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In order for a patient to be discharged from a hospital unit, aphysician must first perform a physical examination and

review the pertinent medical information to determine thatthe patient is stable enough to be transferred to a lower level

of care or be discharged home. Requiring an inspection of a patient’s ‘readiness for discharge’ introduces an interesting

dynamic where patients may occupy a bed longer than medically necessary. Motivated by this phenomenon, we introduce

a queueing system with time-varying arrival rates in which servers who have completed service cannot be released until an

inspection occurs. We examine how such a dynamic impacts common system measures such as stability, expected number

of customers in the system, probability of waiting and expected waiting time. Leveraging insights from an infinite-server

model, we’re able to optimize the timing of inspections and find via theoretical and numerical analysis that 1) optimizing

a single inspection time could lead to significant improvements in system performance when the amplitude of the arrival

rate function is large, 2) multiple inspections should be uniformly distributed throughout the day, and 3) the marginal

improvements of adding additional inspection times is decreasing.
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1. Introduction

Standard queueing models assume that a server is free to serve a new job as soon as the current job in

process completes service. However, such an assumption maynot be reasonable in some systems. Motivated

by a hospital setting, we introduce a new queueing system which captures hospital discharge dynamics that,

to the best of our knowledge, have not been considered in the past. Our analysis of this model provides

some insights into how the frequency and timing of physicianrounds, which determine the timing of patient

discharge orders, impact patient flow dynamics.

We consider a standard practice in hospital care: a physician must check on a patient to assess whether

she is ready to be transferred to a lower level of care or sent home before a discharge order can be placed.

That is, while a patient (customer) may be medically ready tobe discharged, she will continue to occupy a

bed (server) until a physician checks on her and writes a transfer or discharge order. Therefore, a patient’s

length-of-stay (LOS) is likely to be longer than is medically necessary due to the need for a physician’s
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‘inspection’. Most hospitals have rounds once a day, typically in the morning, at which point patients are

examined to determine if they are ready for discharge. Such rounds occur in the ICU when making decisions

to transfer patients to step-down units or the general wards. They also occur in the wards when deciding to

discharge patients home.

While queueing models have been used extensively to examinepatient flows in hospitals (e.g.McManus

et al.(2004), Yankovic and Green(2011), Saghafian et al.(2012) among others), to the best of our knowl-

edge, none have considered the need for physicians to inspect patients to determine whether they are ‘ready

for discharge’. In other service systems, such as call-centers, such a phenomenon does not exist as servers

typically correspond to humans who will know immediately when a customer has completed service. In

contrast, in the healthcare setting, a physician must review lab tests, imaging results, vital signs, etc. before

a patient can be moved from a hospital unit. Typically, nurses execute the care plan dictated by the patient’s

physician; however, even if a nurse suspects a patient may beready for discharge, this cannot occur without

physician approval. Physicians have many demands on their time (e.g. surgeries, office visits, follow up with

outpatients, charting, etc.) and are not generally available during the day. So physician ‘inspections’ most

often occur on a one-time basis–early in the morning when rounds take place, which in teaching hospitals,

also provide an educational opportunity for medical residents and students. In this paper, we examine the

impact of the timing as well as what gains could be achieved byincreasing the frequency of ‘inspections’.

Motivated by the above discussion, we develop a queueing system where a server who completes service

can only be freed at pre-specified inspection times. If service has not completed prior to the inspection time,

the customer continues to occupy the server until at least the next inspection time. In the hospital setting,

which serves as our primary motivation, a customer corresponds to a patient; each server corresponds to

a bed; and the service time of a customer corresponds to the time of physical admission to a bed until the

time the patient is medically ready to be discharged or transferred to another unit. Note that in our system,

the service time may beshorterthan the total time a patient spends in the bed. We assume thatthe periodic

arrival rate varies depending on the time of the day. We referto this system as anMt/M(T)/s model.Mt

refers to the time varying Poisson arrival process, which isnot only a fairly standard queueing assumption,

but also has been shown to be a reasonable model for many healthcare applications (see for exampleKim

and Whitt (2014) andGreen et al.(2006)). M(T) denotes the fact that service times are exponentially

distributed but the servers are only released at inspectiontimes defined by the vectorT. In this work, we

examine how the required inspection alters the queueing dynamics as well as assess when such inspections

should occur to optimize system performance. Our main contributions can be summarized as follows:

• Stability: We analyze the stability of theMt/M(T)/s system and introduce a notion of an ‘effective

service time’, which reflects the inflation of time spent witha server due to the need for inspection. We

show that the stability condition is invariant to the timingof the inspection.
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• Equilibrium analysis: We analyze the periodic equilibrium behavior of theMt/M(T)/s system and

provide explicit characterizations of the queue length andthe waiting time processes.

• Optimizing performance: We leverage insight from an infinite-server model to optimize the timing of

inspection times. In particular, we identify inspection times to minimize the expected mean and maximum

number of customers in the system as well as the probability of waiting. The gains which can be achieved

by optimizing the timing of inspections depend on the amplitude of the arrival rate function. For example,

when assuming a sinusoidal arrival rate function and a single inspection time per cycle, the reduction in the

time-average expected occupancy level can range from 0 (when the arrival rate is constant over time) up to

10% (when the amplitude is maximal).

• Impact of additional inspection times: We find that system performance improves (e.g. stabil-

ity region increases, congestion decreases) when adding more inspection times; however, the marginal

improvements are decreasing in the number of inspections. We also find that when there are multiple equally

spaced inspection times, the system performance is very robust with respect to the timing of inspections.

