider the optimal nurse allocation. We start by defining a critical cost as:

wC =min{wQ
C/θ,w

B
C}
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Note thatwC captures the costs of lack of ICU access for Critical patients. If wC = wQ
C/θ (Queue-

Dominated Case), there is no balking. Under our overloaded assumptions we have thatb∗I ≤ λ̄
µC

. This is

because further increasing the number of nurses allocated to the ICU increases the bumping costs without

affecting the queue length cost. Thus, the fluid scaled abandonment rate is equal to the scaled arrival rate

minus the scaled service capacity, or
(

λ̄− bIµC

)

. Under this allocation, the ICU is always full with Critical

patients as there is not enough (or just enough) capacity to serve all Critical patients. Hence, there is no room

for Semi-critical patients in the ICU. Thus, the fluid-scaled queue length is equal to the scaled aggregate

abandonment rate divided by the individual abandonment rate: (λ̄− bIµC)/θ. This results in an expected

scaled queue length cost equal to
wQ
C

θ
(λ̄− bIµC) = wC(λ̄− bIµC). Using a similar argument, ifwC = wB

C

(Balking-Dominated Case), then there is no queue and, underour overloaded assumptions, the fluid scaled

balking rate is equal to
(

λ̄− bIµC

)

. Thus, in both cases, the total balking and queue length costs incurred

will be: wC

(

λ̄− bIµC

)

.

The fluid-scaled bumping rate from the SDU is equal to the positive part of the scaled SDU arrival rate

minus its service rate:(bIµCp− bSµSC)
+. Combining these two expressions together gives us the average

cost. Recognizing that constraint (4) is satisfied as an equality under the optimal allocation, we can specify

our fluid objective in terms ofbI . Our goal is thus to determine,0≤ bI ≤
(

rI ∧ λ̄
µC

)

and0≤ bS ≤ rS , the

allocation of nurses to ICU and SDU beds, respectively, so asto minimize the cost function:

min
0≤bI≤

(

rI∧ λ̄
µC

)

{

wC

(

λ̄− bIµC

)

+wSC

(

bIµCp− rS

(

1− bI
rI

)

µSC

)+
}

(5)

We can solve the preceding optimization problem to determine how to allocate nurses between the ICU and

SDU. We find that the optimal policy is highly dependent on therelationship betweenwC andwSC . More

formally, we have:

Proposition 3 In the fluid model, under the overloaded regime, the optimal allocation of nurses can be split

into two cases. The cost minimizing allocation of nurses to ICU beds is given by:

b∗I =







rI ∧ λ̄
µC
, if wC

wSC
> rIpµC+rSµSC

rIµC
, ID regime

rIrSµSC

rIµCp+rSµSC
, if wC

wSC
≤ rIµCp+rSµSC

rIµC
, CD regime

and b∗S = rS

(

1− b∗I
rI

)

Our proposed nurse allocation to ICU and SDU beds, respectively, based on fluid analysis is thus:

B∗
I = b∗IN, B∗

S = b∗SN.

Note that for notational simplicity, from here on we ignore the integrality constraints. Naturally, our numer-

ical solutions in Section 5 will incorporate integrality constraints. The proof of Proposition 3 is trivial and,

hence, omitted. Note that one must verify that the value ofb∗I under the second scenario does not exceed

λ̄/µC , which is true due to the overloaded condition. We have two regimes of interest. When the cost for
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lack of ICU access (wC) is very large, we see the optimal policy is to allocate as many nurses to the ICU

as needed in order to satisfy all Critical patients demand (if possible). If there are not enough nurses to

meet all of this demand (i.e.rIµC < λ̄), then all nurses should be allocated to the ICU. We call thisregime

the ICU-Driven (ID) regime. On the other hand, when the cost of lack of access to care for Semi-Critical

patients (wSC) is close to that for Critical patients, then the optimal policy is to allocate some nurses to the

SDU and reduce access to care for Critical patients. We call this regime the Capacity-Driven (CD) regime:

the larger the capacity gained by transferring a nurse from the ICU to the SDU (increasingrSµSC

rIµC
), the more

likely the CD regime is to be optimal. Additionally, if many Critical patients become Semi-critical (largep)

the SDU becomes more beneficial.

We observe that the regimes are set such that, whenever possible, one would incur either Critical patients

related costs or Semi-critical patients related costs, butnot both. Indeed, in the ID regime only bumping

costs are incurred, as long as there is enough capacity to accommodate all Critical patients. In contrast, in

the CD regime, the system will only incur Critical patients related costs. Moreover, in the latter regime,

the system incurs either balking costs or queue costs, but not both. We additionally observe that the bed-

allocation scheme proposed by our fluid analysis is veryrobustwith respect to the system parameters, as

long as the system operates away from the thresholdwC

wSC
= rIpµC+rSµSC

rIµC
.

In further interpreting the results of Proposition 3, we have that in the CD regime, the SDU size is selected

such that the SDU iscritically loaded,λSDU ≈ B∗
IµCp ≈ B∗

SµSC , while the ICU is strictly overloaded

(by Proposition 1). This is surprising because it occurs even when lack of access to the ICU, via balking

or queue length costs, is more costly than bumping an SDU patient. Yet, this allocation results in having

balking rate (or queue length costs) which is of orderN and bumping rate which is of ordero(N). In the

CD regime, the capacity gains of allocating nurses to the SDUare more substantial than the gain of keeping

the nurses in the ICU to serve the high priority (Critical) patients. In the ID regime, the needs of the Critical

patients dominate. In fact, we see that in both the ID and CD regime, if it is possible, the optimal solution is

such that enough nurses should be allocated to one of the two units to make it critically loaded, necessarily

making the other unit overloaded. The dominating unit depends on the relationship between the system

parameters,wC =min{wQ
C/θ,w

B
C} andwSC .

In practice, we see that some hospitals have SDUs while others do not. We expect hospitals to have

differing system parameters based on varied patient mixes and regulations; moreover, they may view the

relative costs between balking, abandonment, holding and bumping differently. Our analysis suggests then,

that the variation of SDU use in practice may be warranted.

4. Second Order Analysis
In this section, we consider refining our analysis from Section 3 by examining the impact of reallocating a

small number of nurses to either the ICU or SDU. Our starting point is the analysis of the fluid approxima-

tion in Section 3. Under the ID regime it is optimal to have as big of an ICU as necessary/possible, while
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in the CD regime, it is optimal to have an SDU which is comparable in size to the ICU. In this section,

we consider how the reallocation of a small number of nurses may help. We find that in some cases, this

reallocation can be quite helpful. The fluid analysis finds the optimal allocation of nurses to the ICU and

SDU up to an order ofo(N). In particular, the fluid analysis excludes these lower ordered terms and so it

might still be beneficial to reallocate a small number of nurses, say of orderO(
√
N) to the SDU or ICU.

We will usediffusionanalysis to examine these two regimes.

4.1. Diffusion Analysis in the ID regime

Recall that in the ID regime, the fluid solution allocates allnurses possible/required to the ICU so that the

queue plus balking cost iso(N) (if possible), or negligible in fluid scale. We now explore the benefits of

reallocating asmallnumber of nurses, of orderO(
√
N) between the ICU and the SDU. In this section we

assume that

wC

wSC

>
rIµCp+ rSµSC

rIµC

,

and therefore, on a fluid level, it is optimal to operate the system in the ID regime. Additionally, suppose

that the number of nurses is large enough to satisfy

NrI ≥
λ

µC

+ o(N). (6)

That is, the number of beds allocated to the ICU isB∗
I = λ/µC + o(N), and the ICU is critically loaded

with respect to the Critical patients.

