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In order for a patient to be discharged from a hospital unfhgsician must first perform a physical examination and
review the pertinent medical information to determine thatpatient is stable enough to be transferred to a lowel leve
of care or be discharged home. Requiring an inspection ofiarpia ‘readiness for discharge’ introduces an interggti
dynamic where patients may occupy a bed longer than meglizadlessary. Motivated by this phenomenon, we introduce
a queueing system with time-varying arrival rates in whietvers who have completed service cannot be released mintil a
inspection occurs. We examine how such a dynamic impactsnmmsystem measures such as stability, expected number
of customers in the system, probability of waiting and expeéavaiting time. Leveraging insights from an infinite-sarv
model, we're able to optimize the timing of inspections and fria theoretical and numerical analysis that 1) optingzin

a single inspection time could lead to significant improvetaén system performance when the amplitude of the arrival
rate function is large, 2) multiple inspections should bdarmly distributed throughout the day, and 3) the marginal

improvements of adding additional inspection times is elasing.
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1. Introduction

Standard queueing models assume that a server is free ® &er@w job as soon as the current job in
process completes service. However, such an assumptionohbg reasonable in some systems. Motivated
by a hospital setting, we introduce a new queueing systemhdaptures hospital discharge dynamics that,
to the best of our knowledge, have not been considered indke @ur analysis of this model provides
some insights into how the frequency and timing of physictamds, which determine the timing of patient
discharge orders, impact patient flow dynamics.

We consider a standard practice in hospital care: a physioiast check on a patient to assess whether
she is ready to be transferred to a lower level of care or semetbefore a discharge order can be placed.
That is, while a patient (customer) may be medically readygtaischarged, she will continue to occupy a
bed (server) until a physician checks on her and writes afeaor discharge order. Therefore, a patient’s

length-of-stay (LOS) is likely to be longer than is medigallecessary due to the need for a physician’s
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‘inspection’. Most hospitals have rounds once a day, tylyi¢a the morning, at which point patients are
examined to determine if they are ready for discharge. Smahds occur in the ICU when making decisions
to transfer patients to step-down units or the general waigsy also occur in the wards when deciding to
discharge patients home.

While queueing models have been used extensively to exgrainent flows in hospitals (e.¢y)cManus
et al. (2004, Yankovic and Gree2011), Saghafian et a[2012 among others), to the best of our knowl-
edge, none have considered the need for physicians to insgents to determine whether they are ‘ready
for discharge’. In other service systems, such as callezensuch a phenomenon does not exist as servers
typically correspond to humans who will know immediatelyemha customer has completed service. In
contrast, in the healthcare setting, a physician mustweldb tests, imaging results, vital signs, etc. before
a patient can be moved from a hospital unit. Typically, nsiesescute the care plan dictated by the patient’s
physician; however, even if a nurse suspects a patient megaloly for discharge, this cannot occur without
physician approval. Physicians have many demands on iimei(€.g. surgeries, office visits, follow up with
outpatients, charting, etc.) and are not generally aviaildbring the day. So physician ‘inspections’ most
often occur on a one-time basis—early in the morning whendsuake place, which in teaching hospitals,
also provide an educational opportunity for medical resisl@nd students. In this paper, we examine the
impact of the timing as well as what gains could be achieveidtieasing the frequency of ‘inspections’.

Motivated by the above discussion, we develop a queueirtgrsyshere a server who completes service
can only be freed at pre-specified inspection times. If serlias not completed prior to the inspection time,
the customer continues to occupy the server until at leashéxt inspection time. In the hospital setting,
which serves as our primary motivation, a customer corned@pdo a patient; each server corresponds to
a bed; and the service time of a customer corresponds tontleeai physical admission to a bed until the
time the patient is medically ready to be discharged or feared to another unit. Note that in our system,
the service time may bg&horterthan the total time a patient spends in the bed. We assumghéhperiodic
arrival rate varies depending on the time of the day. We reféhnis system as ai/, /M (T)/s model. M,
refers to the time varying Poisson arrival process, whigfoisonly a fairly standard queueing assumption,
but also has been shown to be a reasonable model for manp¢ereltapplications (see for examplen
and Whitt (2014 and Green et al(2006). M (T) denotes the fact that service times are exponentially
distributed but the servers are only released at inspetititas defined by the vectd. In this work, we
examine how the required inspection alters the queueingrmias as well as assess when such inspections
should occur to optimize system performance. Our main dmritons can be summarized as follows:

e Stability: We analyze the stability of th&/, /M (T')/s system and introduce a notion of an ‘effective
service time’, which reflects the inflation of time spent wéttserver due to the need for inspection. We

show that the stability condition is invariant to the timiofithe inspection.



e Equilibrium analysis: We analyze the periodic equilibrium behavior of thg /M (T) /s system and
provide explicit characterizations of the queue length tliedvaiting time processes.

e Optimizing performance: We leverage insight from an infinite-server model to optirtize timing of
inspection times. In particular, we identify inspectioméis to minimize the expected mean and maximum
number of customers in the system as well as the probabfliyading. The gains which can be achieved
by optimizing the timing of inspections depend on the argdk of the arrival rate function. For example,
when assuming a sinusoidal arrival rate function and asimgpection time per cycle, the reduction in the
time-average expected occupancy level can range from On(trteearrival rate is constant over time) up to
10% (when the amplitude is maximal).

e Impact of additional inspection times: We find that system performance improves (e.g. stabil-
ity region increases, congestion decreases) when addimg mgpection times; however, the marginal
improvements are decreasing in the number of inspectioasl¥6 find that when there are multiple equally
spaced inspection times, the system performance is veogtebth respect to the timing of inspections.

e Model Extensions:We check the robustness of our analysis under different timgdassumptions.
More specifically, we examine the reliability of the infingerver approximation, when using a more gen-
eral class of service time distributions, including the eljdused log-normal distribution. In addition, we
consider scenarios where inspection times do not have tgumlg spaced. Next, we examine our results
in the case of more general arrival rate functions; spedlificse consider the case of the empirical arrival
rate to Emergency Departments in the United States. Lagtlgnalyze the dynamics of &d, /M (T)/s/s
system where customers are blocked (rerouted) when thersystfull. In most cases, the infinite server
system approximation still enables us to select the optinsglection schedule to minimize the occupancy
level and/or probability of blocking in the loss system afidBour prior insights translate to these extended
models. However, in some instances (e.g. deterministideetimes) the system dynamics can differ sub-
stantially.

The rest of the paper is structured as follows. We concludestction with a brief review of related
literature. We formally introduce th#&/, /M (T)/s queueing model in Sectioh In Section3, we derive
the stability condition for our new system. Sectibderives expressions for various time-dependent perfor-
mance measures. In Sectidnwe introduce an infinite-server model, which we leveragartwide insights
into optimizing the inspection times in the finite serveunatton. We are also able to relax the assumption of
exponential service times in this analysis. In Sec@id 7, we consider several model extensions. Finally,
we summarize our conclusions and provide discussion fohduresearch in Sectidh All proofs of the

results are given in the appendix.

1.1. Related Literature
In this paper, we introduce a queueing system with time+agrgirrival rates which is prevalent in hospitals
as well as many other service systems (Amgnony et al.(2015, Shi et al.(2016). While the assumption
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of time-varying arrivals is better able to capture reaktych models tend to be much harder to analyze than
their time-homogenous counterparts. A naive approachpooxpmnate system performance is to eliminate
the time-variation and use the steady-state distributfcantome homogeneous queue whose arrival rate is
the long-run average arrival rate. However, such an apprisagnable to capture the variability in perfor-
mance over time, and because the variation can be quitdisartiin some cases, insights extracted from
such an approach may be very misleadiBggen et al. 1991)ennings et al. 1996

When the time scale of variation in the arrival rate is mugfyda than the service time, the pointwise
stationary approximation, which uses the steady-statétilition of a time homogeneous queue with arrival
rate \(t) to approximate the performance of the time varying queuiengt, works quite well Green and
Kolesar 199) To cope with the case when the time scale of variation igppfeximately the same order
or much smaller than the service timdgnnings et al(1996 propose an infinite-server approximation,
which seems to be reasonably accurate. In this work, we useilarsinfinite-server approximation in our
analysis, albeit for a very different queueing model, amaisshumerically that it is able to capture some of
the main features of our system. In our analysis, we leveregdts forM, /M /oo queues fronEick et al.
(19933 andEick et al.(1993Hh.

There has been quite a bit of work on staffing and capacity gemant policies under time-varying
arrival rates (see, for exampléennings et al(1996, Green et al(2007 andLiu and Whitt (2012). In
contrast to these papers, we consider the case where thenafdervers, which in our model corresponds
to the number of hospital beds, is fixed. As such, our focusist@racterizing the impact of alternative
inspection (discharge) policies and then optimizing okient.

The notion of inspection policies is relatively new in theegeing literatureZazanis(2004 analyzes
infinite server queues with synchronized departures didyea single point proces®obson et al(2010
uses performance analysis of dimensional discrete time Markov Chain to examine the impétearly
discharges’ from the intensive care unit (ICU). They assthmgatient’s length of stay is discrete (in days)
and bounded. In addition, patients can be discharged edrtlgere are not enough servers (beds) in the
ICU. Chan et al(2012 develops an optimization framewaork to select patientstamh early discharges. In
our setting, we assume that patients can only be dischargagtbey are medically ready.

Inspection in queues and other stochastic models has bedyrad in the manufacturing setting (see
for exampleOhnishi et al (1986, Jewkeq1995 andYao and Zheng1996). The primary focus in these
papers is quality control and/or detection of malfunctignmachines. As such, the system dynamics are
quite different from our setting. For example, in most mactiiring settings, a faulty product will be
detected during inspection which may lead to additionatessing procedures; however, it is unlikely the
product will continue to occupy the servers (machines)rafténishes service while it awaits inspection.
In the context of scheduling inspections in order to deteaifunctioning machines, it is the status of the

machine (broken or not) which determines whether a new jolbegin, rather than the status of the job and



knowledge of this status which determines when the servetéased. There is also an extensive literature
on ‘vacation models’ where servers can temporarily leagestfstem (e.g-edergruen and Gre€h986),
Doshi (1986). In this case, servers can go on vacation (rather thanreequaintenance) under various
conditions, such as when the system is empty. The majoritigesfe papers focus on deriving steady-state
performance measures given different vacation dynamics §ingle server.

There has also been some work on queues with batch depafugeSoster and Nyun{1961), Foster
and Pererd1964). Here, the goal is to examine steady state analysis wHengoe served in batches. In
such a setting, the effective time in system increases fws s they must wait until a full batch can be
served. However, in contrast to our model, the jobs deparicdmonously because, although they begin
service in batches, their service times are not identical.

