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Mainstream queueing models are frequently employed in modeling healthcare delivery in a number of settings, and further

are used in making operational decisions for the same. The vast majority of these queueing models ignore the effects of

delay experienced by a patient awaiting care. However, longdelays may have adverse effects on patient outcomes and

can potentially lead to longer lengths of stay (LOS) when thepatient ultimately does receive care. This work sets out to

understand these delay issues from an operational perspective. Using data of over 57,000 Emergency Department (ED)

visits, we use an instrumental variable approach to empirically measure the impact of delays in ICU admission, i.e. ED

boarding, on the patient’s ICU LOS for multiple patient types.

Capturing these empirically observed effects in a queueingmodel is challenging as the effect introduces potentially

long range correlations in service and inter-arrival times. We propose a queueing model which incorporates these mea-

sured delay effects and characterize approximations to theexpected work in the system when the service time of a job

is adversely impacted by the delay experienced by that job. Our approximation demonstrates an effect of system load

on work which grows much faster than the traditional1/(1− ρ) relationship seen in most queueing systems. As such,

it is imperative that the relationship of delays on LOS be better understood by hospital managers so that they can make

capacity decisions that prevent even seemingly moderate delays from causing dire operational consequences.
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1. Introduction

Delays arise routinely in various healthcare settings: they are a consequence of the inherent, highly vari-

able requirements of healthcare services and the overwhelming demand for these services. It is natural to

conjecture that delays in receiving care can result in a variety of adverse outcomes – and indeed, there is

some support in the medical literature for such conjectures(e.g. Chalfin et al. (2007), Renaud et al. (2009),

de Luca et al. (2004)). This paper proposes to study one such adverse outcome in the intensive care set-

ting: delays in receiving intensive care can result in longer lengths of stay (LOS) in the Intensive Care

Unit (ICU). From an operational perspective, this effect has two consequences. The first, of course, is the

immediate impact on the delayed patient. The second,systemicimpact is the increased congestion caused

by the increased care requirements for the delayed patient.In particular, the increased ICU LOS can result
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in delays tootherpatients requiring the same ICU resources, which in turn results in longer LOS for those

patients, and so forth. This paper will (empirically) studythe extent of this phenomenon across multiple

patient types. We then propose to modify extant queueing models (that are frequently used to model such

systems) to account for the phenomenon and present a theoretical analysis for the same.

Delays and the ED-ICU Interface: Patients who arrive to a hospital via the Emergency Department (ED)

first under go assessment and stabilization. If a decision ismade to admit a patient into the hospital, this

patient may ‘board’ in the ED while waiting to be admitted. Such delays occur for patients of all severities

and is often due to unavailability of inpatient beds (Shi et al. 2015). It is particularly troubling when delays

occur for the most critical patients–those destined for theICU. ICUs provide the highest level of care and

are very expensive to operate. As such, these units tend to besmall, resulting in frequent delays in ICU

admission.

Hospitals have adopted a number of approaches to deal with ICU congestion. For instance, ICU

congestion can result in discharging current patients preemptively (Chalfin 2005, Dobson et al. 2010,

Kc and Terwiesch 2012, Chan et al. 2012), blocking new patients via ambulance diversion (Allon et al.

2013) or rerouting patients to different units (Thompson etal. 2009, Kim et al. 2015). In this work, we focus

on a frequent symptom of this congestion: admission delays.Indeed, congestion in the ICU often forces

patients to wait in the ED until an ICU bed becomes available (see Litvak et al. (2001)). With an increase

in critical care usage (Halpern and Pastores 2010) and a relatively stagnant supply of ICU beds, it is no

wonder that delays for patients awaiting ICU admission are growing. In fact, there exists a shortage of ICU

beds, which is projected to persist (Green 2003).

This paper will focus on the flow of patients from the ED into the ICU. In particular, we will examine the

‘boarding’ delay experienced by these patients and the impact of this delay on the length of the patients’

stay in the ICU. The effect we study is in contrast to the previously studied phenomenon of ‘speeding up’

current patients (e.g. Kc and Terwiesch (2012))]. Because we see little evidence of this effect in our patient

cohort, we aim to gain a better understanding of the impact ofcongestion on ICU admission delays, rather

than its impact on ICU discharges.

Standard Queueing Models Fall Short: Queueing models are often used to model and analyze patient

flows in hospital settings. These models are predictive and can provide valuable insight into the impact

of changing demand scenarios as well as staffing or, more generally, capacity provisioning alternatives.

See Green (2006) for an overview of how queueing models have been used in healthcare applications.

The vast majority of these queueing models assume that the service requirement of a job is independent

of the state of the queue upon its arrival. In a healthcare setting, this assumption is equivalent to ignoring

the effects of delay on LOS experienced by a patient awaitingcare. As we show in this paper, this is

not a tenable assumption. In addition, there have been various condition specific studies in the medical

community demonstrating that delays can result in an increase in mortality (de Luca et al. 2004, Chan et al.
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2008, Buist et al. 2002, Yankovic et al. 2010) and/or extend patient LOS (Chalfin et al. 2007, Renaud et al.

2009, Rivers et al. 2001). We will explore this phenomenon for a variety of patient types.

As we shall see, even in the simplest settings, the underlying queueing process exhibits long range depen-

dencies and, consequently, Markovian models of the same arehigh dimensional. This is not surprising,

since capturing the delay effect creates long-run correlations between service times and inter-arrival times–

bursts in arrivals will correlate with longer service times–and very little can be said about such systems.

While such models may still be beneficial in simulation, the queueing phenomena made transparent by

simpleM/M/s type models is obscured. As such, an important component of this paper is a simple set of

closed-form approximations to a key performance metric forsuch systems.

Contributions: While physicians recognize that delays are detrimental foran individual patient, our anal-

ysis provides insight into the impact such delays may have onincreasing overall congestion and reducing

access to care for other critical patients. This work is the first to rigourously analyze the impact of delays

on LOS. In particular, we make the following contributions:

1. Using retrospective data of over 57,000 patients from a large hospital network, we empirically estimate

the impact of delays in transfers from the ED to the ICU on LOS for multiple typesof critically ill patients.

Our empirical study is granular and characterizes the magnitude of this effect for a variety of patient primary

conditions. We estimate a Heckman selection model with an endogenous regressor and find strong evidence

that increased ED boarding times are associated with longerICU lengths of stay for a number of patient

conditions. Loosely, for some primary conditions (such as Vascular), a single additional hour of boarding

delay (relative to mean delay) is associated with an approximately 11.37% increase in ICU LOS.

2. Next, we examine the implications of this delay effect when considering queueing models often used

to model hospital systems. We develop anM/M(f)/s queueing model as an analogue of anM/M/s

queueing model, where service times are exponentially distributed with mean which increases with con-

gestion according to a growth functionf . We present a rigorous, analytically tractable approximation to

such models that, in addition to being quite accurate, provides a simple, transparent view of the impact of

congestion on the amount of work in the system in thepresenceof the delay effect. We find a relationship

between system load and expected work which grows much faster than the1/(1− ρ) relationship seen in

most queueing systems. We view the simplicity of these approximations as surprising since queueing sys-

tems with long-range correlations in service and inter-arrival times are known to be notoriously difficult to

analyze.

3. We use numeric and simulation results to demonstrate that, due to the relationship exhibited by our

queueing model with delay effects, it is imperative for hospital managers to carefully characterize the delay

phenomenon for their patient cohorts. Ignoring the impact of delays on LOS when making operational

decisions can result in persistent over-crowding, where delays can spiral out of control much faster than

anticipated.
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1.1. Related Literature

Our work is related to three main bodies of research: empirical work looking at the effect of delays and

congestion on patient outcomes as well as other empirical work focusing on estimation methodologies;

queueing models with congestion-based dynamics; and, queueing models in healthcare.

The medical community has invested significant effort into measuring the detrimental impact of delays on

patient outcomes. The majority of this work has focused on a binary notion of delay: was a patient delayed

or not? For instance, a transfer from the Emergency Department (ED) to the Intensive Care Unit (ICU) was

labeled as ‘delayed’ if it was greater than6 hours (Chalfin et al. 2007); however, there was no distinguishing

between6 and20 hours of delay. They find that the median hospital length of stay (inclusive of ICU and

general medical ward stay) is 1 full day longer and the in-hospital mortality rate was 35% higher for patients

who were boarded more than 6 hours. The definition of delay canbe on the order of minutes as in the case

of cardiac patients (de Luca et al. 2004, Buist et al. 2002, Yankovic et al. 2010, Chan et al. 2008) or up to5

days for burn-injured patients (Sheridan et al. 1999). All of these works focus on a single patient condition

in a single hospital and may lead one to conjecture that the delay effect is isolated to a narrow section of the

patient population that visits the ICU. We verify instead that the delay-effect is prevalent across multiple

hospitals and ailments. For some conditions, we do not find evidence of a delay effect, suggesting hospital

administrators must be prudent about the composition of their patient population when making operational

decisions.

Our empirical approach leverages fluctuations in congestion of inpatient units. Kc and Terwiesch (2009,

2012) and Anderson et al. (2011) consider how high load impacts ICU LOS following surgery. These works

find that high occupancy levels can result inshorterpatient length-of-stay (LOS) due to a need to accom-

modate new, more critical patients. Moreover, such reductions in LOS can increase risks for readmission

and death. In contrast, our work considers theadmission, instead of discharge, process which is altogether

a fundamentally different medical decision. In particular, we examine how the occupancy level in the unit

which a patient should be admitted canincreaseLOS in the current and subsequent unit. Notice the delay

we consider and the speedup effect seen in these prior works actually work in opposition. We find that

for the patient population we consider, speedup seems to have little, if any, effect. Kim et al. (2015) also

considers the impact of the occupancy levels of downstream hospital units; however, the focus is on how

high occupancy levels can affect patient routing and subsequently, patient outcomes. In the present work,

we focus on the ICU and how congestion impacts delays rather than the routing of patients to a potentially

less desirable recovery unit. That said, the findings of Kim et al. (2015) are evidence of potential sample

selection issues which may arise if one only considers patients who are admitted to the ICU. Our setting has

a number of econometric challenges: sample selection and endogenous regressors (sicker patients have pri-

ority for admission, so have shorter boarding times, but also are more likely to have longer LOS). As such,
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we leverage the methodology established in Heckman (1979),Meijer and Wansbeek (2007) to estimate our

model.

Shi et al. (2015) also consider ED boarding, but focuses on the impact of hospital discharge policies on

patient boarding. Similar to our work, they consider empirical analysis to motivate stochastic models. Using

simulation models, they approximate inpatient operationsin a hospital in Singapore. In our work, we aim to

provide analytic approximations to the impact of ED boarding on system dynamics such as average number

of patient hours in the system, i.e. what is the aggregate number of hours all the patients currently in the

system will spend in the ICU.

Motivated by our empirical findings, we consider how to incorporate the measured delay effect into

our queueing models. Powell and Schultz (2004), Ata and Shnerson (2006), George and Harrison (2001) all

consider queueing systems where service times can be increased or decreased depending on congestion. In

general, they find that service rates shouldincreasewith congestion. In a similar vein, Anand et al. (2010)

examines the quality-speed tradeoff in an M/M/1 queue whereservice times can be reduced at the expense

of service quality while reducing delay costs and find that the equilibrium behavior is starkly different

than in traditional queueing models. We also compare the impact of congestion-dependent service times to

traditional queueing models; however, in contrast to thesepapers, we study a system where the service rate

is not controlled but a function of the system’s history and tackle the long range correlations which arise

from these effects.

