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In a number of service systems, there can be substantial latitude to vary service rates. However, although speeding up
service rate during periods of congestion may address a present congestion issue, it may actually exacerbate the problem by
increasing the need for rework. We introduce a state-dependent queuing network where service times and return probabilities
depend on the “overloaded” and “underloaded” state of the system. We use a fluid model to examine how different definitions
of “overload” affect the long-term behavior of the system and provide insight into the impact of using speedup. We identify
scenarios where speedup can be helpful to temporarily alleviate congestion and increase access to service. For such scenarios,
we provide approximations for the likelihood of speedup to service. We also identify scenarios where speedup should never be
used; moreover, in such a situation, an interesting bi-stability arises, such that the system shifts randomly between two
equilibria states. Hence, our analysis sheds light on the potential benefits and pitfalls of using speedup when the subsequent

returns may be unavoidable.
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1. Introduction

We consider a queuing system where the service time
of customers can be reduced at the expense of increased
likelihood of the need to return to service. We refer to
the mechanism of increasing the service rate of customers
as speedup. The speedup phenomenon can arise in a number
of settings such as the Intensive Care Unit (ICU) (KC and
Terwiesch 2012), production lines (Powell and Schultz 2004),
email contact centers (Hasija et al. 2010), and general service
systems (Ata and Shneorson 2006). The reduction in quality
of service due to speedup manifests itself through the need
for rework, which we refer to as customer returns. This
work aims to understand the dynamics of a queuing system
where speedup is used and the subsequent customer returns
may be unavoidable.

We define the speedup dynamics by an operational control,
in the form of a threshold, that specifies whether the system is
considered to be overloaded. Hence, service rates and return
probabilities are endogenous to the operational speedup
control. We introduce a new multiserver queuing model
where the parameters that define the system dynamics are
congestion dependent; hence, they depend on the system
state. We examine these state-dependent dynamics using a
fluid approximation. In doing so, we are able to characterize
the system’s stability conditions and long-term behavior.
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A number of works have considered the impact of cus-
tomer returns. For instance, Yom-Tov and Mandelbaum
(2014), de Véricourt and Jennings (2008), and Yankovic
and Green (2011) consider staffing and resource provision-
ing in (healthcare) service systems with customer returns.
de Vericourt and Zhou (2005) and Zhan and Ward (2014)
consider routing in call centers where customers may call
back. None of these works consider how the likelihood of
return depends on the service rate, which may be altered
depending on system congestion. In this work, we consider
the impact of “speedup” on these customer behaviors.

Also, there have been works that consider state-dependent
dynamics (e.g., Armony and Maglaras 2004, Glazebrook
and Whitaker 1992, Maglaras and Zeevi 2003, Powell and
Schultz 2004); however, to the best of our knowledge, our
work is the first that considers both state-dependent service
times in addition to state-dependent return probabilities.
Combining these two effects reveals new phenomena that
have not been previously observed when considering each
dynamic separately. More specifically, we show an interesting
bi-stability; i.e., the presence of two equilibria, can arise and
identify conditions under which speedup is detrimental in
the long run.

A number of works consider congestion-dependent service
times. Whitt (1990) and Boxma and Vlasiou (2007) consider
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the steady-state behavior of state-dependent queues where
the service times may increase or decrease with delay. From
a control standpoint, Ata and Shneorson (2006) and Anand
et al. (2011) consider the quality-speed trade-off of an
M/M/1 queue and find that speedup can be beneficial. Bekker
and Borst (2006) and Bekker and Boxma (2007) consider the
steady-state distribution and optimal control of single-server
queues with state-dependent service rates. These works
do not consider returns to service. In contrast, our work
examines a multiserver model that includes customer returns
to service, as well as the increase in return probability due
to speedup.

Mandelbaum and Pats (1998) and Mandelbaum et al.
(1998) consider state-dependent queuing networks with state-
dependent routing. The focus of these works is to develop
theoretical support for fluid and diffusion approximations of
the network dynamics. These works assume state-dependent
functions that are continuous and cannot be applied to our
model, which includes discontinuities in the state-dependent
dynamics. These discontinuities require a different analytic
approach: in this work we utilize fluid approximations and
Filippov analysis (Filippov 1988).

We show that speedup—a mechanism that seems to
alleviate congestion and increase access to service in a
myopic manner—may create more congestion and exacerbate
the situation in the long run under certain conditions. More
precisely, we show that in some situations, speedup can be a
useful operational tool to navigate periods of high congestion.
In other instances, speedup will increase congestion because
of the additional load of returning customers. A surprising
bi-stability arises, resulting in system dynamics that can be
misleading about whether speedup can help. Therefore, we
seek to understand system dynamics under speedup and use
this to develop insight into the benefits and pitfalls of using
speedup. In analyzing our state-dependent model, we make
the following key contributions:

e We introduce a new queuing model (§2) that, to the
best of our knowledge, is the first such model to incorpo-
rate (1) congestion-dependent service times in addition to
(2) congestion-dependent return probabilities. The interplay
between speedup and customer returns is a phenomenon
that has not yet been considered in the literature from an
analytic viewpoint.

e We specify conditions for when the queues of our
state-dependent queuing system grow without bound (Theo-
rem 4.2). We show that in some cases, speedup can make a
stable system unstable; in other cases, speedup is necessary
to maintain stability.

e We identify the long-term queuing dynamics and equi-
libria for our state-dependent queuing system (§4). We find
that in some cases (Case 1), management can specify the
desired system congestion and effective offered load by
appropriately tuning the speedup threshold (N*). Addition-
ally, this implies that congestion is invariant to changes in
the number of servers. This analysis provides a possible
explanation for the observation of “supply-sensitive demand”
in healthcare; i.e., demand increases with supply.

e We also find that in some cases (Case 2) an interesting
bi-stability arises: the long-term dynamics can converge
to one of two states, depending on the initial condition.
Using simulation, we demonstrate that the stochastic system
will oscillate randomly between the two equilibria. This
phenomenon demonstrates that although speedup may appear
to reduce congestion in some instances (Case 1), its use may
be extremely detrimental in other scenarios (Case 2). In such
cases, other mechanisms may be necessary to navigate
periods of congestion.

The rest of the paper is structured as follows: In §2, we
present our queuing system that captures the main essence
of a system with speedup and its influence on customer
returns. We start by examining a system without speedup
in §3. This provides a baseline for exploring the behavior of
our system with speedup in §4. In §5, we extend our model
to account for factors often seen in various service settings:
multiclass customers and time-varying arrivals. We show
that in both extensions, the main insights from our original
model, such as the bi-stability effect, still hold. Finally, we
conclude in §6.

2. Queuing Model

We now formally introduce our state-dependent queuing
model that captures new and returning customers as well as
the effect occupancy levels and queue lengths may have on
service times and returns.

We consider a queuing network with two stations as
depicted in Figure 1. Following the terminology of Yom-Tov
and Mandelbaum (2014), we distinguish between two cus-
tomer states: Needy and Content. Needy customers require
service at Station 1 and are either in service or waiting to
begin service. When a Needy customer completes service at
Station 1, he will either leave the system or transition into
the Content state. Content customers are customers who
currently are being served at Station 2, but upon completion
of service, they will transition back (return) to the Needy
state and require additional service at Station 1. Station 1

Figure 1. System model.
Needy
(N-servers)
rate-u(Q))
. 1-p(Qp
Arrivals @7 Exit
rate A
Content P(0)
(oo-server)
rate-6

(=)
N

Notes. Station 1 represents the N servers where Needy customers are
served. Station 2 represents the servers where Content customers are served.
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represents a limited resource station with N servers. Station 2
represents an unlimited resource with an infinite number of
servers. The service rate and return probability for Needy
customers are state dependent and will be defined in the
next subsection.

2.1. Stochastic Model

We now describe our stochastic model as a continuous
time Markov chain (CTMC), where all of the dynamics are
Markovian. Let Q = (Q(#), r > 0) be a two-dimensional
stochastic queuing process, where Q(r) = (Q, (), Q,(¢)):
@, (¢) is the number of Needy customers at Station 1 at
time ¢ and Q,(7) is the number of Content customers at
Station 2. We suppress the dependence on ¢ when it is
understood from the context of the discussion.

New Needy customers arrive to the system according
to a Poisson random process with rate A. Station 1 has N
servers and an unbounded buffer. If a customer is being
treated in one of the N servers at Station 1, his service rate,
1(Q,), depends on the number of Needy customers, Q.
Customers discharged from Station 1 will return to Station 1
with probability p(u(@Q,)).

We distinguish between two service rates: when the
system is considered overloaded, then Station 1 operates
under congested dynamics, with higher service and return
probabilities than the nominal operation. When Station 1 is
not considered overloaded, then the servers operate normally,
with nominal service rates and return probabilities. Let
N* >0 be a control variable that determines the operation
of Station 1. We refer to N* as the speedup threshold. The
system is considered to be overloaded when the number of
Needy customers is greater than the speedup threshold, i.e.,
when QQ; > N*. Note that if N* < N, speedup will begin
before a queue forms.

Let u, and py (ny > u,) define the service rate during
underloaded and overloaded periods, i.e., when the occupancy
level is low and high, respectively. The state dependent
service rates are given by

n, ifQ <N*,
(@) = t . ! .
my, if Q; = N*.