Most related to our work i®owell et al.(2012), Shi et al.(2016, andDai and Shi(2014), which all
consider modifying discharge timing in a hospital settirgwell et al.(2012 andShi et al.(2016 apply
a data-driven approach to build a queuing model and use afionlto test the performance of different
discharge scenarios, whil@ai and Shi(2014) use asymptotic analysis to examine the same. All of these
papers focus on the impact on patient “boarding” (waitingaio available bed) in the Emergency Depart-
ment (ED) when patient discharges are shifted earlier im#ye The argument is that moving patients out
of beds earlier will reduce the waiting time of new patieftai and Sh(2014) assumes that medical needs
dictate patient LOS on a daily level, while operational éstdictate admission and discharge times which
operate on an hourly level. As such, an implicit assumptiothese papers is that a patient is ready for
discharge at any time during the day of discharge, and they, ¢conclude that to minimize delays, dis-
charging everyone at midnight would be optimal. Howevecaose such a discharge policy is not feasible,
they consider alternative policies. In contrast, our maakts the perspective that the recovery of patients
is a continuous process. For example, a patient who is noegely to be discharged in the morning may
become well enough to be discharged later in the afterndais.ifplies that earlier discharge times do not
necessarily lead to better performance. While we also densiischarge timing, we aim to optimize this
depending on when a patient is ‘ready for discharge’. Thignaf inspection is not considered in the prior
works.

2. TheM,/M(T)/s Model
In order to understand the impact of requiring a physiciagvgew before a patient can be discharged, we
introduce a queueing model where customers (patients) ledegervice but continue to occupy the servers
(beds) until an inspection occurs. Our model is depictedguife 1.

Jobs arrive to the system according to a time-varying Poipsocess with rate given by(¢) (measured
per hour). We define\(¢) for ¢t € R. We assume\(-) varies within a day but follows the same intraday
pattern across days (periodic pattern). Specifically+ 24) = \(¢). We let

At) = /Ot)\(u)du
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Figure 1 M /M(T)/s queueing model with ‘readiness to discharge’ inspections: customers can only be
removed from the system after an inspection which occurs at t ime(s) T.

denote the cumulative arrival rate function. Specificall{24) denotes thelaily arrival rate. Without loss
of generality, we also assume time zero is the beginning af/altithe period and time-scale of variation do
not occur according to a 24-hour period, a simple re-scalfrigme, ¢, can incorporate such dynamics. The
periodic assumption allows us to measure the long-run gegparformance via the notion of a periodic
equilibrium, as we detail in Sectich

There ares identical servers in the system. If a customer arrives arehaesis available, it will begin
service immediately. If there are no servers availablectlstomer must wait in the (infinite buffer) queue
until a server becomes available. In order to focus on thegnpf inspections, we consider a homogenous
customer population where each customer’s service timepigreentially distributed with rate (measured
per hour). The reciprocal gi can be thought of as the mean service time for the averagenpattipon
completion of service, the customer wslill occupy the serveiThe server is only released once an inspec-
tion occurs and the customer has completed sepiice to the inspection time. We I€F € [0, 24]", with
T, <T, <--- < Ty, denote the dailyv > 1 inspection times. Thus, the first inspection occurs eaclatlay
T,, the second df,, etc.

Suppose a customer arrives at timand finds an available server. This customer immediatelynseg
processing. It will complete service at timg wheret, is exponentially distributed with mealry .. The

server this customer occupies will be freed at titnen dayd, wherek andd are defined as:

o — inficq10, ni{T;:T; > mod (to,24)}, if  mod (to,24) < T;
T17 |f mod (to, 24) > TN-

d— Lt0/24J N if mod (to, 24) < TN,

Specifically, a customer will leave the server at the firspawion time following completion of service.
If a customer finishes service after the last inspection tima specific day, it needs to wait until the first
inspection time on the next day. No new customers may begiicgewith this server until it is freed. We
refer to such a system as an, /M (T)/s system. Our goal is to understand the rd@leplays in system

dynamics.



As a benchmark for comparison, af} /M /s system is a system in which inspections occur continuously,
so that a customer is released as soon as it completes safdceote that there exists a,/M (T)/s
system withV = co that is equivalent to ai/; /M /s system (e.g, when inspections are evenly spaced
throughout the dayl; = 24/N).

For tractability, we assume that inspections take plademtaneously and that it is possible to inspect all
jobs simultaneously. In relating our model back to practcghysician typically spends a few minutes with
each patient during rounds. While this is neither simultarsenor instantaneous, the scale of the duration is
small enough that we believe the time required to complateds is not a first order effect compared to the
impact of the inspection timing. Additionally, we assumattbompleted jobs leave the servers immediately
following inspection. In practice, after a physician ap@®a patient’s discharge, the patient will continue
to occupy the bed until the entire discharge or transfergsse which includes paperwork, the conveyance
of discharge instructions, arrangement for transport istcompleted, and the bed will not be available for

another patient until it is made ready by housekeeping.

3. Stability conditions
We start by considering the impact of the inspection timetherstability of theM, /M (T) /s system. We
find that the need for inspection prior to releasing a sertersathe stability condition from that of a more
standard\/, /M /s system; moreover, the number of inspection times plays stantal role.

Recall that with continuous inspection, customers areassld immediately upon completion, so that we

have an\/, /M /s system. It is well-known that the stability condition foiglsystem is simply:
A(24) < s24p.

whereA(24) is the daily arrival ratelfeyman and Whitt 1984 In contrast, the stability condition for the
M, /M (T)/s system with a finite number of inspection poinf§ & co) is more nuanced. While stability
is a relatively coarse measure of system performance, istaréing point to understand the impact of the
inspection times. In what follows we establish the stapitiondition based on a discrete time Markovian

system descriptor.

3.1. One inspection per dayN =1
We start by considering the most extreme case ofithgM (T) /s system. Here we assume there is only a
single inspection each day, so thét= 1 andT is simply a scalar time of daily inspection.

We denote by, the number of customers in the system immediately follovifreginspection on day,
which occurs af" + 24 x (n — 1). It is straightforward to see that the dynamicgf can be described by

the following recursion:
Qn+1 - Qn + An+1 - Dn+17



where A, ., ~ Poisson(A(24)) is the number of new arrivals between the inspection time ayd
(excluded) and the inspection time on day- 1 (included) andD,, ., is the number of discharges at the
inspection time on dayn + 1). That is,D,,,, is the number of customers who have completed service
between timel" + (n — 1) x 24 and timeT + n x 24. Under the exponential service time assumption,
{@.,n > 1} is a discrete time Markov chain.

The service time, in hours, of each customer in service i®eaptially distributed with rate; so that
the rate in days i24u. Since there are servers, an upper bound on the number of departures in a day is
given by the number of departures if there wemustomers in service to start with. Specifically, if we let
D, 41 ~ Binomial(s,1 — e~2*), thenD,,, <.; D,.,1, where<,, denotes stochastic dominance.

We have the following lemma about the stochastic stabilityditions when having only one inspection

per day:
Lemmal Underthe one inspection time per day policy, the systenaidesif
s(1—e ") > A(24).

The system is unstable if
s(1—e ") < A(24).

Intuitively, we can view(1 — e~2%*) as theeffective service ratper day of each server. We then notice that
(1—e %) < 24y, i.e. the effective service rate under the one inspectionl@g policy is smaller than the
effective service rate per day with continuous inspectidius, the inspection time artificially inflates the
‘service requirement’ of each customer. Interestinglg, ¢kability condition does not depend on the actual
inspection timel’, nor does it depends on the nature of the time-variabilityoes, however, depend on the
periodicity assumption of the arrival rate. While this isdrwhen considering stability, when we consider
other performance measures, such as the number of custiontieessystem, we will see that the inspection
time can have a substantial impact. Moreover, optimizirgtittning of the inspections is only relevant in a
time-varying environment; when arrival rates are time-bgenous, the system performance is invariant to

the precise timing of inspections.

3.2. Multiple inspections per day
We now consider the case where there are multiple inspegpienday.

To demonstrate the basic idea, we start by discussing tleeafdg = 2 as an example. We denote the
inspection times a8 < T < T, < 24, which are the times by which the servers that finished sewén be
freed. The number of customers in the system right afterekersd inspection time on day, @),,, has the
following dynamic:

Qni1=Qn+ A£11+)1 - szlJZI + A5124)*1 - D7(12+)1
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whereAf}l1 ~ Poz’sson(ij;24 A(t)dt), is the number of new arrivals between the second inspettitn
on dayn (excluded) and the first inspection time on day 1 (included).Df}j1 is the number of discharges
at the first inspection time on day. + 1). Likewise,Affj1 ~ Poz'sson(fT? A(t)dt), is the number of new
arrivals between the first inspection time on day+ 1) (excluded) and the second inspection time on the
same day (includedji)ffj1 is the number of discharges at the second inspection timeyp(vd+ 1).

Let A8V =24+ T, — T, and ALY = T, — Ty. Similar to the single inspection case, we [ef), ~
Binomial(s,1 — e‘Ag)“) fori=1,2. ThenD,(fil <st Dfﬁl for i = 1,2. Intuitively, the system is stable
if the arrival rate is less than the maximum achievable servate, i.es(1 — e‘Aél)“) +s(1— e‘AéQ)“) >
A(24), and the system is unstable if the arrival rate is more thamthximum achievable service rate, i.e.
s(1— e‘AéD“) +s(1— e‘AéQ)“) < A(24).

We can generalize this reasoning to derive the stabilityitmm for generalV.

Theorem 1 Consider the policy with inspections that occur at tiffles< 7, < --- < T every day. Let
AV =244T — Ty, AV =T, —T,_, fori=2,--- ,N. The system is stable if

s(1— e‘Ag\i’)“) > A(24).

M-

i=1

The system is unstable if

s(1— e AWKy < A(24).

-

=1

As in the single discharge per day case, the establisheititgtabndition does not depend on the precise
timing of the inspections. Rather its dependence on thestigm times only appears via the duration of
time between them. We now consider what separation of inigpetémes would result in the largest stability
region. A direct result from Theorefhis that the maximum effective service rate is achieved witméy

spaced inspection times.

Lemma2 2 (1- 2V attains its maximum wheAY) = 24/N fori=1,2,--- | N.