• Model Extensions:We check the robustness of our analysis under different modeling assumptions.

More specifically, we examine the reliability of the infiniteserver approximation, when using a more gen-

eral class of service time distributions, including the widely used log-normal distribution. In addition, we

consider scenarios where inspection times do not have to be equally spaced. Next, we examine our results

in the case of more general arrival rate functions; specifically, we consider the case of the empirical arrival

rate to Emergency Departments in the United States. Lastly,we analyze the dynamics of anMt/M(T)/s/s

system where customers are blocked (rerouted) when the system is full. In most cases, the infinite server

system approximation still enables us to select the optimalinspection schedule to minimize the occupancy

level and/or probability of blocking in the loss system and all of our prior insights translate to these extended

models. However, in some instances (e.g. deterministic service times) the system dynamics can differ sub-

stantially.

The rest of the paper is structured as follows. We conclude this section with a brief review of related

literature. We formally introduce theMt/M(T)/s queueing model in Section2. In Section3, we derive

the stability condition for our new system. Section4 derives expressions for various time-dependent perfor-

mance measures. In Section5, we introduce an infinite-server model, which we leverage toprovide insights

into optimizing the inspection times in the finite server situation. We are also able to relax the assumption of

exponential service times in this analysis. In Section6 & 7, we consider several model extensions. Finally,

we summarize our conclusions and provide discussion for further research in Section8. All proofs of the

results are given in the appendix.

1.1. Related Literature

In this paper, we introduce a queueing system with time-varying arrival rates which is prevalent in hospitals

as well as many other service systems (e.g.Armony et al.(2015), Shi et al.(2016)). While the assumption



4

of time-varying arrivals is better able to capture reality,such models tend to be much harder to analyze than

their time-homogenous counterparts. A naive approach to approximate system performance is to eliminate

the time-variation and use the steady-state distribution of a time homogeneous queue whose arrival rate is

the long-run average arrival rate. However, such an approach is unable to capture the variability in perfor-

mance over time, and because the variation can be quite significant in some cases, insights extracted from

such an approach may be very misleading (Green et al. 1991, Jennings et al. 1996).

When the time scale of variation in the arrival rate is much larger than the service time, the pointwise

stationary approximation, which uses the steady-state distribution of a time homogeneous queue with arrival

rateλ(t) to approximate the performance of the time varying queue at time t, works quite well (Green and

Kolesar 1991). To cope with the case when the time scale of variation is of approximately the same order

or much smaller than the service times,Jennings et al.(1996) propose an infinite-server approximation,

which seems to be reasonably accurate. In this work, we use a similar infinite-server approximation in our

analysis, albeit for a very different queueing model, and show numerically that it is able to capture some of

the main features of our system. In our analysis, we leverageresults forMt/M/∞ queues fromEick et al.

(1993a) andEick et al.(1993b).

There has been quite a bit of work on staffing and capacity management policies under time-varying

arrival rates (see, for example,Jennings et al.(1996), Green et al.(2007) andLiu and Whitt (2012)). In

contrast to these papers, we consider the case where the number of servers, which in our model corresponds

to the number of hospital beds, is fixed. As such, our focus is on characterizing the impact of alternative

inspection (discharge) policies and then optimizing over them.

The notion of inspection policies is relatively new in the queueing literature.Zazanis(2004) analyzes

infinite server queues with synchronized departures drivenby a single point process.Dobson et al.(2010)

uses performance analysis of ac dimensional discrete time Markov Chain to examine the impact of ‘early

discharges’ from the intensive care unit (ICU). They assumethe patient’s length of stay is discrete (in days)

and bounded. In addition, patients can be discharged earlier if there are not enough servers (beds) in the

ICU. Chan et al.(2012) develops an optimization framework to select patients forsuch early discharges. In

our setting, we assume that patients can only be discharged once they are medically ready.

Inspection in queues and other stochastic models has been analyzed in the manufacturing setting (see

for exampleOhnishi et al.(1986), Jewkes(1995) andYao and Zheng(1996)). The primary focus in these

papers is quality control and/or detection of malfunctioning machines. As such, the system dynamics are

quite different from our setting. For example, in most manufacturing settings, a faulty product will be

detected during inspection which may lead to additional processing procedures; however, it is unlikely the

product will continue to occupy the servers (machines) after it finishes service while it awaits inspection.

In the context of scheduling inspections in order to detect malfunctioning machines, it is the status of the

machine (broken or not) which determines whether a new job can begin, rather than the status of the job and
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knowledge of this status which determines when the server isreleased. There is also an extensive literature

on ‘vacation models’ where servers can temporarily leave the system (e.g.Federgruen and Green(1986),

Doshi (1986)). In this case, servers can go on vacation (rather than require maintenance) under various

conditions, such as when the system is empty. The majority ofthese papers focus on deriving steady-state

performance measures given different vacation dynamics for a single server.

There has also been some work on queues with batch departures(e.g.Foster and Nyunt(1961), Foster

and Perera(1964)). Here, the goal is to examine steady state analysis when jobs are served in batches. In

such a setting, the effective time in system increases for jobs as they must wait until a full batch can be

served. However, in contrast to our model, the jobs depart asynchronously because, although they begin

service in batches, their service times are not identical.