Whitt (1990) and Boxma and Vlasiou (2007) examine a G/G/1 queue with service times and interarrival

times which depend linearly on delays. Under very special conditions–e.g. the workload must decay over

time, or interarrival times must increase as service rates decrease–stability conditions and approximations to

the waiting times can be derived. While both of these works consider workload that may increase with delay,

the dynamics of our system are very different. In particular, our interarrival times are not a function of ser-

vice rates, which is required for the results in Whitt (1990)and Boxma and Vlasiou (2007). Consequently,

the workload in our system will never decay as it must in the aforementioned works.

In recent work, Dong et al. (2015) attempt to model the queueing phenomenon at hand by having the

instantaneous service rate decrease with congestion, rather than having congestion impact individual jobs

(patients). They analyze this system in a heavy traffic regime, ignoring the granular modeling we undertake

here, and additionally assuming that an abandonment process regulates the system. While such a model is

potentially quite useful to understand phenomena such as diversion to other units, it is unclear how their

results apply here (i.e. without abandonment), and for finite sized systems.

While there has been important work focusing on state-dependent queueing systems, they are unable to

fully capture the healthcare specific dynamics which are estimated from real hospital data and presented in

this paper. Our goal is to develop a framework which accountsfor the type of delay effect which can appear

in a healthcare setting. In doing so, we hope to expand the wayqueueing models can be used in such a
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setting. Queueing theory has been a useful tool to estimate performance measures, such as waiting times,

and to provide support in operational decision making, suchas determining staffing levels. For instance,

Yankovic and Green (2011) consider a variable finite-sourcequeueing model to determine the impact of

nurse staffing on overcrowding in the Emergency Department.In a related vein, de Véricourt and Jennings

(2011) consider an M/M/s/n queue to estimate the impact of nurse-to-patient ratio constraints on patient

delay. Green et al. (2006) modified the traditional M/M/s queueing model to develop time-varying staffing

levels for the Emergency Department. To the best of our knowledge, despite the ever-present delay effect in

healthcare applications, no other works have explicitly taken it into account.

2. Empirical Motivation: Model and Analysis

In this section, we empirically examine the impact of delaysfor patients being transferred from the ED to

the ICU. We find that delayed transfers from the ED to the ICU are associated with increases in ICU LOS.

These findings have significant implications for capacity planning and resource allocation in the ICU. We

will estimate a reduced form model that relates patient physiological factors and ED boarding time to ICU

LOS. We examine the impact of boarding time across differentpatient categories.

2.1. Data

We analyze a large patient data set collected from 19 facilities within a single hospital network covering

urban and suburban locales for a total of 212,063 patient admissions over the course of 18 months. The

largest hospital had a maximum ICU occupancy of 44 patients,while the average ICU size was 19 beds.

These ICUs have an average occupancy level of 70%. This data includes patient level characteristics such

as age, sex, primary condition for admission (i.e. congestive heart failure or pneumonia), and four separate

severity scores based on lab tests and comorbidities. It also includes operational data which tracks each

patient through each unit, marking time and dates of admission and discharge. Hospital units were classi-

fied into six broad categories including Emergency Department (ED), General Medical Ward, Transitional

Care Unit (TCU), Intensive Care Unit (ICU), Operation Room (OR), and Post Anesthesia Recovery Unit.

This allowed us to calculate the hourly occupancy level in each hospital unit. In order to avoid censored

occupancy levels, we restricted our analysis to patients who were admitted during the middle 12 months

of the study. As this was aninpatientdataset, the captured time in the ED is the time difference between

the order to admit to an inpatient unit and when the patient actually left the emergency department. Hence,

this captures theED boarding timeand is measured as the time from when the admit order was placed until

the patient is physically admitted to an inpatient unit. Note that this does not include the time for triage,

stabilization, and assessment, all of which will typicallybe activities that occur prior to the request for an

inpatient bed.

110,574 patients were admitted via the ED. We consider patients whose admission was classified as ‘ED,

medical’, i.e. their admission was via the ED and their ailment was not considered surgical (the flow of



7

surgical patients is rather different and governed by surgical schedules, so such patients were excluded).

Similarly, we excluded patients who were admitted to the Operating Room (OR) directly from the ED1.

To understand the impact of delay on different patient types, we classify patients based on over 16,000

ICD9 admission diagnosis codes into 10 broad groups of ailments based on the types of specialists who

treat them: Cancer, Catastrophic, Cardiac, Fluid&Hematologic, Infectious, Metabolic, Renal, Respiratory,

Skeletal, and Vascular (Escobar et al. 2008). While there are some patients who do not fall into one of these

categories, we focus on these main groupings which the majority of patients fall under.

Severity scores in the data were determined at the time of hospital admission and capture the severity

of the patients at the time the request for an inpatient bed was made. In order to use these scores for risk

adjustment, we excluded all patients who were admitted to aninpatient bed more than 48 hours after hospital

admission since it is unlikely the scores will accurately measure the severity of patients after that. These

scores are used for the over 3 million patients in this hospital network and have similar predictive power

as the APACHE and SAPS scores withc statistic in the 0.88 range (Zimmerman et al. 2006, Moreno etal.

2005). See Escobar et al. (2008), Chan et al. (2012), Kim et al. (2015) for further description and use of

these severity scores. We also restricted our analysis to patients whose hospital stay was less than 60 days.

Patients who stayed longer are outliers with LOS more than 6 standard deviations greater than the mean and

are unlikely to be representative of the general patient population.

2,930 patients were removed from the sample because they died. This is common practice in the medical

community because various factors, such as Do-not-resuscitate orders, can bias LOS estimates for patients

who die (Norton et al. 2007, Rapoport et al. 1996). We note that we verified the robustness of our empiri-

cal analysis by also including patients who died and find our results are quite similar. When determining

occupancy levels, all patients who are treated in the hospital are included.

The data cleaning process is depicted in Figure 9 in AppendixA. The final dataset consisted of 57,063

patients. 5,996 of these patients were admitted to the ICU from the ED. Table 1 summarizes the statistics

for the different patient categories.

We wish to understand how delays to ICU admission impacts patient ICU LOS and whether ICU LOS

is increasing in ED boarding time. While such a relationshipis natural to conjecture, the significance this

phenomenon can play in capacity management (as we will see inthe subsequent sections) merits that we

establish its veracity rigorously. In addition, the empirical study in this section will also allow us to quantify

the magnitude of the delay effect for different classes of patients.

2.2. Estimation

We now describe our model which forms the basis for our estimate of the impact of boarding delay on ICU

LOS. To test our hypothesis, we consider the ICU LOS,ICULOS, and ED boarding time of each patient,

1 Note that patients admitted to a medical service can go into the OR for surgery.
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Non-ICU admits ICU admits
Condition ED boarding Age ED boarding Age ICU LOS
Category N (hours) (years) N (hours) (years) (hours)
Cancer 507 3.54± 5.02 65.93± 14.32 27 4.28± 4.99 52.50± 36.96 64.89± 11.01
Cardiac 17772 3.46± 4.28 68.12± 14.68 2203 3.58± 4.22 37.75± 36.59 66.09± 14.32
Catastrophic 1278 3.88± 4.93 69.38± 19.65 685 2.77± 3.91 87.15± 83.70 62.20± 18.37
Fluid&Hem. 2900 3.54± 4.58 68.47± 18.11 164 4.30± 5.24 45.78± 47.79 64.70± 16.10
Infectious 11379 3.97± 5.10 66.92± 19.11 1012 3.85± 4.71 65.73± 16.86 74.75± 84.08
Metabolic 2979 3.75± 4.68 63.05± 19.62 650 2.87± 3.30 51.70± 57.21 48.64± 19.92
Renal 1753 3.62± 4.86 67.11± 17.77 123 3.49± 4.62 64.04± 63.75 60.67± 16.44
Respiratory 6487 3.90± 5.01 68.45± 15.91 741 3.32± 4.05 65.50± 75.96 66.32± 15.62
Skeletal 2727 3.45± 4.45 69.34± 18.33 98 4.83± 5.78 52.70± 55.09 66.00± 18.70
Vascular 3285 3.45± 4.37 71.10± 14.23 293 3.28± 3.92 53.01± 42.01 69.70± 13.71

Table 1 Mean ± Standard deviations are reported for 10 patient categories .

EDBOARD. Due to the long tails in ICU LOS, we take the logarithm of ICU LOS. Further, letZ be

a matrix of control variables for each patient which includes various physiologic and operational factors

which may affect ICU LOS, such as patient severity, age, primary condition, day of admission, and hospital

where care is received for each patient. See Table 3 in Appendix A for more details. Our model is then:

log(ICULOS) = β̂TZ + δEDBOARD+u (1)

The zero-mean noise termu is assumed to be uncorrelated withZ. The coefficientδ may be interpreted as

measuring how each additional hour of ED Boarding increasesexpected ICU LOS:δ > 0 would support

our hypothesis. We will run separate analyses for each patient ailment group (e.g. Cardiac versus Cancer

patients) to see if and how the delay effect,δ, varies.

2.2.1. Econometric Challenges Due to ethical and practical concerns, it is not possible to run a ran-

domized experiment to see how delay affects patients. Hence, we focus on using retrospective data to

estimate this effect. This introduces a number of challenges in our estimation.

Endogeneous regressors: There may be unobservable factors which impact both ED Boarding and ICU

LOS. For instance, a very severe patient may be given priority and transferred to the ICU earlier than other,

less severe patients. Because he is severe, he will also havea longer ICU LOS due to the increased time

required for recovery. If these severity factors are unobservable, they could make our estimate ofδ biased.

Selection bias: In this work, we only consider the impact of delay on patients who are admitted to the

ICU. However, only 11% of patients admitted to the hospital via the ED are admitted to the ICU. Kim et al.

(2015) finds that when the ICU is busy, fewer patients are admitted into the unit so that only the very

severe patients receive ICU care. This would result in longer boarding times (due to ICU congestion), but

also longer ICU LOS (due to the increased severity of admitted patients). Because the selection of patients

is non-random (it depends on patient severity which may not be completely observable in the data), our

estimates ofδ may be biased.
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2.2.2. Estimation Approach For ease of notation, throughout this section, we will letZ1,Z2, andZ3

denote matrices which contain control variables as inZ from Eqn. (1).

In isolation, each challenge can be addressed via established tools which have been used extensively in

the econometrics literature. An instrumental variable approach (e.g. two-stage least squares) is a common

approach in estimating models with endogenous regressors (Wooldridge 2002). Note that this approach

requires a valid instrument, which is uncorrelated with theunobservable noise, but influences the outcome

(ICU LOS) through its impact on the endogenous regressor (EDLOS). For instance, the following equations

can be used to model such a system:

log(ICULOS) = Z1β1 + δEDBOARD+u1 (2)

EDBOARD = Z2β2 +u2 (3)

where, by assumption theui’s are 0 mean and independent ofZ. Note thatu1 may be correlated with

EDBOARD, so that a valid identification strategy requiresZ2 to contain an instrument forEDBOARD.