Intuitively, this is because the effective service rateigaded by the duration of time between inspections.
Specifically, we are concerned with the number of jobs whimimglete service between two consecutive
inspection times. Because the effective service rate isanminAﬁf,) 's, one can use bagrangian argument
to demonstrate the duration between inspection times dhmeilequal throughout the day (i.e. consider
LAY, 1) =38, (1—e ¥ r) —p24— 37, AD)).

When we have continuous inspections, the effective seraigeper day i24 ... We see that requiring an

inspection before a server is freed reduces the effectiviceerate in our system. In particular, (N ) :=
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N(1—e#24/N) denote the effective service rate per day per server with\trevenly spaced inspections
per day. One can easily verify thdt(xz) > 0 andY”(z) < 0 for z > 0, so thatY' (V) is increasing inV and

T(N+1)=T(N)<T(N)—T(N —1).

This suggests that more inspections per day will improvesthieiency of the system (the effective service
rate increases a¥ increases), but the improvement is diminishing. We als@cadhatlimy .., Y(NV) =
24p.

We let A (V) = sN(1 — e~24#/N) be the constraint on the daily arrival rate for stability émenly
spacedV inspections per day. We have that adding one more inspentogases\ .. (IV) by:

s [(N—i— 1)(1 . 6_24“/(N+1)) _ N(l i 6—24;L/N)] ’

which is linearly increasing i for fixed N. Similarly, we can deduce that adding one more server iseea
N (1—e /Ny,

which is a constant for fixedv. Thus, there exists a threshofdN) such that fors > s(N) adding an
additional inspection will increase the effective capaoitthe systemmorethan adding a server. Fer<
5(V), adding more servers is more beneficial.
Since most systems currently ha¥e= 1 inspections, we consider wha({l ) would be, which is a direct

corollary to Theoreni.
Corollary 1 For

B 1 —e24n

0= sy ey
if s > 5(1), then adding one more inspection 12 hours after the firstenspn, for a total of 2 inspec-

tions, will increase the stability region more than addingadditional server. I < 5(1), then adding an
additional server is more effective.

Forp=1/75and1/130 (which are typical service rates in the ICU and internal saespectively), we
have thats = 12.5267 and21.6820, respectively. This suggests that for small systems, addiore beds
would be more effective, while for large systems, addingemospection rounds would be more effective.

Interestingly, we see that the time-variation of the afmaée does not have any impact on the stability
condition. This is because stability is a fairly coarse measf system performance.

Note that our stability results rely on the assumption ofaggntial service times. This is imposed to
precisely quantify the distribution of the number of depest per day. In Sectio, we will relax this
assumption and consider general service time distribsitidve find that when the coefficient of variation
of the service time distribution is not too different thattbé exponential distribution, the above insights
generally carry over. However, when the service time digtion is very different, e.g. deterministic, we
will see that the system dynamics can be quite different.
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4. Time dependent performance measures

In our stability analysis, we did not consider the precistureof time-variation of the arrival process.
However, for other performance measures, the arrival rasealsubstantial impact. We now turn our atten-
tion to measures—the number of customers in system, theitidp of waiting, and the expected waiting
time—which have time dependent dynamics induced by bothinfevarying arrival rates and the inspec-
tion schedule defined Y. We are interested in these measures as minimizing thermesatt n increased
access to care for patients as well as reduced operatiosial @mtentially by requiring fewer beds to meet
demand). In what follows, we will assume there are enougesefor the system to be stable so that these
performance measures are well defined and finite.

For simplicity of exposition, in this section, we focus oe #ingle inspection per day case. Similar results
hold for the case of multiple inspections per day. tetlenote the inspection time on dayThenr, =T
andr, ., =7, + 24. We divide the analysis into two time scales (discrete watiouous).

Following the stability analysis in Sectid}) we denote&)),, as the number of customers in the system
right after the inspection on day, A,,,; as the number of new arrivals between(excluded) and-,
(included), andD,, ,, as the number of dischargesrt ;. Q,, is a discrete time Markov chain on the state
spaceZ™. Under the stability condition in Theorefp it has a unique stationary distribution, which we
denote as(-).

We next define some continuous time system descriptorsQlet{Q(¢) : ¢ > 0} denote the number of
customers in the system at timeWe assume the sample paths(pfare right continuous with left limit.
Thus, an arrival at time will be counted inQ(¢), and discharges at timtewill not be counted inQ(¢). Let
W ={W(t):t >0} denote the waiting time process, il&,(t) is the time a customer would have to wait if
he arrives to the system at time~or simplicity of notation, we also writd (s, t) as the cumulative number

of arrivals on the interva(s, t]. Then we have

Q. =Q(r,) andA, = ATy, Thi1).

As no discharges occur between inspection timesg.fat ¢ < 7,41,

Q(t) = Qn + A(7y,1)

We also have the following simple relation betwegft) andW (¢). Forr, <t < 7,1,
1. If Q(t) > s, thenW (t) > 7,1 — t. That s, if the system is full &t a customer, that arrives at time
needs to wait at least until the next inspection time befegirning service.

2. If (Q(t)—s)t > Z?I:H D;, thenW (t) > 24k + (1,41 —t) fork=1,2,.... Thatis, if there are more

than Zf::H D, customers waiting at timg a new customer that arrives at timeéeeds to wait at least

until the (n + k + 1)-th discharge time before beginning service.
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As @, is Harris recurrent under the stability conditiap(t) andW (¢) are regenerative processes (e.g.
we can pick{r, : Q(r,,) = j}, for anyj € Z*, as the regeneration points). We next consider the notion
of periodic equilibrium as itHeyman and Whit{1984), and then characterize the periodic equilibrium for
Q(t) andWW (t) based on the stationary distribution@f, (Theoren?).

Definition 1 We say{ X (¢) : ¢ > 0} is in periodic equilibrium with period, if X (¢) has the same distribu-
tionasX (¢t +«x) fort > 0.

Theorem 2 If Q,, ~ 7, then{Q(7, +¢):t>0}and{W(r,+1t):t >0} are in periodic equilibrium with
period equal to24. For 0 < ¢ < 24, the conditional distributions of)(r,, + t) and W (7, + t), given that
Q(7,) is distributed according tar, are

PQ(ra+1) =mIQu ) = S 7 (D) P+ Al 7 +1) = m),
=0

P(W(r,+t)>0[|Q, ~m) :Zﬂ' P(l4+ A(Tp, 1+ 1) > 5),
1=0

e o] n+k
P(W(r,+1t)>24k|Q, ~7) = Zﬂ' <l+A Ty Tn +1) — Z D, >3>
1=0

i=n-+1

Assuming now the system starts operating from the infinitst figdm an empty state, we denote
(Q,F, P,) as the probability space whe{€)(¢) : t € R} and{W (¢) : t € R} are defined (se&horisson
(1989 for theoretical support for initializing non-stationamodels at = —oo). Without loss of general-
ity, we assumey := 0. We also denote,,, n > 0, as then-th inspection time, counting forwards in time,
after time0 ; and7_,,, n > 0, as then-th inspection time, counting backwards in time, beforestimThen
{Q, =Q(r,):n >0} would be in steady state. We also have th@tt) : ¢ > 0} and{W(¢) : t > 0} would
be in periodic equilibrium. We also denokg,, as the expectation with respect &, which denotes the
equilibrium distribution. Using time-varying Little’s V& (Bertsimas and Mourtzinou 199 Ave have the

following Proposition.

Proposition 1 For 0 <t < 24,

T+24

B [(Q(T+1)—s)*] = / P (W () > 0)A(w)du+ Y / Po (W () > 24k)A(w)du,

T 1 VT
Ex[W(T+1t)] = Pu(W(T+1)>0)(24— 1) +24) " Poo(W(T +1t) > 24k).
k=1
Remark 1 In the hospital setting, it is unusual that a patient waitsrenthan a day for a bed. When the
probability of such a delay is very smal, (W (T +t) > 24) =~ 0, we have
T+t
B QT +1)— )] ~ / P (W (u) > 0)A(u) du,

T

E[W(T+1)] &~ P (W(T+1) > 0)(24 — t).
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As t increases, more customers arrive and no customers candbeudjed until the next discharge time.
Thus, bothP,, (W (T +t) > 0) and E.[(Q(T +t) — s)*] are increasing in for 0 < ¢ < 24. This mono-
tonicity in ¢ does not hold in general fdt. [ (T4 t)]. Due to the discharge dynamics, on the one hand, an
arriving patient may end up waiting less than a patient wisoaheady arrived if both patients are admitted
at the same discharge point; on the other hand, a new patantait longer than a previous patient if he
cannot be admitted at the following discharge point, buethier patient can.

Figure2 plots P..(W(t) > 0), E..[Q(t)] andE,, [W (t)] as a function of for different inspection times
T'. Note these inspection times were chosen arbitrarily fostitative purposes and we use a sine function
as the arrival rate function. We observe thiat (1 (t) > 0) and E,,[Q(¢)] are increasing irt for ¢ €
[T, T +24). That is, both the probability of waiting and the expectethber in system are non-decreasing
following the inspection time]’, until the next inspection time 24 hours lateffat- 24. On the other hand,
E..[W(t)] is not monotonic irt. As we will see in Sectio, this creates challenges in estimating how the
inspection time(s) will impact the expected waiting times ¥so observe the periodicity of the performance

measures and the discontinuity at inspection times.

Figure 2 M:;/M(T)/s queueing system: Time dependent performance measures (  A(t) = 0.25 +
0.125sin(7w/12t), u=1/75, s = 31)
—:T=0,---:T=12

10 20 30 40
t

() E<xW (1)

In comparing the time-varying performance for differergpection times, it is not clear which inspection
time results in better performance. To better facilitatenparison, Figure plots the time shifted version
of the performance measures, so we can compare performasasunes at identical times following the
inspection times. Specifically, we plét, (W (T +1t) > 0), E..[Q(T +t)] andE [W (T +t)] for the same
systems in Figur@. While it is clear that different discharge timeB € 0 v.s. T = 12) result in different
performance outcomes, it is not obvious which inspectiametis better. Specifically, there is no clear
dominance between the two curves. For example, althougbrdimbility of waiting right before and after

inspection is smaller whehi = 0 compared to whefi’ = 12, 10 hours after inspectiaR(W (7'+10) > 0) is
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larger wherl’ = 0 compared to whefi’ = 12. This motivates us to look at alternative average perfooaan

measures in considering how to optimize over inspectioadiin Sectiorb.

Figure 3 M /M(T)/s queueing system: Time dependent performance measures with shifted starting point
(A(t) =0.25+0.125sin (7 /12t), p=1/75, s = 31)
—:T=0,---:T=12

0.16 " 0.45 0.8

E_[Q(T+)]
E_[W(T+t)]

0.1

0 10 20 A 30 40

0 10 20 30 40
t

(@) P.a(W (T +1)>0) (b) E<Q(T+1t)—s)* ©) EccW (T +1t)

5. When should inspections occur?
In this section, we analyze how inspection times should bedled to provide high service quality.