We now postulate the following refinement of the above nurse allocation scheme:

BI =
λ

µC

+β

√

λ

µC

+ o(
√
N ), BS =

rS
rI

(

NrI −
λ

µC

−β

√

λ

µC

)

+ o(
√
N), (7)

whereβ is only restricted by the non-negativity constraints onBI andBS . In particular, the ICU is criti-

cally loaded when focusing on Critical patients and works under the QED regime (Halfin and Whitt 1981,

Garnett et al. 2002) with respect to the same patients. At thesame time, due to our overloaded condition

and by Proposition 1, the SDU is overloaded.

It is not clear that in this operating regime, the ICU and SDU will always be full with Critical and Semi-

critical patients, respectively, as is the case under the fluid scaling. Because the ICU may not be full of

Critical patients, the dynamics of our queueing system and,specifically, the flow of the Semi-critical patients

is more complex. Before we can determine the optimal allocation of nurses, we must first understand more

precisely when and to what extent Semi-critical patients will be treated in the ICU.
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4.1.1. State-Space CollapseIn order to develop an understanding of the patient flow dynamics, one

can examine the two-dimensional process with state(Q+ZC ,ZSC) (recall thatQ denotes the queue length

andZC (ZSC ) denotes the number of Critical (Semi-critical) patients occupying a bed). This process is

clearly a Markov process under the strict priority of Critical patients over Semi-critical patients in the ICU;

however, the dynamics of this process are intricate. While the dynamics of the Critical patients follow that

of a fairly standard multiserver queue with finite/infinite waiting room and abandonment, the dynamics

of the Semi-critical patients cannot be analyzed separately from the Critical patients; the dynamics of the

Critical patients determine precisely the arrival rate into the Semi-critical state and also how many beds are

available in the ICU to treat these patients.

Given our goal is to gain some insights as to how to allocate the nurses between the two units in this case,

it is important to be able to characterize the patient flows through the ICU and SDU. Despite the challenges

which arise with the two-dimensional Markovian model, we are able to show that this two-dimensional

process may be accurately approximated by a one-dimensional process. Let

ẐN
C :=

1√
λ

(

ZN
C −BN

I

)

, ẐN
SC :=

1√
λ

(

ZN
SC −BN

S

)

,

describe the diffusion scaled number of patients occupyinga bed within each of the two states, respectively.

Also, let⇒ represent weak convergence. Then we have:

Theorem 1 (State-Space Collapse) In the ID regime and under the nurse allocation of (7) we have astate-

space collapse. More formally, assuming that at time 0,ẐN
C (0)+ ẐN

SC(0)⇒ 0, asN →∞, then

ẐN
C + ẐN

SC ⇒ 0, asN →∞,

where the convergence is inD the space of all RCLL (Right Continuous with Left Limits) functions with

values inR, equipped with the SkorohodJ1 metric (see Whitt (2002)).

According to Theorem 1, in the diffusion scale, all beds are always full. In particular, it is sufficient to

know the value of the one dimensional processXN
C :=QN +ZN

C in order to figure out the value of the two

dimensional process(XN
C ,Z

N
SC) (up to ordero(

√
N )). For example, if there is no queue (XN

C ≤BI so that

QN = 0), then we know that any ICU bed which is not occupied by a Critical patient will be used to treat

a Semi-critical patient. Hence the term ‘State-space collapse’. Specifically, the dynamics of our system can

be summarized as follows:

1. The ICU is operated in the QED-regime with respect to Critical patients, so the number of Critical

patients can be approximated by the diffusion analysis of anErlang-A model with finite or infinite buffer

(Garnett et al. 2002, Kocaga and Ward 2010) withBI servers.

2. The SDU is always full. If there are fewer thanBI Critical patients in the system, then Semi-critical

patients fill the remaining ICU beds.
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The second point implies that even if the ICU is not overly crowded with critical patients it will always be

full and thus appear as if it is operating in the overloaded regime. This raises an important practical insight:

when examining hospital data a unit that is always full may appear to be a system bottleneck where, in fact,

the reason why it is full could be due to spillover from other units. In the ID regime this observation applies

to an always full ICU, with some Semi-critical patients who are treated there due to lack of capacity is the

SDU. While a natural reaction to observing ICUs which are constantly full is to add more ICU capacity, the

real culprit of such congestion may be inadequate SDU capacity.

The intuition behind Theorem 1 is as follows: The SDU is overloaded. In particular, the rate at which it

is losing patients due to lack of space is of orderN . At the same time the ICU is in the QED regime with

respect to Critical patients. In particular, the number of ICU beds that are not occupied by Critical patients

is at most of orderO(
√
N). As soon as some of these beds are empty they almost instantaneously become

occupied by Semi-critical patients. Hence all beds are always full.

We now leverage our results from above to examine the nurse allocation and balking threshold problem.

Our aim is to derive expressions for the cost function using adiffusion approximation. Given the state-

space collapse result that applies to the process(Q+ ZC ,ZSC), it is reasonable to expect that a similar

state-space collapse applies in steady-state as well. Establishing this requires a formal justification of a

limit interchange argument as in Theorem 9.10 of Ethier and Kurtz (1985). To avoid a lengthy and rather

technical mathematical argumentation here we simply postulate that the same state-space collapse holds in

steady-state as well.

Let Q̂N := QN
√
λ

andÎN = IN√
λ

be the scaled queue length and “idleness” processes, whereIN is the number

of ICU beds not occupied by Critical patients. Note that due to Theorem 1,IN is also approximately equal

to the number of Semi-critical patients who are being treated in the ICU. With a slight abuse of notation we

also letQ̂N andÎN represent these quantities in steady-state. Also, letL̂N be the steady-state balking rate.

4.1.2. Diffusion cost function: The Queue-Dominated caseRecall that in the queue-dominated case

(wQ
C/θ≤wB

C ) it is never optimal to let a patient balk (Proposition 1 of Kocaga et al. (2014)), and therefore

the optimal balking threshold isK∗ =∞. In particular, in this case, the ICU operates as anM/M/N +M

system with respect to the critical patients. To evaluate the steady-state cost, we begin by stating a result

that follows directly from results in Garnett et al. (2002) and Browne and Whitt (1995). Note, one could

also consider using an alternative approximation, such as that in Baron and Milner (2009).

Theorem 2 (Erlang-A in Steady-State) In the ID regime, and under the nurse allocation in (7), we have

that (Q̂N , ÎN)⇒ (Q̂, Î), asN →∞, with

E[Q̂] =

(

1+
h(β

√

µC/θ)
√

µC/θ ·h(−β)

)−1

·
(

−
√
µCβ

θ
+

√

1

θ
·h
(

β

√

µC

θ

)

)



17

and

E[Î ] =
1√
µC



1−
(

1+
h(β

√

µC/θ)
√

µC/θ ·h(−β)

)−1


 · (β+h(−β)) ,

whereh(x) = φ(x)

1−Φ(x)
is the hazard rate function of the Standard Normal distribution.

Note that Theorem 2 states the weak convergence of the steady-state random variable(Q̂N , ÎN) but does

not argue that convergence in expectation applies as well. This requires an additional technical argument

which we omit. We simply postulate the convergence in expectation applies as well.

We now derive diffusion approximations for the bumping rates. LetBm denote the steady-state bumping

rate. The starting point is that the bumping rate is equal to the Semi-critical arrival rate minus its total

service rate. The arrival rate may be expressed as:E[ZC ]µCp. Similarly, and assuming that the SSC result

of Theorem 1 holds in steady-state, the departure rate may beexpressed as:BSµSC +E[I]µSC + o(
√
N ).

Putting all of the above together we see that, under the ID regime and the nurse allocation (7), the cost

function (centered bywSC

(

λp+ rS
rI

(

NrI − λ
µC

)

µSC

)

and scaled by1/
√
λ) may be approximated by:

C(β) :=wQ
CE[Q̂] +wSC

[

β
√
µCp+

rSβµSC

rI
√
µC

− (µSC +µCp)E[Î ]

]

, (8)

where the expressions forE[Q̂] andE[Î ] are explicitly given in Theorem 2.