ReplacingEDBOARD in Eqn. (2) with the predicted value from Eqn. (3) allows one to identify the

impact of ED boarding on ICU LOS. However, such an approach can become problematic when there is

sample selection. In particular, ifICULOS is only observed for a subset of the patients, the assumptionof

uncorrelated noise in the first equation may not hold:

e.g.E[u1|Z1, ICUADM =1] 6= 0 orE[u1|Z2, ICUADM = 1] 6= 0

whereICUADM is a variable which indicates admission of the patient into the ICU. To account for the

potential biases introduced by sample selection, the selection of patients into ICU treatment can be mod-

eled via a Probit model and the Heckman model introduces a correction factor, the Inverse Mills Ratio, to

account for the potential biases due to the fact that data only exist for selected observations (Heckman 1979,

Wooldridge 2002). Note that this approach requires data from both the selected and unselected samples to

estimate the selection model. The selection model is thus:

ICUADM = 1(Z3β3 +u3 > 0) (4)

whereu3 is an error term which assumed to be a standard normal random variable which is uncorrelated

with Z3. Additionally, we assume that(u1, u3) is independent ofZ and satisfies the following parametric

relationship2:

E[u1|u3] = γu3 (5)

2 Note that other relationships between the error terms can beconsidered, but this particular assumption is standard as seen in
Heckman (1979).
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Consider the following steps of algebra, which are used to modify the log(ICULOS) equation in (2):

log(ICULOS) = Z1β1 + δEDBOARD+E[u1|Z, ICUADM = 1]−E[u1|Z, ICUADM =1]+u1

= Z1β1 + δEDBOARD+E[u1|Z, ICUADM = 1]+ e (6)

whereZ = [Z1,Z2,Z3] and e = u1 − E[u1|Z, ICUADM = 1]. It is easy to see that, by construction,

E[e|Z, ICUADM = 1]= 0.

Now we consider the termE[u1|Z, ICUADM ]:

E[u1|Z, ICUADM ] = E[E[u1|Z,u3, ICUADM ]|Z, ICUADM ]

= E[E[u1|Z,u3]|Z, ICUADM ] (7)

= γE[u3|Z, ICUADM ]

where the first equality comes from iterated expectations, the second equality comes from the fact that

(Z,u3) uniquely defines(Z,u3, ICUADM) as given by equation (4), and the last equality follows from

parametric assumption (5) and the assumption thatu1 andu2 are independent ofZ. Then, by our selec-

tion model in (4), we have thatE[u3|Z, ICUADM = 1] = E[u3|u3 >−Z3β3] = λ(Z3β3), whereλ(·) =

φ(·)/Φ(·) is the Inverse Mills Ratio andφ andΦ are the pdf and cdf of a standard normal, respectively.

Inserting this into (6) results in the following reduced form model for ICU LOS for the sample of patients

who are admitted to the ICU:

log(ICULOS) =Z1β1 + δEDBOARD+ γλ(Z3β3)+ e

Since we potentially have both a selection and endogenous regressor issue, our problem can be cast as a

Heckman selection model with an endogenous regressor (Schwiebert 2012, Wooldridge 2002). Our model

is thus:

log(ICULOS) = Z1β1 + δEDBOARD+ γλ(Z3β3)+ e

EDBOARD = Z2β2 +u2 (8)

ICUADM = 1(Z3β3 +u3 > 0)

whereZ1,Z2,Z3 are exogenous controls that they are uncorrelated withe,u2, u3. e is zero mean conditional

on Z andICUADM = 1, while u2 andu3 are zero mean conditional onZ for the whole population.

EDBOARD is potentially endogenous, so may be correlated withu1, and subsequently,e. We assume

the noise term in theICUADM model,u3, is vector of independent and identically distributed zeromean

standard normal random variables, so that the model is consistent with the ICU admission model estimated

in Kim et al. (2015). Additionally, we assume that(Z2,EDBOARD) and (Z3, ICUADM) are always
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observed andICULOS is observed only whenICUADM = 1. Note that we can observeEDBOARD

for all patients even if they are not admitted to the ICU. As such, our model satisfies Assumption 17.2 in

Wooldridge (2002). Moreover, by Theorem 17.1 in Wooldridge(2002), a two-stage least-squares approach

will result in consistent estimates forδ under sample selection with the Inverse Mills Ratio included as an

exogenous regressor.

In order to estimateδ, we follow Procedure 17.2 in Wooldridge (2002). We first estimate the selec-

tion and ED boarding models. We then use the estimates for theIMR (λ̂(Z3β3)) and ED boarding time

( ˆEDBOARD(Z2β2)) to estimate the ICU LOS model. What remains is to calculate the correct standard

errors. As indicated in Wansbeek and Meijer (2000), such a multi-stage regression approach will lead to

consistent estimates and a GMM approach can be used to calculate standard errors. This is the approach

taken in Allon et al. (2013), Meijer and Wansbeek (2007). What differentiates our model is that we actually

have observations of the endogenous regressor (ED boardingtimes) even when the patient is not admitted to

the ICU. As such, we can utilize these observations to increase the estimation power. Due to the large sam-

ple size of patientsnot selected for ICU admission, performing the matrix inversion necessary to estimate

the standard errors via GMM is numerically challenging. As such, we use non-parametric bootstrapping

with replacement over 1000 samples to do so (Wooldridge 2002, Schwiebert 2012). We do this separately

for each of the 10 patient categories.

Z1,Z2,Z3 all contain physiologic and operational factors which are available for all patients, such as

severity, age, day of admission, and hospital where care is received. BecauseEDBOARD is potentially

endogenous,Z2 also includes an instrument which influencesICULOS only through its relationship to

EDBOARD. Similar to Kim et al. (2015), we use the congestion of the patient’s first inpatient unit (i.e.

ICU congestion for ICU patients and ward congestion for the general ward patients) as an instrument. In

this case, we consider the average hourly occupancy during the time the patient is boarding in the ED. We

define the next unit as ‘busy’ if the occupancy level is greater than 80% of the maximum patient census

over the course of the year. This binary measure of ICU congestion is similar to the approaches taken

in McClellan et al. (1994), Kc and Terwiesch (2012) and Kim etal. (2015) among others. Note that we

examined other measures of busy including different thresholds and times at which the occupancy was

measured and found similar results. Finally, we include thecongestion of the ICU and nonICU units at

the time of inpatient unit admission intoZ3. We note that while these various measures of congestion are

related, their correlation is typically around 20% and no more than 50%.

2.3. Empirical Results

We first consider the impact of busy inpatient units on ED Boarding. Note that we look at the congestion in

the next unit the patient visits, so for ICU patients, we consider the congestion in the ICU, while for non-

ICU patients, we consider congestion in the non-ICU units. With p < .001, ED Boarding time increases by
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1.8-2.5 hours when the occupancy level of the next impatientunit is greater than 80%. This result supports

our intuition that inpatient unit congestion increases boarding time. Consistent with Kim et al. (2015), we

find that when the ICU is busy, the likelihood of ICU admissiondecreases.

We now consider the impact of ED Boarding on ICU LOS. As a measure of model robustness, we

consider two models: the first does not use any instrumental variables and the second uses the Heckman

approach with endogenous regressor as discussed earlier. Table 2 summarizes the delay effects for the 10

primary condition categories of interest. We also provide the coefficient,γ, on the Inverse Mills ratio. Sta-

tistically significant results ofγ suggests evidence of selection bias in some patient categories. We see

evidence of estimation bias, especially in the case of Renalpatients, where using traditional Ordinary Least

Squares suggests that increased boarding time actually reduces ICU LOS. This goes against medical knowl-

edge and intuition. We can see that our approach is able to adjust for this bias. When we control for the

endogeneity of ED boarding and the potential selection bias, all statistically significant coefficients in this

case are positive.

We can see that for patient categories: Fluid & Hematologic,Renal, and Vascular the delay effect is

statistically significant (p < .10). For these ailments, 1 additional hour in ED delay is associated with a

11.37%-38.21% increase in ICU LOS. As we will see in our analysis of queueing systems with delay-

dependent service times, this impact can be substantial.

The regressions for Cancer would not converge, so we could not achieve coefficient estimates. We

also do not see any statistically significant results for patient conditions Cardiac, Catastrophic, Infectious,

Metabolic, Respiratory, and Skeletal. Cancer and Skeletalare the patient conditions with the fewest number

of ICU patients, so the lack of statistically significant results may be attributed to the small sample size.

There are 650 samples of Metabolic patients, yet it seems that delays may have little impact on ICU LOS.

This may be because Metabolic corresponds to chronic conditions including diabetes, immune disorders,

end stage renal disease, etc. Subsequently, these patientsmay be more delay tolerant. While the patients are

considered severe (they still need ICU care), there is likely to be less urgency when the patient’s primary

condition for admission is chronic. Finally, Skeletal refers to conditions such as broken hips, which may

be susceptible to infection if left untreated; however, their urgency is likely to be lower than other patients

such as those who had a stroke (Vascular).

2.3.1. Robustness Checks and Discussion While Table 2 presents our main empirical results, we also

performed a number of additional regressions to test the robustness of our results.

First, we considered various measures of busy-ness of the ICU and non-ICU units. We considered thresh-

olds of 75% and 85% occupancy, as well as linear and quadraticspecifications. The main insights from our

results did not vary drastically with these different specifications.
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(i) (ii)
OLS Model (8)

δ R2 δ γ R2

Cancer 0.0775 1.0000 . . .
(.) (.) (.)

Cardiac -0.0040 0.1638 0.0007 0.4618∗∗∗ 0.1683
(0.0049) (0.0340) (0.1727)

Catastrophic -0.0137 0.1850 0.0427 -0.5002 0.1847
(0.0093) (0.0389) (0.4365)

Fluid&Hematologic -0.0101 0.3047 0.3237∗∗ 0.2800 0.3439
(0.0150) (0.1325) (0.4937)

Infectious -0.0117 0.1280 0.0259 1.0398∗∗∗ 0.1414
(0.0078) (0.0444) (0.3997)

Metabolic -0.0260∗∗ 0.1580 0.0332 0.0088 0.1565
(0.0110) (0.0450) (0.3165)

Renal -0.0736∗∗∗ 0.5224 0.3821∗∗∗ -2.6919∗∗ 0.5402
(0.0223) (0.1334) (1.0964)

Respiratory -0.0063 0.1312 0.0079 0.3458 0.1457
(0.0099) (0.0576) (0.4737)

Skeletal 0.0110 0.3346 0.0158 0.9692 0.3494
(0.0328) (0.2560) (1.1587)

Vascular -0.0296∗∗ 0.2457 0.1137∗ 1.0365 0.2559
(0.0133) (0.0651) (0.6440)

Standard errors in parentheses.∗p< 0.10; ∗∗p < 0.05; ∗∗∗p< 0.01
Table 2 log(ICU LOS) regression results: (i) ordinary least squares without instrumental variables; (ii) uses

ICU Occupancy > 80% at ICU admission time as an instrumental variable.

We note that prior work has demonstrated that when the ICU is busy, patient LOS may decrease

(Kc and Terwiesch 2012). In their work, they focus on a singlecardiac ICU where patients are cared for fol-

lowing cardiac surgery. In our case, we do not consider surgical patients. We focus on ED medical patients.

Kim et al. (2015) shows that scheduled surgical patients aremost likely to experience speedup when the ICU

is busy, while ED medical patients do not seem to experience speedup when the ICU becomes congested.