As before, we will assume that there are enough servers gheimspection schedule such that the
system s stable. Based on the stochastic stability arsabysiwill focus on policies that have equally spaced
inspection times. For simplicity of notation, we writ®y = 24/N, which is the time interval between
successive inspection times when we havevenly spaced inspections per day.

We define an arrival rate weighted time average as

-t /Ot X (u)A(u)du

where X (u) is some nonnegative function f(u) or W(u). As we examine various arrival rate weighted

time average performance measures, the following resilteewseful.

Proposition 2 If sup, E[X (t)] < oo, V (t) — V(00) with probability (w.p.) 1, where

V(oo) = A(24)" / E. A (u)du.
We also define the average performance seen by arrivingroastas
t
_ X (u)dA
U(t) p— fO (u) (S)
A(t)

The following theorem was proved ilMplff 1982) and is known as the time-varying version of “Poisson

Arrivals See Time Averages”.

Theorem 3V (t) — V(oco) w.p. Lif and only ifU (t) — V' (c0) w.p. 1, ast — oo.
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5.1. Aninfinite server model
In order to understand the role of the inspection times oresyperformance, we wish to understand how
the inspection times impact the number of customers in thesy. To do this, we start by examining an
infinite server queueing model with inspection tim@g; /M (T)/oo. This will provide insights into the
role of the inspection times and the delayed release of serVhough there is no waiting in the case of an
infinite server model, the timing of inspections can impa&ecver occupancy. If we wish to minimize server
occupancy levels, it is desirable to schedule inspectibtimmas when many jobs have recently completed
service in order to quickly clear the system of these jobswillalso extend the analysis to general service
time distributions in Sectiof.1. As we are interested in long-run average performance messue work
with the periodic equilibrium distribution of the stochiastystem, i.e. we assume the system starts operating
from the infinite past and we analyze its performancé&adn

We distinguish between two classes of customers: classudipmers that have not finished service,
and class (2) customers that have finished service but #rengtie system (waiting for inspection). Let
Z,;(t) denote the number of clasgustomers in the system at timéor i« = 1,2. Then the total number of
customers in the system@(t) = Z (t) + Z»(t). Regardless of the discharge policy, in equilibriuth(t)
follows a Poisson distribution with mean

m@—[<ﬂ%@M@@

whereF’ denotes the complimentary cumulative distribution fumef the service time distributiorE{ck
et al. 1993h.

For ¢t between two adjacent discharge timesandr; . ;, Q(t) is monotonically increasing in This is
becaus&)(t) includes all of the customers who had not finished servicer fto the previous inspection
time, 7;, (I in Figure4), and the new arrivals betweenandt (H in Figure4). In particular,Q(t) follows
a Poisson distribution with mean(r;) + f: A(u)du in stationarity. We notice that

1. The time-averaged expected occupancy level pyer;. ) is

j‘:;i+1 E Q)N (t)dt B fT:iJrl (m(Tz) + f:l )\(u)du) A(t)dt
RO [N

1 Ti4+1
mmm+§/ A()dt.

2. The maximum expected occupancy levelqnr; ) is

Bl =mim)+ [ A0,

whereE,. [Q(t—)] = limg, E[Q(S)].
In what follows, we look at two performance measures for itfimite server model. The first is the time-
averaged expected occupancy level over a day, which weeesgt (7') when there arév equally spaced

inspections per day with the first inspection at tiffieWhile making operational decisions based on this
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Figure 4  Point process representation of infinite server que ue. The horizontal axis depicts possible arrival
times, while the vertical axis depicts service times. Thus, the point (¢;, Vi) represents a job which
arrives at time t; with service time realization of ~ V;. Any arrivals in the shaded region T'U H, will

remain in the system attime ¢. The jobsin T are those who arrived before 7; but haven’t completed

service before ;. Those jobsin H are those who have arrived following inspection at time ;. SO at
the very least, the jobs in the shaded region will remain in th e system until the next inspection at
time Tit1-

Service time

i+l

0 T, t T Arrival time
measure may lead to reasonable and sometimes very goodrparite in some service systems, it may
fall short in settings where it is essential to ensure vegesly access to service with waiting times much
shorter than the mean service time (e.g. hospital care)udl, sve also consider a second measure: the
maximum expected occupancy level within a day, which we tieas) (77). Our primary focus will be on
nn (T as it provides insight into how many servers are necessamotadehigh service quality.

M, /M /oo If we allow continuous inspection (discharge a customeendver he finishes service), then
the system evolves as a standard infinite server queueitensysdth time-inhomogeneous arrival rates with
Q(t) = Z,(t). Thus, the time-average expected occupancy level is:

Cooi=A(24)71 /024m(t))\(t)dt,

and the maximum expected occupancy level is
Moo = Orgrltz;)2<4m(t).
N =1: If we have one inspection per day at tifiethen

Je (m(T) + [t )\(u)du) A(t)dt

a@):= JPET ()t

=m(T) + %A(%),

and
m(T) :=m(T) + A(24).

GeneralV > 1: If we haveN equally spaced inspections per day with the first inspectidime?’, then

T+kAy

w(T) = XN: (m(T+ (k=1Ay)+ ! /THCAN A(t)dt> T4(k—1)Ay
N B k=1 N 2 TH(k—1)AN A(24)

A(t)dt
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If we denoten%) (T') as the expected occupancy level right beforeittie inspection time fol <i < N.
Thennl (1) =m(T+ (i — 2)Ay) + [, A Y A1) dt, and

(1) == max nd) (T).

1<i<N

Remark 2 We can also construct performance measures based on theenwhiservers occupied by
customers who have already finished service (class 2). Thessures may be of independent/additional
interests to hospital managers. In particuldf,(t), for ¢t € [r;, 7.,1), follows a Poisson distribution with

mean
t t
ElZa(t)lt € [ mis1)] = m(rs) + / ) — m(t) = — / ) (F (7 — 8) — F(t — 5))ds.
For illustrative purposes, we consider the following sfieéorm of the arrival rate function

Assumption 1 The arrival rate takes the following form:
A(t) = A+ Bsin(yt)
where0 < 8 < X andy = 27/24.

Sinusoidal arrival rate functions are commonly assumedhénliterature to capture periodic behavior. In
this case measures the variability of the arrival rate function, amdalled the amplitude of the arrival
rate.

Under Assumptiori, the following relationship was shown Eick et al.(19933:

m(t) = / AS)F(t—s)ds= A +4 <ﬁ sin(~t) — 2 1’}’2 cos(*yt))

oo p
As a direct result of this relationship, we have that
A B
m(l) = — + ——=——=sin(¢ +1
AR

where) satisfies i)—m < ¢ < 7, i) siny = —v/v/u? +~2 and iii) cos ) = u/\/u? ++2. Thus, the max-
imum number of customers in the system who have not finishedcseis given bymax, m(t) = \/u +
B/ 112 +~%. Depending on the relative valuesoftime scale of service time) and(time scale at which
we see variability in arrival rate)n(¢) could attain its maximum anywhere on the intera, 24].

In the hospital setting, we are interested in the case wherditne-scale for service (days) is much
longer than the time-scale of fluctuation in the arrival i@teurs).Chan et al(2014) found that in such a
regime, ignoring the time-variability of arrivals does mignificantly alter queueing dynamics. However,
we find this not to be the case when considering the dischangandics of our model. It is precisely the
time-variation in arrival rates which makes this problerteissting and challenging. In fact, without time-
variation of the arrival rates, the timing of the inspectiones (beyond being evenly spaced throughout the

day) does not matter at all. We now consider the followinghacie:
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Assumption 2 The service rate and period of the arrival rate function agéated as:
<Ly,
Based on Assumptiorisand2, we have the following approximation of(¢):
A B
m(t) =~ mgy(t) = — — — cos(yt
(t) ~ mo(t) L (7t)

In what follows, we work under the above two assumptions (#Agstion1 & 2) and use the approx-
imation my(t) to replacem(t). In particular, the closed form expressions we developed §¢7")’s and

nn(T)'s are based on the approximation (¢).

Lemma 3 When applying the approximation,(t) for m(t), the time-average expected occupancy level
for a single inspection time is:
GT) =31/ +12) = cos(7 ),
and forN > 2
(n(T) =A(1/p+Ay/2).

Lemma3 suggests having more inspection times will reduce the finerage expected occupancy level
but the marginal gains from adding more inspections is desing. Moreover, as the number of inspection

times increases, the performance of tig/ M (T) /oo system converges to that of thé, /M /oo system:
]\}1_13;0 (N (T) =M .

We also observe that, while a well chosEmesults in improvement in performance measured by the time-
average expected occupancy level when there is only onedtisp per day, the timing of inspections
does not affect the time-average expected occupancy ldwahthere is more than one inspection per day
(N >2).

When there is only one inspection per day, the improvementavegain from carefully choosing the
inspection time depends on the valuesofwhich measures the magnitude of variability of the arrizaé.
The larger the value of, the more we gain from carefully selecting the inspectiores. For our particular
arrival rate function, the peak arrival rate istat 6. Then, the inspection time that leads to the minimum
time-average expected occupancy levél ours before the peak arrival and the inspection time tlzalde
to the maximum time-average expected occupancy levehaurs after the peak arrival.

Figure5 plots the time-average expected occupancy levgl7’), for different values ofV. The interval
at N = 1 indicates the range of values that can be achieved by diffénspection times when having
only one inspection per day. The horizontal line iscat(T’) = \/u. Notice that the reduction in time-

average expected occupancy level due to optimizing a singfeection time (fron22.23 to 21.27) can
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Figure 5  Time-average expected occupancy level of an M:/M(T)/oo queueing system: (n(T') for different
values of N (A=0.25, 3=0.5\, u=1/75)
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be comparable in magnitude to the reduction that can be\ahigy adding in a second inspection time
(from 21.27 to 20.25). Additionally, we see that having more inspection timepiiaves performance, but
the marginal gains are diminishing.