Once a customer completes service at Station 1, he exits
the system with probability 1 — p(u(Q,)) and never requires
additional service at Station 1. With probability p(u(Q);))
the customer enters the Content state. Content customers
transition into the Needy state according to an exponential
random variable with constant rate 6. Thus, this station
actually models the delay between completion of initial
service at Station 1 and the subsequent request for additional
service. Note that the return probability, p(u(Q);)), depends
on the service rate of the customer at discharge: when
speedup is used, the return probability increases. Let p;
and p, (py > p,) denote the return probability during
underloaded and overloaded periods:

pr, if Q; <N*,
Q)=
p(n(Q))) . Q>N

(M

@

Thus, during their stay in the system, customers start in the
Needy state and then alternate between Needy and Content
states until they depart the system. When a customer becomes
Needy and a server at Station 1 is available, he immediately
begins service. However, if there are no available servers,
customers must wait in a queue for an available one. The
queuing policy is FCFS (First Come First Served).

REMARK 2.1. One could also consider return probabilities
that depend on the mean congestion in Station 1 during
service (e.g., to capture how much work was “sped up”).
Doing so would require substantial notational overhead to
keep track of the congestion each customer experienced, and
we leave such exploration for future work.

REMARK 2.2. Note that in practice, Q,, which only tracks
Content customers who eventually transition back to the
Needy state, may be an unobservable quantity since we
usually do not know which customers will return to service
a priori. As such, we restrict our control to depend only

on Q.

The queuing system we analyze is a CTMC, which, under
conditions for stability (to be described later), has a long-term
distribution. We can derive the equations for the equilibrium
distribution (see Appendix B) and numerically evaluate or
use simulation to compute desired performance measures.
However, these methods fail to provide some insights into
the behavior of the system, which a fluid analysis can.

2.2. The Fluid Model

In order to enable tractable analysis of the system dynamics
of our state-dependent system, we introduce a deterministic
fluid approximation to the stochastic model presented in
§2.1. The fluid model is meant to provide insight into the
use of speedup (some of which is unintuitive, as will be
seen in §4.2).

We denote the fluid function of our queuing network by
0 ={Q(1). 1> 0}. Here Q(r) = (Q, (¢). 0(1)). where 0,
and Q, are the fluid content of Needy and Content customers
at time f. We derive the fluid formula directly. We assume
that arrivals and departures occur deterministically at the
specified rates and also regard the number of customers
and servers as continuous quantities. Thus, the fluid arrives
deterministically and continuously at constant rate A. Fluid
is served in station 1 deterministically at rate u(Q,)(Q; AN),
where A denotes the minimum function so that (Q, A N) is
the number of occupied servers in station 1. A p(Q,) fraction
of the fluid is transferred to station 2 after leaving station 1;
the rest of the fluid exits the system. The fluid in station 2
is served deterministically and continuously at rate 6Q,.
The service rate function, u( ), and the return probability
function, p(-), are discontinuous in the amount of fluid
content of the Needy customers, Q,(¢). These functions are
given by (1) and (2), respectively.
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The dynamics of our model can be captured by the follow-
ing ordinary differential equations (ODE) with discontinuous
right-hand sides:

0,(1)=A+80,(t) - Lig,y<nsyir (Q1 (1) AN)
— Lig, s u (1 (1) AN),

0,(1) =—80,(1) + Lig,(<nyPLitr (Q1 (1) AN)
+ 1ig,=n)Patn (O () AN).

®)

This discontinuous ODE is discontinuous in Q but continuous
in ¢. From (3), it is easy to see that the derivative values,
0O, that specify the flow dynamics are discontinuous at
0Q,(t) = N*. We will analyze the long-term behavior of this
fluid system, i.e., the behavior as r — co. Let ¢ = (g, ¢,)
be the long-term values such that:

g=1im[0(1) | 0(0) = ]

Note that these limits may be infinite, may depend on
the initial condition ¢g,, or may not exist. For notational
simplicity, henceforth we will omit the dependence on the
initial condition and specify explicitly if the limit depends
on it.

2.3. Definitions

In our analysis of the long-term behavior of our fluid system,
we will require a few definitions. Consider a dynamic
system that is dictated by the ODE ¢ = F(q), ¢ € R’.. In our
system, n =2 to capture the Needy and Content customers.
We denote by P(g,, ) the flow at time 7, given initial
condition ¢g,. Then the flow dynamics over time are defined
at time 1 by (d/dt)®(qy, 1) = F(®(qp, 1)), P(qo, 0) = qo.
The system is considered to be unstable if the fluid content
of customers in the system grows without bound over time.
Formally,

DEFINITION 2.1 (UNSTABLE SYSTEM). We say that a system
defined by the ODE ¢ = F(q) is unstable if for any initial
condition, g,

1im [0, (1) + 04(1)] > o0

In cases where the system is not unstable, we wish to
examine the behavior of the system and assess whether there
is a limit to which the fluid system might converge over
time. The following definitions for equilibria can be found
in di Bernardo et al. (2008).

DEFINITION 2.2 (EQUILIBRIUM [OR FIXED POINT]). A point

q is an equilibrium of the ODE ¢ = F(q) if

d(q, 1) =D(g,0), forall .

The simplest form of equilibrium ¢ is one that satisfies
F(g) =0. Following di Bernardo et al. (2008), we call a

pseudo-equilibrium an equilibrium that arises on the region
of discontinuity in the ODE (e.g., on the switching boundary
3 ={0Q: Q, = N*} of (3)). This type of equilibrium is an
equilibrium since a trajectory starting as that point will stay
there, but it is different from standard equilibria because
the derivatives may not be zero. This form of equilibrium
happens when the forces that push the trajectory to this
point are equal from all directions. Technical details of
pseudo-equilibria are given in the appendix.

Note that even if an equilibrium, g, exists, it is not
necessarily true that the system will converge to it as t — oo.
Moreover, the limiting behavior may depend on the initial
condition ¢, € R?. Hence, we further differentiate between
types of equilibria. An equilibrium is called Lyapunov stable
if trajectories starting nearby to the equilibrium remain
nearby for all time. This type of equilibrium is often referred
to as a Locally Stable Equilibrium. Without loss of generality,
we assume the equilibrium is at the origin; that is, ®(0, t) =
®(0,0) for all .

DEFINITION 2.3 ((LyAPUNOV) LocaLLY STABLE EQUILIB-
RIUM). The origin is said to be (Lyapunov) locally stable if
for any € > 0, there exists a § > 0 such that if

lgoll <& = [[P(g0, )| <€, V1>0

We refer to an equilibrium as Globally Stable if for every
starting point it will converge to the same stable equilibrium
defined by Definition 2.3.

DEFINITION 2.4 (GLOBALLY STABLE (IN THE SENSE OF
Lyaprunov) EqQuiLiBrRIUM). The origin is said to be globally
stable (in the sense of Lyapunov) if the following two
conditions hold:

1. It is locally stable.

2. For all initial conditions, g,: lim,_, ., $(g,, t) =0.

Note that these definitions of stability do not mean that
there exists a f, such that Q(z) = g for all ¢ > ¢,. They
simply require that for every € > 0, there exists a #, such
that for all 7 > ,, Q(¢) is within € of g; in the case of
local stability, this is only true if the trajectory starts close
enough to the equilibrium. We will actually see instances (for
pseudo-equilibria) where the fluid oscillates with arbitrarily
small fluctuations around the equilibrium point. Finally, we
remark that there could exist long-term behavior that is not
captured by Definitions 2.1 through 2.4; e.g., a trajectory
could remain finite but not converge to any single state.

3. A System Without Speedup

For comparison purposes, we first consider a system where
speedup is never used. In this case, the fluid equations can
be simplified to

Q1(I) =A+80,(t) —p, (Q,(1) AN),

. (4)
0,(1) = —060Q,(1) + p i, (@, (1) AN).
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This is the fluid model of an Erlang-R queue (Yom-Tov
and Mandelbaum 2014). The queues grow without bound if
N < A/((1 = p;)p,); otherwise, the system converges to a
globally stable equilibrium, g. More formally,

THEOREM 3.1. The dynamics of the fluid system described
in (4) can be summarized as

1. The system is unstable if N < A/((1 — p; ;).

2. If N> A/((1 — p ), the fluid converges to the
following globally stable equilibrium:

A ApL >
(I=pu, (1=p)s)

The proof of this result can be found in the appendix. We
note that if N =A/((1 — p,)u,), there are an uncountable
number of equilibria. As an example, if the initial condition
is such that (gy), 2 N and (g,), = (Ap,)/((1 — p.)d), then
the fluid content stays at the initial condition, so Q(t) = ¢,
for all ¢.

lim Q(t)=c}=<

4. Analysis of System Dynamics

In this section, we analyze the long-term dynamics of the
fluid model presented in §2.2. The main challenge is the
discontinuity at Q, = N*. The long-term dynamics are highly
dependent on system parameters for arrival rate, service
times, and return probabilities as well as the control variable
for when to begin speedup, N*.

To start, we leverage results from Filippov (1988) to
establish the existence of a solution to our ODE.

THEOREM 4.1. There exists a solution of the problem defined
by the ODE (3) for any initial condition g, = Q(0) €
[0, Omax] X [0, Qx| Where Q... < oo is an arbitrary finite
constant.

This is a result of Theorem 1 on page 77, Chapter 2,
Section 7 of Filippov (1988). The details of leveraging this
result can be found in the appendix.

We define the following parameters, that will be useful in
describing the system dynamics:

(et i)
T\ (=pp)s )

A puA )
qH:< 5 5 5
(A pman (- pp)d ©)
o NV AN) —g
qt —qf'

One can think of g and ¢ as the offered load at

Station 1 and 2 under low and high occupancy dynamics.

This interpretation is clear when considering the system
either (i) always works under underloaded dynamics and so
never speeds up (i.e., the system analyzed in §3) or (ii) never

works under underloaded dynamics and so always speeds up.

We begin our analysis with the question of when our
system is unstable. The proof is given in the appendix.