Our data is consistent with these findings.

A number of works have shown that congestion during an ICU visit can result in worse outcomes (e.g.

Chalfin (2005), Kc and Terwiesch (2012)), so we also includeda measure of ICU congestion inZ1
3. In

particular, we consider the average hourly ICU congestion during a patient’s ICU stay. This is similar to the

3 This has also been demonstrated in non-ICU settings (Kuntz et al. 2014).



14

approach in Kim et al. (2015), which considered the average daily congestion. When excluding this measure

or using congestion in the first 24 or 48 hours of ICU admission, we find the delay effect still exists, though

the statistical significance is sometimes weaker.

Note that our estimation approach relies on a number of assumptions and if any of these are violated,

it raises questions to the reliability of our results. For instance, we assume the noise term in the selection

model is normally distributed. We also assume a specific parametric relationship between this noise term

and that of thelog(ICULOS) model, which is stated in Eqn. (5). If either of these assumptions do not

hold, it could invalidate our results. We use congestion in various inpatient units as instrumental variables.

While we tested and found that these measures of congestion are uncorrelated withobservablemeasures

of severity, it is impossible to check this with respect tounobservablemeasures of severity. If this were

not true, it would invalidate the IV estimation approach. Despite these caveats, we find substantial evidence

that, for a large group of patients, delays in ICU admission are associated with increases in ICU LOS. As

expected from the medical literature, the impact of delays varies across different patient conditions. We next

devote our attention to understanding the implications of this delay effect on traditional queueing insights.

While we notice the delay effect can vary across different types of patients, our models will focus on a

single class system in order to develop focused insight intothe delay effect.

3. Incorporating the Delay Effect: M/M(f)/s Model

Motivated by our empirical analysis, we turn our attention to developing queueing models which incorporate

the delay effect. Such analysis allows one to measure the impact of ignoring the delay effect when using

conventional queueing approaches. To do this, we introduceanM/M/s-like queueing system which has

jobs with delay-dependent service times. Our analysis assumes a single patient class in order to focus on

the impact of the delay effect. Such an assumption is reasonable in hospitals with specialized ICUs. For

instance, some large hospitals have dedicated cardiac ICUswhere non-surgical cardiac patients are given

priority. At a higher level, this modeling assumption, which is necessary to allow for analysis, also provides

a first step in understanding the effect of delay-dependent service times on queueing phenomena.

We consider a model with Poisson arrivals and exponential service times. However, the service rate of the

standard exponential random variable now depends on the delay of the job; we denote this dependence by

M(f) wheref is an ‘inflation’ function that we will define shortly. Hence,the service time (equivalently,

LOS) of a job is inflated from some nominal value by a quantity which depends on the number of jobs in

the queue upon the job’s arrival. Such a model is able to capture the dynamics estimated from the patient

data in the previous section.

We now formally introduce our delay-dependent queueing system. Consider ans server queueing system

described as follows: Jobs arrive according to a Poisson process at rateλ and are served in First-Come-

First-Served (FCFS) fashion. We letNt denote the number of jobs in the system at timet. Jobi arrives at
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time ti and its service time is exponentially distributed with mean1 + f
(

N
t
−
i

)

wheref(·) is a function,

referred to as agrowth function, which takes values in a finite set and satisfies the followingrequirements:

1. f(m) = 0 for m= 0.

2. f(·) is bounded and non-decreasing.

In what follows, we will examine the behavior of this system and the impact of the growth function,

f(m). We will refer to such a system as a queueing system with delaydependent workload, and abbreviate

it with the notationM/M(f)/s.

Remark 1 Note that service times depend on the number of jobs in the system upon arrival, rather than the

realized waiting time of the job. This is primarily for tractability and we find that even with this assumption,

analysis of the model is still not straight forward. That said, we will see in Section 6, this simplification does

not alter the insights substantially, asNt is a very good proxy for wait times.

3.1. Stability of an M/M(f)/s System

We first begin our analysis of our queueing system with delay-dependent service times by considering the

stability for such a system. While the stability condition,and consequently the throughput of anM/M(f)/s

system, is a relatively coarse performance benchmark, it provides interesting insight into the behavior of

such systems. We have that:

Proposition 1 AnM/M(f)/s system is weakly stable, i.e.

lim
t→∞

Wt

t
= 0

if and only if
λ

s
≤

1

1+ fsup

whereWt is the work in the system at timet andfsup = supm f(m) is the supremum off .

The proof of this result can be found in the appendix. To provide some intuition of this result, if a burst of

jobs arrive, they will all experience some delay and an increase in service requirement. If a particularly bad

burst of jobs arrive in sequence, the system will quickly deteriorate to the point where all jobs are delayed

and require maximal service time. Hence, the stability requirement is based on the maximum possible job

requirement. We see that short term behavior (bursts) can have lasting effects which impact long-run average

behavior (stability). We note that these dynamics highlight the challenges associated with analyzing such a

system. We can see a complex correlation structure between the service times and interarrival times arises.

Periodic and evenly spaced interarrival times correspondsto no service requirement inflation; however,

bursts and short interarrival times will lead to large service times. While the question of stability reduces
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to the standard stability characterization under the worse-case scenario of all jobs inflating maximally, the

system dynamics are more nuanced.

Our stability analysis demonstrates how substantial the delay effect can be. We consider a simple example

to further illustrate this effect. Consider a system with a daily arrival rate of 10 Renal patients whose mean

LOS is 60.67 hours. Our empirical analysis suggests that a single hour of delay would result in a 38.21%

increase in LOS (see Table 2). In order to maintain stabilitywith a maximal 38.21% increase in LOS,

the system would need at least 35 beds, while only 26 beds are needed in a system without delay effects.

Stability is the most basic service requirement. If one wished to ensure high quality service one could use

traditionalM/M/s analysis to verify that an ICU with 33 beds would guarantee that no more than 5% of

patients would have admission delays of more than 6 hours4. However, even if a 38.21% increase in LOS

were themaximumincrease in LOS, this ICU would be unstable, resulting in extraordinarily poor system

performance. Thus, the system without delay effect would provide a high service quality guarantee, while

the system with delay effect would be unstable. Using a simple simulation model which increases LOS by

38.21% if a patient must wait, we see that 37 beds (4 more) would be needed to ensure the same high service

quality guarantee. Indeed, ignoring the delay effect can result in poor capacity management decisions.

In some instances, our delay-dependent queueing system canbe represented as a multi-dimensional

Markov Chain, which we formally discuss in Appendix C. The transition matrix for this Markov Chain has

a block diagonal structure. However, the size of the blocks can be arbitrarily large depending on the nature

of the functionf . While one may be able to solve for the steady-state dynamicsnumerically for special

cases, it does not provide much insight for the general model. Moreover, this approach quickly becomes

intractable with generalf functions. Despite starting from the innocuousM/M/s queueing model, the

introduction of the delay effect makes the resulting systemfar too difficult to permit an exact analysis. As

such we focus on producing approximations by constructing suitable upper bounding systems. This analysis

provides some insight into how the issues above might impactnominal predictions that do not account for

the impact of delay on service time.

4. Approximating the Workload Process

This section will be concerned with establishing a simple approximation to the long run average workload of

anM/M(f)/s system. We focus on the workload as it is a common accounting metric used in the hospital

setting5. It can also be used as a surrogate for delays. Finally, from atechnical point of view, we are able to

establish tractable bounds for the workload.

Let us denote byWt andNt respectively, the workload and number in system processes in this system,

where we define the workload as the total amount of work in the system based on realized service times.

4 As mentioned in Chalfin et al. (2007), delays of more than 6 hours are associated with worse outcomes.
5 The number of patient days specifies how many days patients, in aggregate, stayed in a hospital or unit.
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Consider also, anM/M/s system with arrival rateλ and service rate 1
1+fsup

wherefsup = supm f(m).

Assume the service discipline for this system is FCFS. We denote byW t andN t respectively, the workload

and number in system processes in this system. We will frequently refer to the former system (the system

we are interested in analyzing) as system 1 and the latter system (which will have value in our producing

bounds) as system 2. Finally, we denote byW t, the workload process in anM/M/s system with arrival

rateλ and service rate1, i.e. a systemwithoutany delay-effect or relationship to the growth functionf(m).

We will refer to this system as the baseline, delay-independent system and use its behavior as a comparison

benchmark for ourM/M(f)/s system and the corresponding bound we will establish. We letE[W ],E[W ],

andE[W ] denote the expected work in each system. That is, if we start the systems according to their

respective stationary distributions, then these correspond to the expected work in each system at time0:

E[W ] =E[W0], E[W ] =E[W 0], andE[W ] =E[W 0]

4.1. An Upper bound for a Step Function

In order to provide more insight into the bound we will derive, we start by examining a special case of the

delay-growth function,f . In particular, we focus on the case where jobs have nominal service requirement

of mean1 which increases to1+ k if there areN∗ or more jobs in the system upon arrival:

f(m) =

{

0, m<N∗;
k, m≥N∗.

Such a delay growth function captures the increased servicetime required by jobs (patients) who arrive to

a congested system (i.e.,m≥N∗). Such a growth function bears similarities to some of the medical liter-

ature which examines the increase in workload of delayed versus not delayed patients (Chalfin et al. 2007,

Renaud et al. 2009). Moreover, we consider the case where theservice times are exponentially distributed.

We can establish the following upper bound:

Theorem 1 Assume thatf(·) is defined according tof(m) = k for m≥N∗, andf(m) = 0 otherwise. We

have that the expected workload,E[W ], satisfies

E[W ]≤E[W ]−λ(2k+ k2)P (N <N∗)

whereW andN denote the workload and number of jobs in a traditionalM/M/s system with arrival rate

λ and service rate1/(1+ k).

The upper bound consists of the amount of work in the system ifall jobs were inflated, which is then

corrected according to the second term in the bound. In particular, when considering the expected workload

in the system, we can look at the total aggregate work in the system up to timet (i.e. integrate
∫ t

0
Wtdt) and

divide by t. With this approach, we start by looking at the contributionof an individual job to the integral

component. To provide some intuition of the correction term, let’s consider the case whereN∗ = s and
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examine the amount of work contributed by an arbitrary job,i. We letσi be the realized service requirement

for job i in ourM/M(f)/s system andσi is the amount of work theith job brings in system 2, where all

jobs are inflated to expected service time of1 + k. We note that we correct for the extra amount of work

that is introduced whenever a job does not have to wait upon arrival, i.e.N
t
−
i
< s. A job that immediately

begins service contributes a total of1
2
σ2
i work, i.e. it brings workσi that is depleted at constant rate 1 until

it completes service. The total contribution is then the area of the right triangle with width and height equal

to σi. But this job does not have to wait, so the amount of work that is actually contributed is σ2
i

2(1+k)2
, which

accounts for the artificial inflation of the work to expected size 1+ k. Therefore, to account for the actual

amount of work introduced by a job who does not have to wait, wesubtract the amount of work contributed

by the inflated job1
2
σ2
i and add the amount of work by the correct mean1 sized job: σ2

i
2(1+k)2

. See Figure

1 for an illustration of accounting to correct for the excesswork introduced. Recognizing that the second

moment of an exponential random variable with meanµ is 2µ2, we derive the desired result.
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Figure 1 Due to the inflation of all jobs, each job which experi ences zero delay contributes excess work

which is shaded in gray.