While the timing of inspections does not affect the timerage expected occupancy levels when there
are multiple inspections per day, this is not the case fombgmum expected occupancy level. We now

considemy (7). We first notice thatnax; mq(t) = 3 + % When substitutingn, (¢) for m(t),

Oy = 2B o i
) = 5= Soosa (T + (1= D) + AR CL
_ % AN — gcosw(n (i—1)An)) (1)

We observe from) that we can gain some improvement in performance, meabyred(7"), by appropri-
ately choosing the inspection tinfé The magnitude of improvement varies and is determined &yatue
of 5. The larger the daily variation in arrival rate, the more vangrom a carefully chosen inspection time.
This suggests that the greater the variability in the daitival rate, the more important it is to optimize
the timing of the inspections. When there is little varidjilsystem managers can select inspection times
based on ‘convenience’ as it will have little impact on sysfgerformance as measured by the maximum
expected occupancy level.

Let Z(N) = miny ny(T') denote the minimum maximum expected occupancy level whesre threNV

equally spaced inspection times per day.

Lemma4 When substitutingn,(t) for m(t), argmingny(7) =12 — Ay /2 —[N/2—1]Ax, and

E(N)—%—F;\AN—gcos(ﬂ—%).
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Lemma4 indicates that the optimal inspection times are symmadlyichstributed around = 12 (the
peak of—3/vcos(yT)). In particular, if there is an odd number of inspection timeaere will always be
one inspectio hours before the peak arrival, so that there exists sosneh thatl; = 0.

As with the stability condition, having more inspection éisthelps, but the marginal effect is decreasing.
Specifically, a£’(/N) < 0 and="(N) > 0 for N >0, Z(NV) is decreasing iV and

E(N+1)—E(N+2)<E(N)-EZ(N+1).

This suggests that having more inspection times will impritae system performance, but the improvement

is diminishing. Figures plots=Z(N) for different values ofv = 5/ .

Figure 6 Maximum expected occupancy level in an M:/M(T)/co queueing system after optimizing the
inspection time(s) T: Z(N) for different values of N (A= 0.25, = 1/75)
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We have now seen how the inspection time(s) determines tkamam expected occupancy level in our
infinite server model. Moreover, we can optimize over thigregsion to minimize the maximum expected
occupancy level. Doing so will likely result in high servigeality given the capacity constraint in our

original finite server model.

5.2. Optimal inspection times

In this section, we numerically test how the choice of insipectimes affects the performance of the
M, /M (T)/s queue and whether the insights we gained from the infinitees@nodel can be carried over to
the finite server case. For our numerical illustrations, e the arrival rate functioh(t) = A + Bsin(qt),
wherej = \/2, v = /12, and service ratg = 1/75. Thus, the mean nominal service time—a lower bound
to the time a customer occupies a server—is about three tongsr than the arrival rate period (75 hours
versus 24 hours). Our choice of service time is consistethtthe typical average ICU length of stay (LOS)
(Chan etal. 2014 In the internal wards, the typical LOS is 127 hoWsi{and Shi 201 As our results rely

on the assumption that< -+, the smaller the service rate, the more accurate we expeappuoximations
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will be. Indeed, while we only present results for= 1/75, numeric studies suggest our approximations
are even more accurate whenr-= 1/130. Additionally, we vary the value ok to see how the system scale

affects performance.

5.2.1. Measures for the number of customers in the systerwe start by examining the measures we
analyzed for the infinite server model, the time-averageetqul occupancy leve]y (7'), and the maximum
expected occupancy levefy (7).

For the infinite server model, recall from Lemi®and EquationX) that when there is only one inspection
per day, both the time-average expected occupancy lémédl,), and the maximum expected occupancy
level,n, (T), are functions of the inspection tinffé When there are multiple inspections per day, the average
occupancy levely (T') is a constant, while the maximum expected occupancy lex€ll") does vary with
the inspection timd".

Turning back to the finite server model, let= \/(syu) denote the nominal load for the system-this
ignores the inflation of time spent occupying a server whicimiroduced by the need for inspection prior
to discharge. We also denote(N) = \/(sN(1 — e~#24/N) /24) as the effective load when we hayé
equally spaced inspections per day. Notice fhaiV) > p for the same staffing level as the inspection
time required for discharge prolongs the actual lengthayf sf each patient.

Figure 7 illustrates how the average occupancy levels(7’), change with the inspection time using
simulation. We use the method of batch means with 20 batetteeach batch containing arrivals for about
5000 days. We plot both the mean values and8{é confidence intervals. We compare the performance
between one inspection per day and two inspections per daynilimerical experiments are conducted for
staffing levels (nominal occupancy rates). As our analgsisised on an infinite server system, we expect
it to be more accurate as the system scale grows. Thus, ipi@rtant to also verify our insights translate to
small systems. As such, we also consider system scale patame

As with most queueing systems, we observe economies ofas#e system size increases. In particular,
as the system scale gets larger, we can increase the systdntolachieve similar performance seen in
smaller systems with lower loads. Whenr= 5/75=0.0667, we sets =9 and10, which correspond to the
nominal load and, correspondingly the nominal occupaneggl)ef 55.56% and50%, respectively. When
A =10/75=0.1333, we sets = 16 and17, which correspond to the nominal occupancy leveit% and
58.82% respectively. When = 20/75 = 0.2667, we sets = 30 and32, which correspond to the nominal
occupancy level 066.67% and62.5% respectively. The effective occupancy level is much highan the
nominal occupancy level. For example, wher- 0.0667, s = 9 and there is only one inspection per day,
the effective (simulated) occupancy levepig1) = \/(s(1 — e~2*)/24) = 64.95% (v.S.p = 55.56%), and
when \ = 0.2667, s = 30 and there is only inspection per day, the effective occupdme! is p.(1) =
77.91% (v.s.p = 66.67%).
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Figure 7 M./M(T)/s queueing system: Time-average expected occupancy level as a function of T for dif-

ferent staffing levels
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We note that despite the small size of the systems we simulteteshapeof the average occupancy
levels are very much aligned with that of the infinite servaalgsis (depicted by a solid line). Specifically,
when there is a single inspection time, the inspection tim&hich minimizes (maximizes) the average
occupancy level is the same as that given by the analysisedhfmite server model. When there are two
inspection times, we see that, as suggested by our anatySisdtion5.1, the average occupancy level is
almost invariant to the time the inspections occur (the flatibns of the simulated,(7"), for different
T, are less thaf.5% of 7,(0)). Certainly, as the system becomes less congested, theedariver system
behaves more similarly to the infinite server system, so \edls# the average occupancy level approaches
(and will eventually converge to) the solid line given by thénite server analysis.

We also observe that adding a second inspection improveasyerformance significantly. For example,
when)\ = 0.1333, s = 16, adding a second inspection reduces the average occugaetfrom11.8 (when
T =0) to 11, which is a decrease Gf27%. Moreover, adding a second inspection time makes the system
performance more robust across different choices of irispetimes. Indeed, for the average occupancy

level, adding a second inspection makes the choice of itigpeome almost irrelevant.
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Figure 8 M:/M(T)/s queueing system: Maximum expected occupancy level as a func tion of T for different

staffing levels
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We next consider maximum occupancy levejs(T'). Figure8 demonstrates howy (7") depends on
the inspection time(s) based on simulation. We use the satrad parameters as in Figure Specifically,
we investigate the system performance for different systeaies and staffing levels. We also compare
performance between the one inspection per day policy anthib inspections per day policy. Similar to
the case fory (7'), we observe thagy (7"), when plotted as a function of the inspection tiffigtakes the
same shape as for the infinite server queue model. The actlue is a vertical upward shift of the curve
suggested by the infinite sever model; the less heavily bbétkesystem (increasing the number of servers,
s), the smaller the scale of the upward shift. Additionallye see that the second inspection time again
improves system performance. While the maximum occupawey tloes depend on the precise schedule of
the inspection times, the amount of variation in perfornedoetween the optimal and worst inspection times
is less when there are two inspections compared to one. f@md tontinues as we add more inspection
times. For the sake of space, we do not include the figures.

5.2.2. Measures of waitingWhen considering the number of customers in the system, deifat the

insights from the infinite server model translate very weliite finite server setting. On the other hand, one
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may want to consider other performance measures. In platidu service settings—especially in healthcare
systems—customer (patient) waits are of great interedbrtdmately, when considering an infinite server
system, there is never any waiting involved. Still, we wishekplore how our insights from the infinite
server system may provide some insight into measures oiigait a finite server setting.

We start by considering the mean probability of waiting aflearriving customer:

V,(N.T) = lim ﬁ/ Q) > shA(w)du= POO(W&);) DA (w)du

From Theoren8 we have

fA(t 1H{Q(u) > s}dA(u) =V,(N,T).

Jm AD)

Using the same simulation depicted in Figuresd8, Figure9 plots the simulated probability of waiting,
V,(N,T), as a function of the first inspection tim&, We see that the probability of waitindy, (N, T),
follows practically the same shape as the average occupevedy(y(7"). This is because the probability
of waiting, P..(Q > s), is very closely related to the queue length process. Thusyri goal were to
simultaneously minimize the average occupancy level aagtbbability of waiting, we could utilize the
analysis of an infinite server model to select the optimgléasion time(s).

A separate measure of waiting which may be of interest is taamwaiting time as seen by arriving

customers. Specifically, we define:

_ f024 Eoo[W(u)]A(u)du
) =l g [ W ACH)
again, from Theorer3 we have
] fot W (u)dA(u) -

Figure10 plots the average waiting tim&,, (N, T'), as a function of the first inspection tindE, We start
by considering the case of a single inspection time. We cartts#, unlike the probability of waiting, the
expected waiting timey,,(V, T'), looks quite different from the average occupancy lege(T’). In Section
4, we observed that, for the time-varying performance mess(rather than the arrival rate weighted time
averages considered in this section), the average waitmg £, [W (T + t)], behaves quite differently
from the average queue length,, [Q (T + t)], and the probability of waitind®.. (W (T'+ ¢) > 0). We aim
to give an intuitive explanation for this phenomenon. If slystem is very heavily loaded, then almost every
incoming customer will need to wait until the next inspectiome to be admitted into service. As such,

T+424 T+24 242 _ ﬂ
E [/T (T+24—1) dA(t)] _ /T (T+ 24— OA(1) dt = =53+ 24= cos(7).

which takes exactly the opposite shap€ dfl") = ( +12) — = cos(yT)



Figure 9 M,/M(T)/s queueing system: Probability of waiting as a function of T for different staffing levels
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We notice that this phenomenon does not seem to exist whes dine two inspection times. In fact, as
was the case for the average occupancy level, the expecttiigname is practically invariant to the timing
of the inspections. Thus, we see again that with more ingpetimes, the system performance is more

robust to the actual choices of the inspection times as Isriey are equally spaced.

6. Model Robustness

In this section, we consider several generalizations ofréselts in the previous sections. Specifically,
we will relax the following assumptions: exponential seevtimes, equally spaced inspection times and a
sinusoidal arrival rate function. We find that, in many cadles infinite server approximation continues to

provide useful insights.