Most related to our work isPowell et al.(2012), Shi et al.(2016), andDai and Shi(2014), which all

consider modifying discharge timing in a hospital setting.Powell et al.(2012) andShi et al.(2016) apply

a data-driven approach to build a queuing model and use simulation to test the performance of different

discharge scenarios, whileDai and Shi(2014) use asymptotic analysis to examine the same. All of these

papers focus on the impact on patient “boarding” (waiting for an available bed) in the Emergency Depart-

ment (ED) when patient discharges are shifted earlier in theday. The argument is that moving patients out

of beds earlier will reduce the waiting time of new patients.Dai and Shi(2014) assumes that medical needs

dictate patient LOS on a daily level, while operational factors dictate admission and discharge times which

operate on an hourly level. As such, an implicit assumption in these papers is that a patient is ready for

discharge at any time during the day of discharge, and thus, they conclude that to minimize delays, dis-

charging everyone at midnight would be optimal. However, because such a discharge policy is not feasible,

they consider alternative policies. In contrast, our modeltakes the perspective that the recovery of patients

is a continuous process. For example, a patient who is not yetready to be discharged in the morning may

become well enough to be discharged later in the afternoon. This implies that earlier discharge times do not

necessarily lead to better performance. While we also consider discharge timing, we aim to optimize this

depending on when a patient is ‘ready for discharge’. This notion of inspection is not considered in the prior

works.

2. TheMt/M(T)/s Model
In order to understand the impact of requiring a physician’sreview before a patient can be discharged, we

introduce a queueing model where customers (patients) complete service but continue to occupy the servers

(beds) until an inspection occurs. Our model is depicted in Figure1.

Jobs arrive to the system according to a time-varying Poisson process with rate given byλ(t) (measured

per hour). We defineλ(t) for t ∈ R. We assumeλ(·) varies within a day but follows the same intraday

pattern across days (periodic pattern). Specifically,λ(t+24)= λ(t). We let

Λ(t) =

∫ t

0

λ(u)du
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Figure 1 Mt/M(T)/s queueing model with ‘readiness to discharge’ inspections: customers can only be

removed from the system after an inspection which occurs at t ime(s) T.

denote the cumulative arrival rate function. Specifically,Λ(24) denotes thedaily arrival rate. Without loss

of generality, we also assume time zero is the beginning of a day. If the period and time-scale of variation do

not occur according to a 24-hour period, a simple re-scalingof time,t, can incorporate such dynamics. The

periodic assumption allows us to measure the long-run average performance via the notion of a periodic

equilibrium, as we detail in Section4.

There ares identical servers in the system. If a customer arrives and a server is available, it will begin

service immediately. If there are no servers available, thecustomer must wait in the (infinite buffer) queue

until a server becomes available. In order to focus on the impact of inspections, we consider a homogenous

customer population where each customer’s service time is exponentially distributed with rateµ (measured

per hour). The reciprocal ofµ can be thought of as the mean service time for the average patient. Upon

completion of service, the customer willstill occupy the server. The server is only released once an inspec-

tion occurs and the customer has completed serviceprior to the inspection time. We letT ∈ [0,24]N , with

T1 <T2 < · · ·< TN , denote the dailyN ≥ 1 inspection times. Thus, the first inspection occurs each dayat

T1, the second atT2, etc.

Suppose a customer arrives at time0 and finds an available server. This customer immediately begins

processing. It will complete service at timet0, wheret0 is exponentially distributed with mean1/µ. The

server this customer occupies will be freed at timek on dayd, wherek andd are defined as:

k=

{

inf i∈{1,2,...,N}{Ti : Ti ≥ mod (t0,24)}, if mod (t0,24)≤ TN ;
T1, if mod (t0,24)>TN .

d=

{

⌊t0/24⌋, if mod (t0,24)≤ TN ;
⌊t0/24⌋+1, if mod (t0,24)>TN .

Specifically, a customer will leave the server at the first inspection time following completion of service.

If a customer finishes service after the last inspection timeon a specific day, it needs to wait until the first

inspection time on the next day. No new customers may begin service with this server until it is freed. We

refer to such a system as anMt/M(T)/s system. Our goal is to understand the roleT plays in system

dynamics.
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As a benchmark for comparison, anMt/M/s system is a system in which inspections occur continuously,

so that a customer is released as soon as it completes service. We note that there exists anMt/M(T)/s

system withN = ∞ that is equivalent to anMt/M/s system (e.g, when inspections are evenly spaced

throughout the day,Ti = 24/N ).

For tractability, we assume that inspections take place instantaneously and that it is possible to inspect all

jobs simultaneously. In relating our model back to practice, a physician typically spends a few minutes with

each patient during rounds. While this is neither simultaneous nor instantaneous, the scale of the duration is

small enough that we believe the time required to complete rounds is not a first order effect compared to the

impact of the inspection timing. Additionally, we assume that completed jobs leave the servers immediately

following inspection. In practice, after a physician approves a patient’s discharge, the patient will continue

to occupy the bed until the entire discharge or transfer process - which includes paperwork, the conveyance

of discharge instructions, arrangement for transport etc., is completed, and the bed will not be available for

another patient until it is made ready by housekeeping.

3. Stability conditions

We start by considering the impact of the inspection times onthe stability of theMt/M(T)/s system. We

find that the need for inspection prior to releasing a server alters the stability condition from that of a more

standardMt/M/s system; moreover, the number of inspection times plays a substantial role.