Note, that fork = 0, our bound is tight for a queueing system without delay-dependent service times:

the upper bound is equivalent to the classical results of anM/M/s queue. Additionally, the bound is tight

asρ → 0 and ρ → 1, with theM/M(f)/s system reverting back to anM/M/s queue withµ = 1 or

µ=1/(1+k), respectively. The first expression in the upper bound corresponds to a system whereall jobs

have their service time increased, irrespective of the amount of delay experienced. However, the workload

does not unilaterally increase with the load. The second part of the expression represents the correction

for over inflating the workload for jobs which do not experience excess congestion. We note that this is an

upper bounding system because, while we account for the correct workload if a job is not delayed, we do

not correct for the propagation effect of its inflated workload on delays for future jobs. Still, as we will see

later, the upper bound is quite accurate for systems with various growth factors,k, and number of servers,

s.
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We observe that the upper bound in Theorem 1 admits a simple analytical expression. This allows us to

generate a clean understanding of the impact of delay on the workload process akin to our understanding of

the role factors such as utilization play in a traditionalM/M/s system, which we will explore in Section 5.

4.2. A General Upper Bound for an M/M(f)/s System

As we saw in Section 2, the delay effect can be gradual. Thus, we now generalize our result from Theorem

1 to other delay-growth functions. Consider any growth function f(·) with a countable number of disconti-

nuities. Let0 =M0 <M1 <M2 < · · ·<MJ−1 <MJ =∞ be break points in the functionf , so that if the

number of jobs in the system upon arrival of a new job satisfiesMj ≤N <Mj+1, the service rate of that

job is1/(1+ kj), wherekj ≤ kj+1. Hence,

f(m) = kj, if Mj ≤m<Mj+1

Thus,f is an arbitrary non-decreasing piece-wise constant function. Most non-decreasing functions can be

reasonably approximated within the framework of piece-wise constant functions.

As we have described before,W andN are defined as the workload and jobs processes for this delay-

dependent queueing system. Similarly, letW andN be the workload and jobs processes for anM/M/s

system with arrival rateλ and service rate1/(1 + kJ), wherekJ = maxj kj. We can then establish the

following upper bound to ourM/M(f)/s system:

Theorem 2 If f is a non-decreasing piece-wise constant function withf(m) = kj if Mj ≤m<Mj+1, we

have that the workload process,W , satisfies

E[W ]≤E[W ]−
J
∑

j=0

[

λ(2kJ + k2
J − 2kj − k2

j )P (Mj ≤N <Mj+1)
]

The proof of this result requires a coupling argument and canbe found in Appendix D. To provide some

insight into the interpretation of this bound, we parse through the two expressions which compose the upper

bound:

1. The first term corresponds to the expected work in the system if all job are inflated maximally to

mean service time1+ kJ = 1+ fsup. Thus, it corresponds to the expected work in anM/M/s system with

ρ = λ(1 + kJ)/s. However, most jobs will not be inflated to the maximum size, which brings us to the

second term.

2. The second term corresponds to the correction necessary for overinflating the workload of jobs with

moderate or no wait upon arrival. If this occurs, the work that each new job brings is a factor of
1+kj

1+kJ
less

than the amount of work that arrives in theW system. Removing this extra work results in the multiplier of

the last expression.



20

Note that the only time we rely on the exponential service times is to make the algebraic simplification

in Proposition 6 to establish the closed form expression forthe correction term. Hence, the bound can be

extended to general service times, but may not result in as clean expressions.

Remark 2 A lower bound for the expected workload of anM/M(f)/s system can be derived using a

similar approach to that used for the upper bound here. However, we find that such a lower bound is very

loose. One of the biggest issues with the delay effect is the negative externalities on other jobs when a job

is delayed and its service requirement increased. In our upper bounding system, our correction factor does

not correct for the propagation effect. However, a corresponding lower bounding system does not include

the propagation effect. We find that this propagation of delays is a primary driver in the dynamics of an

M/M(f)/s system; thus, the lower bound is not very accurate.

5. Sensitivity Analysis of the Bound

Traditional queueing models have been used to guide operational decisions in healthcare, such as staffing

levels and numbers of beds (e.g. McManus et al. (2004), Green(2006), Yankovic and Green (2011),

de Véricourt and Jennings (2011) among many others). None of these models account for the delay effect.

We now consider how the upper bound derived in Section 4 can beused to gain a better understanding of a

queueing system with delay dependent service times. We willsee that the system behavior is very different

under the presence of a delay effect and this can result in potentially very different operational decisions. As

such, it is important to account for the effect appropriately. To see this, we focus on the result of Theorem

1, where the growth is represented by a step-function.

We start by examining the behavior of the workload as the magnitude of the delay effect increases in

Figure 2. The first aspect to notice is the accuracy of the derived upper bound in comparison to the simulated

workload of theM/M(f)/s system. This allows us to utilize our upper bound to derive more insights into

the behavior of our delay dependent system.

What is most striking is the change in workload as the system utilization increases (recall that service

times have been normalized to 1). It is well known that traditionalM/M/s systems are sensitive to changes

in arrival rateλ and the number of serverss, so that asρ→ 1, the workload increases rapidly according to

the relationship1/(1− ρ). The introduction of the delay effect results in much more rapid increases. That

said, the bound is looser as the number of servers increases.Because of pooling, the impact of the system

load decreases as the number of servers increases. We explore these phenomena more precisely via explicit

evaluation of our bound.

For any number of servers,s, it is possible to compose exact expressions for our upper bound when the

growth function is a step function as in Theorem 1. To demonstrate this process, we now explicitly evaluate

our bound in two cases: a single server and two servers. Whilesuch a small system may not be generally
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Figure 2 Comparison of expected workload in a simulated M/M(f)/s system versus the derived upper

bound for s= 1,2, and 10. Inflation is given by a step function: f(m) = k1{m≥s} with k = .05, .1, and

.2.

applicable to an ICU setting, there are specialized ICUs which can be very small. For instance, in California,

the smallest number of licensed Medical/Surgical ICU beds amongst hospitals with such an ICU is 2 and

three hospitals have a 3 bed ICU (State of California Office ofStatewide Health Planning & Development

2010-2011). More generally, there are other service settings which include a delay effect and have few

servers. For instance, Primary Care may be one such setting (though the delay effect is likely much smaller

than in the ED to ICU setting which we are considering here). In our evaluation of explicit expressions, we

considerN∗ = s, so that the workload increases for any job which is delayed.

The Single Server Case M/M(f)/1: We want to compare the behavior of theM/M(f)/1 system to

a regularM/M/1 system which does not have any delay effect. We denote the workload in anM/M/1

system with arrival rateλ and service rate1 asW and note thatE[W ] = ρ

1−ρ
for ρ = λ. We denote by

WUB the upper bound derived in Theorem 1. Using this upper bound in conjunction with a Taylor series

approximation, we have that
WUB

E[W ]
=

1− ρ

1− (1+ k)ρ
≈ 1+E[W ]k

so that the workload in ourM/M(f)/1 system grows quadratically with the expected work in a traditional

M/M/1 system. Considering that the work grows according to1/(1−ρ) for a traditionalM/M/1 system,

we see that in our new system with delay dependent service times, the work will grow much more rapidly

with ρ (i.e., the additive term grows like1/(1− ρ)2).

The Two Server Case M/M(f)/2: We now consider a similar analysis to the single server case when

there are two servers. Because there are two servers, we now define the system loadρ= λ/2 and maintain

this definition in what follows. For ourM/M(f)/2 system, we have:

WUB

E[W ]
=

(1+ k)2(1− ρ2)

1− (1+ k)2ρ2
−

(2k+ k2)(1+2(1+ k)ρ)(1− (1+ k)ρ)(1− ρ2)

1+ (1+ k)ρ

≈ 1+E[W ]ρk+6ρ2k+4ρ3k
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aroundk= 0. Similar to the single server case, we see the delay effect introduces a quadratic term inE[W ],

the expected work of a traditionalM/M/2 system. Thus, we again see a much more rapid growth according

to 1/(1− ρ)2 rather than the traditional1/(1− ρ) relationship.

Many traditional queueing models are used for performance evaluation and capacity management in

healthcare settings (e.g. McManus et al. (2004)). However,the results here suggest that using such tradi-

tional tools could lead to substantial underestimates of the true delay. This is most pronounced whenρ and

k are large; ignoring the delay effect can result in estimatesof performance which are orders of magnitude

too low. For instance, whenk= .3 andρ= .95, our upper bound estimates the expected work in the system

to be a factor of 9 greater than the workload in a standardM/M/2 system. As such, it is important for hos-

pital managers to be acutely aware that the delay effect can cause delays to be much worse than originally

anticipated and take this into careful consideration when making capacity management decisions.

Of course, there are some instances where ignoring the delayeffect will result in reasonably accurate

estimates of the underlying system. At a high level, this will occur when the system has 1) low utilization

and/or 2) a small delay effect. Suppose we are willing to accept underestimates of the expected work in

system, there exist scenarios in which the estimates generated from the standardM/M/s without delay-

dependent service times are sufficiently close to the expected work in the underlyingM/M(f)/s system.

Figure 3 demonstrates thek andρ values below which theM/M/s workload is sufficient for various

percentage tolerances. One can then use this analysis to determine whether accounting for the delay effect

when using queueing models to inform managerial decisions is necessary. For example, as long ask < .2

andρ < .3, the estimates forE[W ] given by a standardM/M/1 model are likely to be within 10% ofE[W ]

in the delay-dependent system. Similarly, for a two server system, as long ask < .4 andρ < .15, using an

M/M/2 will be within 10% of the workload in theM/M(f)/2 system. Unfortunately, in most hospital

settings–and especially the ICU–system loads tend to be between 65-90%. In such cases, the impact of

delays cannot increase LOS by more than 4-10% in order for theresulting delays to be within 25% of the

estimated delays from a traditionalM/M/s model. Thus, for some conditions, such as Skeletal, it mightbe

reasonable to use traditionalM/M/s models. However, for other conditions, such as Fluid & Hematologic,

using a traditionalM/M/s to model the system is likely to be quite inaccurate.

We can see that this bound is an important first step in understanding and characterizing the impact of the

delay-dependent service times on the expected workload in the system. We find that the delay effect results

in a dependency of the workload on the system load which growsmuch more rapidly than1/(1− ρ). A

direct takeaway from this observation is that reducing utilization–by reducing the arrival rate or by adding

more servers–will have a highly non-linear impact on decreasing workload, and subsequently, delays. Note

that in light of the delay effect, this reduction will be muchmore effective than the same reduction in

a traditionalM/M/s system. As such, it is important for hospital managers to usecaution when using

traditional queueing models to inform capacity decisions,such as how many beds to staff in the ICU, as
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Figure 3 Numeric evaluation of when WUB/E[W ]< 1+ p% where p% is the percentage tolerance a manager

may be willing to accept.

delays are likely to be much worse than anticipated. Furthermore, because the1/(1−ρ)2-type relationship

becomes more pronounced with large delay-effects (as measured byk), it is crucial to understand the delay

effect for the patient population of interest. The model we present in this work is an important first step

at understanding how the effect of delays on service time canimpact a queueing system. When making

operational decisions, it is important for hospital managers to account for the delay effect, either via models

such as the one presented here, simulation models, or other approaches. Certainly, ignoring the delay effect

is likely to result in poor operational decisions.