6.1. General service time distributions

While the exponential assumption on service times is udefuanalysis and necessary for our stability
results in Sectior3, it may be desirable to relax this assumption when considerértain systems. Fortu-
nately, we find that our analysis using the infinite serveteayscan be easily extended to general service

time distributions. For the analysis in this subsectionkaep the sinusoidal assumption on the arrival rate
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Figure 10 M. /M (T)/s queueing system: Expected waiting time as a function of T for different staffing levels
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6.1.1. Optimizing inspection timesLet = 1/E[V]. Then for general service times,

—5 é OOsin —v v)dv
m@H+MA (3(t - ). (v)d
A

— ; + g (E[cos(yVe)]sin(yt) — E[sin(yV,)] cos(+t))

wheref, is the pdf ofl,, the equilibrium distribution of the service times. Basedls explicit expression
for m(t), we can solve the optimization problem, at least numeyictifind the optimal discharge policies
for the infinite server queue model.

Regardless of the service time distribution, we observenfour numerical experiments that the cor-
responding infinite server queues provide useful insigtat the dynamics of the queue length processes.
Figurel1 provides a specific example where the service times are tagadly distributed.

Furthermore, approximating,(t) with

7mm=%—§wwm
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Figure 11 M, /G(T)/s queueing system with lognormal service time distribution: The average and maximum
expected occupancy level as a function of the discharge time T for different staffing levels ( X =
0.2665, logV ~ N(3.818,1), upper: s =30, middle: s=32, lower s=00)
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is still appropriate for a number of service time distribuag. As we saw earlier, this can greatly simplify
the calculations. Figur&2 shows a few examples whene,(t) serves as a good approximation. This can

occur when the service rate is a continuous random variablé{(v) is differentiable) angh < -, because

A = -
m(t) = E+ B /O sin(y(t —v)) F(v)dv
=2~ Zeosrt) =2 [ costalt =) (0}

with the last term(3/~) [, cos(v(t —v)) f(v)dv ~ 0, in a number of instances.

That said, it is also true that usimg,(¢) can be a very poor approximation for some service time distri
butions. An extreme example is the case when the servicagideterministic, i.el” = a for some constant
a. In this case, - 5

m(t) = Lo cos(vt) + 5 cos(y(t—a))
Depending on the value af it could take exactly the opposite shapenagt). In general when the service
time distribution has very small variancey (¢) will not serve as a good approximation. In the hospital

setting, this could be the case for some surgical units whatients undergo very similar procedures that
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Figure 12  Approximation for m(t) with different service time distribution (A =0.25,8 = \)
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are determined by evidence-based protocols. In suchggtitnwould be advisable to leverage information
about the service time distribution to determine when ioipas should occur, and when the service time
is approximately deterministic, the formula for deterrstit service times might serve as a good approxi-
mation.

When the service distribution has moderate variance (gmpreential and lognormal)n,(¢) serves as
a good approximation of(t). Then the essential information we need to know is the medmeo$ervice
time and the amplitude of the arrival rate to optimize thgétion times. In particular, we see that the
shape of the time-averaged and maximum expected occupanttyeflognormal service time distribution

is almost the same as that of the exponential service tintieldison with the same mean.

6.1.2. Stability analysisOur results in SectioB required the exponential assumption for the service
time distributions. That said, we conjecture that wheg(¢) is a good approximation fom(t), these
insights will still hold. This is, in general, the case fongee time distributions with moderate variance.
However, it is easy to see that this does not hold for all sertiime distributions. Consider a simple example
with deterministic service time€), and an arrival rate pattern where the arrival rate is O evieeye, except
that it isA(24)/2 patients/hour from 0 to 1 and again from 2 to 3. With 2 insmectimes, it is easy to see
that to maximize the stability region, the inspections $ttamecur atT;, =1+ D + e andT, =3+ D +e.

Thus, we see that equally spaced inspection timastian optimal strategy in this case.

6.2. Unequally spaced inspection times

Even though equally spaced inspection times maximizestéiglisy region when service times are expo-
nentially distributed, it may not necessarily optimizetsys performance as measured by the occupancy
level when the system is stable. Additionally, we just saat #qually spaced inspection times do not max-
imize the stability region in general. As such, we next cdesobptimizing the inspection times when they

are not evenly spaced.
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In order to gain some insight into the possible gains achidmerelaxing the requirement of equally
spaced inspection, we consider the case of two inspectienslgy. Moreover, we assume a sinusoidal
arrival rate function and exponential service times. Iis tasem,(t) is a good approximation famn ().

We start by analyzing the maximum expected occupancy léwbkeacorresponding infinite server model.

As before, we lefl” denote the first discharge time in a day akdlenote the distance between the first
and second inspection time. For the maximum expected oocypevel, we denote the expected occupancy

level right before the first and second inspection times as

g (T,A) ==+ (24— A) — g cos(vT) andgy (T, A) := % +AA — 5 cos(Y(T + A)),

v

= | >

respectively. We observe that for fixeél, ¢,(7,A) is decreasing inA and g»(T,A) is increas-
ing in A. We also observe thag;(7,0) > ¢-(7,0) and g:(7',24) < g»(7,24). Thus, for eachT’,
there is a uniqued, which is denoted a\(7™), that solvesg,(T,A) = g»(T,A). Let ¢g*(T) :=
ming<a<og—rmax{g (7, A), g2(T,A)}. Then
. g1 (T, A*(T)) if A*(T)<24—T;

g(T) = {gl(T, 24— T) =AT — Zcos(yT) if A*(T)>24—T.
The value ofA*(T) andg*(T") depends on the ratio betwegrand 3. Figure13 plots g*(T") for different
values of8. The dotted line represents the maximum expected occupavalywhen inspections are equally
spacedy,(T"). We observe thaning g* (1) — n2(6) is in general fairly small and the difference decreases

asf decreases.

Figure 13 g*(T) (solid line) v.s. 72(T") (dotted line) for the infinite server model for different val uesof B (A=
0.2667, n=1/75)

@ B=\ (b) 5= 0.5\ ©) B=0.1A

Though the optimal inspection times may not be equally sphage are interested in understanding how
the system performance is impacted by requiring equallgesghanspections. We do this via simulation.

We use exponential service time distribution with rate- 1/75, sinusoidal arrival rate function with =
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0.2665 ands = 30 servers. We us#, (T, A) to denote the maximum mean occupancy level when there are
two inspections al” andT + A per day. Tabld summarizes our simulation results with the corresponding
95% confidence interval. We notice that the gaps in performamtesden the two policies are less than
.1%. We also see the difference decreases dscreases. In fact, wheh= 0.1, the difference is not even
statistically significant at th5% level. This robustness also translates to the maximum meémg time

and maximum probability of waiting. Thus, it seems that iggg equally spaced inspections does not
significantly impact system performance, while also hathgbenefit of being easy to convey to system

administrators.

Table 1  The maximum mean occupancy level  + 95% confidence interval with two inspections per day

Unevenly Spaced InspectiorjsEvenly Spaced Inspections
g (1747 [n(T",A(T7)) 12(6,12)
A (7.61,14.45) | 23.18+0.03 23.41+£0.03
0.5A || (8.31,13.32) | 23.31£0.03 23.39+£0.04
0.1M | (8.73,12.26) | 23.344+0.03 23.36 £0.02

6.3. Empirical arrival rate function

Thus far, we have assumed a sinusoidal arrival rate funetiuinoh has been amenable to deriving closed
form expressions of interests. We now conduct a case study tree empirical arrival rate functions esti-
mated from real hospital data. We take the scaled arrivel fratction of all ED visits in the US during
2010 which is depicted in Figurei(a) (Centers for Disease Control and Prevention 200 assume the
service times are exponentially distributed with-1/75.

We plot the time-averaged and maximum expected occupanelfte different inspection policies and
staffing levels in Figureld. We use a relatively high effective traffic intensity. (Nateat we find that
the results are very similar for lower traffic intensitieSpecifically,A(24)/(40(1 — e=2*)) = 0.91 and
A/(45(1 — e~?*)) = 0.81. Notice that in this case, the arrival rate function no lanigées a sinusoidal
form. If we assume there is a single peak of the arrival ratetion (take the middle point of the two small
peaks), then the peak is aroutitl— 16. We make the following observations from this case study:

a) The infinite server model still serves as a good approxamab determine optimal inspection time
(i.e. the curves take the same shape).

b) Forthe time-averaged expected occupancy level, whea iha single inspection per day, the optimal
inspection time is a9, which is aboutt — 7 hours before the peak arrival-as was the case for sinusoidal
arrival rates. When there are two equally spaced inspecfen day, although,(7") is changing ovefl’,
the difference for different inspection policies is lesanlo.5 (< 1% of (»(0)), suggesting there is still a

certain level of robustness to the inspection schedule wHeme areV > 1 inspections.



31

c¢) For the maximum expected occupancy level, when thereirggdesnspection per dayjy(7") follows
the same shape a5 7T") with the optimal inspection time 8 when there are two equally spaced inspections
per day, the optimal inspection times aretaind4 + 12 = 16. In particular, the first inspection is around
11 — 12 hours before the peak and the second orie-isl hour after the peak. Note that, qualitatively, this
is essentially the same as the case of sinusoidal arrivg|wditere the optimal inspection times take place

12 hours before the peak and right at the peak.

Figure 14  Time-averaged and maximum expected occupancy lev el with fitted arrival rate function (upper:

s =40, middle: s =45, lower: s=00)
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7. TheM,/M(T)/s/s Model

In this section, we consider a system where new arrivals lmekéd (and sent elsewhere) if there is no
available server (bed) upon arrival. Recent evidence sigdieat when the ICU is busy, patients who are
waiting for ICU admission may be rerouted to lower levels afecKim et al. 2015. Allon et al. (2013
found that when inpatient units (including the ICU) were fyysatients were more likely to be sent to
other hospitals via ambulance diversion. In this sectianawalyze properties of av, /M (T)/s/s model,
which can also be referred to as a loss model. To differentidtom the M, /M (T)/s model, we denote

the queue length process of the loss mod€l@5(t) : t € R}.
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Following the same line of analysis as in Theorgmve have the following theorem characterizing the
periodic equilibrium distribution of the loss system whaare is one discharge per day, which takes place
at 7, on dayn. We denoter” as the stationary distribution @@~ := Q*(r,,) for n € Z, and P, as the

periodic equilibrium distribution of Q* (¢) : t € R}.