Recall that with continuous inspection, customers are released immediately upon completion, so that we

have anMt/M/s system. It is well-known that the stability condition for this system is simply:

Λ(24)< s24µ.

whereΛ(24) is the daily arrival rate (Heyman and Whitt 1984). In contrast, the stability condition for the

Mt/M(T)/s system with a finite number of inspection points (N <∞) is more nuanced. While stability

is a relatively coarse measure of system performance, it is astarting point to understand the impact of the

inspection times. In what follows we establish the stability condition based on a discrete time Markovian

system descriptor.

3.1. One inspection per day:N = 1

We start by considering the most extreme case of theMt/M(T)/s system. Here we assume there is only a

single inspection each day, so thatN = 1 andT is simply a scalar time of daily inspection.

We denote byQn the number of customers in the system immediately followingthe inspection on dayn,

which occurs atT +24× (n− 1). It is straightforward to see that the dynamics ofQn can be described by

the following recursion:

Qn+1 =Qn +An+1 −Dn+1,
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whereAn+1 ∼ Poisson(Λ(24)) is the number of new arrivals between the inspection time on day n

(excluded) and the inspection time on dayn+ 1 (included) andDn+1 is the number of discharges at the

inspection time on day(n+ 1). That is,Dn+1 is the number of customers who have completed service

between timeT + (n − 1) × 24 and timeT + n × 24. Under the exponential service time assumption,

{Qn, n≥ 1} is a discrete time Markov chain.

The service time, in hours, of each customer in service is exponentially distributed with rateµ so that

the rate in days is24µ. Since there ares servers, an upper bound on the number of departures in a day is

given by the number of departures if there weres customers in service to start with. Specifically, if we let

D̄n+1 ∼Binomial(s,1− e−24µ), thenDn+1 ≤st D̄n+1, where≤st denotes stochastic dominance.

We have the following lemma about the stochastic stability conditions when having only one inspection

per day:

Lemma 1 Under the one inspection time per day policy, the system is stable if

s(1− e−24µ)>Λ(24).

The system is unstable if

s(1− e−24µ)<Λ(24).

Intuitively, we can view(1− e−24µ) as theeffective service rateper day of each server. We then notice that

(1− e−24µ)< 24µ, i.e. the effective service rate under the one inspection per day policy is smaller than the

effective service rate per day with continuous inspection.Thus, the inspection time artificially inflates the

‘service requirement’ of each customer. Interestingly, the stability condition does not depend on the actual

inspection timeT , nor does it depends on the nature of the time-variability. It does, however, depend on the

periodicity assumption of the arrival rate. While this is true when considering stability, when we consider

other performance measures, such as the number of customersin the system, we will see that the inspection

time can have a substantial impact. Moreover, optimizing the timing of the inspections is only relevant in a

time-varying environment; when arrival rates are time-homogenous, the system performance is invariant to

the precise timing of inspections.

3.2. Multiple inspections per day

We now consider the case where there are multiple inspections per day.

To demonstrate the basic idea, we start by discussing the case ofN = 2 as an example. We denote the

inspection times as0≤ T1 <T2 < 24, which are the times by which the servers that finished service can be

freed. The number of customers in the system right after the second inspection time on dayn, Qn, has the

following dynamic:

Qn+1 =Qn +A(1)
n+1 −D(1)

n+1 +A(2)
n+1 −D(2)

n+1
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whereA(1)
n+1 ∼ Poisson(

∫ T1

T2−24
λ(t)dt), is the number of new arrivals between the second inspectiontime

on dayn (excluded) and the first inspection time on dayn+1 (included).D(1)
n+1 is the number of discharges

at the first inspection time on day(n+ 1). Likewise,A(2)
n+1 ∼ Poisson(

∫ T2

T1
λ(t)dt), is the number of new

arrivals between the first inspection time on day(n+1) (excluded) and the second inspection time on the

same day (included).D(2)
n+1 is the number of discharges at the second inspection time on day (n+1).

Let ∆(1)
2 = 24 + T1 − T2 and∆

(2)
2 = T2 − T1. Similar to the single inspection case, we letD̄

(i)
n+1 ∼

Binomial(s,1− e−∆
(i)
2 µ) for i = 1,2. ThenD(i)

n+1 ≤st D̄
(i)
n+1 for i = 1,2. Intuitively, the system is stable

if the arrival rate is less than the maximum achievable service rate, i.e.s(1− e−∆
(1)
2 µ) + s(1− e−∆

(2)
2 µ)>

Λ(24), and the system is unstable if the arrival rate is more than the maximum achievable service rate, i.e.

s(1− e−∆
(1)
2 µ)+ s(1− e−∆

(2)
2 µ)<Λ(24).

We can generalize this reasoning to derive the stability condition for generalN .

Theorem 1 Consider the policy with inspections that occur at timesT1 < T2 < · · ·< TN every day. Let

∆
(1)
N = 24+T1 −TN , ∆(i)

N = Ti −Ti−1 for i= 2, · · · ,N . The system is stable if

N
∑

i=1

s(1− e−∆
(i)
N

µ)>Λ(24).

The system is unstable if
N
∑

i=1

s(1− e−∆
(i)
N

µ)<Λ(24).

As in the single discharge per day case, the established stability condition does not depend on the precise

timing of the inspections. Rather its dependence on the inspection times only appears via the duration of

time between them. We now consider what separation of inspection times would result in the largest stability

region. A direct result from Theorem1 is that the maximum effective service rate is achieved with evenly

spaced inspection times.