Let β∗ := argminβ C(β), where we choose the supremum onβ if there are multiple values ofβ that

minimize the costC(β). Then our proposed solution in the ID regime is:

B∗
I :=

λ

µC

+β∗

√

λ

µC

, B∗
S =

rS
rI

(

NrI −
λ

µC

−β∗

√

λ

µC

)

.

Note that we have not imposed upper and lower bounds onβ∗. In particular, it is plausible thatβ∗ is so small

(includingβ∗ =−∞), thatB∗
I is in fact smaller than what is proposed by the CD regime, eventhough, by

assumption, the system operates in the ID regime. To remedy this, we set a lower bound onB∗
I and an upper

bound onB∗
S that are dictated by the fluid solution. In doing so, the allocation of nurses is given by:

B∗
I :=max

{

λ

µC

+β∗

√

λ

µC

,
rIrSµSC

rIµCp+µSCrS
N

}

,

and

B∗
S =min

{

rS
rI

(

NrI −
λ

µC

−β∗

√

λ

µC

)

,
rIrSµCp

rIµCp+ rSµSC

N

}

.

In Section 5, we will see through numeric experiments, that indeed, in the ID regime the optimal value ofβ

might be such that a small number of beds should be allocated to the SDU.

In the ID regime, the ICU is operated in QED with respect to theCritical patients. Hence, some Semi-

critical patients will be treated in the ICU, so we can see that the reallocation of beds in this regime translates

to balancing the tradeoff between capacity for the most critical patients (ICU beds) versus overall capacity

(SDU beds). Note that in the ID regime, this tradeoff only arises in this second order analysis.
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4.1.3. Diffusion cost function: The Balking-Dominated case In this case, the per-patient balking cost

wB
C is less expensive than the worst-case queue costwQ

C/θ. Therefore, in the fluid scale, it is optimal to have

all critical patients for whom an ICU bed is not immediately available balk. In the diffusion scale, things

are more subtle. Here, it might be worthwhile to let criticalpatients wait in queue and not balk in the hope

that a bed would become available to them after a relatively short amount of time, so that the queue cost

per patient is small. This tradeoff was explored in Kocaga and Ward (2010). Consistent with that paper, we

consider a balking thresholdKN which is of orderO(
√
N). For simplicity assume thatKN = k

√
N . The

next result follows directly from results in Kocaga and Ward(2010).

Theorem 3 (ID Diffusion performance) In the ID regime, and under the nurse allocation in (7) and for

balking thresholdKN = k
√
N , we have that(Q̂N , ÎN , L̂N)⇒ (Q̂, Î, L̂), asN →∞,

E[Q̂] =
1

θ
√
µC

·
1− exp

(−θ
σ2

(

k2 +2m
θ
k
))

+ 2
σ

√

π
θ
me

m2

θσ2

(

Φ
(

m
σ

√

2
θ

)

−Φ
(√

2θ
σ

(

k+ m
θ

)

))

2
σ

√
π

(

1√
µC
e

m2

µCσ2Φ
(

m
σ

√

2
µC

)

+ 1√
θ
e

m2

θσ2

(

Φ
(√

2θ
σ

(

k+ m
θ

)

)

−Φ
(

m
σ

√

2
θ

))

)

and

E[Î ] =
1√
µC

·
1
µC

(

1+ 2
σ

√

π
µC
me

m2

µCσ2Φ
(

m
σ

√

2
µC

)

)

2
σ

√
π

(

1√
µC
e

m2

µCσ2Φ
(

m
σ

√

2
µC

)

+ 1√
θ
e

m2

θσ2

(

Φ
(√

2θ
σ

(

k+ m
θ

)

)

−Φ
(

m
σ

√

2
θ

))

)

wherem := βµC andσ2 = 2µC. Additionally, we have that the scaled balking rate is:

L̂=
1√
µC

· e
−θ

σ2 (k
2+2m

θ
k)

2
σ

√
π

(

1√
µC
e

m2

µCσ2Φ
(

m
σ

√

2
µC

)

+ 1√
θ
e

m2

θσ2

(

Φ
(√

2θ
σ

(

k+ m
θ

)

)

−Φ
(

m
σ

√

2
θ

))

) .

Similar to the previous case, under the ID regime, the balking-dominated case, and the nurse allocation

(7), the cost function (centered bywSC

(

λp+ rS
rI

(

NrI − λ
µC

)

µSC

)

and scaled by1/
√
λ) may be approx-

imated by:

C(m,k) := wB
C L̂+wQ

CE[Q̂] +wSC

[

m√
µC

p+m
rSµSC

rIµ
3/2
C

− (µSC +µCp)E[Î ]

]

, (9)

where the expressions for̂L, E[Q̂] andE[Î ] are explicitly given in Theorem 3.

Let (m∗, k∗) := argminm,kC(m,k), where we choose the supremum onm (andk) if there are multiple

values ofm (k) that minimize the costC(m,k). Then our proposed solution in the ID regime is:

B∗
I :=

λ

µC

+
m∗

µC

√

λ

µC

, B∗
S =

rS
rI

(

NrI −
λ

µC

− m∗

µC

√

λ

µC

)

, K∗ = k∗
√
N.
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Similar to the queue-dominated case, we set a lower bound onB∗
I and an upper bound onB∗

S that are

dictated by the fluid solution. In doing so, the allocation ofnurses is given by:

B∗
I :=max

{

λ

µC

+
m∗

µC

√

λ

µC

,
rIrSµSC

rIµCp+µSCrS
N

}

,

and

B∗
S =min

{

rS
rI

(

NrI −
λ

µC

− m∗

µC

√

λ

µC

)

,
rIrSµCp

rIµCp+ rSµSC

N

}

.

In Section 5, we see cases where the values of both the optimalk andm are non-trivial.

4.2. Diffusion Analysis in the CD regime

Recall that the fluid analysis identified two operating regimes for the system: the ID and CD regimes. Now

we take a closer look at the CD regime. In particular, we focuson the case where

wC

wSC

≤ rIµCp+ rSµSC

rIµC

.

In this case, according to Proposition 3, we have that

B∗
I = b∗IN + o(N), b∗I =

rIrSµSC

rIµCp+ rSµSC

, andB∗
S = b∗SN + o(N), b∗S =

rIrSµCp

rIµCp+ rSµSC

.

In particular, we have that the ICU is overloaded and the SDU is critically loaded. Our aim here is to see

whether an order of
√
N refinement for theo(N) terms above can lead to a lower cost. We further assume

thatλ=O(N) so that the ICU operates in the efficiency-driven (ED) regime(Gans et al. 2003). Otherwise,

the ICU will be “super” overloaded, and refinements of this order will not make a noticeable difference. Set

BI = b∗IN + o(N) = γRI + δ
√

RI + o(
√

RI), RI :=
λ

µC

, (10)

whereγ = NrIrSµSCµC

λ(rIµCp+rSµSC)
is less than 1 due to our overloaded regime condition. Also, let

BS = b∗SN + o(N) =RS +β
√

RS + o(
√

RS), RS :=
BIµCp

µSC

, (11)

whereβ andδ are only restricted by the non-negativity constraints onBI andBS. RI is the offered load

of the ICU, by definition. We argue thatRS is the offered load of the SDU. To see this, note that, since

γ < 1, the ICU is indeed operated in the overloaded regime. In particular, all ICU beds are full with Critical

patients all the time, almost surely. Hence, the arrival rate into the SDU is equal toBIµCp, and the offered

load is indeed equal toBIµCp

µSC
. Note that, as expected, the SDU is critically loaded, and operates in the QED

regime. Finally, using the relationBI

rI
+ BS

rS
=N + o(

√
N ) we obtain that

δ := δ(β) =−
√

N

λ

βrIµCµSC

√

rIrSp

rIµCp+rSµSC

rIµCp+ rSµSC

.
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We aim to find a value forβ that minimizes the expected balking plus queue plus bumpingcost.