THEOREM 4.2. The instability conditions for the fluid system
in (3) are broken into two cases.
L g <qf.
o The system is unstable if N < qj'.
o The system is unstable if N < g} and N* = oo (i.e.,
speedup is never used)
2. qi >qr.
o The system is unstable if N < gt
o The system is unstable if N < qi' and N* < g

We will show in Theorem 4.3 that when the conditions of
Theorem 4.2 are not satisfied, the system will converge to a
finite equilibrium.

Note that the stability of the system depends on both
system parameters (g, g-, N) and the decision variable,
i.e., the speedup threshold (N*). Consequently, there are
cases in which the system can be stabilized only if speedup
is applied (e.g., under Case 1 if ¢’ < N < ¢F); in such
cases using speedup reduces the offered load so that it is
not necessary to acquire additional servers to ensure that
the queues do not grow without bound. On the other hand,
there are cases where an otherwise stable system becomes
unstable because of utilizing speedup (e.g., under Case 2 if
N* < gf <N <qf).

We now consider the long-term dynamics of our system.
In the results that follow, we assume that N is large enough
such that the queues in our system do not explode, i.e., the
conditions of Theorem 4.2 are violated. Moreover, because
of the potential for an uncountable number of equilibria
of our fluid equations (as described in §3), we make the
following assumption:

ASSUMPTION 4.1. The number of servers, N, is such that
the effective system load is strictly less than 1; i.e.,

N > (g7 A gi).

We then consider how the various system parameters
impact the system. In particular, we identify scenarios where
there is a unique, globally stable equilibrium as well as
other scenarios where there may be multiple locally stable
equilibria.

THEOREM 4.3. Given N and N* such that Assumption 4.1
holds and the conditions of Theorem 4.2 are violated, the
long-term dynamics of the fluid system in (3) can be broken
in two cases with additional subcases:
L qf <qr.
1.1. If N* < gf, then q" is a globally stable equilibrium.
1.2. If g < N* AN < gF, then (N*, agk + (1 — a)ql)
is a globally stable pseudo-equilibrium.
1.3. If qf < N* AN, then " is a globally stable equili-
brium.
2. g 2qr.
2.1. ¢f' <N
2.1.1. If N* < qF, then q" is a globally stable
equilibrium.
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Figure 2.
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2.1.2. If qF < N* < g, then ¢" and q" are locally

stable equilibria. In addition, when q- # qf,

then (N*, agk + (1 — a)ql!) is a pseudo-

equilibrium.

If gf' < N*, then q" is a globally stable equi-

librium.

2.2. ¢ > N > gF and N* > qF. Then g" is a locally
stable equilibrium and (N*, agy + (1 —a)g?) is a
pseudo-equilibrium.

2.1.3.

The proof follows by Filippov and Lyapunov techniques
and is given in the appendix. We demonstrate the intuition
behind the result for Case 1 via the phase portrait of
each subcase with N* < N. (The case for N* > N follows
similarly.) In Figure 2(a), we see the phase portrait when the
equilibrium is at g —the arrows represent the magnitude
and direction of the derivative at each state, and the solid
lines represent points where the derivative is zero in one of
the dimensions. Hence, the trajectory of the queuing system
is pulled toward and along these lines. Figure 2(b) breaks

Phase portrait for Case 1.1 (N* < N): Dark lines represent points where the derivative is zero in one of the

do,() o,

(b) 06— —=0 60— —=0
0, % ;

E .

5 o
L
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° 5
o s

N* N 0

down the phase portrait in Figure 2(a) to present a clearer
view of the relationship between the different parameters.
The dashed lines are a virtual continuation of the derivative
lines. It is not necessarily the case that ¢, =0 or ¢, =0
along these lines because the system dynamics change when
crossing the N* threshold. If the dynamics did not change,
g* would be an equilibrium. However, because of the change
in dynamics due to the speedup threshold, g* is not an
actual equilibrium in this case. Thus, we refer to g~ as an
inadmissable equilibrium. Intuitively, when Q, < N*, the
system does not speed up and the trajectory is attracted to
the point, g*. Before reaching g*, the number of Needy
customers grows so that O, > N* and speedup is used. At
this point, the system dynamics switch to the overloaded
dynamics and the trajectory is attracted to the point g”.
Because N* < qH < N in Case 1.1, the derivatives at g,
G, = ¢, =0. We thus refer to g as an admissible point and
can conclude it is the equilibrium point of the system.
This intuition can be extended to Case 1.2 and 1.3. The
stripped down phase portraits for these cases are in Figure 3,

(1.3)

Figure 3.  Phase portraits for Case 1.2 and Case 1.3 (N* < N).
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which depict the pull of two points that attract trajectories:
g* and ¢". Each point represents the equilibrium when
the system never or always speeds up. The relationship
between g, ¢, and the speedup threshold N* dictates
whether the equilibrium is at g” (Case 1.1), ¢* (Case 1.3),
or N*, in which case the trajectories oscillate across the
switching boundary between the speedup/no-speedup regions
(Case 1.2). Similar phase portraits can be generated for
Case 2.

To understand the impact of different parameters on the
equilibrium values, we use bifurcation diagrams. Bifurcation
diagrams are often used to show the possible long-term
values (equilibria or periodic orbits) of a dynamical system
as a function of a parameter that may dictate the system’s
behavior. In our case, our main interest is in understand-
ing how the speedup threshold, N*, affects the equilibria
(in §5.2 we will see cases where the long-term values are
actually periodic orbits). To examine the influence of N*,
we assume that all other parameters, including the number
of servers, are fixed. For consistency, we consider the case
where N* < N. The case of N* > N follows very similarly,
assuming Assumption 4.1 holds. Figure 4(a) summarizes the
equilibria for Case 1 as a function of N*. The long-term
number of Needy customers, g,, increases with N*, whereas
the number of Content customers, g,, decreases with N*.
When N* is larger than gF, no speedup is applied; when
N* is smaller than ¢!, speedup is applied most of the time.
Finally, in the middle range (¢ < N* < gF), speedup is
applied a fraction of the time (therefore only some of the
customers will be sped up). This graph demonstrates that N*
is not only the threshold of speedup but also the equilibrium
of the system. From Theorems 3.1 and 4.2, we recognize
that, in Case 1, N > g} guarantees the queue does not grow
without bound irrespective of whether or not speedup is
used. However, by utilizing speedup, we can achieve a
long-term backlog of ¢, < ¢ and maintain finite queues
with fewer servers. Hence, in Case 1, utilizing speedup
(i.e., reducing N*) increases access to service by reducing
the overall workload on Station 1, despite the increase in
readmission likelihood.

Figure 4(b) summarizes the equilibria for Case 2.1 as a
function of the parameter N*. In this case, both the number
of Needy and Content customers is higher when utilizing
speedup compared to never using it. Although speedup
may seem like a reasonable action to take during periods
of congestion, it is a myopic action that can exacerbate
congestion issues in the long run. Hence, unlike Case 1, it is
undesirable to utilize speedup because it can increase the
overall load on Station 1, which is already congested.

At the extremes (high/low N*) when speedup is always
or never used, the basic insights from Case 1 and Case 2
are not surprising. However, because systems may elect to
operate at intermediary values where speedup is used some
of the time (Case 1.2 and Case 2.1.2), it is important to
further understand the dynamics in these regions.

4.1. Case 1.2: g- > g/’

We now discuss a number of interesting insights that can be
extracted by our analysis of Case 1.2. Recall that in this
case, speedup can increase access to service.

We first examine the impact of the number of servers,
N, on the system dynamics. Fix an occupancy threshold,
0 < r at which speedup begins; hence, N* = rN. Figure 5
demonstrates the long-term behavior as we vary the number
of servers, but maintain the speedup threshold at N* =rN.
This introduces an interesting phenomenon where adding
more servers does not seem to reduce congestion. More
specifically, as the number of servers, N, increases, the
occupancy level at Station 1, Q,/N, remains at r. This is
because N* is not only the threshold of speedup but also the
resulting equilibrium of the system. Hence, Station 1 still
seems “busy” even with the addition of servers. Though
adding servers doesn’t appear to reduce congestion, it does
result in fewer customers who are sped up. Our analysis
suggests that large additions may be required before there
will be any noticeable change in occupancy levels.

We now delve further into the behavior of the system in
Case 1.2, where it oscillates frequently between overloaded
and underloaded regions. Note that these fluctuations are
arbitrarily small such that the fluid state remains close to

Figure 4. Bifurcation diagram as the speedup threshold, N*, varies.
(a) Case 1
91,92 | Case 1.1 Case 1.2 Case 1.3
global global global
equilibrium : equilibrium at equilibrium
atg™ W agl atg"
+(1-a)gh) N*

qf 4

'

af’

qzl‘ (?2

qf’ q N

(b) Case 2.1
91,92 t Case 2.1.1 Case2.12 , Case2.1.3
global three equilibria global
equilibrium | at ¢, g* and : equilibrium
at g1 (N", agdl at g-
+(-w)g3)
a3 SN
af’
612L 9
ar 2
af a! N*



Chan, Yom-Tov, and Escobar: When to Use Speedup
Operations Research 62(2), pp. 462-482, © 2014 INFORMS

469

Figure 5. Bifurcation diagram of Case 1 as the num-
ber of servers, N, varies; speedup begins at
occupancy level r < 1.
41,9 : : X
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Note. The diagram is similar for r > 1.

the globally stable pseudo-equilibrium. Hence, although
the derivatives are nonzero, the system is arbitrarily close
to the equilibrium point. As a consequence of the proof
of Theorem 4.3, we can establish the proportion of time
spent in overload and underload when the system oscillates
between these two regions.