6. Numerical Comparisons
We further examine the behavior of our delay-dependent queueing system along with the quality of the

derived upper bound. In particular, we wish to examine how this delay effect may impact a real system.

To do this we connect back to our empirical analysis in Section 2 to calibrate our model. We consider a

setting with a fixed number of servers (beds). If a job (patient) arrives and there is an available server, it is

immediately served. If there is no available server, he mustwait. His expected service time is non-decreasing

in the amount of time he must wait. We consider the expected workload in the systems.

Specifically, we simulate the behavior of these delay-dependent queueing systems for a small (6 beds)

and moderately sized (15 beds) ICU. We compare the expected workload to three benchmarks:

1. [M/M/s with ρ= λ] This represents a traditional queueing system without delay effects. This is a

(trivial) lower bound to the delay-dependent system.

2. [M/M/s with ρ= λ(1+k)] This represents a queueing system where the amount of work each

job brings is artificially inflated as ifall jobs experienced delays. This is a (trivial) upper bound to the

delay-dependent system.
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3. [Upper bound derived in Theorem 2] This corrects for the miscalculation of work for jobs who are

not delayed.

6.1. A Single Step Growth Function

To start, we consider a model where patients have a nominal ICU LOS. If a new patient is delayed admission,

his LOS increases by a constant factork (we consider alternative delay functions later). That is, our first

experiments involve a delay functionf(m) = k if m≥ s and0 otherwise. We need to determine the value

of k. To do so, we turn back to our empirical analysis in Section 2.Recall that we found evidence that

patient delays (ED Boarding) are associated with longer ICULOS. In order to capture this effect in our

simulations, we account for an increase in service time whenever a job is delayed.

We focus on Vascular and Renal patients. We selected these condition categories because they have the

lowest and highest statistically significant increase in ICU LOS when delayed. From Table 1, the mean ICU

LOS of Vascular and Renal patients is 60.67 and 69.70 hours, respectively. From Table 2, each hour of

boarding is associated with a 11.37% or 38.21% increase in ICU LOS.

In our empirical analysis we estimated a log-linear growth function, which we will be approximating

with a step function. While we consider multi-step functions later, simple simulation experiments suggest

that the step function is quite accurate for low to moderate loads–as the system becomes more heavily

loaded, more using additional steps will be more accurate. First, we consider Vascular patients and define

the growth functionf = f1 as:

f1(m) =

{

0.1137, m≥ s;
0, otherwise.

since the nominal LOS is normalized to 1, this corresponds exactly to a 11.37% increase in LOS when a

patient has to wait.

Figure 4 plots the expected workload,E[W ], for different arrival rates. We make two observations about

the delay-dependent system. First, as seen in Section 5, theupper bound is very accurate. Second, even

with this very small delay effect, we can see the behavior of the system is quite different than that of an

M/M/s system. At low loads, the delay-dependent system looks likeanM/M/s system where no jobs are

extended; this is because few jobs, if any are delayed. However, as the system load increases, more jobs are

delayed and the delay-dependent system transitions between theM/M/s system without any job growth to

theM/M/s system with constant job growth. It is clear that ignoring the delay effect can be misleading as

to the actual work in the system.

In order to get a better sense of the impact of the delay effect, in Figure 5, we examine the relative

difference in the expected workload of different models compared to a traditionalM/M/s system where no

jobs are extended, i.e.ρ= λ/s. Most ICUs are not operated in a regime where patients are rarely or always

delayed, so we focus on arrival rates where at least a third ofthe beds turn over each day so there is some,

but not excessive, congestion in our system. Again, we see that our bound is fairly accurate. Moreover, it
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Figure 4 Vascular patients: Comparison of simulation of M/M(f1)/s system to the derived upper bound as

well as traditional M/M/s systems with no jobs or all jobs are inflated. Here the growth factor is

11.37%.

provides more insight into the system workload than anM/M/s system where all jobs are inflated. Note that

anM/M/s system withµ=1/(1+k) precisely characterizes the stability condition for a delay-dependent

queueing system (see Proposition 1). However, the dynamicsof the workload are more nuanced.
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Figure 5 Vascular patients: Simulation of M/M(f1)/s system: Relative difference in workload compared to

a standard M/M/s system with ρ= λ
s

. Here the growth factor is 11.37%.

We now consider Renal patients, which have a larger delay effect. Our second growth function is:

f2(m) = 0.3821 if m ≥ s and 0 otherwise. In this case, being delayed increases a patient’s ICU LOS by

38.21%. Figure 6 demonstrates the relative difference in workload in such a system. We notice that the
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upper bound is looser. This is because the upper bound only corrects the work a single job brings in, but

not the propagation effect it has on delaying/not delaying future jobs. This propagation is more substantial

when the delay-effect is larger. Still, we can see the upper bound is a better measure of system load than the

naive upper bound of anM/M/s system withρ= λ(1+k)

s
, i.e. all jobs are extended.
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Figure 6 Renal patients: Simulation of M/M(f2)/s system. Relative difference in workload compared to a

standard M/M/s system with ρ= λ
s

. Here the growth factor is 38.21%.

6.2. A Multi-step Growth Function

Next, we consider a multi-step growth function. To really stress the upper bound, we consider Renal patients.

Thus, the maximum growth is38.21% and we assume that the increase in expected service time is linearly

increasing when there are betweens and2s jobs in the system. We have that

f3(m) =







0, m< s;
.3821
s+1

(m− s), s≤m< 2s;
.3821, m≥ 2s.

Figure 7 demonstrates the performance of the bound with sucha growth function. As seen in Figure 2, the

upper bound is more accurate in smaller systems. Still, evenfor large systems, there are regimes forλ where

the upper bound is quite accurate. In all of these experiments, we see the very rapid growth ofE[W ] versus

ρ. This is particularly evident when considering Figures 5-7are with respect to the traditionalM/M/s

which already exhibits a1/(1− ρ)-type of relationship betweenE[W ] andρ.

6.3. Realized waiting times

We now consider an alternative model to the initialM/M(f)/smodel introduced in Section 3. As a bench-

mark, we consider our original,M/M(f)/s model with the following growth function:

f4(m) =







.3821, s≤m< 2s ;

.7642= .3821× 2, 2s≤m;
0, otherwise.
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Figure 7 Renal patients: Simulation of multistep M/M(f)/s system: Difference in workload compared to a

standard M/M/s system with ρ= λ
s

. Here the growth function is f3(m) =min{.3821, .3821
s+1

(m− s)}×

1{m≥s}.

Service times increase with realized waiting times: Our empirical findings had that service times

increased based on the wait each patient experienced, whileour model uses the number of jobs in the system

upon arrival. While this is certainly a proxy for the realized wait times, we also simulate a system which

increases service times based on wait times. To translatef4 into such a setting, we note that if the job is not

delayed, there is no inflation of service time. If the job seesbetween[s,2s) jobs, its service requirement is

inflated to 1.3821. In expectation, this corresponds to a wait time of less than 16. If the number of jobs in

the system is greater than2s, the expected wait (in ans-server system) will be at least 1. Hence, this system

has expected service times given by:

1+ f̂(D) =







1, D= 0;
1.3821, 0<D≤ 1 ;
1.7642, 1<D.

whereD is the realized delay of any job.

Figure 8 demonstrates that the model which depends on realized wait times is practically identical to our

M/M(f)/s system, thus our simplification still allows us to reasonably model our empirically estimated

delay effect.

Through our simulations, we can see that our derived upper bound can be quite accurate. Moreover, we

see that the expected workload for ourM/M(f)/s system is very different when comparing to a system

without a delay effect. Ignoring the impact delays may have on service times may result in poor capacity

management and substantial under provisioning when using traditional queueing models to guide such

decisions. It is especially important to consider the delayeffect when the system is heavily loaded and most

6 Recall the service time of each job is normalized to 1
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Figure 8 Simulation of M/M(f)/s system with a delay effect that is wait (not number of jobs in s ystem)

dependent.

jobs tend to experience some delay. Without accounting for the delay effect, a hospital ICU can become

even more congested. In order to manage this increase in system load, hospitals may have to cancel surgeries

and/or divert ambulances to reduce patient arrivals at a substantial loss in revenue. As the delay effect seems

to be prevalent in a number of healthcare settings, reconsidering the management of these systems in light

of delay sensitive service times may result in substantial operational and medical care improvements.

7. Conclusions and Future Directions

To summarize, this work quantifies a relatively unstudied queueing phenomenon in a critical care setting

– the impact of delays on care requirements. We see that this natural phenomenon is substantially veri-

fied by data and attempt to incorporate the phenomenon into simple queueing models. The impact of this

phenomenon is substantial and, as such, warrants careful attention.

In this work, we empirically estimated the impact of delays in ICU admission on ICU LOS for 10 different

patient types. A number of estimation challenges arise due to the fact that patients are not randomly selected

for ICU admission and that sicker patients are typically given priority, thereby lowering their waiting times,

but also increasing the risk of longer LOS. Our empirical approach utilizes a Heckman selection model

with endogenous regressors. Due to the large sample size of patientsnot admitted to the ICU, we utilize

a bootstrapping approach to estimate our model and found that a number of patient types, but not all,

demonstrate a significant effect of delay on LOS.

We then propose a stylized queueuing model which incorporates this effect. Analyzing queueing systems

with delay-dependent service times exactly can be cumbersome and intractable. As such, we focus on the

development of reasonable approximations for the system workload. We find that 1) our approximations are
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quite accurate and 2) they provide expressions which allow for interpretations related to increases in system

load. Our analysis reveals a relationship between system load and work which grows much more rapidly

than the standard1/(1 − ρ) relationship seen in traditional queueing models. Ignoring the delay effect

when using queueing models to guide operational decision making is likely to result in substantial under-

estimates of true delay and, simultaneously, shortages of resources such as beds, nurses, and physicians.

In the ICU setting where access to timely care is crucial, it is essential that hospital managers are aware

of such phenomena when considering staffing decisions. Moreover, because the delay effect can be quite

substantial, especially under standard ICU loads, disregarding it may impede future attempts to make ICUs

more efficient and effective. Accounting for a delay effect will result in more accurate estimates of system

dynamics as well as targets for system improvement.

While we don’t expect our models to directly translate into new capacity management criteria for hospi-

tal ICUs, this analysis demonstrates the impact of ignoringthe delay effects when making such decisions.

Ignoring the delay effects will result in ICUs continuing tobe highly congested, which can lead to other

reactive actions such as rerouting (Kim et al. 2015), patient speedup (Kc and Terwiesch 2012), and ambu-

lance diversion (Allon et al. 2013), which can also be detrimental to patient outcomes. From both a patient

as well as system level perspective, it is desirable to reduce delays. While reducing the average ED boarding

time by an hour may be practically difficult, the adverse feedback of delays on increased service require-

ments suggests that, due to the faster than1/(1−ρ) relationship between system load and work, even small

reductions in boarding time on the order of 10 to 15 minutes may help reduce congestion. Hospital man-

agers need to 1) take the time to characterize the extent of the delay effect within their own patient cohort

and 2) to the extent that the delay effect exists, they must becareful when managing capacity of their units

as delays will grow out of hand much faster than traditional queueing models suggest.