We first argue that in the CD regime, the optimal balking threshold isK∗ =∞ orK∗ = o(
√
N ) depending

on whether the queue or the balking dominated case holds, respectively. This implies that the system incurs

either queue or balking cost, but not both (up to an order ofo(
√
N). We have already established that in the

queue-dominated case the optimal threshold is equal to∞. The balking-dominated case is more involved.

We wish to show that in this caseK∗ = o(
√
N). This requires a few steps. First notice that by Theorem 4.3

of Mandelbaum and Zeltyn (2009), we have that in this regime,when no balking occurs

lim
λ→∞

EQN

λ
=

1− γ

θ
.

We now argue that whenever the balking thresholdKN is smaller thanEQN , then the queue length is

always equal toKN up to an order ofo(
√
N).

Proposition 4 (balking threshold in the CD regime) In the CD regime and under the nurse allocation of

(10) and (11) if a threshold policy is used with thresholdKN that satisfies

limsup
N→∞

KN

(1− γ)λ/θ
= 1− η, 0< η≤ 1, (12)

then, the buffer is always full. More formally, assuming that at time 0, Z
N
C (0)+QN (0)−(BN

I +KN )√
N

⇒ 0, as

N →∞, then
ZN

C +QN − (BN
I +KN)√

N
⇒ 0, asN →∞,

where the convergence is inD the space of all RCLL (Right Continuous with Left Limits) functions with

values inR, equipped with the SkorohodJ1 metric.

Corollary 1 Under the conditions of Proposition 4, we have that the number of ICU beds that are occupied

by critical patients is equal toBI − o(
√
N).

Corollary 2 Under the conditions of Proposition 4, the optimal threshold in the balking-dominated case

satisfiesK∗N = o(
√
N).

An interesting conclusion from the results above is that, inthe CD regime, the system will either incur

queue costs or balking costs but not both. In the balking-dominated case the balking rate is equal toλ−
µCBI +o(

√
N ), and the corresponding balking cost iswB

C · (λ−µCBI)+o(
√
N ). In the queue-dominated

case we have that the average queue length satisfiesEQ= λ−µCBI

θ
+ o(

√
N ), and the corresponding queue

cost iswQ
C · λ−µCBI

θ
+ o(

√
N). Thus, recalling thatwC = min{wQ

C/θ,w
B
C}, we have that the total queue

plus balking cost in the CD regime is

wC · (λ−µCBI)+ o(
√
N) =wC ·λ

(

1− γ− δ/

√

λ

µC

)

+ o(
√
N).
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For the bumping rate, from Jagerman (1974), we have that

Pr{Bm}= 1√
BS

h(−β)+ o(1/
√
λ).

Adding the two cost components together, centering bywCλ(1−γ), scaling by1/
√
N , and lettingN →∞,

we obtain that the relevant cost function may be approximated by

C(β) = µSC

√

rIrSµCp

rIµCp+ rSµSC

(

wC

βrIµC

rIµCp+ rSµSC

+wSCh(−β)
)

. (13)

Let β∗ := argminβ C(β), and letδ∗ := δ(β∗). Analogously to the ID regime, it is plausible thatβ∗ is so

small that the proposedB∗
I is larger than what is proposed by the ID regime. We set an upper bound on

B∗
I and a lower bound onB∗

S that are dictated by the fluid solution. Then our proposed solution in the CD

regime is:

B∗
I =min

{

γRI + δ∗
√

RI , rIN,
λ

µC

}

, RI :=
λ

µC

, (14)

and

B∗
S =max

{

R∗
S +β∗√R∗

S ,
rS
rI

(

NrI −
λ

µC

)}

, R∗
S :=

B∗
IµCp

µSC

. (15)

5. Numeric Results

We have utilized fluid and diffusion analysis to determine how to allocate nurses to ICU and SDU beds.

We find that two operational regimes exist: the ID regime in which the SDU has very few beds, if any, and

the CD regime in which the SDU is comparable in size to the ICU.We now use numerical approaches to

examine the quality of our approximations.

5.1. Empirical Data

To start, we must first calibrate the parameters of our model.To do this, we leverage the existing medi-

cal literature. Given the limited literature on SDUs, we identified two articles which specify the necessary

parameters for our queueing model. The first article looks atthe impact of adding an SDU for the cardio-

thoracic ICU at the University of Missouri Hospitals (Cady et al. 1995). The second article also considers

the impact of introducing an SDU, but this time for the surgical ICU at New York-Presbyterian Hospital

(Eachempati et al. 2004). The parameters from these articles are summarized in Table 1. We letµSC =

1/ICULOS andµC = 1/SDULOS. Note that this ignores Semi-Critical patients who may be treated in

the ICU as well as censored observations due to abandonment and bumping. Based on conversations with

medical professionals who suggested that patients could wait on average up to 1 day for an ICU bed, we set

θ= 1. We will vary the cost parameters to see how they impact the balking and staffing decisions.
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Source ICU LOS SDU LOS p rI rS

Cady et al. (1995) 2.5 days 1.2 days 0.65 1† 2-3
Eachempati et al. (2004)4.8 days 2.3 days 0.8 2 4

Table 1 Summary of ICU and SDU patient flow parameters. †The ICU nurse-to-patient ratio is not given in

this article, so we assume it to be one-to-one.

5.2. Simulation Results

We now leverage the parameters from Table 1 to simulate patient flows through the ICU and SDU. Using

an exhaustive search over simulations which examine the average costs incurred under every combination

of nurse allocations and balking thresholds from 0 to 100 as well as∞, we find the optimal number of ICU

and SDU beds and the optimal balking threshold. We then compare this to the allocation of nurses given by

our fluid and diffusion analysis.

We start by assuming the arrival rate is such that the ICU is critically loaded in case all the nurses are

allocated to the ICU. Specifically,λ=NµCrI . For the Queue-dominated (Balking-dominated) case, we set

wSC = 1 andwB
C = 15 (wQ

C/θ=15), while we vary the critical cost:wQ
C/θ (wB

C ).

In considering the staffing level in the ICU, we expect the number of ICU beds to be non-decreasing

in the ratio between the critical cost and bumping cost:wC/wSC . It turns out that because we have two

different solution regimes (ID and CD) at the diffusion level, it is possible the monotonicity is violated near

the transition between these two regimes, i.e. whenwC/wSC = T ∗ := rIµCp+rSµSC

rIµC
. Indeed, we encounter

this issue in our numeric analysis in some scenarios. For such scenarios, in order to translate our diffusion

solution to maintain the desired monotonicity, atT ∗, we assigned the number of ICU beds to be the average

between the ID and CD diffusion solutions. That is, letB∗
I (ID, T

∗) be the ID solution (minimizes Eqn.

(8) or (9)) and letB∗
I (CD, T ∗) be the CD solution (minimizes Eqn. (13)) whenwC/wSC = T ∗. Then, our

diffusion solution isB∗
I =

1
2
[B∗

I (ID, T
∗)+B∗

I (CD, T ∗)], which also serves as a lower (upper) bound for the

number of ICU beds in the ID (CD) regime.

Figure 3 compares the nurse allocation from our analysis to the exhaustive search when there are 20

nurses to split amongst the ICU and SDU in the Balking-dominated case. As we can see in these figures,

the solution determined by minimizing the cost in (9) and (13) is very close to the solution determined by

using exhaustive search over simulations. The fluid model isfairly accurate for many different weights,

but can be quite coarse at times. Additionally, the accuracyof our approximation depends on the size of

the system, with better results for larger systems. Becausethe nurse-to-patient ratios in Eachempati et al.