Figure 6.  Case 1 (¢f' < N* < ¢F): Simulation vs. fluid.
(a) N =50: P(speedup) as a function of N *
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COROLLARY 4.1. If the fluid system is stable and g} <
N* AN < gF, then the proportion of time the fluid process
spends speeding up is given by

1T
}5207/0 o=
_ A+0g, —p (g AN)
B (hp — 1)(g AN)
A+ d(agr + (1 —a)g)') — p (N* AN)
B (my — ) (N* AN) -

This corollary is based on Filippov’s convex method
(Filippov 1988) that provides expressions for the proportion
of time a trajectory spends above the switching boundary.
This proportion—from the fluid model—can be used as an
approximation for the probability of speedup in our original
stochastic model, i.e.,

(6)

* . 1 r
P(specdup) = P(@,(1) > N) ~ fim == [ 1ig 0oy

We simulate the long-term behavior of our original stochas-
tic system and compare it to our fluid approximation. Fig-
ures 6(a) and 6(b) shows the probability of speedup as we
vary N* for both the simulation and the fluid approxima-
tion. We use parameters that satisfy the criteria for Case 1:

(b) N = 150: P(speedup) as a function of N *
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(a) A small system with N =50 servers and u, =0.0164,

wy =0.0224, p, =0.0667, p,, =0.0973, 6 =0.0161" and
(b) a large system with N = 150 servers and u; = 0.01,
wy =0.02, p, =0.5, py; =0.6, 6 =0.01. We observe that
for large N the fluid is very accurate; this accuracy degrades
as the size of the system decreases and when N* is close to
gi" or gf. This is due to the nonsmooth dynamics of the
fluid approximation when N* is relatively large or small.
This phenomenon also arises when considering the expected
number of Needy customers, E[Q), ], as seen in Figures 6(c)
and 6(d). Upon further investigation, we noticed that the
fluid model provides a more accurate estimate for the mode
of Q,, i.e., the most frequently observed value of Q,. Q,
typically does not have a symmetric distribution, so E[Q,]
is not necessarily equal to the mode of (0. As the system
gets larger, the symmetry of the distribution increases, so
the fluid approximation improves.

We next examine the variation of our stochastic process
with respect to the fluid approximation. Figures 7(a) and 7(c)
show a sample path of the system in Case 1.2, and Fig-
ures 7(b) and 7(d) show the long-term distribution of Q
(using the same parameters as before for the small and
large systems). In this case, the equilibrium of the fluid
model is exactly g, = N*. When considering the stochastic
model, we observe the distribution for @, (¢) has an unusual
shape—similar to a bilateral exponential distribution—that
is tight around the threshold N* and can be observed as

Figure 7.  Case 1 simulation: g{' < N* < gf
(a) A single sample path for N = 50
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rapid changes in the sample path. On the other hand, Q,(¢)
exhibits the typical Poisson distribution (this is more visible
in the larger system). The rapid changes in Q,(¢) suggest
a very strong pull toward the equilibrium from above and
below the equilibrium N* for Needy customers. This obser-
vation suggests that the methodology considered in Perry and
Whitt (2011), which also observes tight drifts for a different
queuing system, could be used to generate an approximation
for the distribution of Q.

4.1.1. Approximating ) Under Case 1.2. Following
ideas from Perry and Whitt (2011), we develop an approxi-
mation to our original stochastic process @, while operating
under Case 1.2 conditions. Such an approximation provides
insight into the behavior of the variation of the queue length
process, which the fluid system does not allow. We develop
the approximation as a heuristic. We consider an approxima-
tion with a very simple structure: a two-sided birth-death
process with constant rates on each side. Because of this
simple structure, we are able to easily derive approximations
for the steady-state distribution of €, as well as provide an
approximation for the probability of speedup in our original
stochastic model, P(Q, > N*). Although the approximation
for P(speedup) from this approach is the same as the one
developed in Corollary 4.1 using the Filippov method for
the fluid model, we now also have more detailed insight into
the distribution of the number of Needy customers in our

(b) Steady state distribution of Q;(7) and Q(¢) for N = 50
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original stochastic model than when considering the results
of the fluid analysis alone.

Define a CTMC process Q = (Q(), 1 >0) € R. Let A*
and w* be the birth and death rates of O(¢) when O(¢) > g,
and A~ and u~ be the birth and death rates when Q(1) < g,.
Our approximation defines these rates as

M =A+84,,
A =A+84,,

w=py(q, AN),

(M
- =pr(g AN).

Because of the constant birth and death rates, the process
Q(r) evolves as an M/M/1 queue in each of the regions
O(t) > g, and QO(t) < §,. This allows us to easily determine
the steady state probability of being in state i:

. _ =AY/ —p /A7)
PO=0= D= )

N\ (=g +1)
s ~
(&) xr@=d-n,
i ifi<g —1, ®)
P(Q=i)= o
S i—q+1 B _
(F) xP(Q=q,—1),
if P> g, — 1.

The intuition behind this process construction is as follows:
The stochastic process () we are trying to approximate has
state-dependent drifts depending on the number of customers
in service; however, we observed in Figure 7(c) that the
number of Needy customers is almost deterministic and
equal to g, = N*. Hence, we remove the state dependency
and instead use constant drifts in the process Q, similar to a
single-server queue rather than the N-server queue we are
approximating. The death rates differ on each side because
of speedup; speedup is used when 0> q,, whereas speedup
is not used when Q < q,- As a result, the rates of QO are the
same as the process Q) if the number of customers were
fixed Q=g = (N*, agy + (1 — a)gs’). This is irrespective
of what the actual queue length Q is and allows us to derive
simple expressions for the distribution of 0, as given in (8).

Previously, we used the fluid model to provide an approxi-
mation for the probability of speedup in our original stochas-
tic system. We now consider a different approximation

Figure 8.

(a) 75%

(b) 50%

approach, which uses the process Q(1) to approximate @, (¢);
thus, we measure when Q(¢) is equal to or greater than N*.
Therefore,

5 00 )\+ i—g+1 5
P(@1>N*)%P(Q>q_1)=2(ﬁ> xP(Q=¢q,—1)

_ AT/pr(d=pm /A7)
I—(A+ /) (/A7)

Using (7), and noting that AT = A~, gives:

P(speedup) = P(Q, = N¥)
~ AT — _ A+0g, —p (g AN)
pt—p  (py—p)(@ AN)

This is exactly the same approximation as from Corollary 4.1.

Figure 8 compares the steady-state distribution of our
approximation, Q, to the simulated distribution of the original
process (2, in various cases. As expected, the fit is very good
when N* is such that we expect the speedup probability
should be close to 50%. As we deviate from that value
of N* (e.g., when the speedup probability is close to 25%
or 75%), the fit degrades. Earlier, we observed in Figure 4(a)
that the fluid model provides a very accurate approximation
when P(speedup) is close to 50%, but its accuracy degrades
as N* approaches g or ¢ (equivalently, as P(speedup)
approaches 0 or 1). We expect this inaccuracy to also arise
as we consider our approximation for the whole distribution
for 2,. Because the shape of the distribution is still quite
accurate in the latter cases suggests that with improved
approximations for g, the approximation for the distribution
of Q; could also improve.

4.2. Case 2.1.2: g; <q¥

We now examine the analogous scenario in Case 2—
Case 2.1.2—and consider the insights our fluid analysis
provides for our original stochastic system. There are
three equilibria in Case 2.1.2. However, the equilibrium
(N*, ags + (1 — a)qd) is not stable. That is, if the fluid
starts there, it stays there; however, even small deviations in
the initial conditions from the equilibrium will drive the

Case 1: Simulation vs. approximation based on two-sided M/M/1 queue.
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system away from it. Hence, it is unlikely to be observed
in our original stochastic system. The other two equilibria,
g™ and g", are locally stable. Hence, whether speedup can
alleviate congestion at Station 1 or whether it will lead to
worse congestion resulting in perpetual overload (even if
the system could be operated in underload without using
speedup) will depend on the initial condition. In the stochas-
tic model, the behavior of the queues will depend on the
distance between g and g’. If they are very far from each
other, the steady state of the stochastic system will primarily
depend on the initial condition. By starting near g*, speedup
will not need to be used; however, starting near g will
require that speedup is always used. Even if g~ and g” are
far away from each other, there exists sample paths such
that the number of Needy customers will increase (decrease),
thereby effectively increasing (decreasing) the system load
and transitioning to state ¢ (¢*). For example, a transition
from g’ to g may occur because of a “burst” of arrivals.
Because of stochastic fluctuations, it is possible that the
stochastic queue will oscillate between g” and g~. If these
two equilibria are very far apart, the transition times in the
stochastic system could be very long—long enough that
such transitions are never observed in practice. However, if
the equilibria are close to one another, small bursts will be
sufficient to cause the stochastic system to transition and so
it may oscillate between the two equilibria frequently. As an
example, we chose to demonstrate a scenario where both
locally stable equilibrium coexist.

Figure 9(a) presents a sample path of the stochastic
state Q(z) = (Q,(¢), @,(¢)), under Case 2.1.2. We observe
shifting from one equilibrium to the second one in the
middle of the run, after approximately 220 days.? The
system begins around the ¢* equilibrium and shifts to the
g" equilibrium. When examining the distribution of Q() in
Figure 9(b), we observe the two equilibria at g~ = (24, 9.6)
and g = (40, 54.4). Interestingly, there is another peak
at @, = N* =35. This peak does not indicate the pseudo-
equilibrium but rather is a product of the system shifting from
one region to the next. During the transition, when the fluid

Figure 9. Case 2.1.2 simulation.

(a) Sample path of Case 2.1.2
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flow encounters the switching boundary 3, (where Q, = N*),
the flow slides along the switching boundary. Therefore, for
a significant part of the time, Q, is constant and equal N*,
while O, changes. This behavior is described as a sliding
mode in the dynamical systems literature and occurs when
(mL(N*AN) = 2)/6 < Qy < (uy(N* AN) = A)/6, which
corresponds to 18.4 < O, < 46.4 in our example. More
details can be found in the appendix. Although this sliding
motion is a phenomenon of the fluid system, we can see that
it still provides important insight into the behavior of the
stochastic system.