Theorem 4 If QL ~ x| thenQ* (7, + t) is periodic in distribution with period equal t4. Specifically,
for0<t<24andm < s,

Po(Q () =m) =3 7 ()Pt Alryr, +0) =),

and

S

Poo(QF(ra+t) =5) =Y 7" ()P(I+ A(7,, 7 +1) > 5).

=0
We observe from Theorerh that the probability of blockingP..(Q* (7, + t) = s) is increasing int for
0 < t < 24. The proof of this result is practically identical to thatidieorem?, so is omitted.

Similar to theM, /M (T)/s model case, the corresponding /M (T) /oo model still serves as a reason-
able approximation of the number in system dynamics of tke tnodel for different discharge policies.
Moreover, as was the case with th§ /M (T)/s model, the infinite server model is a reasonable approxi-
mation forgeneralservice time distributions. Figurkb plots the average occupancy lewgl,(7), and the
maximum expected occupancy levek (7)), N = 1,2, for different values of". We also plot the two mea-
sures of the corresponding infinite server queue model irsdimee figure as a solid line. We observe that
both (& (T) andnk (T') of the loss model take the same shape as the infinite servezlnind the actual
values are smaller than the corresponding infinite servelemadditionally, the higher the staffing level
the closer the values are to those of the infinite server queue

We observe that thehapeof the occupancy level of ak/, /M (T') /oo infinite server model is very similar
to that of theM, /M (T)/s and M, /M (T)/s/s models. When there areservers and an infinite queue,
the infinite server model underestimates the occupancy, lagecustomers (patients) have to wait in the
M, /M (T)/s system. On the other hand, when there is no queue, the irgariter model overestimates the
occupancy level, as customers (patients) who arrive to gy $ystem are lost in an/, /M (T)/s/s system,
resulting in a lower effective arrival rate. In the hosp#atting, many facilities have policies under which
there is a maximum number of patients who may wait in the EDaftmission to a specific unit such as
the ICU, while others may either be placed in another unitoouted to another hospital via ambulance
diversion (e.gAllon et al. (2013). This suggests that in these situations the infinite semnadel may
be an even more accurate approximation to the occupandyds\vts behavior seems to be more aligned
with an M, /M (T)/s/(s+ k) system. Figurel6 compares the time-average expected occupancy level of

somelM;/M(T)/s/(s+ k) systems to the corresponding infinite server system whea thene discharge
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Figure 15 M./M(T)/s/s queueing system: The time-averaged and maximum expected oc cupancy level as a
function of the discharge time T for one and two discharges per day (A =0.2667, u=1/75, upper:

s = o0, middle: s =32, lower s=30)
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Figure 16 M./M(T)/s/s+ k queueing system: The time-average expected occupancy leve | as a function of

the discharge time T for different staffing levels, s, and waiting room sizes, k& (A= 0.2667, u=1/75)
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per day. We observe that the actual performance curve mapdear below the infinite server curve
depending on the value &f

We also investigate the weighted average probability ofkileg, V5 (IV, T'), and the stationary maximum
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probability of blocking,Vz,, (N,T), when there aréV equally spaced inspections per day and the first
inspection happens at tinfe Specifically, the two performance measures are definedlas/fo

_ 1 ¢

VoV 1) 1= Jim < [1{@4 ) = )i
and

Vi, (N, T) = max{ P (Q"(T + kAy)) = s}.

There are two approximations of the probability of blocko@mmonly used for thd/; /G/s/s model
(seeMassey(2002 and references therein): the modified offer load (MOL) amal pointwise stationary
(PS) approximation. When the time scale of variability of #rrival rate function is of the same scale or
much smaller than the average service time, the MOL appratiam is superior to the PS approximation.
As this is the scenario which we consider, we focus on the M@ir@ximation. The approximated blocking
probability is then given by the Erlang-C formula, which e tsteady state probability of blocking for an
M/G/s/s model, but with the traffic intensity replaced by the meanugukength of the corresponding

infinite server model, i.e.
L ElQL@)/s
> h—o (E[Quc(t)]F /K1)

whereQ@ . (t) is the queue length process of the corresponding infiniteesgueue. As the MOL approx-

P(Q"(t)=>s)

imation is monotonically increasing iR[Q .. (t)], we test this approximation for the stationary maximum
probability of blocking in our model. Note that we do not cimes using the MOL approximation for the
stationary average probability of blocking since this wbinlvolve integrating the Erlang-C formula multi-
plied by the arrival rate function, for which we are unableésive closed-form solutions.

Figure 17 plots V3 (N, T) and Vi, (N, T) for different values ofl" and N = 1,2. We also plot the
MOL approximation for the stationary maximum probability ldocking in the same figure as a solid
line. We observe that these two performance measures taksathe shape as the corresponding queue
length process. The MOL approximation is smaller than theacstationary maximum probability of
blocking. This is because of the unique dynamics introdiggtie inspection feature of our model. Unlike a
traditional loss model where the queue length process catuéite around level (total number of servers),
once theM, /M (T)/s/s model reaches capacity it remains there until the next inspection time. As such,

the resulting probability of blocking is much larger thanatwould be seen in aif, /M /s/s model.

8. Conclusions and Further Research

Motivated by the need for physician examinations to disgbgatients from hospital beds, we introduce a
multi-server queueing system where a customer can onlylbased from the server when an inspection
occurs and the customer has completed service prior to $pedation time. We analyze how the number and

timing of the inspections affects system performance. @afysis incorporates the feature that the arrival
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Figure 17 M./M(T)/s/s queueing system: The average and maximum probability of blo cking as a function
of the discharge time 7" for one and two discharges per day (A = 0.2667, = 1/75, upper: s = oo,

middle: s =32, lower s=30)
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rate is time varying and the service time is of a much largatesthan the time scale of variability in the
arrival rate. These are features commonly observed in takhoare setting.

We introduce the concept of effective service rate basedadnilisy analysis of the system and find that
when havingN inspections per day, evenly spaced inspections maximeeffiective service rate. The
effective service rate is increasing ivi but the increments are decreasing\in Given the other demands
on physician time, it is neither practical, nor desirabdeallow for frequent discharges throughout the day.
Fortunately, our analyses indicate that the most subatayains are achieved by increasing from one to two
inspection times per day.

We also characterize the periodic equilibrium of the timpetelent performance measures. Because
the number of servers is fixed while the arrival rate is timaeying and because the service time is much
longer than the period of the arrival rate, traditional diestate approximations fail in our setting. Another
challenge is that the size of the system can be very smalleszawnot rely on heavy-traffic approximations,
which tend to be more accurate for very large systems. As, sueheverage the tractability of an infinite
server model where the optimal inspection times can be cteaiaed in closed form. We also show through

numerical experiments that the insights from the infinite’semodel carry over to the finite server case. In
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particular, we observe that adding a second inspectionrimhenly improves system performance but also
adds a lot of robustness to the performance with respecetadtual timing of the inspections. With two or
more evenly spaced inspection times, the performance daytsiem is practically invariant to the precise
schedule of inspection. We also consider model extensicgeseeral service times and a loss model. Again,
we see that the insights from the infinite server model alsky @ver to these cases.

In this work, we focus on performance measures related tqukeae length process. These measures are
very important to hospital administrators who are concemmigh timely access to care for patients in order
to improve clinical outcomes, and the cost-effective useeeburces such as beds and nurses Regaud
et al. (2009, Rincon et al.(2010). Specifically, we find that our infinite server model prasdinsight
into how one can simultaneously minimize the average oaumpevel and the probability of waiting.

In fact, such a goal is likely highly attractive to hospitalnainistrators. Typically, measures of delayed
admission by the medical community have a binary notiorayksd versus not delayed (e@halfin et al.
(2007, Renaud et al2009). Moreover, minimizing the average occupancy level wilsere timely access
to care for patients and could potentially allow for redais in unit sizes (i.e. fewer beds and staff) thereby
reducing operating costs. In our analysis of these systefarpgance metrics, we have seen that precisely
guantifying the expected waiting time in our setting is guihallenging. An interesting area of future
research would be to extend the time-varying version ofd’#t_aw to our queueing system.

From our analysis, we can ascertain a number of specifichitsfgr practice: 1) Our analysis suggests
that with a single inspection time, #hould take plac®& hours before the peak in arrivals. In a hospital
the peak arrival typically occurs in the afternoon, likegtlveen 1-4pm. Thus, it is likely that the current
scheduling of rounds, which typically takes place in thdyeamorning, say at about 7am, is very good in
terms of minimizing the average and maximum occupancy $e®|We find that it is possible to sched-
ule inspections in order to simultaneously minimize ocawgyaand probability of waiting (or blocking);
however, minimizing the expected waiting times will likelgquire different inspection times. 3) When
adding additional inspection times, there are many benefigs increased stability region and robustness)
to scheduling them at evenly spaced intervals througheud#ty. Moreover, we find that while it might be
worth considering adding one additional inspection, aodiél inspections have decreasing marginal gains
and are probably not worthwhile.

In the ICU setting, administrators are quite concerned tpatients who are ready to be discharged but
are still occupying beds because they have not yet been egdry a physician who can issue the discharge
order. This ‘boarding’ in the ICU may have strong implicatsoas to the availability of beds for new ICU
patients waiting to be admitted. Alternatively, patientsonare ready to be discharged from the ICU may
remain in ICU beds even after a physician’s approval forttisge because there are no beds available in

downstream units. Such a phenomenon also occurs in othpitélasits. As such, extending our analysis
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to a network perspective in order to gain insights on the rhp&each unit's inspection/discharge policies
would be an interesting area for further exploration.

There are number of extensions of our model and analysidwinaild be interesting to explore as future
research. For instance, one could consider the impact afssifply random) delay between inspection time
and the freeing of a server to capture the tasks necessaoyniplete between the time a doctor places a
discharge order and the time the bed is ready for a new pa#idditionally, one could consider the duration
of time necessary to complete an inspection.

Another potentially interesting area for future researculd examine capacity decisions in light of the
dynamics that arise from the need for inspections. Simplaearical explorations suggest that standard
square-root staffing rule concepts (&kolesar and Gree(L998) to determine the number of beds needed
to satisfy desired performance benchmarks do not immedyiganslate to this setting.

In a healthcare setting, patients are highly heterogendbhgifferent care needs and priorities. Another
potentially interesting future direction would be to inporate priorities into a queueing system with inspec-
tions. It would be interesting to see how the optimal insjpectimes depend on patient mix and how
different priority rules could impact congestion.