(2004) require fewer nurses per patient than in Cady et al. (1995), the size of the units is twice as large for

the Eachempati et al. (2004) parameters. As such, the quality of the solution from the diffusion analysis is

more accurate in Figure 3b than in Figure 3a. We also find that when we increase the number of nurses

to allocate (for instance, toN = 100), the approximations become even more accurate. Because the queue

cost,wQ
C/θ= 15, is so large compared to the balking costs,wB

C/ ∈ [0,10], the optimal balking threshold is
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0 for the fluid and exhaustive search. It is also 0 for the diffusion solution in the CD regime, but ranges from

1 to 3 in the ID regime. We saw in Section 4.1.3 that it can be optimal to have a balking threshold of order
√
N ; our numerics confirm this and we explore it further in Section EC-2.1 of the Electronic Companion

(EC).
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Figure 3 The Balking-Dominated Case: Optimal allocation of nurses to beds via fluid and diffusion analysis

and exhaustive search. N = 20 nurses. wSC = 1, wQ
C/θ= 15.

Figure EC.1 in the EC is the analog of Figure 3 in the Queue-dominated case. Again, the diffusion solution

given by (8) and (13) is very close to the solution determinedby using exhaustive search over simulations.

Though we see discrepancies in the number of beds in the ICU and SDU under the diffusion approxima-

tions, we find that the actual average cost incurred is quite close to optimal. Figure 4 compares the simulated

costs under the diffusion and fluid solutions to the minimum cost achieved via exhaustive search. Figure

EC.2 (in the EC) compares the same when split by expected queue length, balking and bumping rates. We

also provide a benchmark of not having any SDU. The cost differences under the diffusion solutions are

always less than 13% and are typically within less than 1% of optimal. On the other hand, the fluid solution

can incur more than 4 times as much costs compared to optimal.Depending on the operating parameter

regime, it may be sufficient to implement the fluid solution. In other instances, the diffusion solution can

provide an important refinement to reduce costs.

We can also see that in the ID regime, it is certainly reasonable to put all nurses in the ICU. When the

system is in the CD regime, it is very important to consider introducing an SDU; not having an SDU can

result in costs which are an order of magnitude higher than that achieved via the optimal allocation.

5.2.1. Moderately Heavy Traffic Our fluid and diffusion analysis assumed an overloaded regime

where the units were nearly always full. A number of hospitals strive for a target utilization of 85% and

within New York, the average ICU occupancy level was 75% (Green 2003). We note that these utilization
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Figure 4 The Balking-Dominated Case: Average cost incurred under optimal allocation of nurses to beds

via fluid and diffusion analysis and exhaustive search. N =20 nurses. wSC =1, wQ
C/θ= 15.

metrics are censored measures of the true demand due to adaptive techniques–such as balking, abandon-

ment and bumping–which can divert arrivals and reduce length-of-stay. Still, there may be periods when

the ICU is not in overload, so we also consider the quality of our analysis in a ‘moderately’ heavy traffic

regime. The traffic load in this case is such that if all nursesare allocated to the ICU, the nominal load of

patients is 85%, i.e.λ(rIµCp+rSµSC )

NrIrSµCµSC
= .85. While the optimal allocation of nurses changes slightly inthis

case, we see in Figure 5 that the diffusion and fluid solutionsstill perform reasonably well in terms of costs

in the CD regime. We notice that in the ID regime, the asymptotic approach can result in poor performance.

This is because, in this moderate traffic, the ICU is very far from operating in the overloaded regime and

the quality of the approximations noticeably degrades. Still, we see that our solution always outperforms

the simple benchmark of having no SDU.

6. Model Extensions

Thus far, the focus of this work has been on the model presented in Section 2. We now consider a number

of extensions to our initial model which capture additionaldynamics which can arise in various hospital

settings. In particular, we explicitly consider readmissions, variants to the budget neutral nursing constraint,

and time-varying arrivals.

6.1. Returns to Critical State

We start by considering a stylized model which incorporatespatient readmissions. To streamline the dis-

cussion, we focus on the Queue-dominated case, so thatK∗ =∞ and there is no balking. When a patient

leaves the ICU-SDU system, there is some probability he willreturn to the Critical state (note that a patient

can leave the ICU-SDU system, but still remain in the hospital in the general medical-surgical ward). The

probability a patient will return to Critical state dependson how the patient left the system. We letpAC
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Figure 5 Average cost incurred under optimal allocation of n urses to beds via diffusion analysis and

exhaustive search. N =20 nurses. Moderate traffic: λ(rIµCp+rSµSC)
NrIrSµCµSC

= .85. Hospital Parameters from

Cady et al. (1995). wSC = 1.

andpNC denote the return probability for patients who abandoned ordeparted naturally as Critical patients,

respectively. Similarly,pBSC andpNSC denote the return to Critical state probability if the patient is bumped

as a Semi-critical patient or if the patient naturally completed service as a Semi-critical patient in the ICU

or SDU. As return patients are typically worse off, we will assume that all return patients are served and

they will not abandon and cannot balk or be bumped. Thus, the expected length of stay of a return patient,

not including waiting time, isE[LOSR|Return] = 1
µC

+ p
µSC

. Finally, the expected readmission load is

thenpRE[LOSR|Return], wherepR denotes the return risk of the patient and depends on how the patient

departs the system.

In the Electronic Companion, we formally introduce this model with patient returns. Additionally, we

establish the stability condition of such a system. Similarto Chan et al. (2012), we find that minimizing the

expected readmission load corresponds to maximizing throughput.

Proposition 5 If the abandonment and bumping costs capture theincrease in readmission loadassociated

with these events, then the allocation of nurses which minimizes the average abandonment and bumping

costs will also minimize the number of nurses necessary to stabilize the readmission queue.

Now, we use simulation to compare the the quality of our nurseallocation derived from our original

model when considering a model which incorporates readmissions. We assume the following readmission

probabilities:pAC = .10, pBSC = .05, andpNC = pNSC = .02. We assume the time to return to Critical state is

exponentially distributed with mean1/δ = 5 days. We consider the nurse allocation for our original model

in Section 2 which minimizes the return rate on the diffusionscale derived in Section 4. We then evaluate

the performance of this solution via a simulation model thatdoes have returns to Critical state to the solution

achieved via an exhaustive search for the model with returns. We consider the case withN = 20 nurses.
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Original Model Exhaustive SearchAll nurses in ICU
(without Returns) via simulation (No SDU)

Eachempati et al. (2004) 18.6% 18.8% 20.5%
Cady et al. (1995) 31.0% 31.4% 36.5%

Table 2 A system with returns to Critical state: Comparison o f return rates for solution which ignores

returns (Original Model) to solution established via exhau stive search.

Table 2 summarizes our simulation results for a system with returns. We can see that the number of

returns achieved via our diffusion solution for a modelwithout returns, but with cost appropriately defined

as the increase in return risk due to abandonment and/or bumping, is very close to the minimum percentage

of returns. As a benchmark, we see that when there is no SDU, the percentage of returns increases.

6.2. Relaxing the nursing constraint

Thus far, we have considered the ICU and SDU sizing decision under the assumption that the number of

nurses must be held constant. This budget neutral constraint appears in a number of settings. However, it is

conceivable that the joint ICU and SDU sizing decision may not have such a strict constraint on the number

of nurses. For instance, a hospital may consider hiringM additional nurses and must determine whether to

allocate them all to the ICU or SDU or split the nurses across both units. Alternatively, a hospital may not

want to completely resize the units and may just want to consider 2 potential options.

Our analysis provides some insight into these other problemformulations. In particular, given an alloca-

tion a specific number of ICU and SDU beds,BI andBS, one can easily calculate the number of nursesN .

Given the arrival rateλ at the hospital, one can use the analysis from Sections 3 and 4to evaluate the oper-

ational parameter regime and assess the performance–in terms of balking rate, queue length, and bumping

rate–of such a configuration. That is, our results are also useful for performance analysis.