The fluid analysis allowed us to identify these two oper-
ating modes. Gibbens et al. (1990) also used fixed point
analysis of a deterministic system to demonstrate the exis-
tence of bi-stability, albeit in communication networks
without feedback. Recognizing such behavior can exist will
help avoid poor speedup decision making.

5. Model Extensions

Thus far, the focus of this work has been on the model
presented in §2. We now consider a number of extensions to
our stylized model that capture additional dynamics that can
arise in various service settings. In particular, we look at the
impact of including prioritization of customers and time-
varying arrival rates. In both cases, we find that although one
can garner some additional insights from analyzing these
extensions, the primary insights from our original analysis
carry over to these extended models.

5.1. New vs. Return Customers

In this section, we consider differentiating between return
and first time customers. Return customers may warrant
higher priority in order to limit the total time customers
spend in the system (e.g., Huang et al. 2012). In addition,
their service rates may differ, as seen in Durbin and Kopel
(1993). We now examine the dynamics of our queuing
model where the service rates and return probabilities
depend not only on congestion but also on whether the
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customer is new versus returning. We assume that returning
customers have preemptive priority over new customers.
Again, we use fluid analysis to generate insights about our
stochastic model. w; ; (@ ;) denotes the service rate for
first-time (return) Needy customers when the system is
considered underloaded, and u , (g y) represents the
same when the system is considered overloaded. Similarly,
Pr.1 (P 1) denotes the probability of return for first-time
(return) Needy customers when the system is considered
underloaded, and py , (pg ) represents the same when the
system is considered overloaded. Denote by Qf and QOFf
the fluid content of first-time and return Needy customers,
respectively. Thus, when Qf + OF > N*, the system is
considered overloaded and speedup is used. Because we
give preemptive priority to return customers, capacity will
first be allocated to them (Qf A N); any remaining service
capacity, (N — Of)*, is allocated to the first-time Needy
customers. The modified ODE under consideration is now

)f = A= (Q7 AN =N )[1r. L Ligf 4o <n)
e i o ooy ]

Of =60, = (QF AN) 1,11 (0f +of <n*)

+'LLR,H1{Q,F+Q{*>N*}]» ©)
50,1+ (0] A(N—01)")
[Pr, ik L Viorof <ney + Pr ke, o +of sy ]
+(QFAN)
[Pr tr  Viof oy +Prbr i o ofne ]

0)

For this model, we utilize numerical approaches becuse
the increased complexity of this model introduces additional
challenges, making it cumbersome to employ the generalized
Lyapunov analysis used to prove Theorem 4.3. Similar to our
original model, we find that this extended fluid model also
has two cases: one with a single globally stable equilibrium
and another with bi-stability.

We translate the insight generated from the numerical
analysis of the fluid model to a stochastic model via simula-
tion of a system with N =45 servers and speedup threshold
N*=35. We use the following parameters in this exam-
ple: wp ; =0.01, up ; =0.02, wp , =0.015, g ; =0.02,
Pr.. =0.05, pr ; =0.06, pr y =0.7, pg y =0.85, A =0.15,
6 =0.0125. Figure 10 shows the result of a single trace of
this extended model. We see there exists a bi-stability effect
in which the system transitions, after nearly five months,
from a “bad” equilibrium, where the system is always under
speedup, to a “good” equilibrium, where speedup is hardly
used. Note that under the “good” equilibrium, most of the
customers are new customers and there are very few return
customers; however, under the “bad” equilibrium, most of the
customers are returning customers. Similar to our original
model in §2, we see that in this case, utilizing speedup can
result in even more congestion. We see again that when such
a bi-stability exists, other mechanisms, such as admission
control, may be more effective in navigating periods of high
congestion.
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Figure 10. Simulation: New vs. return customers.
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5.2. Time Varying Arrivals

Another marked property of service systems is that customers’
arrivals are often time varying (e.g., Gans et al. 2003, Green
et al. 2006, Yom-Tov and Mandelbaum 2014). We now
explore the implications of having time-varying arrivals.

As discussed in Yom-Tov and Mandelbaum (2014) for a
closely related queuing system (with returns but no speedup),
the impact of time-varying arrivals depends on the relation-
ship of the period and amplitude of the arrival rate versus
the service duration. Time variation can substantially impact
the dynamics of our queuing system, especially when the
scale of the service time is long but of the same order as
the time variation. Here, we discover speedup control can
sometimes smooth the time variability. A complete analysis
of the time-variability case is beyond the scope of this
paper, and there is currently little theory to support analysis
of time-varying Filippov systems. Therefore, most of the
observations we present here are based on numerical and
simulation analysis.

We now consider a queuing system with the same stochas-
tic dynamics as the system described in §2, except that the
arrival process no longer has constant rate. We now model
the arrival rate as a nonhomogeneous Poisson process with
time-varying arrival rate A(¢). We again use fluid models
to provide insight for the stochastic model. Accordingly,
we can modify our original ODE in Equation (3) to derive
an ODE to describe the fluid dynamics of this system with
time-varying arrival rate as follows:

01(1) = (1) +80,(1) = Lig,(<nnyr (1 () AN)
— Lig,(ysny i (@1 (1) AN),

01(1) = =80, (1) + Lo, (yen- Pt (1 (1) A N)
+ Lo, ysny Prken (Q1 (1) AN).

(10)

In our analysis of this modified system, we find the
distinction between Case 1 and 2 still exists. In Case 1 we
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have a distinct solution to the ODE, whereas in Case 2 the
system is quite chaotic (i.e., very dependent on the specific
starting point and the phase of the arrival rate). Hence, we
concentrate on Case 1. In this case, the solution may not
be an equilibrium point as it was before but could be an
orbit, which is a periodic function that the trajectory follows
over time. This orbit, which we denote by ¢(t), is closely
related to the solution of a (time-varying) ODE that always
or never uses speedup. We define ¢ (¢) as the solution for
the following ODE when speedup is always used.

g1’ (1) = A1) + 643 (1) — wyqf (1),

(11)
43 (1) = =843 (1) + pumnaf (1).

We similarly define g*(¢) as the solution for the ODE when
speedup is never used. A complete analysis of such an ODE
is given in Yom-Tov and Mandelbaum (2014). If the arrival
rate is periodic (as is the case in many service systems),
q"(t) and ¢ () are cyclic functions that exhibit similar time
variation that lags after the arrival rate function A(#). This
orbit’s period is the same as the period of the arrival rates,
though the phase is shifted. Since we are in Case 1, one can
view never using speedup as a worst case scenario; i.e., the
average number of customers is the highest possible. In a
sense, ¢~ (¢) is an upper bound for the long-term dynamics
of our fluid system: consider two trajectories that start at the
same initial point. One follows the dynamics described by
(11) and the other follows the dynamics described by (10).
The fluid content of Needy customers in the latter will
always be larger. Hence, ¢F(r) is an upper bounding function
for g,. Similarly, g () is a lower bounding function for g,.

We start by considering a sinusoidal arrival process:
A(r) =148.5 x (14+0.12sin(27¢t/f)), t > 0. The period f is
24 hours, u, =1.474, uy =2.018, p, =0.667, py; =0.973,
6 = 1.445, N = 150. Using numeric analysis, we find that
in Case 1, the orbit function ¢ is a function that during
various points of its cycle (determined by the cycle of time
variability in the arrival process) will follow either the upper
bounding function, g% (t), or the lower bounding function,
g (1), or stay along the speedup threshold, N*.

Figure 11 presents some typical fluid approximations
and simulated sample paths of our stochastic system under
different threshold values. In Figure 11(a), the trajectory
converges to the orbit g (#) where speedup is always used.
Because of the periodic nature of the arrival process, we see
that the trajectory on the fluid model follows a cyclic orbit
with the same period as the arrival process. In Figure 11(e),
the trajectory converges to N*. This is similar to the pseudo-
equilibrium in Case 1.2 without periodic arrivals, where g
and g' reside on opposite sides of the speedup threshold,
N*, so that the trajectory is pulled rapidly back and forth
making N* an equilibrium. What is interesting in the case
of time-varying arrival rates is that this behavior creates a
nontime-varying equilibrium, N*. We see that using speedup
improves access to service at Station 1 by reducing the
offered load. It also has another benefit in that it also has the

power to remove time-variation and smooth the occupancy
level at Station 1. Thus, although A(¢) and, consequently,
q"(t) and g*(¢) are periodic functions with a period of 24
hours, the fluid content of Needy customers is time-invariant
and fixed at N*. Another possible trajectory of the fluid
content is depicted in Figure 11(d). The orbit function, g(¢),
can follow two of the trajectories: it follows ¢ (¢), but when
it hits the speedup threshold, N*, it stays there until the
arrival rate falls again, at which point it returns to tracking
q*(t). Thus, there is some smoothing of the occupancy
level at Station 1 (when Q,(¢) = N*); however, because the
speedup threshold is higher than in Figure 11(e), it is not
held constant for all time and the trajectory exhibits some
(but not all) of the time variation of ¢ (¢). Figures 11(b)
through 11(f) present simulated sample paths of the fluid
systems depicted in Figures 11(a) through 11(e). We see that
the fluid approximation is quite accurate in describing the
time-varying system dynamics.

