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systematic admission criteria, largely because the impact of ICU admission on patient outcomes has not

been well quantified. This makes evaluating the performance of candidate admission strategies difficult. Using
a large patient-level data set of more than 190,000 hospitalizations across 15 hospitals, we first quantify the cost
of denied ICU admission for a number of patient outcomes. We use hospital operational factors as instrumental
variables to handle the endogeneity of the admission decisions and identify important specification issues that
are required for this approach to be valid. Using the quantified cost estimates, we then provide a simulation
framework for evaluating various admission strategies’ performance. By simulating a hospital with 21 ICU beds,
we find that we could save about $1.9 million per year by using an optimal policy based on observables designed
to reduce readmissions and hospital length of stay. We also discuss the role of unobserved patient factors, which
physicians may discretionarily account for when making admission decisions, and show that including these
unobservables could result in a more than threefold increase in benefits compared to just optimizing the policy
over the observable patient factors.
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1. Introduction
Intensive care units (ICUs) are specialized inpatient
units that provide care for the most critically ill
patients. They are extremely expensive to operate,
consuming 15%–40% of hospital costs (Brilli et al.
2001, Halpern et al. 2007, Reis Miranda and Jegers
2012) despite comprising less than 10% of the inpa-
tient beds in the United States (Halpern et al. 1994,
Rainey et al. 1994). Most hospital ICUs operate near
full capacity (Green 2003, Pronovost et al. 2004), mak-
ing ICU beds a limited resource that must be rationed
effectively. In this work, we examine what could be
changed to improve the ICU admission decision pro-
cess, how to generate the necessary information to
help to make these decisions, and how these decisions
should vary under different scenarios.

The obvious ICU admission criteria are that very
sick and unstable patients should be treated in the
ICU, whereas stable patients do not require ICU care.
However, identifying the most unstable patients is
a complex task that is subject to high variability,
depending on the training and experience of the par-
ticular physician on staff (Fisher et al. 2004, Mul-
lan 2004, O’Connor et al. 2004, Weinstein et al. 2004,
Boumendil et al. 2012, Chen et al. 2012). Although ICU
admission, discharge, and triage standards have been
established by a critical care task force (Task Force of
the American College of Critical Care Medicine, Soci-
ety of Critical Care Medicine 1999), they are subjec-
tive in nature; the task force even admits that “[t]he
criteria listed, while arrived at by consensus, are by
necessity arbitrary” (p. 636). Indeed, the medical com-
munity has started to point to a need to develop
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systematic criteria for ICU care (Kaplan and Porter
2011, Chen et al. 2013), claiming that a primary reason
for this gap is the general lack of objective metrics to
characterize the benefits of different practices.

Our work takes an important step toward address-
ing this issue by estimating the cost of denied ICU
care for all medical patients admitted to the hospi-
tal through the emergency department (ED). We focus
on patients admitted through the ED because their
care is the most likely to be affected by not only each
patient’s severity of illness but also hospital opera-
tional factors (due to the typical uncertainty in the
volume and clinical severity of incoming patients in
the ED). For ethical reasons, it is not possible to run
a field experiment to randomize ICU treatment to
patients to estimate this cost. Hence, we utilize obser-
vational data—as was done in prior research to mea-
sure the impact of ICU care on patient outcomes (e.g.,
Sprung et al. 1999, Shmueli et al. 2004, Simchen et al.
2004, Simpson et al. 2005, Iapichino et al. 2010, Kc and
Terwiesch 2012, Louriz et al. 2012)—from 15 hospitals
covering more than 190,000 hospitalizations, of which
we consider the admission decisions of over 70,000
patients.

Working with observational data presents an im-
portant econometric challenge: The decision to admit
a patient to the ICU is endogenous. Specifically, there
are factors related to patients’ clinical severity that
the deciding physicians take into account but that are
unobserved in the data; such unobservables will be
positively correlated with the ICU admission deci-
sion and adverse patient outcomes, generating a pos-
itive bias in the estimate of the causal effect of ICU
admission. Prior studies by Shmueli et al. (2004) and
Kc and Terwiesch (2012) propose using the ICU con-
gestion level as an instrumental variable (IV), but
we argue that using only this variable might violate
the required exogeneity assumption of a valid IV. To
be a valid IV, ICU congestion should affect patient
outcomes only through its effect on the ICU admis-
sion decision, but since hospital resources are shared
among patients, a congested ICU could directly impact
the patient’s recovery and therefore patient outcomes.
Hence, in addition to using ICU congestion as an
IV, we utilize our rich data to measure occupancy
information on every unit that each patient visits
and thereby separate the effect of ICU congestion on
the ICU admission decision from its direct effect on
patient outcomes. Many U.S. hospitals have started
to collect data similar to what we use in this work,
so the proposed methodology is applicable in other
hospital settings.

Our analysis shows that ICU admission can reduce
adverse patient outcomes in the range of 30%–75%,
depending on the outcome. We also find that the

impact of ICU admission is highly variable for differ-
ent patients and outcomes, which supports the impor-
tance of understanding the varying impacts when
making admission decisions. Moreover, the fact that
our study covers 15 hospitals of different sizes, spe-
cialties, and locations helps to validate the robustness
and generalizability of our results.

We use the estimated impact of ICU care on patient
outcomes to compare the performance of various ICU
admission strategies that use different types of infor-
mation. We first estimate the current admission cri-
teria of a single, representative hospital out of the
15 hospitals represented by our data. Note that the
current admission criteria utilize both observed patient
measures (i.e., recorded in our data set) and unob-
served measures (i.e., not recorded in our data set
but that physicians can potentially notice). These
unobservables, such as the patient’s cognitive state,
have the potential to provide more information about
the impact of ICU admission. Moreover, how these
observable and unobservable factors are used to make
an admission decision is subject to the physicians’
discretion.

We also consider an objective and clearly defined
policy that is optimized based on observed metrics
alone. Via simulation, we find that using this optimal
policy instead of the estimated current policy at the
hospital that we selected can translate into savings of
patient bed hours on the order of 2.2 years, equiv-
alent to $1.9 million. We also show that this benefit
is approximately five times larger than the benefit of
adding an additional ICU bed, excluding the costs of
maintaining the extra bed.

Even though our proposed optimal policy outper-
forms the estimated current policy in terms of cer-
tain patient outcomes that we consider, it does not
do so for others; the proposed optimal policy does
not account for valuable patient information that is
unobserved in the data but that can be taken into
account in the admission policy currently used by
physicians. For this reason, we also simulate an opti-
mal policy that incorporates both observed and unob-
served information. We find that doing so improves
patient outcomes unilaterally and results in a more
than threefold increase in benefits compared to just
optimizing the policy over the observables. We find
similar results when we simulate the aforementioned
policies at other hospitals represented by our data, but
we emphasize that our findings might not be univer-
sal; to improve the ICU admission process at a specific
hospital, one should utilize our estimation and simu-
lation framework to assess the target hospital in ques-
tion. Doing so provides evidence to help to convince
managers and clinicians, who may often be reluctant
to alter their current practices, of the potential benefits
of one policy over the others.
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In summary, we make the following key contribu-
tions:

• Evaluation of patient outcomes: To evaluate the
performance of various admission policies, we must
quantify the impact of ICU admission. Using a large
patient-level data set of more than 190,000 hospital-
izations across 15 hospitals, we quantify the cost of
denied ICU admission for a number of patient out-
comes, including hospital length of stay (LOS), hos-
pital readmission, and patient transfers to higher lev-
els of care. Although our estimation approach using
instrumental variables has been used in previous
work (Shmueli et al. 2003 and Kc and Terwiesch 2012),
we make important methodological contributions by
identifying key control variables that are required for
the validity of this IV estimation.

• Evaluation and comparison of ICU admissions: Based
on the estimates from our econometric analysis, we
are able to calibrate a simulation model, which we
use to compare the performance of various admis-
sion strategies. We specifically compare the derived
optimal admission policies with the estimated current
hospital admission policies and find that in some cir-
cumstances, it is useful to base admission decisions
on observed metrics of patient risk alone, whereas
in other scenarios, unobservables can provide valu-
able information. We are also able to quantify the
benefit of unobserved information by examining how
much patient outcomes improve when optimizing the
admission decision based on both unobserved and
observed measures versus observed measures alone.

The rest of this paper is organized as follows. We
conclude this section with a brief literature review.
Section 2 describes the context of the problem and
the data. Section 3 develops our econometric model
to estimate the effect of ICU admission on patient
outcomes, and Section 4 provides the estimation
results. Section 5 uses the empirical results from §4
to develop a simulation study to compare the per-
formance of hospitals’ current ICU admission poli-
cies with alternative approaches. Section 6 summa-
rizes our main contributions and provides guidelines
for future research.

1.1. Literature Review
A number of works in healthcare operations manage-
ment (OM) study the effect of workload and conges-
tion on healthcare productivity. On the empirical side,
Kc and Terwiesch (2009) show that hospital conges-
tion can accelerate patient transport time within the
hospital, and Kuntz et al. (2014) examine the impact
of hospital load on in-hospital mortality using the
idea of safety tipping points. Jaeker and Tucker (2013)
report that the LOS depends on current workload as
well as the predictability and the pressure level of the
incoming workload, and Batt and Terwiesch (2014)

examine workload-dependent service times in the ED.
Green et al. (2013) find that nurse absenteeism rates
in an ED are correlated with anticipated future nurse
workload levels, whereas Ramdas et al. (2012) and Kc
and Staats (2012) study the impact of surgeon expe-
rience on outcomes. In contrast to these works, we
specifically analyze the ICU admission decision.

A more specific area of interest within this broader
space is studying adaptive mechanisms for manag-
ing ICU capacity. For instance, when a hospital does
not have sufficient downstream bed capacity, surgi-
cal cases may be either delayed or canceled (Cady
et al. 1995). In particular, when a new patient requires
ICU care but there is no available bed, his or her care
may be delayed, and the patient may be boarded in
another unit, such as the ED or the post-anesthesia
care unit (Ziser et al. 2002, Chalfin et al. 2007). An
econometric study by Louriz et al. (2012) shows that
a full ICU is the main factor associated with late ICU
admission. Furthermore, Allon et al. (2013) show that
ED boarding caused by a congested ICU is an impor-
tant factor driving ambulance diversion.