6.3. Time-varying arrivals

In practice, hospitals tend to have arrival rates that are highly time variable (Green et al. 2006b,

Armony et al. 2010), while the unit sizes remain fixed for a while. Accounting for this time variation when

determining staffing levels in the Emergency Department (ED) can lead to much better provision of care

(Green et al. 2006b, Yom-Tov and Mandelbaum 2013). As many ICU patients originate from the ED, the

time-varying arrival rates to the hospital translate to time-varying arrival rates to the ICU. However, unlike

the ED, the service times in the ICU are very long (∼2-4 days as seen in Table 1) whereas the varia-

tion in arrival rates is on the order of hours. This difference in time scale suggests that it is not essential

to capture time variation when establishing staffing levelsin the ICU. For more discussion of this see

Yom-Tov and Mandelbaum (2013) as well as Section 5.2 and Figure 13 in Chan et al. (2014b).

7. Conclusions and Discussion
Within the medical community, there is a lot of uncertainty on how to manage and size SDUs. In this work,

we consider the optimal allocation of nurses for the inpatient units used to treat the hospitals most critical



27

patients: the ICU and SDU. In doing so, we provide insight into when and how the SDU can be useful in

managing patient flow.

We propose a queueing model which allows us to examine how to optimally tradeoff flexibility and

capacity given the costs associated with lack of access to ICU and/or SDU care. Via our fluid analysis, we

identify two parameter regimes–the ICU-Driven and Capacity Driven regimes–which dictate the optimality

of allocating a very small (including zero) or a substantialnumber of nurses to the SDU. Depending on

the regime, only costs associated with Critical or Semi-Critical patients will be incurred, but not both.

On the other hand, costs associated with both Critical and Semi-Critical patients will be incurred at the

diffusion level. We leverage a state-space collapse resultto evaluate and optimize the staffing allocation

and balking threshold in the diffusion scale. We also find that in the ID regime, it can be optimal to have a

non-zero balking threshold on the diffusion level, so that balking, queue, and bumping costs are all incurred.

Numerically, we find that our analysis in these asymptotic regimes can be quite accurate, even as we relax

some of our initial model assumptions.

In practice, there is high variation across hospitals as to whether it has an SDU and if so, how large

the unit is in comparison to the ICU. On the surface, this variation could be attributed to the fact there

is limited consensus in the medical community as to the management of SDUs. However, our analysis

provides justification for this variation. The optimal sizeof an SDU is highly dependent on patient mix

(including differences in service times and the likelihoodof becoming a Semi-critical patient following ICU

care), staffing requirements in the ICU versus SDU, as well asthe relative cost of lack of access to care for

a Critical versus Semi-critical patient. Because these factors are likely to vary substantially across different

hospitals and geographic areas, it is reasonable–and highly desirable–that hospitals utilize and size SDUs

in a heterogenous manner. One size does not fit all.

This work suggests several potential directions for futureresearch. For instance, if a new hospital were

being built, it would be useful to consider the staffing decision without the budget neutral constraint. In such

a setting, a third tradeoff arises: staffing costs versus flexibility and capacity. Another direction would be to

consider other patient flows through the SDU. In this work, weonly consider SDU patients who originate

in the ICU; however, some hospitals will admit patients intothe SDU who have never visited the ICU. One

could also consider different priority rules, so that in some cases a Critical patient will have to wait (and

potentially abandon), even if there is a Semi-critical patient in the ICU which could be bumped. Finally, in

this paper we have focused on sizing the ICU and SDU, while ignoring the size of the general wards. This

is because the ICU is often considered the hospital bottleneck. An interesting direction for future research

is to explicitly model the size and dynamics of the general ward along with the other two units.

Despite some of these limitations of our model, our work provides an important first step into addressing

the substantial debate in the medical community as to if and how SDUs should be used. The prevailing

sentiment amongst SDU supporters is that they are a cost effective way to provide care to Semi-critical
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patients. This is true in some cases (CD regime). However, inthe ID regime, we see that the need of the

high priority patients outweighs the additional capacity generated by moving nurses to the SDU. Still, even

in this regime, asmallSDU can be beneficial in serving as a buffer between the ICU andthe hospital wards.

The insights from our work will be useful for hospital managers to assess the pros and cons of SDUs and

whether one is warranted at their hospital. Indeed, we are currently working with a large academic hospital

which treats an underserved population that recently opened a new SDU. This unit will only be used as

a true Step-Down Unit, so that patients will only be admittedfollowing ICU discharge. Upon learning

of our findings, the Critical Care team reached out to us for help assessing the management of their new

SDU. We are currently working with them to collect data in order to calibrate system parameters for their

patient population. While we do not expect the hospital to directly implement the precise sizing and balking

threshold decision our model recommends, we do expect to be able to assess i) whether a sizable SDU is

warranted and ii) whether most Critical patients should wait or balk immediately upon arriving to a full

ICU.
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Electronic Companion
EC-1. Miscellaneous Proofs

PROOF OFPROPOSITION1:

1. Suppose thatlimsupN→∞ λ
(

1
rIµC

+ p
rSµSC

)

≤N . Note, this implies that the offered load in the ICU

can be met:limsupN→∞
λ

rIµC
≤ N . Consider the case where there is no balking, i.e.K = ∞. Then, the

number of Critical patients in the ICU behaves like anM/M/BI +M queue. With traffic intensity λ
BIµC

≤
1, we have that, by (Garnett et al. 2002, Theorem 4) withβ > −∞, the rate of abandonment is equal to

[λ−BIµC ]
+
+ o(N) = o(N).

As for the Semi-Critical patients, the arrival rate into this state is equal topµCEZC , whereEZC stands

for the expected steady-state number of ICU beds that are occupied by critical patients. The service rate is

equal to(BS+BI−EZC)µSC . By Little’s law,EZC = (λ−o(N))/µC , where theo(N) term is contributed

by the Critical patient abandonment rate. The bumping rate is hence equal to

[pµCEZC − (BS +BI −EZC)µSC ]
+
= µSC [µT (λ+ o(N))− (BS +BI)]

+
= o(N).

2. Suppose now thatlim infN→∞ λ
(

1
rIµC

+ p
rSµSC

)

> N . We let 1/µT =
(

1
µC

+ p
µSC

)

be the mean

amount of time a new patient should be treated while in the Critical and Semi-Critical states if the system

has ample capacity. For any bed allocation(BI ,BS), we letρC = λ
BIµC

andρT = λ
(BI+BS)µT

. In this case,

we have that for any sequence of bed allocation(BI ,BS), eitherlim infN→∞ ρC > 1, or lim infN→∞ ρT > 1,

or both. If limsupN→∞ ρC > 1, then we have that the aggregated abandonment and balking rate is at least

λ− bIµC , which isO(N) (it could be less if Semi-Critical patients are occupying ICU beds, so that less

thanbI beds are available to treat Critical patients). On the otherhand, if limsupN→∞ ρC ≤ 1, then by 1.

the abandonment iso(N). Therefore, the bumping rate is again equal to

[pµCEZC − (BS +BI −EZC)µSC]
+
= µSC [µT (λ+ o(N))− (BS +BI)]

+
=O(N).

If neither of these cases applies, the argument works analogously when considering converging subse-

quences such that eitherlimN→∞ ρC > 1 or limN→∞ ρC ≤ 1.

✷

PROOF OFTHEOREM 1: Suppose that (3) holds in the limit. That is, assume that

lim inf
N→∞

λ(rIµCp+ rSµSC)

NrIrSµCµSC

> 1. (EC-1)

Additionally, assume that the system operates in the ID regime and that (6) and (7) hold. Let̂UN := ẐN
C +

ẐN
SC . And suppose that̂UN(0) = 0. It is our goal to show that for anyǫ > 0,

P

{

inf
0≤t≤1

ÛN (t)<−ǫ
}

→ 0, as N →∞.
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The proof follows along the lines of Reiman (1984). Fixǫ > 0 and let

τN = inf{t≥ 0; ÛN (t)<−ǫ} andτ ′N = sup{t≤ τN ; Û
N(t)≥−ǫ/2}.