Although we see some very interesting dynamics arise
when incorporating time variation into our model, we focused
on a numeric setting that allows us to observe the nuances.
We also wish examine the impact of time-varying arrivals
in the ICU setting. In the ICU—unlike the ED setting in
Yom-Tov and Mandelbaum (2014) and Green et al. (2006)—
the length of stay (LOS) is quite long compared to the
time variability. Specifically, the arrival rate varies at the
time scale of hours, while ICU LOS is typically three
to four days, spanning a few arrival rate cycles. Because
of this discrepancy in the time scale of variation versus
service time, Yom-Tov and Mandelbaum (2014) suggests
that the impact of time variation is likely to be small. We
also find this to be true when considering our system with
speedup. In Figures 13(a) and 13(b), we present the fluid
approximation and simulated sample path of Q; using
identical parameters as in Figures 7(a) and 7(b), except the
arrival rate is according to the empirical time-varying arrival
rates depicted in Figure 12. We observe the system still
varies around the chosen threshold, and it is difficult to
ascertain substantial differences from Figure 7(a). Although
we find that in this setting incorporating daily variability does
not significantly alter the system dynamics, we can see in the
previous analysis that the dynamics can change dramatically
when incorporating time-varying arrivals. We leave further
exploration of this type of time-varying, state-dependent
queuing system for future research.

6. Conclusions

In this work, we consider a queuing model where service
rates and return probabilities increase when the system is
overloaded. We analyze the dynamics of this state-dependent
queuing model to gain insight into the impact speedup and
returns have on system dynamics. The model presented here
provides insights into the pros and cons of using speedup in
a service system where customers may return to service.
We find that there are two main parameter regimes that
define whether speedup can be a beneficial or detrimental
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operational tool to help alleviate temporary congestion. Such
analysis provides tools to enable practitioners to assess the

potential benefits and pitfalls of different speedup policies.

We find that in some cases speedup can be beneficial to
help alleviate congestion. In such situations, the amount of
congestion and frequency of speedup can be specified via
the speedup threshold, N*. In other cases, the use of speedup

Fluid approximations and sample paths for time-varying arrivals with different threshold under Case 1
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can exacerbate congestion. Moreover, an interesting bi-
stability can arise, which demonstrates the potential problems
associated with using speedup.

We demonstrate via simulation that the fluid approximation
to our state-dependent queuing system can be very accurate.
However, there are scenarios where the accuracy suffers—
particularly in small systems and/or when speedup is used
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Figure 12.  Time-varying arrival rate to ICU (in number of patients/hour).
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Figure 13. Time-varying ICU: Fluid approximation and sample path.
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around 25% or 75% of the time. In this work, we derived
the fluid directly. Establishing a proof of the limit in a
functional weak law of large numbers sense introduces
several technical challenges due to the discontinuity of the
ODE. However, it would be useful to be able to show such
a result. Additionally, it would be interesting to consider
refinements to the fluid approximation.

Finally, we consider two important extensions for our
model: (i) differing dynamics for new and returning cus-
tomers and (ii) time-varying arrivals. This analysis provides
some additional insights but also suggests that our original
stylized model has value in shedding light on the much more
complex reality. We observe, for example, that in the ICU
application one need not explicitly consider time-varying
dynamics. Instead, one may draw important conclusions on
the impact of using speedup from the time-stationary model.
Nevertheless, we find the time-varying dynamics can be very
interesting in its own right and plan to investigate it further
in future work.

Appendix A. Miscellaneous Proofs

ProOOF OF THEOREM 3.1. 1. We begin with the instability result.
Recall for instability, we must have the total fluid content of jobs in
the system grow without bound. That is, we consider Q; = Q, + Q,.
The dynamics of Q; can be summarized as

QT:Q1+Q2:A_(1_pL)ML(Q1/\N)'

If the system is unstable, then lim,_, ., Q;(7)/t > 0. We integrate
and solve for Q, (7). We have

li Or(t)
im = =

1—o00

1 t
A= =pu lim — [(0,(7) AN)dr
1—oo t Jo

(b) Sample path

5 10 15 20 25 30 35 40 45
Time (days)

1 t
2)\—(1—pL)/J,Llim;/ Ndr
t—oo t Jo
=A—(—=p)u,N >0,

A
ifN<——. (A1)
(I=prm;

2. For the stability and equilibrium result, we first show that

q= /(1= pp). (Ap,)/((1 — p)d)) is a globally stable
equilibrium. The stability result follows from the finiteness of g.

To show global stability, we use the following Lyapunov function:

V(Q) =10 — ¢ +10; — @l

We must show that for all Q # ¢, V(Q) < 0. To do this, we must
examine a few cases:

@ 0 >G,0:> gy
V(Q) =0+ 0, =A—(1—p)u,(Q; AN)
<A=(1=p)u g, =0.
(b) Q<G40 <
V(Q)=-0,—0, ==X+ (1—p)p.(Q, AN)
<=A+(1=pp,q,=0.
© Q1>G, 0 <y
V(Q) =0, — 0, =A+2580, — (1+p)p (Q AN)
<A+26¢, —(1+p ) g, =0.
) Q<4 0> ¢
V(Q)=—0,+0,=—A—280,+ (1+ p, )i, (Q, AN)
<—=A—=28¢,+ (1+p, ). .4, =0.
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© 01=4,,0>d.

V(Q)=0,=-80,+p u (@) AN) <=8, +p, ;G =0.
) 0=4,0,<-

V(Q)=—0,=80,—pru (@ AN) <83 —pru 4, =0.
©® 0>d,0:=0-

V(Q)=0,=A+80;— (@ AN) <A+8G, — .G, =0.
(h) Q<G40 =0.

V(Q)=—0,=—-A—80,+u, (0, AN)
<—-A=08¢,+up.q,=0. O

A.1. Proofs for Ordinary Differential Equations
with Discontinuities

Our system is a piecewise-smooth set of ordinary differential
equations. As such, it fits in to the framework of Filippov (1988).
In our analysis, we use Lyapunov techniques as well the methods
outlined in di Bernardo et al. (2008).

Primitives
To begin, we represent our dynamic system by the following
differential equation using the Filippov convex method. More
details of this method can be found in di Bernardo et al. (2008)
and Filippov (1988). The basic premise is to divide the state
space into regions where the ODE is smooth and continuous in
order to leverage existing results of smooth dynamical systems.
A separate region, the switching boundary,’ is defined as the
states of discontinuity in the ODE. The approach is to transform
the differential equation into a differential inclusion, where the
differential function is now a set-valued function. Additionally,
Filippov (1988) proves that solutions to the original discontinuous
differential equation coincide with solutions to the appropriately
defined differential inclusion. In what follows, we will discuss first
how to transform Equation (3) into the appropriate differential
inclusion. Next we will demonstrate the desired results for the
differential inclusion, which will imply the result holds for the
original differential equation. Note that in our case, the differential
equation (and subsequently the differential inclusion) does not
depend on ¢ but only on Q.

To start, we separate the state space, [Rii into two regions, 9,
and 9, and the switching boundary, X, between them as follows:

D ={0: 0, <N"}, Dy={0: 0, >N"},

3={Q: 0, =N*}.

In the regions %; and 9y, the ODE is smooth. However, the
ODE is discontinuous at the switching boundary 2. The Filippov
methodology overcomes this by transforming the differential
equation into a differential inclusion by using a convex combination
of the smooth flows defined in &, and %, on the switching
boundary, 3. We define the fluid function F;(Q), Q € ¥, as the
smooth ODE in these regions:

A+00, —p (0 AN))
—80, +pri (Q)AN))’

A+00, — puy (0, /\N))
=80, +puiy(Q; AN))

£(0) =(

ruo = (

Note that even though the ODE is nondifferentiable at Q; = N, as
is customary, it is still considered smooth, and not discontinuous,
at this point. The real challenge comes at the switching boundary,
i.e., when Q, = N*. Now, our ODE Q = F(Q) can be represented
via a Filippov ODE (a.k.a. a differential inclusion):

£(0). if 0e,.,
. F,(0), if Qe%y,,

G = A2
CEH D=1 (1_pF(0) (42)

Ty Fy(Q)10<y <1}, if QeX.

ProoOF oF THEOREM 4.1. We start by stating the existence result
in Filippov (1988) in terms of our notation. The result is for
a differential inclusion; however, the Filippov method utilizes
the fact that solutions of the differential inclusion coincide with
solutions of the original discontinuous differential equation. Hence,
if our differential inclusion satisfies the conditions of the following
theorem, this will imply existence of a solution to our ODE (3).

THEOREM A.l (THEOREM 1, CHAPTER 2, SECTION 7 OF FILIPPOV
1988). Let F(Q) be a differential inclusion that satisfies the
following conditions in the domain G:

1. F(Q) is nonempty for all Q € G.

2. F(Q) is bounded and closed for all Q € G.

3. F(Q) is convex for all Q € G.

4. The function F is upper semicontinuous in Q.
Then for any point q, € G, there exists a solution of the problem

0e7(0), 0(0)=qp

We will consider the domain G = [0, Q,,,,] X [0, O, ] for
some arbitrary finite constant, Q,,, < co. Now, we just have to
demonstrate that the conditions hold for all Q € G. It is easy to see
that conditions 1-4 hold for all Q € %; U%, as in these regions
7 is a continuous real-valued function (rather than a set-valued
function). Thus, F(Q) is a single point, which is bounded above
by max{A + 60> Pty (Omax A N)} and bounded below by
min{A — gy (Qpax AN), —60,..«}. Any continuous function is also
upper semicontinuous, so the fourth condition follows.