Speeding up the treatment of patients in a busy
ICU is another mechanism that has received consid-
erable attention from the OM and medical communi-
ties. Anderson et al. (2011) investigate daily discharge
rates from a surgical ICU at a large medical center and
find higher discharge rates on days with high utiliza-
tion and more scheduled surgeries. Kc and Terwiesch
(2012) study the effect of the ICU occupancy level on
discharge practices in a cardiac surgical ICU and find
that congested ICUs tend to speed up the treatment of
their patients and that these affected patients are read-
mitted to the ICU more frequently. Admission and
discharge decisions are fundamentally very different,
utilizing different information and criteria. Hence, the
detailed understanding of discharge decision making
established by Kc and Terwiesch (2012) cannot pro-
vide insight into the admission decision.

Indeed, another method of managing ICU capacity
is admission control, which is the topic of this paper.
During periods of high congestion, some patients who
may benefit from ICU care might be denied access
because the ICU is full or because all available beds
are being reserved for more severe incoming patients.
Studies have confirmed that ICU congestion is an
important factor affecting ICU admission decisions
(Singer et al. 1983, Strauss et al. 1986, Vanhecke et al.
2008, Robert et al. 2012). This was observed not only
in U.S. hospitals but also by researchers in many inter-
national hospitals: Escher et al. (2004) in Switzerland;
Azoulay et al. (2001) in France; Shmueli et al. (2004),
Shmueli and Sprung (2005), and Simchen et al. (2004)
in Israel; and Iapichino et al. (2010) in seven countries,
including Italy, Canada, and the United Kingdom.
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Table 1 Description of the Patient Characteristics and Seasonality Control Variables (Labeled Xi in
Our Econometric Models) Used to Predict Patient Outcomes

Variable Description and coding

Age Patient age less than 39 was coded 1, 40–64 was coded 2, 65–74 was coded 3
(Medicare starts at 65), 75–84 was coded 4, and above 85 was coded 5

Gender Females were coded 1 and males 0
Severity of illness score 12

LAPS
Laboratory-based Acute Physiology Score (Escobar et al. 2008); measures

physiologic derangement at admission and is mapped from 14 laboratory
test results, such as arterial pH and the white blood cell count, obtained in
the 24 hours preceding hospitalization to an integer value that can range
from 0 to a theoretical maximum of 256 (the maximum LAPS value in our
data set was 166); coded as piecewise linear spline variables with knots at
39, 69, and 89

Severity of illness score 22
P̂ 4Mortality 5

An estimated probability of mortality (Escobar et al. 2008); predictors include
the LAPS and Comorbidity Point Score (which measures the chronic illness
burden and is based on 41 comorbidities; comorbidities are chronic
diseases, such as diabetes, that may complicate patient care and recovery);
coded as piecewise linear spline variables with knots at 0.004, 0.075, and 0.2

Admitting diagnosis Grouped into one of 44 broad diagnostic categories, such as pneumonia;
categorical variable to denote each diagnosis

Month/Time/Day Month/time/day of week of ED admission; categorical variables

Closest to our work is that of Shmueli et al. (2003),
which examines the impact of denied ICU admis-
sion on mortality among patients who have been
referred for ICU admission. They use an IV approach
to measure how ICU admission decreases mortality
for patients of different levels of severity of illness
and suggest possible ICU admission criteria. Their
study cannot answer our research question for the
following four reasons. First, Shmueli et al. (2003)
use APACHE II—one of several ICU scoring sys-
tems whose scores are generally assigned based on
data available within the first 24 hours of an ICU
stay (Strand and Flaatten 2008)—to control for patient
severity. APACHE II is not available for a typical
ED patient and hence, as argued by Franklin et al.
(1990), cannot be used to control for patients’ sever-
ity of illness when deciding which (of all) ED patients
should be admitted to the ICU.1 In contrast, the hospi-
tals that we analyze use uniform metrics of patients’
severity of illness that are available for all admit-
ted patients: the Laboratory-based Acute Physiology
Score (LAPS) and the estimated probability of mortal-
ity. (See Table 1 for details. Previous work by Van Wal-
raven et al. 2010 shows that the LAPS is a reasonable
predictor of patient LOS and mortality.) We utilize
these two measures to successfully control for patient

1 In fact, all of the aforementioned studies on ICU admission deci-
sions control for patients’ severity of illness using measures that
are available only after patients are admitted to an ICU. Examples
include the Acute Physiology and Chronic Health Evaluation II
(APACHE II) score (Shmueli et al. 2004, Shmueli and Sprung 2005),
the Simplified Acute Physiology Score II (SAPS II) (Iapichino et al.
2010, Simchen et al. 2004), the Simplified Therapeutic Intervention
Scoring System (TISS) (Simchen et al. 2004), and the Mortality Pre-
diction Model (MPM) (Louriz et al. 2012). See Strand and Flaatten
(2008) for a review of these measures.

severity in our study. Second, these authors’ ICU
admission criteria cannot be generalized to the (much
larger) cohort of patients admitted from the ED. (In
their study, 84% of patients were admitted to the ICU,
whereas in our sample, only 9.9% were admitted.) In
particular, the benefit of ICU care may be exagger-
ated in the work of Shmueli et al. (2003) because they
only consider patients whose physicians have already
determined that they require ICU care. Third, there is
likely substantial variation in which patients will be
recommended for ICU admission across hospitals and
physicians because of heterogeneity in physicians’
backgrounds, training, and opinions (Mullan 2004,
Weinstein et al. 2004, Fisher et al. 2004, O’Connor
et al. 2004). In a later study, Shmueli and Sprung
(2005) explicitly state that the admission policy in
the ICU that they are studying does not maximize
the benefits of the ICU and that “the discrepancies
actually originate from [an] inappropriate referral pol-
icy” (p. 71). In contrast, our study provides criteria
to use before any subjectivity in the preselection pro-
cess can play a role. Fourth, we make important con-
tributions by studying a number of different patient
outcomes beyond mortality. This becomes important
when the impact of ICU admission on mortality is
similar across many patients, whereas the impact is
highly variable for other outcomes, such as LOS and
readmission. Accurately quantifying these effects is
necessary when determining the optimal ICU admis-
sion decision.

When deriving the optimal admission policies that
utilize our quantified estimates of the benefits of ICU
admission, we draw upon the rich literature on the
stochastic knapsack problem: see Miller (1969), Weber
and Stidham (1987), Veatch and Wein (1992), Glasser-
man and Yao (1994), Papastavrou et al. (1996), and
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references therein. Specifically, we use a special case
of the stochastic knapsack problem studied by Alt-
man et al. (2001) and leverage some results from that
work to characterize the optimal policy in our setting.

As we evaluate alternative admission policies in
§5, we also discuss the role of unobserved met-
rics that are accounted for by the physician in the
patient admission decision. The value of discretionary
criteria (or experts’ input) in decision making has
started attracting interest in other areas of operations
management (e.g., see Anand and Mendelson 1997,
Osadchiy et al. 2013, Phillips et al. 2015). To the best
of our knowledge, our study is the first to address
this issue in the healthcare operations literature.

2. Setting and Data
We employ a large patient data set comprising
nearly 190,000 hospitalizations at 15 hospitals over
the course of one and a half years, collected using a
comprehensive electronic medical records system. The
hospitals are within an integrated healthcare delivery
system, where insurers and providers fall under the
same umbrella organization. The majority of patients
treated within the system’s hospitals are insured via
this same organization, which allows us to ignore the
potential impact that insurance status may have on
the care pathways of individual patients. However,
we expect that our results can be extended to other
hospitals that treat patients with heterogeneous insur-
ance coverage.

In these 15 hospitals, the inpatient units can be
broadly divided according to their varying nurse-to-
patient ratios and treatment and monitoring levels.
Generally, the ICUs have a nurse-to-patient ratio of
1:1 to 1:2. There are two other kinds of inpatient
units: general wards, with a ratio of 1:3.5 to 1:4, and
intermediate care units, with a ratio of 1:2.5 to 1:3,
though not all hospitals have intermediate care units.
Although there is some differentiation within each
level of care, the units are relatively fungible, so if the
medical ICU is very full, a patient may be admitted
to the surgical ICU instead.

We focus on the ICU admission decision for
patients who were admitted to a medical service at
the hospital through the ED for the reasons discussed
in the introduction. In our data set, about 55% (52%)
of patients admitted to the hospital (ICU) were admit-
ted via the ED to a medical service. The admis-
sion process works as follows. If an ED physician
believes that a patient is eligible for ICU admission,
an intensivist will be called to the ED for consultation.
Although the intensivist makes the ultimate decision
about whether to admit the patient from the ED, the
decision is typically based on a negotiation between
the two physicians as to what the individual patient’s

Table 2 Summary Statistics of Patient Characteristics, Grouped
by Whether Their First Inpatient Unit Was an ICU vs.
Non-ICU Bed

Non-ICU ICU All

No. of obs. 63,197 6,936 70,133
Selected X covariates

Age 6703 (17.8) 6400 (18.0) 6700 (17.8)
LAPS 2305 (18.1) 3601 (25.2) 2407 (19.3)
P̂ 4Mortality5 00044 (0.067) 00095 (0.131) 00049 (0.077)
Female 0.546 0.495 0.541

Z covariates
ICUBusy 0.096 0.039 0.091
RecentDischarge 00033 (0.048) 00040 (0.052) 00034 (0.049)
RecentAdmission 00009 (0.022) 00009 (0.021) 00009 (0.022)
LastAdmitSeverity 0.341 0.311 0.338

Note. Average and standard deviations (in parentheses for continuous vari-
ables) are reported.

needs are and what resources (e.g., ICU versus non-
ICU beds) are available.

The patient-level information in our data set in-
cludes patient age, gender, admitting diagnosis, hos-
pital, and two severity-of-illness scores. This informa-
tion is described in detail in Table 1. Table 2 provides
summary statistics for the covariates for all of the
patients in our sample as well as for when patients
are grouped by whether they were admitted to the
ICU or not. In addition, we collect operational data
that include every unit that each patient visits, along
with unit admission and discharge dates and times.
Since we have an inpatient data set, we do not have
information on patients who were discharged directly
from the ED.