This work takes the first steps towards identifying and clarifying an important phenomenon: the impact of

delays on service times. The foundation developed here suggests a number of directions for further research.

For instance, our empirical models imposed a linear relationship between delay andlog(LOS). It would be

useful to further explore the nature of the growth functionf(·). Doing so will likely require significant data

collection for each different patient type. Our empirical results demonstrate that many patient types demon-

strate a delay effect and our queueing models indicate that this phenomenon significantly alters and hinders

insights that can be extracted from traditional queueing models. This suggests a need for better models to

be used for capacity planning. It would be interesting to develop heuristics for capacity management which

are easily understandable by hospital managers, yet also account for the added complexity introduced by

the delay-dependent service times.
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Appendix A: Supplementary Information for Empirical Analysis

ED admissions 

110,574 

Admitted during  

study period 

170,921 

Admitted to  

Medical Service 

95,158 

Total hospitalizations 

212,063 

One of 10 main  

conditions 

65,876 

ED LOS < 48hours 

60,529 

Hospital LOS < 60days 

60431 

Admitted to  

inpatient unit 

59,993 

Survived  

hospitalization 

57,063 

Admitted outside of study period: 41,142 (19.4%) 

Direct admits (not via the ED): 60,347 (35.3%) 

Admitted to Surgical Service: 15,416 (13.9%) 

Not one of 10 condition categories: 29,282 (30.1%) 

Longer than 48 hours in ED: 5,347 (8.1%) 

Longer than 60 day hospital stay: 98 (.2%) 

Admitted to OR from ED: 438 (.7%) 

Died during hospitalization: 2,930 (4.9%) 

NonICU admits 

51,067 

ICU admits 

5,996 

Figure 9 Selection of the patient sample. Final cohort in dot ted-lined box: aggregated and split by patients

who were admitted to the ICU and nonICU units.
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Variable Description

Age Patient’s age at hospital admission: coded as piecewise linear spline
with knots at 40, 65, 75, and 85 years

Gender Male or Female
LAPS Laboratory-based Acute Physiology Score which uses information from

14 laboratory tests obtained 24 hours preceding hospital admission (see
Escobar et al. (2008) for more information)

COPS Comorbidity Point Score based on 40 different comorbidities recorded
in inpatient and outpatient data 12 months preceding hospital admission
(see Escobar et al. (2008) for more information)

Hospital Indicator variables for each of the 19 hospitals a patient may be treated
Admission Day Indicator variables for the day of week the patient was admitted to the

hospital
Admission Month Indicator variables for the month the patient was admitted to the hospital
Admission Shift Indicator variables for the nursing shift the patient was admitted to the

hospital. Nursing shifts are 8 hours: from 7am-3pm, 3pm-11pm, and
11pm-7am

Table 3 Control Variables.
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Appendix B: Miscellaneous Proofs

PROOF OFPROPOSITION1:

Weak Stability: First, we show that ifλ
s
≤ 1

1+fsup
, then the system is weakly stable. This follows by examininga

traditionalM/M/s system with arrival rateλ and mean service requirement1+ fsup = 1+ supm f(m). By coupling

the arrivals of this system and the service times so that if the mean service requirement in our delay-dependent system

is σ ≤ 1 + fsup, its service requirement isσX and the service requirement in theM/M/s system is(1 + fsup)X

whereX is a mean1, exponentially distributed random variable. It is easy to see that thisM/M/s system is an upper

bounding system to our delay-dependent system. Hence, if the upper bounding system is stable, so is theM/M(f)/s

system. The stability condition for this upper bounding system is the desired criteria.

Instability: We now show that ifλ
s
> 1

1+fsup
, then the system is unstable. We do this in two steps: 1) we show that

from any initial state, there is a non-zero probability thatthe time until theM/M(f)/s system will reach the state

where the number of jobs in the system is such that the servicetime of a new arrival would be maximally inflated and

all the jobs in the system have been been delayed enough that their service rate is maximal is finite 2) we establish the

transience of this state which will establish that our resulting system is transient and, hence, unstable.

We define the following notation: LetNfsup = min{N : f(N) = supn f(n)} be the minimum number of jobs in

the system such that the service time for a new job is inflated maximally. Note that by assumptionf takes values in a

finite set, soNfsup exists. Our state at timet can be described by theNfsup-dimensional vector,Zt, where(Zt)n is the

number of jobs in the system which sawn jobs when it arrived (ZNfsup
is the number of jobs which seeNfsup or more

jobs in the system). LetTxy = inf{t > 0 : Zt = y|Z0 = x} be the time to first passage to statey given we start in state

x at time0. Finally, we define the state with exactlŷN =max(Nfsup , s) jobs in the system, all of whose service time

is maximally inflated asS∗ = {Z :ZNfsup
=
∑

n
Zn = N̂}.

We begin by showing that the time to reach stateS∗ is finite with non-zero probability from any initial state.

Specifically, we will show that for any statex, P (TxS∗ < ∞) > 0. Consider a system which starts at statex, i.e.

Z0 = x. LetNx be the number of jobs in the system in statex. We start with assumingNx <Nfsup + N̂ . Our goal is

to find the first time to stateS∗. One way to get toS∗ is to haveN̂ +Nfsup −Nx jobs arrive before any job departs the

system and then haveNfsup −Nx jobs depart from the system before another job arrives. Thus, the probability of this

particular sample path occurring, which we denote asA, can be lower bounded by:

P (A)>

(

λ

λ+ sµmax

)N̂+Nfsup−Nx
(

sµmin

λ+ sµmax

)Nfsup

> 0

whereµmax = 1 andµmin = 1/(1+ fsup) are the maximal and minimal service rates, respectively. Moreover, the time

it takes for this cascade of events to occur is upper bounded by the sum ofN̂ + 2Nfsup −Nx, mean1/(λ+ sµmin)

exponentially distributed random variables. Specifically, the time has a gamma distributionTA ∼ Γ(N̂ + 2Nfsup −

Nx,1/(λ+ sµmin)), which is finite with non-zero probability. Hence, we have that:

P (TxS∗ <∞)>P (A)P (TA <∞)> 0

Note that ifNx >Nfsup + N̂ , we simply need thatNx − N̂ jobs must depart before the next arrival. Using the same

argument as above, we can show thatP (TxS∗ <∞)> 0, for anyx.
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Next, we demonstrate that the recurrence time for stateS∗ is infinite with non-zero probability, i.e.P (TS∗S∗ <

∞)< 1. To do this, we will leverage the fact that a standardM/M/s queueing system withρ= λ
sµmin

=
λ(1+fsup)

s
> 1

is unstable, and hence, transient. We consider two states inthisM/M/s system: statey, with N̂ jobs in the system,

and statey+, with N̂ +1 jobs in the system. Because thisM/M/s system is transient, the time to first passage from

y+ to y satisfies the following:P (TM/M/s

y+y
<∞)< 1. Here we use the superscriptM/M/s to differentiate from the

first passage time of our delay dependentM/M(f)/s system,Txy.

We leverage the the preceding observation and decompose therecurrence timeTS∗S∗ into whether the next event is

an arrival or departure with the new state denoted byy+ andy−, respectively:

P (TS∗S∗ <∞) =
sµmin

λ+ sµmin

P (Ty−S∗ <∞)+
λ

λ+ sµmin

P (Ty+S∗ <∞)

≤
sµmin

λ+ sµmin

+
λ

λ+ sµmin

P (Ty+S∗ <∞)< 1

The last inequality comes from the observation that we started at stateS∗, an arrival occurred so we are now at start

y+ and we are considering the recurrence time to return to stateS∗. Now there areN̂ +1 jobs in the system and any

job that arrives to the system will see at leastN̂ ≥ Nfsup jobs in the system before the system hits stateS∗. If this

were not the case, the system will have already returned to stateS∗. Therefore, all new jobs will have service time

exponentially distributed with mean1+ fsup =1/µmin. Hence, the dynamics of ourM/M(f)/s system are identical

to theM/M/s system with arrival rateλ and service rateµmin during the trajectory to the first visit to stateS∗ from

statey+. Because theM/M/s system is transient, stateS∗ is also transient in ourM/M(f)/s system.

By Theorem 3.4 in Durrett (1996), all states in ourM/M(f)/s system are transient since the time to reach a

transient state (y ∈ S∗) is finite with non-zero probability for all states. Hence, theM/M(f)/s queue is unstable. ✷

Appendix C: A Markovian Model

For the sake of concreteness and simplicity of exposition wewill consider a very simplef(·). In particular, we assume

that the workload increase function,f(·), is defined as follows:

f(m) =

{

0, m< s;
k, m≥ s.

Hence, the mean service time of each job is1 if there are fewer thans jobs in the system upon arrival and1 + k

otherwise. This means any job which is delayed will have an increased service requirement.

Let X = (XN ,XD) be the system state whereXN is the number of jobs in the system who arrived with less than

s jobs currently in the system andXD is the number of jobs in the system who arrives withs or more jobs in the

system, and hence experiences an increase in service requirement. Note that due to the FCFS and non-preemptive

service discipline, ifXN > 0, then necessarily there are(XN ∧ s) jobs currently in service at rate1. The remaining

servers,(s−XN)
+, will be serving jobs at rate1

1+k
if any are available. Otherwise, they will idle. We can verify that

the Markov Property holds for our state as defined.

Proposition 2 An M/M(f)/s system withf(m) = k1{m≥s} can be represented as a Markovian system with state

X = (XN ,XD).
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PROOF: We show that the Markov Property holds for our system. We letX(i) = (XN (i),XD(i)) be the state at the

ith state transition. What’s left to show is that

P (X(i+1)= (xN , xD)|X(0),X(1), . . . ,X(i− 1),X(i))= P (X(i+1)= (xN , xD)|X(i))

We demonstrate this by considering the precise transition probabilities:

P (X(i+1) = (xN , xD)|X(0),X(1), . . . ,X(i− 1),X(i)= (x′
N , x

′
D))

=















































λ

λ+(x′

N
∧s)+

x′

D
∧(s−x′

N
)+

1+k

, if (xN , xD) = (x′
N +1, x′

D) andx′
N + x′

D <s;

λ

λ+(x′

N
∧s)+

x′

D
∧(s−x′

N
)+

1+k

, if (xN , xD) = (x′
N , x

′
D +1) andx′

N + x′
D ≥ s;

x′

N∧s

λ+(x′

N
∧s)+

x′

D
∧(s−x′

N
)+

1+k

, if (xN , xD) = (x′
N − 1, x′

D);

x′

D
∧(s−x′

N
)+

1+k

λ+(x′

N
∧s)+

x′

D
∧(s−x′

N
)+

1+k

, if (xN , xD) = (x′
N , x

′
D − 1);

0, otherwise.

(9)

= P (X(i+1)= (xN , xD)|X(i) = (x′
N , x

′
D))

It is clear that the transition probabilities depend only onthe current state and are independent of the past. ✷

For many otherf functions, the system will still be Markovian with an appropriately defined state space; however, the

size of the state space will grow rapidly with more complexf functions.

Appendix D: Proof of Theorem 2

We now proceed with the proof of our main result. The proof will examine the case of Theorem 1, which assumes that

the growth functionf is defined as:

f(m) =

{

0, m<N∗;
k, m≥N∗.