It remains to show the four conditions hold for any Q on the
switching boundary, 3. By the same argument as for Q € &, U %,
F(Q) is bounded for any Q € 3. By definition of ¥ in (A2), 7(Q)
is closed and convex for Q € 3 because it is a convex combination
of Fy, and F;. Since both of these functions are nonempty, so
is 7. Finally, to show 7 is upper semicontinuous on 2, we need
to show that F is upper semicontinuous for every Q € 3. The
set-valued function : 3 — Y C [Ri is upper semicontinuous at a
point Q € = provided that for each open set V in Y containing
F(Q), there is an open set U in X containing Q such that if
Q' € U, then F(Q') C V. By the definition of the inclusion,
for an Q € 3, T(Q) = (1 — $)F,(Q) + ¥F,(Q) | 0< ¥ < 1).
Consider an open set V that contains F(Q): there exists an
€ > 0 such that for every f € F(Q), f + € € V. Now by the
continuity of F;, and F,, there exists 6 > 0 such that if |Q' — Q| < 6,
then | Fy,(Q) — Fy(Q")] < €/2 and |F,(Q) — F,(Q")] < €/2. Thus,
(1 = $)FL(Q) + WFy (Q)] — [(1 = ) F(Q)) + ¥ Fy(Q)]] < €
for all 0 < ¢ < 1. Hence, #(Q') C V, and we have derived the
necessary open set U = {Q' | |Q' — Q| < 6} N3 (recall that the
intersection of two open sets is open). This demonstrates that F is
upper semicontinuous in =. All conditions hold on the switching
boundary. Therefore, there exists a solution to the differential
inclusion and subsequently our ODE. [
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PrOOF OF THEOREM 4.2. We consider each of the two cases.
L [qf <qfl.
(a) We first consider the case where N < g. Similar to the
instability proof of Theorem 3.1, we consider the total number of
jobs in the system and show that lim,_, ., Q7(7)/f > 0. We have that

0r =01+ 0 =A—lig (yony (1= p ) (@ AN)
= Lig,svy (1 = Py (Q) AN).

We integrate both sides, divide by ¢ and take the limit as ¢ — oo:

0r(1) _
t

] t
lim _)\—limf/ (0,(T) AN)
t—oo t Jo

t— 00

: [(1 —PL)MLI{Q1(7)<N*) +(1 _pH)IJ“Hl{Ql(T)ZN*)]dT

.1t
> A= (1= pi)pag lim — [ (Qi(1) AN)d7
—oo t Jo
1 t
>A—(1— im —
>A=(=py)uylim — [ Nar

=A=(1=py)uyN>A1-(1 _pH)l'LquH =0.

The first inequality is because in this case g’ < gf, which implies
that (1 — p;)u, < (1 — py)py. The last inequality comes from the
assumption that N < A/((1 — py)py) = qff. Hence, the system is
unstable if N < gf’.
(b) We next consider the case where N < g& and N* = oo (ie.,
speedup is never used). This is simply the result of Theorem 3.1.
2. [qf > qi]
(a) We first consider the case where N < gF. Using the same
argument as before, we now have
t
lim QL(’):A—tnm%/ (0,(T)AN)
oot Jo

t—o00 t

Ja=pw, Lig,m<nsy + (1 =Pty 1{Q1(7)2N*)]d7

1ot
>A—(1=pouyJim - [ (@i(7) ANz

1 t
>A—(1— im —
>A=(=pouJim - [ Ndr
=A—(1=p)u,N>0.

The first inequality is because ¢if > gF. The last inequality comes
from the assumption that N < A/((1 — p,;)m,) = gF. Hence, the
system is unstable if N < gF.

(b) Now we consider the case where N < ¢ and N* < gF.
Again, we focus on the total workload in the original system. We
have that
lim 0r(1) _

t

f—>o00

1 t
A=lim - [(Qi(m)AN)

: [(1 _pL)lu’Ll{QI(T)<N*) +(1=py)iy 1{Q1(r)>N*)]dT
t

1 .
>A—lim — [N (=Pl m<nv)

t—oo t Jo

+ai' (1= pi)iep L (g, (my=ny AT
. Lt
>A—}gg;/0 [ar (1 =pL)mr L0, (ry<n)
+91H(1—PH)MHI[Q,(T»N*}]dT

1 t
=A—1lim - | Ad7T=0.

t—oo t Jo

The inequalities come from the assumptions that N < g and
N* < gF. Hence, the system is unstable. O

PROOF OF THEOREM 4.3. Defining equilibria points and the ODE
flow. Our theorem distinguishes between seven cases and three
equilibria points. We start by identifying these points and the
conditions under which they arise as equilibria; we then prove
stability. To do so, we refer back to the primitives defined earlier
for Filippov ODEs, which transform the original ODE into a
differential inclusion.

We start by examining each region, & and <, . If the solution
trajectory never leaves a region &, once it enters the region, then
the solution can be characterized with standard methods for regular
continuous ODEs (Guckenheimer and Holmes 2002). Therefore,
we first define the equilibria of F; (Q) and F,(Q). That is, we
consider the long-term behavior of a system with dynamics that are
defined by the continuous ODE F, (Q) (F;(Q)) across the entire
state space in the case where speedup is never (always) used. We
assume there is no switching boundary or speedup threshold. By
the methods of di Bernardo et al. (2008), if a locally or globally
stable equilibrium, ¢, (gp), of the continuous ODE F, (Q) (Fy(Q))
is in 9; (Zy), then this directly translates into local stability of
q;. (gy) in the original discontinuous ODE.

LemMMA A.1. If gF < N, then the continuous ODE F, has a globally
stable equilibrium at q-. If g* € @, and qF < N, then q* is
a locally stable equilibrium in the original discontinuous ODE
defined in (3).

ProOF. The first part comes from Theorem 3.1. The second part is
typical for piecewise-smooth ODEs and follows from Guckenheimer
and Holmes (2002) and our stability assumption. Intuitively, by the
stability of g~ in the continuous ODE defined by F,, there exists a
small ball around ¢ such that trajectories that start within the ball
will converge to ¢~ and stay there. If ¢~ is in 9, , then one can
also select a small ball around g* such that (1) trajectories that
start within the ball will converge to g and (2) the ball is entirely
contained in 9. Then starting a trajectory in this small ball, but
letting the system dynamics be defined according to our original,
discontinuous ODE in (3), the trajectory will stay in the ball, which
means they will stay in &; and follow the same dynamics as the
continuous ODE F;, since it won’t hit the switching boundary, 3.,
or enter the other region, . Thus, g* is locally stable. O

LemMA A.2. If gff < N, then the continuous ODE Fy has a
globally stable equilibrium at ™. If ¢ € D, and g < N, then
q" is a locally stable equilibrium in the original discontinuous

ODE defined in (3).

PRrROOF. The results can be derived with the same techniques as in
the proof for Theorem 3.1 and Lemma A.1.

Lemma A.1 proves the existence of a locally stable equilibrium
at ¢; in Cases 1.3, 2.1.2, 2.1.3, and 2.2 because g* € ¥, holds in
these cases, as demonstrated for Case 1.3 in Figure 3. Similarly,
Lemma A.2 proves the existence of a locally stable equilibrium
at gy in Cases 1.1, 2.1.1, and 2.1.2. We will later use Lyaponov
techniques to prove the global stability of these equilibria in the
appropriate cases.

Next, we analyze the dynamics of the system on the switching
boundary, 3, and identify our third equilibrium that lies in this
space. To do this, we look at the forces on either side of the
switching boundary. Specifically, we look at the component of F;
normal to 3, which we denote by ;. These measures are often
referred to as the Lie derivatives.

£ =A+080; —pu (N*AN),

, (A3)
Ly =A+00; —uy(N*AN).
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Figure A.1.

Example of a sliding motion.
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We have the following three cases to consider:

1. &, <0 and £ <O0: a flow that hits X will transition from
Dy to D, If the flow is already in &, it will stay in &, . Because
M < g, forall {Qe3: 0, < (u (N*AN)—2A)/8}, both £, and
&, are negative, and the transition will be from %, to 9, ;

2. £, >0and £, > 0: a flow that hits 3, will transition from
D, to Dy. If the flow is already in Dy, it will stay in D. For all
{0e=: 0> (ug(N*AN)— L)/}, both £; and &, are positive,
and the transition will be from %, to &.

3. &, %y <0: aflow that hits X will stay on X—potentially
forever. The flow is said to be in a sliding mode, in which Q,
is constant and equal to N* while only Q, changes. Figure A.1
illustrates an example of a sliding mode flow where N* =200. If
(W (N*AN)—A)/6< 0, < (g (N* AN)—A)/8, we have that
&, <0 and £y > 0, so then the ODE is in a sliding mode on the
switching boundary 3. The importance of this sliding mode is
there could be an additional equilibrium inside the sliding set. This
point is typically not a fixed point in the standard sense since the
ODE is nonzero at that point. However, it is still an equilibrium
by Definition 2.2 because if a flow starts at that point, it stays
there. In some cases, this special equilibrium is a unique and stable
equilibrium. We call this type of equilibrium a pseudo-equilibrium
as in di Bernardo et al. (2008).

DEFINITION A.1. We call a point g a pseudo-equilibrium if it is
an equilibrium of the sliding flow; i.e., for some scalar 0 < £ < 1,

F=(1-8F.(q)+¢Fy(9) =0, geX. (A4)

Note the similarities to the Filippov ODE (A2). When the
convex combination is active in (A2), i.e., ¢ € (0, 1), there exists
an equilibrium on the switching boundary %, and & = ¢.

LEMMA A.3. The point (N*,aqt + (1 — a)gi) is a pseudo-
equilibrium in Cases 1.2 and 2.1.2.

ProoF. Solving (A4) yields
_ A= =p ) (N"AN)
(I =Py (N* AN) = (1 = p ) (N* AN)

We have that 0 < ¢ < 1 if the following three conditions hold
simultaneously:
@ A—(1—p)Iu (N*AN)>0 = N*AN <gqf,

3

(A5)

(b) (1=pp)py(N*AN)=(1=pp ) (N*AN) > 0= gf' <qf,
and

(©) A= = pIu,(N* AN) < (1 = py)py(N* AN) —
(1=p ) (N*AN) = ¢! <N*AN.