2.1. Data Selection
We now describe the sample selection procedure for
the data used in this study, as depicted in Figure 1.
The hospitals represented by our data set have het-
erogeneously sized inpatient units. Because defining
congestion in a small ICU is challenging and because
different mechanisms might be used to allocate beds
in small ICUs, we consider only the patients who
were treated in hospitals with ICUs of 10 or more
beds. There are 15 such hospitals, and among them,
the maximum ICU occupancy varied from 10 to 44.
The average percentage of ICU beds among inpatient
beds was 12.9%, with a minimum of 9.3% and a max-
imum of 21.5%.

We utilize patient flow data from all 192,409 patient
visits at the selected 15 hospitals (indicated by one
asterisk in Figure 1) to derive the capacity and
instantaneous occupancy level of each inpatient unit.
Because our data set consists of patients admitted and
discharged within a 1.5-year time period, we restrict
our study to the 12 months in the center of the period
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Figure 1 Selection of the Patient Sample

to avoid censored estimation of capacity and occu-
pancy. We exclude patients who experienced interhos-
pital transport, as it is difficult to determine whether it
was due to medical or personal needs. For the reasons
explained in the introduction, we focus on the patients
who were admitted via the ED to a medical service.
The sizes of the inpatient units were quite stable over
our study period. However, four hospitals underwent
a small change in the capacity of the intermediate care
unit, so we exclude patients who were hospitalized
during these rare occurrences of intermediate care unit
reorganization (such as reducing the number of beds).
Thus, our final data set consists of 70,133 hospitaliza-
tions, as indicated by two asterisks in Figure 1.

2.2. Measuring Patient Outcomes
To quantify the benefit of ICU care, we focus on four
types of patient outcomes, whose summary statis-
tics are provided in Table 3: (1) in-hospital death
(Mortality), (2) hospital readmission (Readmit), (3) hos-
pital LOS (HospLOS), and (4) transfer up to a higher
level of care (TransferUp). Mortality, Readmit, and
HospLOS are fairly standard patient outcomes used in
the medical and OM communities (Iezzoni et al. 2003,

Table 3 Summary Statistics for the Patient Outcomes

Outcome n Mean Std. dev. Median

Mortality 70,133 0004 — —
Readmit—two weeks 67,087 0010 — —
HospLOS (days) 70,133 309 4.9 3.0
TransferUp 68,200 0003 — —

Kc and Terwiesch 2009). We consider one additional
measure of patient outcome, TransferUp, for the fol-
lowing reason. Typically, a patient will be transferred
to an inpatient unit with a lower level of care or will
be discharged from the hospital as his health state
improves. In contrast, being transferred up to the ICU
can be a sign of physiologic deterioration, and such
patients typically exhibit worse medical conditions
(Luyt et al. 2007, Escobar et al. 2011). Accordingly,
a TransferUp event is defined as a patient’s transfer
to the ICU from an inpatient unit with a lower level
of care.2 Note that patients who are admitted to and
directly discharged from the ICU can never experi-
ence this event, so we study TransferUp over the sub-
set of patients who visited the general ward at least
once during their hospital stay.

Defining readmission requires specifying a max-
imum elapsed time between consecutive hospital
discharges and admissions. As this elapsed time
increases, it becomes less likely that the complica-
tions were related to the care received during the ini-
tial hospitalization. Hence, based on discussions with
doctors, we define a relatively short time window for
hospital readmission: within the first two weeks fol-
lowing hospital discharge. When analyzing Readmit,
we do not include patients with in-hospital death, as
they could not be readmitted.

We use HospLOS as a measure of the time from
admission to the first inpatient unit until hospital
discharge, excluding the ED boarding time. A com-
plication in analyzing HospLOS is that its histogram
reveals “spikes” every 24 hours. This is because of
a narrow time window for hospital discharge: more
than 60% of the patients were discharged between
10 a.m. and 3 p.m., whereas admission times were less
concentrated and demonstrated a markedly different
distribution (a similar issue was reported by Armony
et al. 2010 and Shi et al. 2015 using data from other
hospitals). To avoid this source of measurement error,
we measure HospLOS as the number of nights that the
patient stayed in the hospital. In studying HospLOS,
we include patients who died during their hospital
stay. The results are similar if we exclude patients
with in-hospital death.

2 Durbin and Kopel (1993) show that ICU readmission, which
qualifies as a TransferUp event, leads to higher mortality and a
longer LOS.
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3. Measuring the Impact of ICU
Admission on Patient Outcomes

In this section, we study how access to ICU care
affects patient mortality, readmissions, transfer-up
events, and hospital LOS. Section 3.1 develops an
econometric model to measure the impact of ICU
care on these outcomes, in which the main challenge
is to account for the endogeneity in ICU admission
decisions. Section 3.2 develops an estimation strat-
egy using instrumental variables (IVs) to address the
challenge. Section 3.3 describes our final estimation
models.

3.1. Econometric Model for Patient Outcomes
An ideal thought experiment to examine the implica-
tions of ICU admission for patient outcomes would be
randomizing patient allocation to the ICU and non-
ICU units, regardless of the severity of their condition.
Of course, such an experiment would be impossible
in practice because of ethical concerns. This limits
us to working with observational data, which brings
important challenges to the estimation, as we now
describe.

Our unit of observation is a hospital visit by a
patient, indexed by i. Let yi denote a measure cap-
turing a patient outcome of interest during this visit
(e.g., HospLOSi). There is extensive work in the med-
ical literature that provides several patient’s sever-
ity of illness measures that are useful in predicting
patient outcomes. For example, Escobar et al. (2008)
and Liu et al. (2010) illustrate how clinical severity
measures based on automated laboratory and comor-
bidity measures can be used to successfully predict
in-hospital mortality and hospital LOS. Let Xi denote
those clinical severity factors as well as patient char-
acteristic and seasonality controls that are observed in
the data (see Table 1 for a detailed description of Xi).
We also control for hospitals and let �h4i5 denote the
coefficients for a set of hospital indicator variables,
where h4i5 is patient i’s hospital. Our main hypothe-
sis is that ICU treatment has a causal effect on patient
outcomes. Accordingly, we let Admiti = 1 if patient i
is admitted to the ICU and zero otherwise. We model
the patient outcome yi as a random variable with
distribution f 4yi � �11�21Admiti1Xi1�h4i55, where the
parameter �1 captures the effect of ICU admission and
�2 measures the effect of the observable characteris-
tics Xi on the patient outcome. This distribution could
be given by a model of the following form:

log4yi5= �1Admiti +Xi�2 +�h4i5 + �i1 (1)

with the error term �i following a normal distribution
so that yi is log-normally distributed. In this example,
we have a linear regression with Gaussian errors, but
our framework allows for more general specifications
(e.g., binary patient outcomes).

Figure 2 Relationships Between the ICU Admission Decision, Patient
Outcome, and Observed/Unobserved Severity of Illness

Observed severity and
seasonality factors (xi),
hospital controls (�h(i))

Unobserved severity and
operational factors (�i)

ICU admission
decision
(Admiti)

Patient
outcome (yi)

Average occupancy level
of the inpatient units

that the patient visited
(AvgOccVisitedi)

ICUBusyi,
RecentDischargei,
RecentAdmissioni,
LastAdmitSeverityi

Note. The instrumental variables used to account for the endogeneity of the
admission decision (Admit i ) are shown in the bottom left box.

The linear regression example in (1) is useful to illus-
trate the main estimation challenge. A naive approach
to estimate the effect of ICU admission on yi is to
estimate the regression model (1) via ordinary least
squares (OLS) and to interpret the estimate of �1 as the
causal effect of ICU admission on the outcome. This
approach ignores the fact that the admission decisions
are endogenous; that is, aspects of patient severity that
are unobservable in the data (e.g., the patient’s cog-
nitive state) are likely to affect admission decisions.
Figure 2 illustrates this endogeneity issue in further
detail. The term �i represents clinical severity char-
acteristics that are unobserved in the data but that
are considered by physicians when making the ICU
admission decision. As such, both admission decisions
and patient outcomes are affected by Xi and �i. Since �i
is absorbed as part of the error term of model (1),
the covariate Admiti is positively correlated with �i,
therefore violating the strict exogeneity assumption
required for consistent estimation through OLS. This
endogeneity problem could introduce a positive bias
in the estimate of the effect of ICU admission on
patient outcomes, underestimating the value of ICU
care (because we expect �1 to be negative).

An alternative is to use instrumental variables esti-
mation to obtain consistent estimates of this linear
regression model. We propose using hospital opera-
tional factors as IVs and describe and validate our
choices in the next section.

3.2. Instrumental Variables
A valid instrumental variable, denoted by Z, needs
to satisfy the following two conditions: (1) it has to
influence the endogenous variable, which is the ICU
admission decision, or Admiti, in our case, and (2) it
has to be exogenous, meaning that it cannot affect
the patient outcome measure yi other than through
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the admission decision. We discuss several potential
instruments in this section.

When deciding whether to admit an ED patient to
the ICU, hospitals need to evaluate the benefit of ICU
treatment for this focal patient versus the opportu-
nity cost of reserving the bed for a future, potentially
more severe incoming patient. This trade-off is partic-
ularly relevant when the bed occupancy in the ICU is
high; with only few beds left, admitting a patient now
increases the probability that a future severe patient
will be denied admission because the ICU is full.
Because the number of beds is limited and because
the volume and clinical severity of incoming patients
are stochastic, the problem resembles an admission con-
trol problem. Altman et al. (2001) show that for prob-
lems of this kind, under various system conditions,
the optimal admission control policy exhibits a reduc-
tion in the admission rate as the system occupancy
increases.