We note that the generalized result for Theorem 2 will followsimilarly. The only changes required are additional

notation and book keeping to keep track of each breakpoint inthe growth function,f . The proof will proceed in several

steps. Again we will refer to ourM/M(f)/s system as system 1 and anM/M/s system with arrival rateλ and service

rate1/(1+ k) as system 2.

Coupling: To begin we will construct a natural coupling between theM/M(f)/s andM/M/s systems above. In

particular, we assume that both systems see a common arrivalprocess. With an abuse of notation, let the workload

introduced by theith arriving job–equivalently, this is the service time as the service rates have been normalized to 1–

in the latter system beσi; the corresponding service time in the delay dependent system is then eitherσi = σi/(1+ k)

or σi = σi depending on whether the delay dependent system has low congestion (Nt−
i
<N∗) or is considered busy

(Nt
−

i
≥N∗) upon the arrival of theith job. Finally, we assume that both systems start empty. Nowlet τi (τ i) denote

the amount of time theith arriving job waits in the former (latter) system respectively before beginning service. We

have, as a consequence of our coupling, the following elementary result:

Proposition 3 τi ≤ τ i for all i. Moreover,Nt ≤N t for all t.

PROOF: We prove the first statement. Proceeding by induction observe that the statement is true fori= 1: τ1 = τ1 =

0. Assume the statement true fori= l− 1 and consideri= l. For the sake of contradiction assume thatτl > τ l. Since

the service discipline is FCFS in both systems, it follows that when jobl starts service in system 2:
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• There are at mosts− 1 jobs from among the firstl− 1 arriving jobs present in system 2.

• Simultaneously, atleasts jobs from among the firstl− 1 arriving jobs are still present in system 1 since jobl has

not yet started service in system 1.

Consequently, given the induction hypothesis and the fact that by our couplingσi ≤ σi for i=1,2, . . . , l− 1, there is a

job among the firstl−1 arrivals that finished service strictly earlier in system2 than in system1. This is a contradiction.

We have consequently established thatτi ≤ τ i for all i. The latter statement follows as a simple corollary. ✷

We next use the result above to construct a first upper bound. We have:

Proposition 4

σiτi +
1

2
σ2
i ≤ σiτ i +

1

2
σ2

i − 1
{

N t−
i
<N∗

} 1

2
σ2

i

(

2k+ k2

(1+ k)2

)

PROOF: We begin with two elementary observations. First,

σi ≤ σi

always under our coupling and, in particular, ifN t−
i
≥N∗. Further

σi ≤
σi

1+ k

if N t−
i
<N∗. This follows from the fact thatN t >Nt (Proposition 3), so thatN t−

i
<N∗ impliesNt−

i
<N∗. It follows

that

σiτi +
1

2
σ2
i ≤ σiτ i +

1

2
σ2
i

≤ σiτ i + 1
{

N t−
i
≥N∗

} 1

2
σ2

i + 1
{

N t−
i
<N∗

} 1

2

σ2
i

(1+ k)2

= σiτ i +
1

2
σ2

i − 1
{

N t−
i
<N∗

} 1

2
σ2

i

(

2k+ k2

(1+ k)2

)

The first inequality follows from the fact thatσi ≤ σi (by our coupling) andτi ≤ τ i (Proposition 3). The second

inequality follows from the two observations we made at the outset. ✷

We next connect this result to the average workload in both systems (over a finite interval). LetN(T ) be the number

of jobs that have arrived duringt∈ [0, T ]. We have:

Proposition 5

1

T

∫ T

0

Wtdt≤
1

T

∫ T

0

W tdt−
1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

} 1

2
σ2

i

(

2k+ k2

(1+ k)2

)

+
W T

T

PROOF: Notice that the total workload contributed by jobi over time in system 1 is given by the quantityσiτi +

1
2
σ2
i where the first term in the sum corresponds to the workload contributed while jobi waits, and the latter term

corresponds to the workload contributed while jobi is in service. We consequently have:

1

T

∫ T

0

Wtdt≤
1

T

N(T)
∑

i=1

(

σiτi +
1

2
σ2
i

)

≤
1

T

N(T)
∑

i=1

(

σiτ i +
1

2
σ2

i

)

−
1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

} 1

2
σ2

i

(

2k+ k2

(1+ k)2

)

=
1

T

∫ T

0

W tdt+
W T

T
−

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

} 1

2
σ2

i

(

2k+ k2

(1+ k)2

)
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✷

Note that the last equality comes from the fact that not all ofthe work which arrives between[0, T ] is completed by

timeT ; henceW̄T remains. What remains is to take limits on both sides of the inequality established in the previous

result. To that end we begin with a few intermediary results.First, we provide a few definitions. We letE[W ] and

E[W ] be the expected work in ourM/M(f)/s system and anM/M/s system withρ= λ(1+k)
s

, respectively.

Lemma 1 limT→∞
1
T

∫ T

0
Wtdt=E[W ]

PROOF: This result follows directly from the renewal reward theorem and the fact that the system is stable. The

reward function is the cumulative work and is defined as:R(t) =
∫ t

0
Wτdτ ✷

Lemma 2 limT→∞
1
T

∫ T

0
W tdt=E[W ]

PROOF: Again, this result follows directly from the renewal reward theorem and the fact that the system is stable.

The reward function is the cumulative work and is defined as:R(t) =
∫ t

0
W τdτ ✷

Lemma 3 limT→∞
1
T

∫ T

0
1{N t <N∗}dt= P (N <N∗)

PROOF: Again, this result follows directly from the renewal reward theorem and the fact that the system is stable. The

reward function is the total time the number of jobs in the system is less thanN∗ and is defined as:R(t) =
∫ t

0
1{Nτ <

N∗}dτ ✷

Lemma 4 limT→∞
WT

T
= 0

PROOF: This follows from the fact that the system is stable and thusrecurrent. If we consider thatWT is upper

bounded by the amount of work that arrives between[T ∗
0 (T ), T ], whereT ∗

0 (T ) = sup{t < T :Wt = 0} is the last time

beforeT , the system was empty, then the fact that the system is recurrent establishes thatP (T − T ∗
0 (T )<∞) = 1.

Assuming a finite first moment forσi gives the desired result. ✷

We next establish a limit for the second term on the right handside of the inequality in Proposition 4.

Proposition 6

lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

} 1

2
σ2

i

(

2k+ k2

(1+ k)2

)

= λ(2k+ k2) lim
T→∞

1

T

∫ T

0

1
{

N t <N∗
}

dt

PROOF: Let use denote, for notational convenience,

1

2
Eσ2

i

(

2k+ k2

(1+ k)2

)

=2k+ k2 , α.

and
1

2

(

2k+ k2

(1+ k)2

)

, β.

We begin with observing that

lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

α= λα lim
T→∞

1

T

∫ T

0

1
{

N t <N∗
}

dt (10)
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by PASTA. Next, observe that

E

[

lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t
−

i
<N∗

}

α

]

= lim
T→∞

1

T
E

[

N(T)
∑

i=1

1
{

N t
−

i
<N∗

}

α

]

= lim
T→∞

1

T

N(T)
∑

i=1

E
[

1
{

N t−
i
<N∗

}

α
]

= lim
T→∞

1

T

N(T)
∑

i=1

E
[

1
{

N t−
i
<N∗

}]

Eσ2
i β

= lim
T→∞

1

T

N(T)
∑

i=1

E
[

1
{

N t−
i
<N∗

}

σ2
i

]

β

= lim
T→∞

E

[

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i

]

β

(11)

The first equality above follows by dominated convergence (using the dominating random variableN(T )/T ). The

fourth equality (which is crucial) follows since1
{

N t−
i
<N∗

}

andσ2
i are independent random variables. Recall these

are defined for the standardM/M/s system. Now, sincelimT→∞
1
T

∫ T

0
1
{

N t <N∗
}

dt is a constant (by Lemma 3),

(10) and (11) together yield

lim
T→∞

E

[

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i

]

β = λα lim
T→∞

1

T

∫ T

0

1
{

N t <N∗
}

dt.

But from Lemma 5, which will come in Appendix D.1

lim
T→∞

E

[

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i

]

β =E

[

lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i

]

β

= lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i β

Using Lemmas 1 and 2 to replace the limit with expectations gives the desired result. This completes the proof.✷

D.1. Existence of a Limit

Thepartial busy periodof anM/G/s queue is defined as the time between when an arriving customersees an empty

system and the first time after that at which a departing customer sees an empty system. We will use the following

result:

Theorem 3 (Ghahramani (1986)) Themth moments of the partial busy period of anM/G/s queue are finite if and

only if the service time distribution has finitemth moments.

We denote byTm the lengthmth partial busy period. We can now establish:

Lemma 5 Assume the service time distribution has finite fourth moments. Then,

lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i

exists and equals a constant. Further,

lim
T→∞

E

[

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i

]

β =E

[

lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i

]

β
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PROOF: We first establish that

lim
T→∞

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i β

exists and is constant. To see this denote by1 = j1 < j2 < j3 . . . the arrivalsi for whichN t−
i
= 0. Observe that the

random variables

Xm ,

jm+1−1
∑

i=jm

1
{

N t−
i
<N∗

}

σ2
i

are independent random variables. Moreover,
∑jm+1−1

i=jm
1
{

N t−
i
<N∗

}

σ2
i ≤ s2T 2

m. Note that since we have assumed

the service time distribution has finite fourth moments, we haveET 4
m < ∞. Now let M(T ) = sup{l|Ajl ≤ T };

M(T )→∞. The strong law of large numbers then implies that

lim
T→∞

∑M(T)
i=1 Xm

M(T )

exists and is a constant a.s. Further, a simple argument using Chebyshev’s inequality and the Borel Cantelli lemma

implies that

lim
T→∞

XM(T)

T
=0 a.s.

Finally, the elementary renewal theorem implies thatlimT→∞
M(T)

T
= 1/ET1. But,

∑M(T)
i=1 Xm

M(T )

M(T )

T
−

XM(T)

T
≤

1

T

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i ≤

∑M(T)
i=1 Xm

M(T )

M(T )

T
+

XM(T)

T

so that taking limits throughout and employing the above observations yields the first conclusion of the Lemma.

Now to establish the second conclusion, observe that

N(T)
∑

i=1

1
{

N t−
i
<N∗

}

σ2
i ≤

N(T)
∑

i=1

σ2
i

and that

E

N(T)
∑

i=1

σ2
i =EN(T )Eσ2

i = λTEσ2
i

where the first equality is Wald’s identity. Consequently, we may apply the conclusion of the first part of the theorem

along with the dominated convergence theorem to establish the second conclusion of the theorem.

✷


	Introduction
	Related Literature

	Empirical Motivation: Model and Analysis
	Data
	Estimation
	Econometric Challenges
	Estimation Approach

	Empirical Results
	Robustness Checks and Discussion


	Incorporating the Delay Effect: M/M(f)/s Model
	Stability of an M/M(f)/s System

	Approximating the Workload Process
	An Upper bound for a Step Function
	A General Upper Bound for an M/M(f)/s System

	Sensitivity Analysis of the Bound
	Numerical Comparisons
	A Single Step Growth Function
	A Multi-step Growth Function
	Realized waiting times

	Conclusions and Future Directions
	Supplementary Information for Empirical Analysis
	Miscellaneous Proofs
	A Markovian Model
	Proof of Theorem 2
	Existence of a Limit