During [τ ′N , τN ] there are empty beds in either the ICU or SDU (or both), so no bumping will occur. In

particular, during this interval

ZN
C (t)+ZN

SC(t) =ZN
C (τ ′N)+ZN

SC(τ
′
N)+AN(τ ′N , t)+ΦN(τ ′N , t)−DN

C (τ
′
N , t)−DN

SC(τ
′
N , t),

where, fors < t, AN(s, t) is the number of critical patients that arrived directly into the ICU (and did not

wait in queue) during(s, t], ΦN(s, t) is the number of critical patients arrivals into the ICU fromthe queue

in (s, t]. Also,DN
C (s, t] is the number of critical patients who have completed their stay in the ICU and did

not switch to a semi-critical state during(s, t]. Finally,DN
SC(s, t) is the number of service completions of

semi-critical patients in(s, t]. More specifically, letSi, i = 1,2,3 be independent unit Poisson processes,

then

AN(s, t)+ΦN(s, t) = S1

(
∫ t

s

λ1{ZN
C

(r)<BI} +µCZ
N
C (r)1{ZN

C
(r)=BI , Q>0} · dr

)

= (t− s) · (λ+ o(λ)),

DN
C (s, t) = S2

(

(1− p)µC

∫ t

s

ZN
C (r) · dr

)

= (t− s) · ((1− p)λ+ o(λ)), (EC-2)

DN
SC = S3

(

µSC

∫ t

s

ZN
SC(r) · dr

)

≤ S3

(

µSC

∫ t

s

(

BN
S +BN

I −ZN
C (r)

)

· dr
)

= (t− s) ·
(

µSCrS
rI

(

NrI −
λ

µC

)

+ o(λ)

)

.

Recall that the ICU is operating in the QED regime with respect to Critical patients; therefore,µCZ
N
C =

λ+ o(λ) andBI −ZN
C = o(λ). Finally, we have:

P
{

inf0≤t≤1 Û
N(t)<−ǫ

}

≤P
{

inf0≤s≤t≤1
AN (s,t)+ΦN (s,t)−DN

C (s,t)−DN
SC(s,t)√

λ
<−ǫ/2

}

= P

{

inf0≤s≤t≤1

t−s
µCrI

·(λ·(prIµC+µSCrS)−µSCµCrSrIN)+o(
√
λ)

√
λ

<−ǫ/2
}

→ 0, by (EC-1).

✷

PROOF OFPROPOSITION4: Suppose that (EC-1) holds. Additionally, assume that thesystem operates

in the CD regime and that (10) and (11) hold. LetÛN :=
ZN
C +QN−(BN

I +KN )√
λ

, and suppose that̂UN (0) = 0.

It is our goal to show that for anyǫ > 0,

P

{

inf
0≤t≤1

ÛN (t)<−ǫ
}

→ 0, as N →∞.

The proof follows along the lines of Reiman (1984). Fixǫ > 0 and let

τN = inf{t≥ 0; ÛN (t)<−ǫ} andτ ′N = sup{t≤ τN ; Û
N(t)≥−ǫ/2}.
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During the interval[τ ′N , τN ], we have thatZN
C +QN <BN

I +KN , so no balking would occur. In particular,

during this interval

ZN
C (t)+QN(t) =ZN

C (τ ′N)+QN(τ ′N)+AN (τ ′N , t)−DN
C (τ ′N , t)−ΦN(τ ′N , t),

where, fors < t, AN(s, t) is the number of critical patients that arrived to the systemduring(s, t],DN
C (s, t]

is the number of critical patients who have completed their stay in the ICU and either switched to a semi-

critical state during(s, t] or not. Finally,ΦN(s, t) is the number of abandonment from the queue in(s, t].

More specifically, letSi, i= 1,2,3 be independent unit Poisson processes, and letτ ′N ≤ s < t≤ τN . Then

AN(s, t) = S1

(∫ t

s

λ1{QN (r)<KN} · dr
)

= (t− s) · (λ+ o(λ)),

DN
C (s, t) = S2

(

µC

∫ t

s

ZN
C (r) · dr

)

≤ S2 (µCBI(t− s)) = (t− s) · (γλ+ o(λ)), (EC-3)

ΦN(s, t) = S3

(

θ

∫ t

s

QN(r) · dr
)

≤ S3

(

θKN(t− s)
)

≤ S3 ((1− γ)(1− η/2)(t− s)+ o(λ))= (t− s) · ((1− γ)(1− η/2)+ o(λ)) .

Finally, we have:

P
{

inf0≤t≤1 Û
N(t)<−ǫ

}

≤P
{

inf0≤s≤t≤1
AN (s,t)−DN

C (s,t)−ΦN (s,t)√
λ

<−ǫ/2
}

= P
{

inf0≤s≤t≤1
(t−s)·λ·(1−γ)η/2+o(λ)√

λ
<−ǫ/2

}

= P
{

inf0≤s≤t≤1 (t− s) ·
√
λ · (1− γ)η/2+ o(

√
λ)<−ǫ/2

}

→ 0, by (EC-1).

✷

PROOF OFCOROLLARY 2: By the fluid analysis we have thatK∗N = o(N). Therefore,K∗N satisfies

(12) with η = 1. By Corollary 1, the number of ICU beds available for semi-critical patients iso(
√
N)

and therefore, the bumping cost is independent of the threshold levelKN (up to o(
√
N )). It is therefore

sufficient to focus on the queue and balking costs. As a function of the threshold levelKN we have that, by

Proposition 4, the total queue plus balking cost rate is equal to

wQ
CK

N +wB
C ·
(

λ−µCBI − θKN
)

+ o(
√
N ) = θKN ·

(

wQ
C/θ−wB

C

)

+wB
C · (λ−µCBI)+ o(

√
N).

Under the balking-dominated case, the cost above is minimized byKN = o(
√
N). ✷

EC-2. Additional Numerics

Figures EC.1 and EC.2 are supplemental to the numerical analysis of Section 5.2. Figure EC.1 is a parallel

of Figure 3 for the Queue-Dominated case. The qualitative results are similar. Because the balking cost,



36

wB
C =15, is larger than the queue costs,wQ

C/θ ∈ [0,10], the balking threshold isK∗ =∞ for all solutions in

this case. Figure EC.2 shows a breakdown of the costs in Figure 4, into expected queue lengths, as well as

balking and bumping rates. Since in this scenario the Balking-dominated case applies, the expected queue

lengths are, as expected equal to 0, except for high values ofthe balking costwB
C . As expected, the balking

(bumping) rate is decreasing (increasing) in the cost ratiowB
C/wSC .
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Figure EC.1 The Queue-Dominated Case: Optimal allocation o f nurses to beds via fluid and diffusion analy-

sis and exhaustive search. N = 20 nurses. wSC = 1, wQ
C/θ =15.
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Figure EC.2 Performance measures: Average queue length, an d balking and bumping rates (in # patients per

day) under optimal allocation of nurses to beds via fluid and d iffusion analysis and exhaustive

search. N = 20 nurses. wSC
= 1, wQ

C/θ= 15.
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EC-2.1. Balking Threshold: Balking-dominated case, ID regime

In Section 4.1.3, we found that in the Balking-dominated case (wB
C <wQ

C/θ), ID regime (wC/wSC > T ∗),

the diffusion solution may have a non-zero optimal balking threshold. Our previous simulations suggest this

is most likely to occur whenwQ
C/θ andwB

C are close in magnitude.