We examine the data to identify differences in ICU
admission rates due to occupancy. An ICU is labeled
as “busy” (ICUBusy = 1) if the bed occupancy is
above the 95th percentile of its occupancy distribu-
tion.3 Figure 3 graphs the admission rates for 20 dif-
ferent patient groups (classified by their LAPS on the
horizontal axis) for two different occupancy levels:
busy (marked with triangles) and not busy (marked
with circles). Note that all 40 points in this graph
represent enough observations (the smallest sample
size was 144 patients) to give us meaningful rates
on the y axis. The level of ICU occupancy associated
with each patient was measured one hour prior to
their ED discharge, which is a reasonable time period
to cover the stage at which admission decisions are
made. Above the circles, we also show the percent-
age (90%–92%) of the patients in each patient severity
group who experienced an ICU that was not busy.
That is, ICU admission decisions for patients at all
clinical severity levels are affected by ICU occupancy;
among patients in the same clinical severity group,
a lower percentage of patients who experienced high
ICU occupancy was sent to the ICU compared to the
patients who experienced a low ICU occupancy level.
We can repeat the same exercise for other cutoffs of
ICU occupancy, including the 90th, 85th, and 75th per-
centiles, resulting in a change in admission rate that
is much smaller or nonexistent for some groups of
patients. Although other measures of ICU occupancy
could be considered, Figure 3 visually supports the
concept that ICUBusyi is a powerful instrument in the

3 For instance, suppose that an ICU has its occupancy at eight beds
or below 94.5% of the time and at nine beds or below 95.8% of
the time; this ICU is then considered busy when nine or more of
its beds are occupied. Also note that we estimated the occupancy
distribution by measuring the ICU bed occupancy every hour in
the study period.

Figure 3 Observed ICU Admission Rate for Patients at Different
Severity Levels, as Characterized by Their Laps, Under High
and Low ICU Occupancy (Busy and Not Busy, Respectively)
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Note. The numbers above the circles indicate the fraction of patients (at a
given severity of illness) who experienced a “not busy” ICU one hour before
their discharge from the ED.

sense that it causes significant variation in the admis-
sion decision.

For ICUBusyi to be a valid instrument, it also has
to be uncorrelated with the unobservable factors �i

that affect patient outcomes. Kc and Terwiesch (2012)
describe a potential mechanism that could lead to a
violation of this assumption, showing that readmis-
sion rates tend to be higher for patients who experi-
enced a high ICU occupancy level during their ICU
stay. One could imagine that this mechanism may
apply to other patient outcomes and to other inpa-
tient units. To overcome this issue, we take advantage
of the fact that we have the complete care path of
each patient in our data set, and we control for the
congestion levels that a patient experienced in each
of the visited inpatient units during his or her hospi-
tal stay. Specifically, let Di be the set of days during
which patient i stayed in the hospital (after leaving
the ED) and Occi1 d be the occupancy of the inpa-
tient unit where patient i stayed on day d. The aver-
age occupancy of the inpatient units visited by the
patient during his or her hospital stay is defined as
AvgOccVisitedi = 41/�Di�5

∑

d∈Di
Occi1 d (see Figure 4 for

a timeline that illustrates when this measure is cal-
culated).4 We include AvgOccVisitedi as an additional
control variable in the outcome model (1).

4 We define the capacity of an inpatient unit as the 95th per-
centile of the bed occupancy distribution of that unit to com-
pute Occi1 d because in many occasions, the maximal capacity is
rarely observed, as hospitals may temporarily expand their stan-
dard capacity by a few beds in extreme circumstances (this was
also pointed out by Armony et al. 2010 and Jaeker and Tucker
2013). Given this definition, it is possible to have Occi1 d above 100%.
The average AvgOccVisitedi was 0.84, with a median of 0.86, in our
data set.
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Figure 4 Timeline of the Process Flow for Patients Admitted Through
the Emergency Department

ED

1 hr

First inpatient unit

AvgOccVisitedi

ICUBusyi

Inpatient units or operating room

Separating the effect of occupancy on the admis-
sion decision from its effect during the inpatient hos-
pital stay is essential to have a proper IV identifi-
cation strategy. However, previous works using ICU
congestion as an instrument (e.g., Kc and Terwiesch
2012, Shmueli et al. 2004) were not able to account
for the congestion during the patient’s hospital stay.
Note that AvgOccVisitedi is not perfectly correlated
with ICUBusyi because the latter is measured before
patient i is physically moved to the inpatient unit
and because the occupancy level typically varies dur-
ing patient i’s hospitalization period; the correlation
between the two measures is 0.24 in our sample.

Another mechanism that could invalidate using
ICUBusyi as an IV is when periods of high conges-
tion coincide with the arrival of very severe patients,
e.g., during an epidemic or a major accident affecting
a large portion of the hospital’s patient population.
When we test this potential mechanism by analyz-
ing the relationship between hospital occupancy and
the LAPS (see Table 1 for a description), we find no
correlation between the two. Although this does not
prove that the instrument ICUBusyi is uncorrelated
with the unobservable factors affecting outcomes, there
is no reason to believe that they would be related
to occupancy, given that reasonable observable prox-
ies of clinical severity are not (this approach is also
used by Kc and Terwiesch 2012 to validate a similar
instrument).

Overall, our analysis provides substantial support
validating the use of ICUBusyi as an IV. With this IV
approach, the identification is driven by a compari-
son of differences in outcomes among patients who
have similar observable characteristics captured by Xi

but who received different treatments because of the
different ICU occupancy levels at the time of their
admission to an inpatient unit. Although this is not
a perfectly randomized experiment, the identification
strategy provides a valid approach to estimate the
effect of ICU admission on patient outcomes.

In addition to ICUBusy, we consider other instru-
mental variables that were suggested as potential fac-
tors affecting ICU admission decisions during our
conversations with nurses, physicians, and hospital
management. We refer to these variables as the set
of behavioral factors. The first factor, RecentDischargei,

accounts for recent discharges from the ICU and
is motivated by the following mechanism. ICU dis-
charges typically release the nurse who has been mon-
itoring the discharged patient. However, the inten-
sivist in charge may have an incentive to “preserve
the nurse hours” by demonstrating a continuous
demand for those nurses, even after their patients are
discharged,5 leading to higher ICU admission rates
right after one or more ICU discharges. Note that this
behavior is different from the speed-up effect reported
by Kc and Terwiesch (2009) because it can also be
manifested when discharges are not “forced” to occur
faster. It is also different from the ICU occupancy
effect because it can operate when the ICU has low
utilization. To measure RecentDischargei, we count the
number of all ICU discharges in the three-hour win-
dow before patient i’s admission to the first inpatient
unit. In our sample, 56% of the patients underwent
no recent ICU discharges, 27% underwent one dis-
charge, and 11% underwent two discharges. Because
bigger ICUs would naturally have more recent dis-
charges, we divide the number of recent ICU dis-
charges by the ICU capacity of each hospital to deter-
mine RecentDischargei.

The second behavioral factor, RecentAdmissioni,
accounts for the number of recent admissions of
ED patients to the ICU. Since ICU beds are shared
between ED and elective patients, a high num-
ber of recently admitted ED patients may reduce
the bargaining power of the ED physician in his
or her negotiation with the intensivist. To measure
RecentAdmissioni, we consider ICU admissions in the
two-hour window before patient i’s admission to the
first inpatient unit but count an admission as a recent
admission only if the patient is admitted via the ED to
a medical service (excluding those who go to surgery,
as in that case the negotiation may involve the sur-
geon). Because of shift changes, we do not expect the
impact of expending negotiation power to propagate
for extended periods of time. In our data set, 84% of
the patients did not undergo recent admission, and
14% underwent one recent admission. Similar to how
we calculated RecentDischargei, we divide the number
of recent admissions by the ICU capacity of each hos-
pital to define RecentAdmissioni.

The third behavioral factor, LastAdmitSeverityi, mea-
sures the clinical severity of the last patient admitted
to the ICU from the ED. The motivation for includ-
ing this variable is that the most recent admit serves
as a reference point in the negotiation process. If
the ED physician just treated a very severe patient,
he or she might require a new patient to also be

5 This behavior is related to supply sensitive demand that has been
shown in the medical literature. For instance, see Wennberg et al.
(2002) and Baker et al. (2008).
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very sick before recommending ICU admission. We
define LastAdmitSeverityi as a dummy variable indi-
cating whether the last patient admitted to the ICU
had a LAPS greater than or equal to the 66th per-
centile value of the observed LAPS distribution.

The behavioral factors—RecentDischargei, Recent-
Admissioni, and LastAdmitSeverityi—exhibit no corre-
lation with the LAPS score of the incoming patient,
suggesting that they are unrelated to patient’s sever-
ity of illness and therefore appear to be exogenous.
This is expected, given the randomness in the arrival
process of new incoming ED patients.

We define the vector of IVs, labeled Z, as these three
behavioral factors plus ICUBusy. The next section
describes how we implement the estimation using
these IVs as instruments for the endogenous variable
Admiti.

3.3. Estimation
When the patient outcome is modeled via a linear
regression, as in (1), we can use a standard two-stage
least squares approach to implement the IV estima-
tion. However, because the ICU admission decision
and all of our patient outcomes are discrete, a more
efficient estimation approach is to develop nonlin-
ear parametric models to characterize them and to
jointly estimate the admission decision model and
each of the patient outcome models. We describe this
approach next.

The ICU admission decision is binary, and we
model it through a probit model defined by

Admiti

=

{

admit to ICU if Xi�−Zi�+ �i ≥ 01
reroute to ward otherwise,

(2)

where Xi is observable patient characteristics, Zi is
the IVs, and �i is an error term following a standard
normal distribution.

Patient outcomes are modeled using two different
approaches, depending on whether the outcome is
measured as a binary or a count variable. We first
consider the three binary patient outcomes Mortality,
TransferUp, and Readmit. To model each of these out-
comes, we use a probit model defined by a latent
variable, as follows:

y∗
i =�1Admiti+Xi�2 +�h4i5+�3AvgOccVisitedi+�i1

yi =�8y∗
i >091

(3)

where y∗
i is the latent variable. As previously dis-

cussed, the additional control AvgOccVisitedi captures
the effect of the congestion during the hospital stay
of the patient. To account for the endogeneity in
ICU admission decisions, represented by Admiti, we
allow for the error term �i to be correlated with

the unobservable factors affecting admission (�i in
Equation (2)) by assuming that the random vector
4�i1�i5 follows a standard bivariate normal distribu-
tion with correlation coefficient �, which will be esti-
mated along with the other parameters of the model.
Note that this requires a joint estimation of the ICU
admission model (2) and the outcome model (3). The
model becomes a bivariate probit that can be esti-
mated via the full maximum likelihood estimation
(Cameron and Trivedi 1998, Wooldridge 2010). The
endogeneity of the admission decision Admiti can be
tested through a likelihood ratio test of the correlation
coefficient � being nonzero.