Lemma 2
∑N

i=1(1− e−∆
(i)
N

µ) attains its maximum when∆(i)
N = 24/N for i= 1,2, · · · ,N .

Intuitively, this is because the effective service rate is dictated by the duration of time between inspections.

Specifically, we are concerned with the number of jobs which complete service between two consecutive

inspection times. Because the effective service rate is concave in∆(i)
N ’s, one can use aLagrangian argument

to demonstrate the duration between inspection times should be equal throughout the day (i.e. consider

L(∆
(i)
N , ν) =

∑N

i=1(1− e−∆
(i)
N

µ)− ν(24−∑N

i=1∆
(i)
N )).

When we have continuous inspections, the effective servicerate per day is24µ. We see that requiring an

inspection before a server is freed reduces the effective service rate in our system. In particular, letΥ(N) :=



10

N(1− e−µ24/N ) denote the effective service rate per day per server with theN evenly spaced inspections

per day. One can easily verify thatΥ′(x)> 0 andΥ′′(x)< 0 for x≥ 0, so thatΥ(N) is increasing inN and

Υ(N +1)−Υ(N)<Υ(N)−Υ(N − 1).

This suggests that more inspections per day will improve theefficiency of the system (the effective service

rate increases asN increases), but the improvement is diminishing. We also notice thatlimN→∞Υ(N) =

24µ.

We letΛmax(N) = sN(1− e−24µ/N ) be the constraint on the daily arrival rate for stability forevenly

spacedN inspections per day. We have that adding one more inspectionincreasesΛmax(N) by:

s
[

(N +1)(1− e−24µ/(N+1))−N(1− e−24µ/N)
]

,

which is linearly increasing ins for fixedN . Similarly, we can deduce that adding one more server increases

Λmax by:

N
(

1− e−24µ/N
)

,

which is a constant for fixedN . Thus, there exists a threshold̄s(N) such that fors > s̄(N) adding an

additional inspection will increase the effective capacity of the systemmorethan adding a server. Fors <

s̄(N), adding more servers is more beneficial.

Since most systems currently haveN = 1 inspections, we consider whats̄(1) would be, which is a direct

corollary to Theorem1.

Corollary 1 For

s̄(1) =
1− e−24µ

2(1− e−12µ)− (1− e−24µ)
,

if s > s̄(1), then adding one more inspection 12 hours after the first inspection, for a total of 2 inspec-

tions, will increase the stability region more than adding an additional server. Ifs < s̄(1), then adding an

additional server is more effective.

Forµ= 1/75 and1/130 (which are typical service rates in the ICU and internal wards respectively), we

have that̄s = 12.5267 and21.6820, respectively. This suggests that for small systems, adding more beds

would be more effective, while for large systems, adding more inspection rounds would be more effective.

Interestingly, we see that the time-variation of the arrival rate does not have any impact on the stability

condition. This is because stability is a fairly coarse measure of system performance.

Note that our stability results rely on the assumption of exponential service times. This is imposed to

precisely quantify the distribution of the number of departures per day. In Section6, we will relax this

assumption and consider general service time distributions. We find that when the coefficient of variation

of the service time distribution is not too different that ofthe exponential distribution, the above insights

generally carry over. However, when the service time distribution is very different, e.g. deterministic, we

will see that the system dynamics can be quite different.
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4. Time dependent performance measures

In our stability analysis, we did not consider the precise nature of time-variation of the arrival process.

However, for other performance measures, the arrival rate has a substantial impact. We now turn our atten-

tion to measures–the number of customers in system, the probability of waiting, and the expected waiting

time–which have time dependent dynamics induced by both thetime-varying arrival rates and the inspec-

tion schedule defined byT. We are interested in these measures as minimizing them can result in increased

access to care for patients as well as reduced operational costs (potentially by requiring fewer beds to meet

demand). In what follows, we will assume there are enough servers for the system to be stable so that these

performance measures are well defined and finite.

For simplicity of exposition, in this section, we focus on the single inspection per day case. Similar results

hold for the case of multiple inspections per day. Letτn denote the inspection time on dayn. Thenτ1 = T

andτn+1 = τn +24. We divide the analysis into two time scales (discrete v.s. continuous).

Following the stability analysis in Section3, we denoteQn as the number of customers in the system

right after the inspection on dayn, An+1 as the number of new arrivals betweenτn (excluded) andτn+1

(included), andDn+1 as the number of discharges atτn+1. Qn is a discrete time Markov chain on the state

spaceZ+. Under the stability condition in Theorem1, it has a unique stationary distribution, which we

denote asπ(·).
We next define some continuous time system descriptors. LetQ= {Q(t) : t≥ 0} denote the number of

customers in the system at timet. We assume the sample paths ofQ are right continuous with left limit.

Thus, an arrival at timet will be counted inQ(t), and discharges at timet will not be counted inQ(t). Let

W = {W (t) : t≥ 0} denote the waiting time process, i.e.W (t) is the time a customer would have to wait if

he arrives to the system at timet. For simplicity of notation, we also writeA(s, t) as the cumulative number

of arrivals on the interval(s, t]. Then we have

Qn =Q(τn) andAn =A(τk, τk+1).

As no discharges occur between inspection times, forτn < t< τn+1,

Q(t) =Qn +A(τn, t)

We also have the following simple relation betweenQ(t) andW (t). Forτn ≤ t < τn+1,

1. If Q(t)≥ s, thenW (t)≥ τn+1 − t. That is, if the system is full att, a customer, that arrives at timet,

needs to wait at least until the next inspection time before beginning service.