To examine the impact of carefully optimizing the balking threshold, we consider the optimal (scaled)

balking threshold and bed allocation,k∗ andm∗, for the diffusion cost in Eqn. (9) when the queue costs

are 1% larger than the balking costs:wQ
C/θ = 1.01×wB

C . We then compare the cost incurred when using

the optimal bed allocation,̂m∗
{k=0}, when the balking threshold is fixed at 0, which is the threshold the

fluid solution suggests. We consider both the diffusion costand the unscaled and un-centered cost (i.e.
√
λC(m,k)+wSC

(

λp+ rS
rI

(

NrI − λ
µC

)

µSC

)

). Table 3 summarizes these findings.

Scaled & Centered Unscaled & Un-centered

wB
C k∗

C(m̂∗
{k=0},0)

C(m∗,k∗)
K∗ = k∗

√
N

C(B̂∗
I,{k=0},0)

C(B∗
I
,K∗)

5.0 0.5 1.938 3 1.042
5.2 1.5 1.756 7 1.097
5.4 2.2 1.639 10 1.111
5.6 3.0 1.566 14 1.116
5.8 3.7 1.516 17 1.118
6.0 3.7 1.479 17 1.119

Table 3 Balking-dominated case, ID regime: Optimal balking threshold and suboptimal cost ratio for having

no queue ( K = 0). The scaled and centered results come from the diffusion so lution in Eqn. 9. The unscaled

and un-centered results transforms the diffusion costs to t he case where N = 20 nurses. Hospital Parameters

given by Eachempati et al. (2004). wSC =1, wQ
C/θ= 1.01×wB

C .

We see that aswB
C increases, so does the balking threshold,K∗. This makes sense as the absolute differ-

ence between the balking and queue costs are increasing (therelative difference is fixed at 1%), making it

more desirable to have a (small) queue. We also see that simply fixing the balking threshold at 0 and opti-

mizing the bed allocation can result in very poor performance. WhenwB
C =5, the resulting cost is over 93%

higher than the optimal cost in the diffusion scale. While wefind that in the Balking-dominated case, ID

regime, it is important to calculate the balking threshold accurately as not doing so can have significant cost

implications on the diffusion scale, we emphasize these aresecond order effects. In particular, when con-

sidering the unscaled and un-centered costs, the cost difference between optimizing the balking threshold

versus fixing it at 0 is 4.2%-11.9%.

EC-3. A System with Returns to Critical State
We now consider a stylized model which explicitly accounts for patient returns to the Critical state. Note

that throughout this discussion, we assume thatwQ
C/θ < wB

C , so that no balking occurs. For simplicity,

we also assume thatwH
C = 0, so that the queue cost includes only the abandonment cost. We consider the

following setup:
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1. N nurses are reserved to treat first-time arrivals. These nurses can be allocated amongstBI ICU and

BS SDU beds as desired. Any reference to system state will be understood to correspond to the number of

first-timeCritical and Semi-critical patients.

2. Without loss of generality, patients who depart naturally from the ICU or SDU will not return as

Critical patients.

3. A first-time Critical patient who abandons from the ICU queue returns for to the Critical state with

probabilitypAC , and has ‘readmission’ ICU LOS which is exponentially distributed with meanLA
C . We let

wA
C = pACL

A
C .

4. A first-time Semi-critical patient who is bumped from the ICU returns the Critical state with proba-

bility pBSC , and has readmission ICU LOS which is exponentially distributed with meanLB
SC . We letwB

SC =

pBSCL
B
SC .

5. The return queue is served First-Come-First-Serve byC beds. Return patients are treated in the ICU

until they are stable enough to be transferred to the Ward, i.e. they do not go through the SDU. Return

patients will not abandon or balk from the return queue, nor can they be bumped from the ICU.

In practice, readmitted patients tend to be much sicker, with higher mortality rates and longer LOS

(Snow et al. 1985, Durbin and Kopel 1993, Chen et al. 1998). Thus, it is desirable to provide high quality

care for these return patients, which we capture by requiring they are treated in the ICU and cannot abandon,

balk, or be bumped.

The total number of ICU beds in this setting isC +BI . Given theN nurses to treat first-time arrivals,

our goal is to determine the allocation of nurses to the ICU and SDU (BI andBS) such that we minimize

the number of nurses,C/rI , required to staff the readmission queue so that the queue remains stable. That

is, if we let {Wn} denote the waiting time thenth readmitted patient experiences, we require that for any

subsequence of{Wn} there exists a sub-subsequence which converges to a random variable which is finite

almost surely.

We start by examining the stability condition of the return queue. Let{σn, Tn} denote the service require-

ment and interarrival time for readmitted patientn under some allocation of nurses between the ICU and

SDU. Then the stability condition stems from a classical result of Loynes (1963), which requires that

E[σ0]/E[T0] < C for the readmission queue to be stable. We letπ denote the steady-state distribution of

the first-time patients, where the state is denotes byS = (Q,ZC ,ZSC). For notational compactness, we

suppress the dependence of this distribution on the nurse allocation. Relating the stability condition to our

original problem setting of Section 2 we have:

Lemma 1 The return queue is stable if and only if:

limsup
T→∞

1

T

∫ T

0

[

wA
CθQ(t)+wB

SCpµC [BI ∧ZC(t)]ψ(Q(t),ZC(t),ZSC(t))
]

dt <C (EC-4)
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PROOF: To start, we denote byan andbn as indicator variables which equal 1 if patientn, who arrives

at timetn, abandons or is bumped, respectively. It is easy to see that the condition in (EC-4) is equivalent

to:

limsup
T→∞

1

T

[ ∞
∑

n=0

[

wA
Can +wB

SCbn
]

1{tn≤T}

]

<C

We start by focusing on first-time patients, and letv = λ+Qmaxθ +BI max{µC , µSC}+BSµSC be the

maximum possible transition rate. We can determine the probability that the next event is a Critical patient

abandonment or a Semi-critical patient bumping:

P (Abandonment or Bumping) =
∑

S

πS

[

θQ+λ1{ZC=BI+BS−ZSC ,ZSC>BS}
]

v
(EC-5)

If an abandonment (bumping) occurs, the patient’s readmission ICU LOS isLR
C (LR

SC ) with probability

pAC (pBSC) and 0 otherwise; that is, we formally assume thatall the abandoning and bumped patients are

readmitted, but some of them have an ICU LOS of 0. The interarrival time of events is exponentially dis-

tributed with ratev. Additionally, the number of events until an abandonment orbumping is Geometrically

distributed with mean1/P (Abandonment or Bumping). Thus, the interarrival time of readmitted patients

is:

E[T0] =
v

∑

S πS

[

θQ+λ1{ZC=BI+BS−ZSC ,ZSC>BS}
] (EC-6)

Finally, the expected service requirement of readmitted patients is:

E[σ0] =

∑

S πS

[

θQ
v
wC +

λ1{ZC=BI+BS−ZSC,ZSC>BS}

v
wSC

]

∑

S πS

[

θQ+λ1{ZC=BI+BS−ZSC ,ZSC>BS}
] (EC-7)

Combining equations (EC-6) and (EC-7) gives the desired stability condition.

E[σ0]

E[T0]
=
∑

S

πS

[

θQwC +λ1{ZC=BI+BS−ZSC ,ZSC>BS}wSC

]

= limsup
T→∞

1

T

[ ∞
∑

n=0

[wCan +wSCbn] 1{tn≤T}

]

<C (EC-8)

✷

We can see that given an allocation of nurses, the readmission queue is stable when there are enough

bedsC to serve the readmission load. By specifying the costs of abandonment and bumping to be the

readmission load associated with these events, the stability condition is to have enough bedsC such that

it is greater than the optimal average abandonment and bumping costs. Thus, to minimize the number of

beds (and, subsequently, nurses) necessary to stabilize the readmission queue, theN nurses dedicated to

first-time patients should be allocated such that the average abandonment plus bumping cost is minimized,

as captured in equation (2).

Note that Proposition 5 follows directly from Lemma 1.
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