The patient outcome defined by HospLOSi is a
count variable of the number of nights a patient stays
in the hospital. A Poisson model could be used to
model this count variable, but preliminary analysis
of HospLOSi reveals overdispersion: Table 3 shows
that the mean of HospLOSi is 3.9, and the vari-
ance is 24.0. Hence, we use the negative binomial
regression, which can model overdispersion using the
parametrization developed by Cameron and Trivedi
(1986). We use the extension developed by Deb
and Trivedi (2006) to include a binary endogenous
variable—the ICU admission decision Admiti—in the
negative binomial regression and estimate it jointly
with (2). The negative binomial regression includes
the same covariates as in (3).

4. Estimation Results
As discussed in §3.3, we estimate the admission deci-
sion and patient outcome models jointly to account
for the endogeneity of the admission decisions. We
find that all of our instruments have an impact on
whether a patient is admitted to the ICU. For exam-
ple, we find that when the ICU is busy, the likelihood
of being admitted to the ICU decreases by 53% on
average (statistically significant at the 001% level).

Table 4 summarizes the results of the patient out-
come models, and each row corresponds to a different
patient outcome. Note that because of space limita-
tions, we show only the coefficient and the marginal
effects of Admiti (i.e., whether the patient was admit-
ted to the ICU or not), which is the main focus of
this analysis. The coefficients of Admiti are negative
and significant in all models, except Mortality, sug-
gesting that admitting a patient to the ICU reduces
the chance of having an adverse outcome. (Later, we
discuss possible explanations for the lack of signifi-
cance in the Mortality outcome model.) The table also
displays the average marginal effect (AME), defined
as the average expected absolute change in the out-
come (among all patients) when a patient is admitted
to the ICU instead of to a ward. The average rela-
tive change (ARC) is also reported, which is the AME
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Table 4 Estimation Results of the Effect of ICU Admission on Patient Outcomes

With IV Without IV

Outcome Estimate (SE) AME ARC (%) � (SE) Test �= 0 Estimate (SE)

Mortality 0001 (0.13) 00001 +106 0020∗∗ (0.07) 0.00 0042∗∗∗ (0.03)
Readmit −0022+ (0.13) −00034 −3202 0015∗ (0.07) 0.03 0005∗ (0.02)
TransferUp −0065∗∗∗ (0.16) −00028 −7703 0032∗∗ (0.10) 0.00 −0008∗ (0.04)
HospLOS (days) −0044∗∗∗ (0.01) −102 −3300 0056∗∗∗ (0.01) 0.00 0028∗∗∗ (0.01)

Notes. Each row corresponds to a different outcome (the dependent variable). AME, average marginal effect; ARC, average relative change. Standard errors in
parentheses.

+p < 001; ∗p < 0005; ∗∗p < 0001; ∗∗∗p < 00001.

divided by the average outcome when patients are
not admitted to the ICU. The magnitude of the effect
is substantial; for instance, admitting a patient to the
ICU reduces the likelihood of hospital readmission by
32% on average.

The column “Test � = 0” shows the p-values of
the test in which the null hypothesis is that the ICU
admission decision is exogenous. This test is equiv-
alent to a likelihood ratio test against the model in
which the correlation coefficient between the admis-
sion and the outcome models’ errors, �, is restricted to
be zero. The estimates of � are reported in the column
“� (SE).” The null hypothesis is strongly rejected in all
models; that is, accounting for the endogeneity of the
ICU admission decision is important to obtain con-
sistent estimates of the effect of ICU care on patient
outcomes.

We now assess the magnitude of the bias induced
by neglecting the endogeneity of the admission deci-
sion in the estimation. The right panel of Table 4
(“without IV”) shows the estimates ignoring the endo-
geneity of the admission decision, which are signif-
icantly different from those estimated with IVs (left
panel). All cases exhibit positive biases that affect the
coefficients when ignoring the admission decision’s
endogeneity. This is consistent with the endogeneity
problem discussed in Figure 2. ICU patients tend to be
more severely ill, and because part of patient severity
is unobserved and therefore cannot be controlled for,
the naive estimates (without IVs) tend to underesti-
mate the benefit of ICU admission. In some cases, the
bias is so strong that it leads to a positive correlation
between being admitted to an ICU and experiencing
adverse outcomes.

We do not find a significant effect of ICU admis-
sion on mortality rates, which is at first surprising,
given the magnitude of the effect for other outcomes.
A possible explanation of this finding relates to the
IV estimation approach when the effects on the out-
come are heterogeneous across patients. The estima-
tion with valid IVs provides an unbiased effect of the
average effect of ICU admission on patient outcomes
over the subset of patients who are affected by the instru-
ment. In our context, this includes patients whose ICU

admission decision is affected by the ICU congestion
one hour prior to their ED discharge. Figure 3 shows
that this set includes patients with a broad range
of severity of illness; the ICU admission rate drops
significantly when the ICU is congested for patients
from all severity of illness classes. However, anecdo-
tal evidence from our conversations with physicians
in this hospital network suggest that if a patient is
at high risk of death and if ICU care and monitoring
could substantially reduce this risk, ICU congestion is
unlikely to have much effect on the patient’s admis-
sion to the ICU.6 Therefore, our estimation approach
cannot be used to measure the benefit of ICU admis-
sion for this subset of patients, as they do not comply
with the instrumental variable.

4.1. Robustness Analysis and Alternative
Model Specifications

We now discuss alternative specifications to show
that our main results are robust. Some of the con-
trols for patient severity—LAPS and P̂ (Mortality)—
were included with piece-wise linear functions to
account for their possible nonlinear effects on admis-
sion decisions and patient outcomes (see Table 1 for
details). We tried different specifications of these func-
tions, and the results were similar.

We tested alternative measures to capture the ICU
occupancy level in the ICU admission model. As
discussed in §3.2, most of the adjustment to the
ICU admission rate occurred when ICU occupancy
went above the 95th percentile in our data set, so
we defined ICUBusyi as a binary variable indicat-
ing occupancy levels above this threshold. We tested
additional specifications in which several hospital
characteristics—including hospital size (dividing hos-
pitals into groups by size), the presence of an inter-
mediate care unit at the hospital, and different shifts
(7 a.m.–3 p.m., 3 p.m.–11 p.m., and 11 p.m.–7 a.m.)—
interact with ICUBusyi to account for potential het-
erogeneous effects. In all cases, the estimated average

6 This gets more complicated by the patients who are denied ICU
admission because they are deemed “too sick for ICU treatment”
or who have executed do-not-resuscitate orders (e.g., see Reignier
et al. 2008).
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effect of ICU occupancy on ICU admissions was sim-
ilar to what was obtained in the main results.

In defining RecentDischargei and RecentAdmissioni in
the ICU admission model, we used the three-hour
and two-hour time windows, respectively. We pre-
viously experimented with shorter and longer time
windows. For RecentDischargei, we observed that the
effect persisted even when we considered an eight-
hour time window (which we considered as the
maximum duration since shifts change every eight
hours). For RecentAdmissioni, increasing the time win-
dow gave us weaker results, and the effect of this
variable disappeared when we considered time win-
dows longer than three hours. The estimates of the
other model coefficients were robust to these alterna-
tive specifications.

Furthermore, we observed that the behavioral fac-
tors are less powerful IVs than ICUBusyi in the sense
that they explain less variation in the ICU admission
decision. We also considered specifications that had
ICUBusyi alone as an IV, and the results were similar.

We also examined other factors that may affect the
admission decision, such as the clinical severity of the
patients currently in the ICU. Because our measures of
clinical severity were implemented at the time of hos-
pital admission (not at the time of ICU admission or at
any time later in the hospital visit), this measure may
not be very accurate, especially as we cannot account
for how clinical severity improves or deteriorates dur-
ing a patient’s ICU stay. Nonetheless, when we con-
trolled for the average clinical severity of patients in
the ICU, we found that (1) a patient is less likely to
be admitted to the ICU when there are many severe
patients and that (2) the main results (e.g., impact of
a busy ICU on admission and the effect of admission
on outcomes) of our estimations are robust to these
alternative specifications.

In our model, we controlled for the admission
month to capture potential seasonal effects and hos-
pital fixed effects to account for variations in prac-
tice across hospitals. It is possible that there are time-
varying hospital characteristics, which would not be
controlled for with our month and hospital fixed
effects alone. Thus, we also tried including hospital-
month fixed effects and found that although these
effects do seem to be statistically significant, account-
ing for them does not change our main results.

We used the full maximum likelihood estimation
to estimate the patient outcome models. While being
more efficient, the full maximum likelihood estima-
tion imposes strong parametric assumptions on the
distribution of outcomes. We performed some vali-
dation of these assumptions for the count variable
HospLOS and observed overdispersion—the uncon-
ditional variance is 24.0, whereas the mean value is
3.9—and no evidence of zero inflation, as only 5.9%

had a hospital LOS equal to zero. Hence, the negative
binomial model seemed an appropriate model for this
outcome.

All of the outcome models included the covariate
AvgOccVisitedi to control for the average occupancy
level during each patient’s stay in the hospital. We
considered other alternatives to measure the effect of
this factor: (1) the daily average occupancy of all of
the inpatient units in the hospital during the patient’s
hospital stay, (2) the maximum occupancy level expe-
rienced by the patient in an inpatient unit during
his or her hospital stay, (3) the average number of
inpatients in the hospital during the patient’s hospi-
tal stay over the maximum possible number of inpa-
tients (without differentiating among different inpa-
tient units), and (4) the average occupancy level of
inpatient units at the time that the patient was dis-
charged from the first inpatient unit that he or she
visited. All of these alternative definitions gave results
that were consistent with what we report for our main
specification.

For Readmit, recall that we set a time window of two
weeks based on discussions with doctors. We tested
shorter and longer time windows, and the results for
the two-week time window demonstrated higher sta-
tistical significance and a greater magnitude.