These are exactly the conditions of Case 1.2, which means
that in this case there exists a pseudo-equilibrium on the switch-
ing boundary 3. Substituting ¢ from (AS5) into (A4) gives the
resulting equilibrium: (N*, ((N* AN) — qi)/(gF — qi')) g5 +
((gF = (N*AN))/(gF — gl"))gi). We will show later that in
this case this point is a globally stable equilibrium. By defining
a=((N*AN)—qf")/(qF —qf'), we can express the equilibrium as
(N*, agt — (1 — a)gi?). Note that under the above three conditions
(Case 1.2) 0<a < 1.

Another scenario where 0 < ¢ < 1 is if the following three
conditions hold simultaneously:

(@ A=(1—=p ), (N*AN) <0= N*AN > gk,

(®) (1 = p)uy(N*AN) — (1 = pp)u (N*AN) < 0 =
g’ > qf, and

(©) A = (I = pIp (N*AN) > (1 = py)puy(N*AN) —

(I=p ) (N*AN) = q{' > N*AN.
These are exactly the conditions of Cases 2.1.2 (for gF # gf)
and 2.2, which means that in these cases there also exists a
pseudo-equilibrium on the switching boundary 3. Again this
pseudo-equilibrium is (N*, ag + (1 — a)g4). Experiments show
that this point is not stable. If we start the system at that point it
will stay there, but very small changes from that point will bring
us to one of the other two equilibria of the system. [

Locally Stable Equilibria. Combining the results of Lemmas A.1
through A.3 yields our (Lyapunov/local) stability results for
Case 2.1.2 and 2.2 and the existence of the third equilibrium in
Case 2.1.2.

Globally Stable Equilibria. We continue by proving the global
stability results (Cases 1.1 through 1.3, 2.1.1, and 2.1.3). To show
global stability in the sense of Lyapunov, we need to identify a
Lyapunov function and prove that for all Q € Ri\{cj}, the derivative
of the Lyaponov function is strictly negative. We use the following
Lyapunov function:

V(Q) =101 — ¢l + 10, — ¢l (A6)

where ¢ is the specified equilibrium. We use the Filippov method-
ology as describe earlier, which redefines the ODE as a differential
inclusion so that on the switching boundary, 3, is the convex
combination of the surrounding smooth ODEs in (A2) for 7 (Q).
We continue to use this definition of our ODE and utilize the
generalized Lyapunov theory for set valued functions. Using the
approach in Shevitz and Paden (1994), we need to show that the
set value map for our generalized Lyapunov derivative is negative
for all states not equal to the equilibrium in order to establish
global stability.

We have two cases to consider for our set value map, generalized
Lyapunov derivative:

L. [Q; #N7].

V(Q), Qi#G1 O #d

0,  0>q.0=0;

V) =1-01, 0 <d 0= (A7)
0. 01=¢. 0>

—Qz, 01=4q1, O, <q,-
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2. [Q, = N*]. Inthis case, the flow is on the switching boundary, 3.

YVEQ) + (1 — ) VH(Q).

Yel0,1], 01 #qi, O # G
YOl +(1— )0l

Y el0,1], Q> Gy, O =y
—pOf — (1—-¢)0F,

Yel0,1], 0, < gy, 0=y
YOs + (1 - 407,

pel0,1], 01 =q, O > Go3
Y05 —(1-4)0%,

'J/E [07 1]7 Ql :q_l’ QZ < ‘?2'

V(0)= (A8)

where VI and V¥ correspond to the Lyapunov function when
Q, <N* and Q, > N*, respectively.

In what follows, we will use this generalized Lyapunov theory to
prove the global stability in Theorem 4.3. Because of the immense
amount of algebra involved in this proof, we only include here
the proof for Case 1.2 while noting the rest of the cases (1.1, 1.3,
2.1.1, and 2.1.3) will follow similarly. We need to show that for all

0+#q, V(Q)<0.

Case 1.2. gqf' < (N* A N) < gf: Define the stability point as
G = (@ (N"), (N*) = (N*, agt + (1 — a)gl!), where a =
((N*AN) — g™ /(qF — ¢qf"). We will suppress the dependence
on the control factor, N*, for notational compactness. Note that
G AN €(qf, qF) and ¢, € (¢4, ¢&7). Moreover, by Assumption 4.1,
N > gf!. There are a number of subcases to consider within each
of our two cases:

(i) [Q) #N*]
(@) 0,>¢q, =N* 0,>q,.
V(0)=V(Q)=0,+0,
=A+00Q; —up(QAN) =080, +pupy(Qy AN)
=A=(1=py)py(Q, AN)

</\_(1_PH),UvH(‘jl/\qu)zf\_(l_PH),U«HQF=O~
(b) 0, <q =N"0,<q.

V(Q)=V(Q)=-0,~0,
=—A=80,+u (O AN)+80Q; —p i (Q1 AN)
=—A+(1=p ) (O AN) <=A+(1 —PL)ML%L:Q

(©) Q1 <q=N* 0,>q.

V(@) =V(Q)=-0+0,
=—A—00; +u.(Q) AN)— 00, +p u (Q) AN)
=—A—280,+(1+p)p.(Q; AN)
<—=A—=28¢,+(1+p)u (4 AN)
<—A—=28g5 +(1+py)u gt =0.

(d) @/ >¢ =N 0, <q.
V(@ =V()=0,-0,
=A+080; —uy(Q  AN)+ 60, — pypuy(Qy AN)
=A+280, — (1+py)uy(Q, AN)
<A+28g, — (1+pw)un(@ A ay')
<A+28q; — (1 + pp)ingl’ =0.
(€) 01>q=N" 0, =¢.
V(0)=0,=A+80;— 1s(Q AN) < A+84— 11y (G Aaf)
SA+8g5 —ppgf =0.
0 01 <q=N", Q=g
V(Q)=—0,=—A—80,+1,(0, AN)
<—A=384y +p i =0.
(i) [@; = N*]. We want to show that for all ¢ € [0, 1],
V(Q) <0:
(@ 01=¢,=N", 0, > ¢,.
V(Q) =05 +(1-)0F
=[-80,+p . (Q)AN)]
+(1=¢)[—00,+pypy(Q1 AN)]
<Y[-8q+p (g1 AN)]
+(1=¢)[-0q, +pyrn(gi AN)]
<y[~8q; +pLirar]
+(1=)[—0q,+pumy(q AN)]
=(1=)[-0q +pumu(g AN)]

i (N*AN)—qH
S pHuH(N*Am—a(iL i
L qr —q
_’_QIL_(N*/\N) é—]>:|
qt —qt!

=1=)| puprua(N*AN)

5((N*AN)(qu—qé’)—q{’quqqu>_
- L H
9 —q —

=1=)| paprua(N*AN)

_ (N*AN)(pr—pr)brtiy —Mpriy = Prbn) ]
(I=prpg—(1=ppg J

=(1=)| pupy(N*AN)=(N"AN)

(pr __pH)/“LL/J“H —(A/(N*AN))(prpy _PHI'LH):|
(I=pp)y—(1=p

<<1—¢)[pHuH<N*AN>—<N*AN>

(pL—Pi)piin — (A qi) (PLiy —pHMH)]
(I=pwy—(—p

=(1—¢>[pHuH(N*AN)—<N*AN)

) (Pr—Pe)briiy — (1= py)uy(Prpg _pH/'LH)] -0
(I=ppg—(1=p ’
Vi
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(b) 0,=¢=N"0,<q.

V(0)=—90k—(1-y)0!
=y[60,—pr i (O AN)H(1=9)[6Q,—pypy (O AN)]
<[6q, —prir(q AN) ]+ (1-)[04, _PHILH‘If{]

$18g, —prir (@ AN)+(1=9)[8q; — pumnar’]
=[0G, —pLpi (4 AN)]
— (1= )| ~pras ( AN)
-+8<(N*§1if);q1”q§+ —L(Ii’*gN) 5)}
F—dqf =i
— (1= )| PV AN

5((N*AN)(qu @) —al'as +aras )}

‘h _%

=(1=y)| —pp(N*AN)

(N*AN)(pp—pp) iy —APLit, — Priy) ]

* (I=pr)pg—(1=ppg i

=(1=9)| =pru (N*AN)+(N"AN)

) (Pr—Pw)irtby — A/ (N AN Pty — prbis) ]
(I=pp)y —(1=p J

< —¢>[—pLuL(N*AN)+(N*AN>

(pL= Py — (A a0 (Ppy —pﬁuﬂ)}
(A=pp)pwy—A=pur,

- —w)[—pLuL(N*AN)HN*AN)

) (Pr—pPw)rotiy — (A —=p)r (Pl — Puitn) :| -0

(I=pwy—(1=pp
Vi

This concludes the proof for the global stability of Case 1.2. O

Appendix B. Markov Chain Performance Measures
P(speedup)

= (0, 0)<(1 ””“”) ;;(AI’I)j

(1 =p)m, (1-p;)é

(Zl<u—2m>+2 RN (u—ﬁhm,,)i)’

P(Wait > 0)

:ﬂ0,0)(%) ;;(uilz,)s)j
1%1 Nu\llr N ((1 —ph)Mh>

”(O’O)_[?K(lf];) )(Zl<(1—2m>
() ilama)
(

)™ 5 e () )]

(B1)

+

Endnotes

1. These parameters were inspired by an ICU application.

2. The timing for such shift is unpredictable: we have simulation
runs where the shift occurs within a few days and others that take
much longer.

3. The switching boundary is also often referred to as a discontinu-
ity set, discontinuity boundary, or switching manifold.
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