Finally, from a theoretical standpoint, it could be inteirg to consider dynamic inspection schedules.
For instance, one could consider a policy which has a baseispection only once a day but schedules
an additional inspection every time the queue length exxaagiven threshold. It would be interesting to
understand how various system primitives impact that agtihreshold. Of course, such dynamic policies
may be difficult to implement in practice, but analysis ofgbgolicies could provide insight into what is
potentially lost by requiring predictable and consistaspiection schedules.
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Appendix A:  Proof of stability conditions
PrROOF. [Proof of Lemmal] We start by recognizing thdiQ,, } is a Markov Chain on a countable state spSeeZ™*.
Moreover, it is irreducible.

Stability: We analyze the stability condition first. We will use the éoling Lyapunov functionV (¢) = |¢|. Let
e=s(1—e ") — A(24). By assumptiors(1 — e~2**) > A(24)); it immediately follows that > 0.

Consider the case where the number of customers in the sygtenmore than the number of servers: s. Then,

D,, ~ Binomial(s,1 — e~24),
E[V(Q1)IQo=q] - V(g) = E[A.] - E[D,] = A(24) — s(1 —e7*¥) < —e.
On the other hand, when there is no queus,s:
ElV(Q1)|Qo=q] = V(q) < E[A,] = A(24) < o0.

Thus, it satisfies the Foster-Lyapunov Criterion for a pesitecurrent Markov process on countable state spdeg
and Tweedie 2009

Instability: We next prove the instability condition. Firgt> 0 small enough such that

) (1—e (e’ —1)<1

i) A24)(1—e ) >s(1—e2*)(e? 1)
Itis clear that such 8 exists, sincd — e~2% < 1 andA(24) > s(1 — e~2**). Let V(q) = e%¢. Then we have when

q>s,
E[V(Q1)|Qo=q] = V(q)exp (A(24)(e™* — 1)) exp {slog(1+(1—e 2)(e” 1))}
< V(g)exp{—(A@24)(1—e?) —s(L—e?*)(e” — 1))}
<V(a)
and

inf V(q) = exp(—0s) < exp(—0(s +1)).

q<s
Thus it satisfies the Foster-Lyapunov Criterion for a transMarkov process on countable state spadeyf and
Tweedie 2009 O

PROOF. [Proof of Theorenil] We provide a proof for the cas¥ = 2. The proof for generaV follows exactly the
same line of analysis.

{Q..} is a Markov Chain on a countable state sp&ce Z™, which is irreducible.

Stability: We analyze the stability condition first. L&t(q) = |q|. As s(1 — e=22"#) + s(1 — e85 1) > A(24)
by assumption, we can findl > 0 small enough, such tha{1 — e*AéU“) +(1-9)s(1 - e*Af)“) > A(24). Let
e=s(1—e20) 4 (1—0)s(1 — e 25" — A(24) > 0. Find & > 0 large enough such th&(D(V) > k) < 5. Set
K={qeZ":q<s+x}.Wheng ¢ K,

BlV(Q1)|Qo=q] - V(q) = E[A{" + AP] - E[D{"] - E[D{?)]
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< A24) = s(1— e 2) = B[D|D{Y < 5] P(D{" < k)
— A(24) — s(1— ) = (- 8)s(1 — =)

= —6;

wheng € K,
EV(Q1)[Qo=q]—V(q) <A(24) <0

We thus verified the Foster-Lyapunov Criterion for positigeurrent Markov process on countable state spisles
and Tweedie 2009

Instability: We next analyze the instability condition. Fiid> 0 small enough such that

) (1—e2"m) (e —1) < Tand(l—e25#)(” —1) <1

i) A(24)(1—e=®) > (s(1—e=25"8) 4 5(1 — e2871))(ef — 1)

LetV(q) = e~ Then we have wheq > s,

[exp ( D(l) + D(Q) )}

)E
)£ e (9517 2 [exw (0017

21y (ef — 1)

E[V(Q1)|Qo =] = V(q)exp (A(24)(e ™ —1

< V(g)exp (A(24)(e™" 1
14

(e = 1))

< V(q)exp{A@4) (e — 1) + (s(1 — e 25") 4+ (1 — e~ 2871)) (e = 1)}

= V(g)exp (~(AEA)(1— )~ (s(1 - 28) 1 s(1 e (0 1))

< V(q)

)
)

V (q) exp{A(24) (e — 1) + slog(1+ (1 —e™»
+slog(1+ (1 —e 22 #)(
)

and

inf V(q) = exp(—0s) < exp(—0(s + 1))

q<s

We thus verified the Foster-Lyapunov Criterion for transistarkov process on countable state spddeyn and
Tweedie 2009 O
PrROOF. [Proof of Lemma2] Let §; =24 /N — AE'V”. Thend; < 24 ando; i < 1.

N

) N
D (1= e AN = N — e 2NN exp(6i)

i=1 i=1

N
< N — e 24N Z(l 4 6.00)
i=1

= N —Ne #/N

Whens; =0, 3% (1 e AV H) = N—Ne*“24/N.Thus,zz’.vzl(l—e*A%)#)attains its maximum wheA () = 24/N
fori=1,2,---,N. O
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Appendix B:  Proof of periodic equilibrium results

PrRoOF. [Proof of Theoren®] Q(7,, +1) = Q(7,.) + A(7, 7o +1). A(7,,, T +1) is independent of) (7,,) and have the
same distribution ad (7,1, 7,41 +t) fort € (0,24). WhenQ(r,,) ~ 7, Q(7,.+1) ~ 7 by the definition of stationarity.
Then for anym € Z*

P(Q(r, +1) =m) P(Q(Tn) + A7, 7o + 1) = m|Q(70) = ) P(Q(7.) = 1)

I
hE

Il
o

I
NgE

P(l+ A(1p, 7o +t) =m)m(l)

0

I
hE

P(Q(Tns1) + AT, T +1) =m|Q(Tg1) = 1) P(Q(Tny1) = 1)

Il
o

I
—~

Q(Tny1 +1) =m)

The expression foP,, (W (t) > 24k), k € Z*, follows directly from the simple relationship betwe@xt) and W (¢).
O

PrRoOOF [Proof of Propositiorl] We first observe that if a customer arrived at timet ¢, for some inspection time
7, and0 < ¢ < 24, then, he has to wait at least until the next inspection timether words, ifi (7, +¢) > 0, then
W (r, +t) > 24 —t. Likewise, if W (7, +t) > 24k, thenW (7, +t) > 24k 424 — .

If we assume the system starts empty from the infinite pastitheould be in periodic equilibrium atfor ¢ > 0
(seeThorisson(1985 for theoretical support for initializing non stationanodels at = —oo). We also set timé as
the beginning of a day. Taking the queue (customers waitimgtserved) as the system, applying time varying Little’s
law (Bertsimas and Mourtzinou 1997ve have

Eo[(Q(ra+1) —s)7]
Tn+t
_ [ P(W (1) > (1 +t — u))Mu)du

Thtt % pr,—24(k—1)
= / P(W(u) >Tn+t—u)/\(u)du+2/ P(W(u) >, +t—u)\(u)du

n k=1 Tn —24k

For E.[W (7, +t)], we have
B [W(r, +1)] = / T P(W(r, 1) > u)du

24—t ) 24(k+1)—t
= / P(W (7, +1) >u)du+ Z/ P(W (7, +1) >u)du
0 k=1 24k—t
24—t oo 24(k+1)—t
= P(W (7, +1) > 0)du+» / P(W (7, + ) > 24k)du

o1 24k —t

o

= P (W(r, +1)>0)(24—1t) + 24§: Poo (W (7, +1) > 24F).
O

PrROOF. [Proof or Propositior2] As Q(t) andW (¢) are regenerative process ax(d) is periodic, X (t)A(t) is also a
regenerative process. We define the regeneration §€@@s) =0} (i.e. {Q,, = 0}). We also define := inf{7,, > 0:
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Q(7,) =0}andK :=inf{n >0:Q, =0}. Without loss of generality, we assumg= 0 and letEy[] := E[-|Qo = 0].

Then we have

ast — oo

Eo [ X (u)A(u)du]
/ X (u)A(u)du — o lF]

Eo [S150 [T X ()M (u)du]
Ey []

E, [fo;ol E [ o X(u)/\(u)du|QnH
24F K]

= {/m X (u du|Q06w}
_ ﬂEoo U X(u)/\(u)du]
_ % /0 B (X ()] A () du

As \(t) is a periodic function with period = 24, we also have

24@ — A(24) ast — oo.

Thus, o
1 ¢ o Bl X (w)]A(u)du
O
Appendix C:  Proof of performance approximations of the infinite server queue model
PROOF. [Proof of Lemma3]
% 5 p ) SR a A
~(T) = ——=—cos(V(T+ (k—1)Ax — A(t)d
o(T) Z(u ZeosaT+ (- aw) 45 [T ) S
= Z; { (— —/\AN - %gcos( (T+ (k—1)Ay)) — %gcos(y(T—l- kAN)))
Ay +B/ycos((T+ (k= D)A)) = B/ycos(y(T + kAy)) }
A(24)
A1 al
=t A = N% gcos('y(T—i— (k—1)Ay))
WhenN =1, ¢ (T) = A(1/pu+12) — B/vcos(yT). WhenN > 2, (n(T) = M1/ + Ay /2). O

PROOF. [Proof of Lemmad] ) (T) = M/ pn+ Ay — B/~ cos(y(T + (i — 1)Ay)). As — cos(yz) is increasing on
0,12) and decreasing o2, 24), ¥ (T) attains its maximum at the closest inspection time poineto

Let O(T) = min{argmin, |12 — (T'+ (i — 1)An)|}. ThenT + (©(T) — 1) Ay is the closest inspection time point
to 12. If there are two points that are of the same distance t@'12(0(T") — 1)Ay is the smaller one. To minimize
7\ (T), we want to havd + (O(T) — 1)A as far from12 as possible.

When N is evenmin ny (T) is achieved when thé&//2-th inspection time and th@V/2 + 1)-th inspection time

are symmetric arountR. Thatis wherl'+ (N/2 = 1)Ay =12 — Ay /2. ThenT =12 — Ay /2 — (N/2 = 1)An.
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WhenXN is odd,mins 7y (T") us achieved whe@V + 1)/2-th inspection time and thg N + 1) /2 + 1)-th inspection
time are symmetric arount®. Thatis wherll'+ (N +1)/2 - 1)Axy =12 — Ay /2. ThenT =12 — An /2 — (N +
1)/2—1)Ay.

In summaryarg ming 1y (7) = 12— Ay /2—[N/2—1]Ax andming ny (T) = A/ u+AAx — 8/ cos (1 — 7 /N).
O
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