When analyzing TransferUp, we included all patients
in the estimation model as long as the patient had been
to a non-ICU at least once. However, patients with
in-hospital death may have a lower probability of a
transfer-up event. Hence, we excluded patients with
in-hospital death in TransferUp model and found that
the results were similar.

For the HospLOS model, recall that we measured
HospLOS based on the number of nights that a patient
stayed in the hospital after being discharged from the
ED. We tried defining HospLOS as the LOS rounded
to the nearest day, and the results were similar. We
also estimated the outcome models excluding patients
with in-hospital death from the HospLOS model, and
the results were again similar.

4.2. Accounting for Alternative Mechanisms
That Control ICU Congestion

Although the results seem to be robust to alterna-
tive specifications, it is possible that the effect that we
attribute to ICU admission may be in part capturing
the effect of other mechanisms used by the hospitals
to manage ICU capacity. In this section, we consider
two such alternative mechanisms.

The first mechanism, which has been studied by
Anderson et al. (2011) and Kc and Terwiesch (2012),
is to shorten or “speed up” the time during which
a patient stays in the ICU to make room for new
severe patients. Kc and Terwiesch (2012) show that
this speed-up increases the probability of readmission
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of the former patients, which is one of the patient
outcomes that we analyze in this study. Because this
mechanism is more likely to be used when the ICU is
busy, it is correlated with our main IV and may con-
found our estimation of the effect of ICU admission
on patient outcomes.

The speed-up effect analyzed by Kc and Terwiesch
(2009) is based on cardiac surgery patients, whereas
our study is based on ED patients, which is a com-
pletely different patient population. We replicated
their methodology using our patient sample (see §A.1
of the appendix for the details of this estimation). In
particular, we found that we cannot reject the null
hypothesis of no speed-up effect in our patient popu-
lation (p-value of 0.47).

To further validate the replication of this method-
ology, we estimated the same model using a sample
of patients comparable to the one studied by Kc and
Terwiesch (2012). We also utilized our data on elec-
tive surgical patients admitted to the ICU. Our anal-
ysis of elective surgical patients alone strongly sup-
ported rejection of the null hypothesis of no speed-up
effect (p-value of 0.001), and we found that a con-
gested ICU reduces the ICU LOS of elective surgical
patients by 12% on average. Therefore, our method
correctly replicated the results of Kc and Terwiesch
(2012) but, at the same time, showed no speed-up
effect in the patients admitted to the ICU via the ED.
We concluded that this mechanism is not relevant in
our patient population and therefore cannot be con-
founding our main results.

We note that it is interesting to see how the mecha-
nisms used to manage ICU capacity may vary across
patient types (ED versus surgical patients). This is
also reported by Chen et al. (2013), who show that
in contrast to noncardiac patients, severity of illness
scores have little impact on the admission decision for
cardiac patients.

The second mechanism is ED boarding, which is
defined as the time between the decision to admit the
patient and when the patient is discharged from the
ED and physically moved to the inpatient unit. A con-
gested ICU can extend the ED boarding time; since
the ED has less adequate resources to take care of the
patient, a longer ED boarding time may have direct
implications on the patient outcome.7 This suggests
that ICU congestion may influence patient outcomes
through two different mechanisms: (1) the ICU admis-
sion decision, which is captured through model (2),
and (2) the ED boarding time. Consequently, for ICU
congestion to be a valid IV in isolating the effect of

7 California requires a 1:3 nurse-to-patient ratio for EDs, which is
lower than that of ICUs but higher than that of general wards.
Moreover, the primary purpose of an ED is to stabilize patients,
rather than to provide supportive care, as given in inpatient units.

ICU admission on patient outcomes, we need to con-
trol for the effect of ED boarding time in the outcome
model.

To account for this mechanism, we included ED
boarding time as a covariate in the outcome models
(Equations (1) and (3)), but with special care because
the ED boarding time can be endogenous. That is, a
severely ill patient who requires urgent care is likely
to have a shorter boarding time, and unobservable
patient characteristics related to the patient’s outcome
can influence the ED boarding time. Section A.2 of
the appendix provides a detailed description of the
econometric model that we developed to handle this
endogeneity problem using instrumental variables.
This econometric model identifies the effects of ED
boarding and ICU admissions on patient outcomes,
partialling out the effect of each variable separately;
that is, it measures the effect of ICU admission above
and beyond any effect caused by ED boarding.

The results of this estimation (reported in §A.2
of the appendix) showed that for some outcomes, a
longer ED boarding time led to worse patient out-
comes, but for others, the effect was not significant.
More importantly, the estimated effects of ICU admis-
sion were similar to those reported in §4. The main
conclusion of this analysis was that our main results
regarding the effect of ICU admission on patient out-
comes were not confounded by the effect of ED board-
ing time.

5. Evaluating Alternative
Admission Policies

A primary objective in our study is to quantify the
benefits of ICU care because this quantification is an
essential first step in comparing different ICU admis-
sion strategies. To examine how we can utilize the
measures that we have just estimated, we consider a
parsimonious model of patient flows into the ICU to
examine the performance of various admission poli-
cies. We specifically leverage our estimation results
to calibrate a simulation model, which allows us to
compare patient outcomes across different admission
policies. In particular, we are interested in studying
whether admission criteria that are based on observ-
able (i.e., recorded in our data set) metrics of patient
risk can outperform the current hospital admission
policies.

5.1. Model of Admission Control
We model the ICU admission control problem as
a discrete version of the Erlang loss model, simi-
lar to the one used by Shmueli et al. (2003). This
admission control problem can be viewed as a spe-
cial case of the stochastic knapsack problem studied
by Altman et al. (2001), and we leverage some results
from that work to characterize its solution.
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Consider an ICU with B beds. To focus on the ICU
admission decision, we assume that there is ample
space in the other inpatient units to care for all
patients. We use x to denote the number of occupied
ICU beds at any given point in time. When x = B,
arriving patients must be routed to the general ward.
Time is discretized into periods of fixed length, or dt,
indexed by t, where the periods are sufficiently short
so that it is reasonable to assume that at most one
patient arrives in a given period. A patient arrives
in the ICU with probability � in each period. Upon
arrival, a decision must be made on whether to admit
the patient or not. If admitted to the ICU, a patient’s
LOS is geometrically distributed, with a mean of 1/�.
We assume that patient discharge is exogenous, i.e.,
there is no speed-up in the ICU.8

If a patient is routed to the ward, an expected cost
of �c is incurred, where c indexes the customer’s
class. Without loss of generality, classes are num-
bered 11 0 0 0 1C, so that �c increases with c. Classes can
be interpreted as the clinical severity of the patient,
where the benefit of admitting a patient increases
with his or her severity of illness. The objective is to
choose an admission criterion that minimizes the total
expected cost over a finite horizon.

An admission policy is defined as a decision rule
for choosing whether to admit or reroute an incom-
ing patient, with each possible state characterized by
the class of the incoming patient (c) and the number
of occupied ICU beds x ∈ 601B7. Altman et al. (2001)
show that the optimal admission policy is a threshold
policy with the following structure: given an occu-
pancy level x, admit a patient if and only if his or
her class satisfies �c ≥ �x. The values 8�11 0 0 0 1�B9 are
referred to as the optimal thresholds. It is also shown
that the thresholds �x increase with x.

Next, we describe how we set the primitives of
this admission control problem in order to run a
simulation.

5.2. Model Calibration and Simulation
The simulation analysis focuses on an ICU with
B = 21 beds, which is the median ICU size in our
data set. To simulate ICU admissions, we sample (with
replacement) patient characteristics from a hospital
whose 95th percentile of occupancy distribution was
at 20 beds and whose 99th percentile was at 21 beds.
This hospital treated 7,387 ED-medical patients dur-
ing our study period. Each discrete time period lasts
10 minutes, and patients arrive in the ICU with prob-
ability �, so that, on average, three patients arrive

8 As discussed in §1.1, other mechanisms may be used, although
we do not find that speed-up is used for the patient group that
we study (see §A.1 of the appendix). Via numerical analysis,
we found that the qualitative results extend when speed-ups are
incorporated.

per hour. These parameters have been delicately cho-
sen, so that the simulated setting is consistent with
the regime of the hospitals in our study, which admit
approximately 10% of the inpatients to the ICU under
the current policy. The average patient’s LOS in the
ICU is 1/�= 60 hours, which corresponds to the aver-
age duration of ICU stay in our sample.

Next, we describe how to estimate the expected
rerouting costs �c for each patient class c. This
requires defining the health outcome measures to be
considered: HospLOS, TransferUp, and Readmit (we do
not study mortality since the estimates for that out-
come are imprecise and not statistically significant).
Let y be the outcome of interest. Recall that �c repre-
sents the difference in this expected health outcome if
a patient is admitted to the ICU versus not admitted.

Information about the incoming patient is essential
to assess his clinical severity class. Each patient i is
fully described by a set of observed characteristics Xi

(recorded in our data set and described in Table 2)
and the “error term” �i, capturing other patient char-
acteristics that are not observed in the data and that
are taken into account by the physician when assess-
ing the patient admission decision. We call Xi and
�i the observed and unobserved components, respec-
tively, of the patient information. Defining an admis-
sion policy requires specifying what kind of informa-
tion is considered when making a decision, which we
define as the information set Ii. We focus on studying
policies that use all of the information, or Ii = 4Xi1 �i5,
and policies that use only the observed component,
or Ii =Xi.

For a given patient with information set Ii, the
expected rerouting cost is calculated as follows:

�i = E4yi �Admiti = 01 Ii5−E4yi �Admiti = 11 Ii51 (4)

where the expectation is taken with respect to �i,
the error term in the corresponding outcome model.
Here, we explain in detail how we estimate this cost
for Readmit with information set Ii = Xi; the calcula-
tions for the other metrics are similar. For readmis-
sions, Equation (4) becomes

�Readmit
i = Pr4�i ≥ −�2Xi5− Pr4�i ≥ −�2Xi −�151

which is positive when �1 < 0. When we use only the
observed component, �i follows a standard normal
distribution. When the unobserved component �i is
also included in the information set (i.e., Ii = 4Xi1 �i5),
�i follows a normal distribution, with a mean of ��i
and a variance of 41 − �52. The parameters �1, �2,
and � are the estimates of the readmission outcome
reported in §4, and therefore, the probabilities can be
calculated numerically.