2. If (Q(t)−s)+ ≥∑n+k

i=n+1Di, thenW (t)≥ 24k+(τn+1− t) for k= 1,2, . . . . That is, if there are more

than
∑n+k

i=n+1Di customers waiting at timet, a new customer that arrives at timet needs to wait at least

until the(n+ k+1)-th discharge time before beginning service.
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As Qn is Harris recurrent under the stability condition,Q(t) andW (t) are regenerative processes (e.g.

we can pick{τn : Q(τn) = j}, for any j ∈ Z
+, as the regeneration points). We next consider the notion

of periodic equilibrium as inHeyman and Whitt(1984), and then characterize the periodic equilibrium for

Q(t) andW (t) based on the stationary distribution ofQn (Theorem2).

Definition 1 We say{X(t) : t≥ 0} is in periodic equilibrium with periodκ, if X(t) has the same distribu-

tion asX(t+κ) for t≥ 0.

Theorem 2 If Qn ∼ π, then{Q(τn + t) : t≥ 0} and{W (τn + t) : t≥ 0} are in periodic equilibrium with

period equal to24. For 0 < t < 24, the conditional distributions ofQ(τn + t) andW (τn + t), given that

Q(τn) is distributed according toπ, are

P (Q(τn+ t) =m|Qn ∼ π) =
m
∑

l=0

π(l)P (l+A(τn, τn + t) =m),

P (W (τn+ t)> 0|Qn ∼ π) =

∞
∑

l=0

π(l)P (l+A(τn, τn + t)≥ s),

P (W (τn+ t)> 24k|Qn ∼ π) =

∞
∑

l=0

π(l)P

(

l+A(τn, τn + t)−
n+k
∑

i=n+1

Di ≥ s

)

.

Assuming now the system starts operating from the infinite past from an empty state, we denote

(Ω,F , P∞) as the probability space where{Q(t) : t ∈ R} and{W (t) : t ∈ R} are defined (seeThorisson

(1985) for theoretical support for initializing non-stationarymodels att=−∞). Without loss of general-

ity, we assumeτ0 := 0. We also denoteτn, n ≥ 0, as then-th inspection time, counting forwards in time,

after time0 ; andτ−n, n≥ 0, as then-th inspection time, counting backwards in time, before time 0. Then

{Qn =Q(τn) : n≥ 0} would be in steady state. We also have that{Q(t) : t≥ 0} and{W (t) : t≥ 0} would

be in periodic equilibrium. We also denoteE∞ as the expectation with respect toP∞, which denotes the

equilibrium distribution. Using time-varying Little’s law (Bertsimas and Mourtzinou 1997), we have the

following Proposition.

Proposition 1 For 0≤ t < 24,

E∞[(Q(T + t)− s)+] =

∫ T+t

T

P∞(W (u)> 0)λ(u)du+
∞
∑

k=1

∫ T+24

T

P∞(W (u)> 24k)λ(u)du,

E∞[W (T + t)] = P∞(W (T + t)> 0)(24− t)+ 24
∞
∑

k=1

P∞(W (T + t)> 24k).

Remark 1 In the hospital setting, it is unusual that a patient waits more than a day for a bed. When the

probability of such a delay is very small,P∞(W (T + t)> 24)≈ 0, we have

E∞[(Q(T + t)− s)+] ≈
∫ T+t

T

P∞(W (u)> 0)λ(u)du,

E∞[W (T + t)] ≈ P∞(W (T + t)> 0)(24− t).
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As t increases, more customers arrive and no customers can be discharged until the next discharge time.

Thus, bothP∞(W (T + t) > 0) andE∞[(Q(T + t)− s)+] are increasing int for 0 ≤ t < 24. This mono-

tonicity in t does not hold in general forE∞[W (T + t)]. Due to the discharge dynamics, on the one hand, an

arriving patient may end up waiting less than a patient who has already arrived if both patients are admitted

at the same discharge point; on the other hand, a new patient may wait longer than a previous patient if he

cannot be admitted at the following discharge point, but theearlier patient can.

Figure2 plotsP∞(W (t)> 0), E∞[Q(t)] andE∞[W (t)] as a function oft for different inspection times

T . Note these inspection times were chosen arbitrarily for illustrative purposes and we use a sine function

as the arrival rate function. We observe thatP∞(W (t) > 0) andE∞[Q(t)] are increasing int for t ∈
[T,T +24). That is, both the probability of waiting and the expected number in system are non-decreasing

following the inspection time,T , until the next inspection time 24 hours later atT +24. On the other hand,

E∞[W (t)] is not monotonic int. As we will see in Section5, this creates challenges in estimating how the

inspection time(s) will impact the expected waiting time. We also observe the periodicity of the performance

measures and the discontinuity at inspection times.

Figure 2 Mt/M(T)/s queueing system: Time dependent performance measures ( λ(t) = 0.25 +

0.125 sin(π/12t), µ= 1/75, s=31)
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(b) E∞(Q(t)− s)+
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In comparing the time-varying performance for different inspection times, it is not clear which inspection

time results in better performance. To better facilitate comparison, Figure3 plots the time shifted version

of the performance measures, so we can compare performance measures at identical times following the

inspection times. Specifically, we plotP∞(W (T + t)> 0),E∞[Q(T + t)] andE∞[W (T + t)] for the same

systems in Figure2. While it is clear that different discharge times (T = 0 v.s.T = 12) result in different

performance outcomes, it is not obvious which inspection time is better. Specifically, there is no clear

dominance between the two curves. For example, although theprobability of waiting right before and after

inspection is smaller whenT =0 compared to whenT =12, 10 hours after inspectionP (W (T+10)> 0) is
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larger whenT = 0 compared to whenT =12. This motivates us to look at alternative average performance

measures in considering how to optimize over inspection times in Section5.