Equation (4) calculates the rerouting cost for a spe-
cific patient. In practice, deriving the optimal admis-
sion policy via dynamic programming requires a
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finite set of patient classes. To achieve this for each
patient outcome, when Ii =Xi, we first calculate �i for
all 7,387 patients treated in the hospital that we chose
to simulate. When Ii = 4Xi1 �i5—i.e., when the value of
(4) depends on �i—we generate 1,000 realizations of �i
and compute 7,387,000 values of �i. We then partition
patients into 10 groups based on the deciles of this
distribution; each patient class has lower and upper
bounds on �i, which define patients that belong to the
class. Class c’s rerouting cost �c is set as the average
rerouting costs for the patients in that class.

A policy is specified by a function that maps patient
information set Ii and the number of occupied beds,
or x, to an admission decision. The following proce-
dure describes how we carry out our discrete time
simulation of a given policy. At t = 0, occupancy is set
to zero. In every period, with probability �, a patient
is sampled from the population of patients, character-
ized by Xi and a random vector 4�i1�i5 from a bivari-
ate standard normal with correlation coefficient �. A
patient is admitted to the ICU if x < B and the policy
indicates to do so. This will result in an increase in
ICU occupancy to x+ 1. Otherwise, the patient is not
admitted. At the end of the period, each ICU patient
leaves with probability �. We simulate a full year,
with one month of warmup, over 1,000 iterations.

5.3. Admission Control Policies
We use the simulation model described above to
examine how different ICU admission strategies
impact aggregate patient outcomes. In particular, we
compare four different policies. The estimated cur-
rent policy corresponds to an empirical model of the
admission policy used at the hospitals in our study,
which we estimate from the data. The optimal observ-
able policy uses the observed component of patient
information (i.e., Ii =Xi) to assess the expected rerout-
ing cost and to derive the optimal threshold levels of
admission. The optimal full policy uses the observed
and unobserved components (Ii = 4Xi1 �i5) in assess-
ing the expected rerouting cost. The fourth policy is
similar to the estimated current policy, but with B = 22
as the bed capacity. We now describe each of these
policies in more detail.
Estimated Current Policy. The structural results of

Altman et al. (2001) establish that the optimal pol-
icy is of threshold form. Although the policy cur-
rently used by the hospital needs not be optimal,
Figure 3 presents several patterns that are consistent
with a threshold policy. First, admission rates tend to
increase as clinical severity increases. Second, admis-
sion rates decrease at higher levels of occupancy, con-
sistent with threshold levels that increase with the

number of occupied beds. Third, the drop in admis-
sion rate due to an increase in occupancy is higher for
more severe patients.9

We restrict the hospital that we choose to simulate
to follow a threshold policy that uses an information
set Ii = 4Xi1 �i5 and develop an empirical model to
estimate the parameters of this policy. The model is
given by

Admiti4Ii1x5= 18Xi�+ �i ≥ f 4x3�591 (5)

where f 4x3�5 is a function that parameterizes the
thresholds as a function of the occupancy x. Assum-
ing �i ∼ N40115, the model can be estimated via a
probit model. We experiment (and hence fit the pro-
bit model) with all possible combinations of the way
that the occupancy x can affect the admission policy;
that is, we vary the number of thresholds and the
locations of the thresholds that the occupancy x can
have. For instance, f 4x3�5 can change at every possi-
ble occupancy level, or it can change only once, such
as when the ICU occupancy is 20 and above. For each
model (5) with a different combination for f 4x3�5,
we compute the Bayesian information criterion (BIC),
which is a commonly used metric to select the most
parsimonious model that best describes data; it is
computed based on the likelihood and has a penalty
term for the number of parameters in the model (see
Raftery 1995). We then choose the model that has the
smallest BIC value to be our estimated current policy.

Optimal Policies0 Since the optimal policy is of
threshold form, a patient i is admitted if

Admiti4Ii1x5= 18�i >�x91

where �i is calculated by Equation (4). We use
dynamic programming to determine the threshold
values 8�x9

B
x=0 that minimize total costs. Notice that

the calculation of �i depends on the information set Ii;
therefore, the optimal policy depends on Ii, which
leads to the optimal observable policy (Ii = Xi5 and
the optimal full policy (Ii = 4Xi1 �i5). To facilitate the
dynamic programming recursion, we assign patient i
the rerouting cost of his or her class �c, which reduces
the possible values of each threshold to 8�1 0 0 0�109.
This provides an upper bound on the performance of
the optimal policies.

9 Consider two patient classes, high (H ) or low (L) severity of ill-
ness, and assume that patient severity for class j ∈ 8L1H9 follows
Normal4�j1�

25, where �L < �H . Given a threshold �, the admis-
sion probability for patient class j is given by Pr4N 4�j1�

25 > �5;
assume �L < �L < � (less than 50% of patients in all classes are
admitted). An increase in occupancy raises the threshold to �+ã,
which decreases the admission rates of all groups, but that of the H
group decreases more. These results are not specific to the normal
distribution assumption for severity of illness; they hold for any
distribution with a density function decreasing at the threshold �
(i.e., f ′4x5 < 0 for x > �).
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Table 5 Simulation Results of Alternative ICU Admission Control Policies

Estimated current policy For each outcome

BASE–21 beds 22 beds Optimal observable Optimal full

No. of readmissions 2155004 (1.55) −307 (0.06) −2606 (0.44) −3503 (0.41)
No. of transfer-ups 76209 (0.88) −509 (0.08) 1408 (0.50) −3806 (0.38)
Hospital LOS (years) 24506 (0.15) −004 (0.01) −200 (0.13) −900 (0.12)
Total hospital LOS (years) 27209 (0.15) −004 (0.01) −202 (0.13) −902 (0.12)
(Estimated savings in dollars) (−$0.4 m) (−$1.9 m) (−$8.1 m)

Notes. The performance measures of the estimated current policy are denoted in bold; all other results are changes from the performance
of the estimated current policy. Standard errors in parentheses.

The estimated current policy may perform worse
than the optimal observable policy for several rea-
sons. First, the admission decision under the optimal
observable policy is based on the rerouting cost �i,
whereas in the estimated current policy described by
Equation (5), the left-hand side of the inequality is
not necessarily equal to �i. That is, the estimated
current policy may not be appropriately weighting
the observed metrics Xi. This is because the policy
estimates how the physicians at the hospital weigh
the available information to make a decision, which
may be discretionary. Second, the threshold adjust-
ment function f 4x3�5 may not set optimal thresh-
old levels that properly account for the opportunity
cost of using up a bed, which the optimized pol-
icy does. However, the estimated current policy has
a richer information set than the optimal observable
policy, so it is not known a priori which will per-
form better. Because the optimal full policy utilizes
the same information as the estimated current policy,
accurately weights both the observed and the unob-
served information (Ii = 4Xi1 �i5), and optimizes the
thresholds, the optimal full policy will perform better
than the estimated current policy.

5.4. Results and Discussion
Table 5 summarizes the simulated patient outcomes—
HospLOS, TransferUp, and Readmit—under the alter-
native policies that we consider. Noting that the ICU
admission decision is an inherently multiobjective
problem, we also consider a combined outcome that
considers the impact of ICU admission on total hos-
pital days for the current inpatient stay as well as
any potential subsequent hospital stay due to read-
mission. In particular, we convert each readmission
into an average stay of 3.9 hospital days (see Table 3)
and add this to HospLOS; we note that this is a con-
servative measure, as readmitted patients are likely
to stay longer in the hospital.10 Finally, for compar-
ison purposes, we convert hospital days into dollar

10 We do not include (convert) TransferUp into total hospital days
because although patients who are transferred up tend to have a
longer LOS, this is captured in the effect of HospLOS. To avoid
double counting, we only combine Readmit and HospLOS.

amounts by utilizing an estimate of $2,419 per hospi-
tal day, as given by Kaiser Family Foundation (2012).

The column labeled “BASE–21 beds” lists the per-
formance of the estimated current policy in a 21-bed
ICU. Under the current policy (estimated as described
above), on average, there were 2,550 hospital readmis-
sions, 762.9 transfer-ups to the ICU from the general
wards, and a total of 245.6 hospital bed years spent
by patients over the course of a year. We note that
our simulation results were well aligned with what
we observe in the data (reported in Tables 2 and 3):
in our simulations, approximately 10% of the patients
were admitted to the ICU, 11% of the patients experi-
enced readmissions, and 3% experienced transfer-up
events.

In the column labeled “22 beds,” we also report the
change in performance of the estimated current pol-
icy when we increase the ICU capacity by one bed.
Increasing the ICU bed capacity by one bed could be
quite expensive; we roughly estimate this cost to be
$0.8 million per year, based on an expense of $3,164
per ICU day (Aloe et al. 2009). Note that the cost of an
extra ICU bed ($0.8 m) is double the estimated sav-
ings achieved by reducing readmissions and hospi-
tal LOS ($0.4 m). In examining alternative admission
policies, we will examine if some of the improvements
in patient outcomes can be achieved without this high
investment cost of increasing capacity.

The column labeled “Optimal observable” pro-
vides the performance of the optimal policy based
on observable measures alone (Ii = Xi). Each row
corresponds to a different policy optimized to mini-
mize the corresponding outcome. Because the optimal
observable policy optimizes the admission thresholds
while also utilizing the direct relationship between
the available information (Xi) and patient outcomes,
it can sometimes perform better than the estimated
current policy. This is the case when we use the opti-
mal occupancy-dependent thresholds derived from
the cost function for readmissions (�Readmit

c ) and hos-
pital LOS (�HospLOS

c ); we observe 26.6 fewer readmis-
sions and two fewer years of hospital LOS on average
than for the estimated current policy. However, the
estimated current policy may outperform the optimal
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observable policy because it utilizes more information
(�i) in addition to Xi, which appears to be useful in
predicting patient outcomes (as indicated by the cor-
relation coefficient �; see Table 4). Indeed, the optimal
observable policy aimed at minimizing TransferUp has
more transfer-ups (15 more on average) compared to
the estimated current policy. That said, this is not a
systematic effect; we find that the optimal observable
policy can outperform the current policy across all
patient outcomes when we examine other hospitals.
These results suggest that the unobserved informa-
tion can be useful but that optimizing the admission
decision based solely on observed criteria can often
result in better patient outcomes.

Finally, we further explore the benefits of incor-
porating unobserved information in the admission
decision. The column labeled “Optimal full” uses
both the observed and the unobserved information
(Ii = 4Xi1 �i5) and further optimizes the admission
thresholds. We see that by optimizing the thresholds,
patient outcomes can be universally improved com-
pared to those resulting from the estimated current
policy. The difference between “Optimal full” and
“Optimal observable” measures the value of captur-
ing currently unobserved metrics in the admission
decision (i.e., incorporating �i in the information set)
in terms of improving patient outcomes. We can see
that the benefit can be quite substantial, resulting in
8.4 fewer readmissions, 52.7 fewer transfer-ups, and
6.8 fewer patient years spent in the hospital. More-
over, these gains are orders of magnitude greater than
what we achieve by adding an additional ICU bed,
without incurring the costs of finding space and pay-
ing for such a structural change.

6. Conclusion
We have examined the impact of ICU congestion on
a patient’s care pathway and the subsequent effect
on patient outcomes. We focused on medical patients
who are admitted via the emergency department,
forming a large patient cohort that comprises more
than half of the patients admitted to the hospital.
This is the first study to provide objective metrics
that can be used by ED doctors and intensivists to
decide which patients to admit to the ICU from the
ED. We empirically found that ICU congestion can
have a significant impact on ICU admission decisions
and patient outcomes and provided systematic and
quantitative measures of the benefit of ICU care for
various patient outcomes. Furthermore, we provided
a detailed characterization of the optimal ICU admis-
sion policy based on observed measures of clinical
severity and showed how to compute these policies
for different patient outcomes using empirical data,
dynamic programming, and simulation methods. Via

simulation experiments, we were able to compare
the performance of admission policies based purely
on observed criteria (calculated from our empirical
estimation) vis-à-vis the performance of the current
admission policies used by each hospital in our study.
We showed that for certain outcome measures, using
optimal policies based on observed metrics alone can
outperform current hospital policies. For other out-
come measures, we found that the unobserved criteria
used by doctors are useful and can help to improve
system performance relative to a decision based solely
on observed criteria. We believe that this is the first
work to study the impact of doctors’ discretionary cri-
teria on system performance in a healthcare setting.

From an estimation perspective, our instrumental
variable approach can be extended to estimate the
effect of other operational decisions. It is often the case
that the effect of operational decisions on service out-
comes is hard to estimate because of endogeneity bias.
Our identification strategy of using operational and
behavioral factors as instrumental variables and care-
fully controlling for factors that would invalidate the
instrument can be further utilized to address related
questions. We believe that the present work can be eas-
ily applied to study capacity allocation and the impact
of the occupancy level on available resources in many
other healthcare settings. For instance, the level of care
can differ among different ICU units. In particular,
rather than having only one type of ICU, many hos-
pitals have specialized ICUs, such as cardiac, surgical,
and medical ICUs, so the nurse-to-patient ratios and
levels of treatment might differ. However, resources
are sometimes shared when the occupancy levels are
high in some of these units. Our model can be applied
to estimate how the admission control in these differ-
ent types of ICUs is performed and whether it has an
impact on patient outcomes.

We acknowledge that our study has several limi-
tations, which in turn suggests future research direc-
tions. First, our data set is limited in that all hospi-
tals belong to one healthcare organization and that the
majority of the patients are insured via this same orga-
nization. It would be interesting to look at other types
of hospitals, which would enable us to explore fea-
tures such as the difference between paying and non-
paying patients. Second, in §5.1, we introduce a styl-
ized model of ICU admission, with a constant arrival
rate for inpatients and a constant departure rate for
ICU patients. We believe that it serves its role of giving
us insights into the impact of operational and medi-
cal factors on ICU admission control. Possible exten-
sions of this simulation model could incorporate time-
varying arrival rates, departure rates that depends on
clinical severity, and readmissions to the ICU and to
the hospital. We note that incorporating these features
adds new analytic challenges and that it is an active
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area of ongoing research (e.g., see Feldman et al. 2008,
Yom-Tov and Mandelbaum 2014). Third, a limitation
of the instrumental variable estimation strategy is that
it provides an estimate of the average effect of ICU
admission over the subset of patients whose admis-
sion decision depends on ICU occupancy (known as
the latent average treatment effect, or LATE). This
excludes two sets of patients: (1) Patients who are
never admitted to the ICU, even if there is ample
space in the ICU. This set of patients is probably
the one that benefits the least from ICU treatment.
(2) Patients who are severely ill enough to be admit-
ted to the ICU no matter how busy it is. These are
usually the most severe patients, who include those
patients with a higher risk of dying. Hence, the effect
estimated through our IV approach probably excludes
the most severe and the more healthy patients. Esti-
mating the effect for these extreme cases would proba-
bly require a randomized experiment, which would be
ethically questionable, especially for the high-severity
group. Lastly, we hope to tease out and quantify
the impact of the different adaptive mechanisms dis-
cussed in §§1.1 and 4.2—delays and boarding, speed-
up, admission control, surgery cancellation, and block-
ing via ambulance diversion—in terms of patient out-
comes and hospital costs, depending on patient admis-
sion types and diagnosis. Building an analytic model
that includes the complex interplay between differ-
ent adaptive mechanisms and patient outcomes might
prove useful in developing decision support tools for
ICU admission, discharge, and capacity planning.
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Appendix. Accounting for Speed-Up and
ED Boarding Effects
This appendix provides a detailed description of the econo-
metric models used in the analysis in §4.2.

Table A.1 Estimation Results of Model (6)

Busy coefficient No. of
(standard error) observations R2

ED, medical −0002 (0.03) 101521 0016
Non-ED, surgical −0013∗∗ (0.04) 41524 0014

∗∗p < 0001.

A.1. Speed-Up in the ICU
We describe the methodology used to measure the effect of
ICU congestion on patient LOS in the ICU. The methodol-
ogy replicates the approach developed by Kc and Terwiesch
(2012); see that article for further details.

Define FirstICU LOSi as the ICU LOS during patient i’s
first ICU visit and BUSYi as the bed utilization of the ICU
at the time that patient i was discharged from this ICU visit.
Because our data set does not include information on the
number of scheduled arrivals, our definition of BUSYi is not
the same as that of Kc and Terwiesch (2012). Instead, we let
BUSYi be 1 if the number of existing ICU patients at the
time that patient i is discharged from the ICU exceeds the
95th percentile of occupancy.11 We estimate the effect of ICU
occupancy on ICU LOS through the following regression:

log4FirstICU LOSi5= �BUSYi +�Xi +ui1 (6)

where Xi is a vector of observable patient characteristics
that describe the patient’s severity of illness. A negative �
suggests that high ICU congestion leads to a shorter ICU
LOS, reflecting a speed-up effect.

The regression model (6) is estimated using two sam-
ples of patients who were admitted to the ICU: (1) surgi-
cal patients and (2) ED patients. The estimation results are
reported in Table A.1.

A.2. ED Boarding Time
In this section, we describe how we estimate an alternative
specification of the outcome models that accounts for the
effect of the endogenous variable ED boarding time.

ED boarding time (EDBoard5, defined as the time between
the decision to hospitalize the patient until the patient is
discharged from the ED and physically moved to the inpa-
tient unit, is added as an additional covariate in the outcome
models (1) and (3). This new specification has two endoge-
nous covariates: Admit and EDBoard. The former is instru-
mented by ICUBusy, so we need additional instruments for
the latter. A valid exogenous instrumental variable affects
ED boarding time but is unrelated to the clinical severity of
the patient. The instrument that we use is the “average level
of bed occupancy of the inpatient unit that the patient goes
to after the ED,” labeled FirstInpatientOcc, whose average is
taken during the time that the patient is boarding in the ED.
The logic is similar to that of our ICUBusy instrument: if the
patient was routed to an inpatient unit but this unit was busy

11 We have tried various specifications for defining BUSY, such
as using different cutoff points for occupancy level and includ-
ing future arrivals in a certain time window, and the results were
consistent. In addition, we have tried hazard rate models, or the
Weibull and Cox proportional hazard models, with BUSY included
as either time invariant or varying over time, and the results were
consistent.
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Table A.2 Estimation Results of the Patient Outcome Model Including
ED Boarding Time as an Endogenous Covariate

Outcome ICU admission Log(EDBoard )

Mortality 0003 (0.13) 0005 (0.04)
Readmit −0021 (0.13) −0001 (0.03)
TransferUp −0061∗∗∗ (0.16) 0016∗∗∗ (0.04)
HospLOS (days) −0040∗∗∗ (0.01) 0001 (0.01)

Note. Standard errors in parentheses.
∗∗∗p < 00001.

when the patient was in the ED, the patient probably had to
stay a longer time in the ED, waiting for a bed. Recall that
ICUBusy is based on the level of occupancy of the ICU one
hour prior to ED discharge, whereas FirstInpatientOcc mea-
sures the occupancy of ICU or the ward, depending on where
the patient is routed after the ED. Hence, the two instrumen-
tal variables are not perfectly correlated. A regression of the
logarithm of ED boarding time on FirstInpatientOcc shows a
positive and highly significant effect; in fact, a 10% increase
in the inpatient occupancy increases ED boarding time by
18%. For this model, we use similar controls as in our earlier
specification. Details of the regression output are available
from the authors upon request.

The estimation of the model is as follows. Since the
outcome models are not linear, we use a control function
approach to implement this IV estimation. The estimation
is carried out in two steps: (1) we first estimate a linear
regression with log4EDBoard5 as the dependent variable and
the IVs and controls as covariates, and (2) we then calcu-
late the residuals of this regression and include the resid-
uals and log4EDBoard5 as additional covariates in the out-
come model. See Wooldridge (2010) for more details on the
control function approach. Table A.2 reports the estimated
coefficients for ICU admission and log4EDBoard5 for the dif-
ferent outcome models.
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