Figure 3 Mt/M(T)/s queueing system: Time dependent performance measures with shifted starting point

(λ(t) = 0.25+ 0.125 sin(π/12t), µ=1/75, s= 31)
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5. When should inspections occur?
In this section, we analyze how inspection times should be scheduled to provide high service quality.

As before, we will assume that there are enough servers giventhe inspection schedule such that the

system is stable. Based on the stochastic stability analysis, we will focus on policies that have equally spaced

inspection times. For simplicity of notation, we write∆N = 24/N , which is the time interval between

successive inspection times when we haveN evenly spaced inspections per day.

We define an arrival rate weighted time average as

V̄ (t) := Λ(t)−1

∫ t

0

X(u)λ(u)du

whereX(u) is some nonnegative function ofQ(u) orW (u). As we examine various arrival rate weighted

time average performance measures, the following results will be useful.

Proposition 2 If suptE[X(t)]<∞, V̄ (t)→ V̄ (∞) with probability (w.p.) 1, where

V̄ (∞) = Λ(24)−1

∫ 24

0

E∞[X(u)]λ(u)du.

We also define the average performance seen by arriving customers as

Ū(t) :=

∫ t

0
X(u)dA(s)

A(t)

The following theorem was proved in (Wolff 1982) and is known as the time-varying version of “Poisson

Arrivals See Time Averages”.

Theorem 3 V̄ (t)→ V̄ (∞) w.p. 1 if and only ifŪ (t)→ V̄ (∞) w.p. 1, ast→∞.
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5.1. An infinite server model

In order to understand the role of the inspection times on system performance, we wish to understand how

the inspection times impact the number of customers in the system. To do this, we start by examining an

infinite server queueing model with inspection times:Mt/M(T)/∞. This will provide insights into the

role of the inspection times and the delayed release of servers. Though there is no waiting in the case of an

infinite server model, the timing of inspections can impact server occupancy. If we wish to minimize server

occupancy levels, it is desirable to schedule inspections at times when many jobs have recently completed

service in order to quickly clear the system of these jobs. Wewill also extend the analysis to general service

time distributions in Section6.1. As we are interested in long-run average performance measures, we work

with the periodic equilibrium distribution of the stochastic system, i.e. we assume the system starts operating

from the infinite past and we analyze its performance onR
+.

We distinguish between two classes of customers: class (1) customers that have not finished service,

and class (2) customers that have finished service but are still in the system (waiting for inspection). Let

Zi(t) denote the number of classi customers in the system at timet for i= 1,2. Then the total number of

customers in the system isQ(t) =Z1(t)+Z2(t). Regardless of the discharge policy, in equilibrium,Z1(t)

follows a Poisson distribution with mean

m(t) =

∫ t

−∞

F̄ (t− s)λ(s)ds,

whereF̄ denotes the complimentary cumulative distribution function of the service time distribution (Eick

et al. 1993b).

For t between two adjacent discharge times,τi andτi+1, Q(t) is monotonically increasing int. This is

becauseQ(t) includes all of the customers who had not finished service prior to the previous inspection

time, τi, (Γ in Figure4), and the new arrivals betweenτi andt (H in Figure4). In particular,Q(t) follows

a Poisson distribution with meanm(τi)+
∫ t

τi
λ(u)du in stationarity. We notice that

1. The time-averaged expected occupancy level over[τi, τi+1) is

∫ τi+1

τi
E∞[Q(t)]λ(t)dt
∫ τi+1

τi
λ(t)dt

=

∫ τi+1

τi

(

m(τi)+
∫ t

τi
λ(u)du

)

λ(t)dt
∫ τi+1

τi
λ(t)dt

=m(τi)+
1

2

∫ τi+1

τi

λ(t)dt.

2. The maximum expected occupancy level on[τi, τi+1) is

E∞[Q(τi+1−)] =m(τi)+

∫ τi+1

τi

λ(t)dt,

whereE∞[Q(t−)] = lims↑tE∞[Q(s)].

In what follows, we look at two performance measures for the infinite server model. The first is the time-

averaged expected occupancy level over a day, which we denote asζN(T ) when there areN equally spaced

inspections per day with the first inspection at timeT . While making operational decisions based on this
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Figure 4 Point process representation of infinite server que ue. The horizontal axis depicts possible arrival

times, while the vertical axis depicts service times. Thus, the point (ti, Vi) represents a job which

arrives at time ti with service time realization of Vi. Any arrivals in the shaded region Γ ∪H , will

remain in the system at time t. The jobs in Γ are those who arrived before τi but haven’t completed

service before τi. Those jobs in H are those who have arrived following inspection at time τi. So at

the very least, the jobs in the shaded region will remain in th e system until the next inspection at

time τi+1.

Arrival time

Service time

Γ H

t0 τ
i τ

i+1

measure may lead to reasonable and sometimes very good performance in some service systems, it may

fall short in settings where it is essential to ensure very speedy access to service with waiting times much

shorter than the mean service time (e.g. hospital care). As such, we also consider a second measure: the

maximum expected occupancy level within a day, which we denote asηN(T ). Our primary focus will be on

ηN(T ) as it provides insight into how many servers are necessary toprovidehighservice quality.

Mt/M/∞: If we allow continuous inspection (discharge a customer whenever he finishes service), then

the system evolves as a standard infinite server queueing system with time-inhomogeneous arrival rates with

Q(t) =Z1(t). Thus, the time-average expected occupancy level is:

ζ∞ := Λ(24)−1

∫ 24

0

m(t)λ(t)dt,

and the maximum expected occupancy level is

η∞ := max
0≤t≤24

m(t).

N = 1: If we have one inspection per day at timeT , then

ζ1(T ) :=

∫ T+24

T

(

m(T )+
∫ t

T
λ(u)du

)

λ(t)dt
∫ 24+T

T
λ(t)dt

=m(T )+
1

2
Λ(24),

and

η1(T ) :=m(T )+Λ(24).

GeneralN > 1: If we haveN equally spaced inspections per day with the first inspectionat timeT , then

ζN(T ) =
N
∑

k=1

(

m(T +(k− 1)∆N)+
1

2

∫ T+k∆N

T+(k−1)∆N

λ(t)dt

)

∫ T+k∆N

T+(k−1)∆N
λ(t)dt

Λ(24)
.



17

If we denoteη(i)N (T ) as the expected occupancy level right before thei-th inspection time for1 ≤ i ≤N .

Thenη(i)N (T ) =m(T +(i− 2)∆N)+
∫ T+(i−1)∆N

T+(i−2)∆N
λ(t)dt, and

ηN (T ) := max
1≤i≤N

η
(i)
N (T ).

Remark 2 We can also construct performance measures based on the number of servers occupied by

customers who have already finished service (class 2). Thesemeasures may be of independent/additional

interests to hospital managers. In particular,Z2(t), for t ∈ [τi, τi+1), follows a Poisson distribution with

mean

E[Z2(t)|t∈ [τi, τi+1)] =m(τi)+

∫ t

τi

λ(u)du−m(t) =−
∫ t

−∞

λ(s)(F̄ (τi− s)− F̄ (t− s))ds.

For illustrative purposes, we consider the following specific form of the arrival rate function

Assumption 1 The arrival rate takes the following form:

λ(t) = λ̄+β sin(γt)

where0<β ≤ λ̄ andγ = 2π/24.

Sinusoidal arrival rate functions are commonly assumed in the literature to capture periodic behavior. In

this case,β measures the variability of the arrival rate function, and is called the amplitude of the arrival

rate.

Under Assumption1, the following relationship was shown inEick et al.(1993a):

m(t) =

∫ t

−∞

λ(s)F̄ (t− s)ds=
λ̄

µ
+β

(

µ

µ2 + γ2
sin(γt)− γ

µ2 + γ2
cos(γt)

)

As a direct result of this relationship, we have that

m(t) =
λ̄

µ
+

β√
µ2 + γ2

sin(ψ+ γt)

whereψ satisfies i)−π < ψ ≤ π, ii) sinψ =−γ/
√
µ2 + γ2 and iii) cosψ = µ/

√
µ2 + γ2. Thus, the max-

imum number of customers in the system who have not finished service is given bymaxtm(t) = λ̄/µ+

β/
√
µ2 + γ2. Depending on the relative values ofµ (time scale of service time) andγ (time scale at which

we see variability in arrival rate),m(t) could attain its maximum anywhere on the interval[18,24].

In the hospital setting, we are interested in the case where the time-scale for service (days) is much

longer than the time-scale of fluctuation in the arrival rate(hours).Chan et al.(2014) found that in such a

regime, ignoring the time-variability of arrivals does notsignificantly alter queueing dynamics. However,

we find this not to be the case when considering the discharge dynamics of our model. It is precisely the

time-variation in arrival rates which makes this problem interesting and challenging. In fact, without time-

variation of the arrival rates, the timing of the inspectiontimes (beyond being evenly spaced throughout the

day) does not matter at all. We now consider the following scenario:
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Assumption 2 The service rate and period of the arrival rate function are related as:

µ≪ γ.

Based on Assumptions1 and2, we have the following approximation ofm(t):

m(t)≈m0(t) =
λ̄

µ
− β

γ
cos(γt)

In what follows, we work under the above two assumptions (Assumption1 & 2) and use the approx-

imationm0(t) to replacem(t). In particular, the closed form expressions we developed for ζN(T )’s and

ηN(T )’s are based on the approximationm0(t).

Lemma 3 When applying the approximationm0(t) for m(t), the time-average expected occupancy level

for a single inspection time is:

ζ1(T ) = λ̄(1/µ+12)− β

γ
cos(γT ),

and forN ≥ 2

ζN(T ) = λ̄(1/µ+∆N/2).

Lemma3 suggests having more inspection times will reduce the time-average expected occupancy level

but the marginal gains from adding more inspections is decreasing. Moreover, as the number of inspection

times increases, the performance of theMt/M(T)/∞ system converges to that of theMt/M/∞ system:

lim
N→∞

ζN(T ) = λ̄/µ.

We also observe that, while a well chosenT results in improvement in performance measured by the time-

average expected occupancy level when there is only one inspection per day, the timing of inspections

does not affect the time-average expected occupancy level when there is more than one inspection per day

(N ≥ 2).

When there is only one inspection per day, the improvement wecan gain from carefully choosing the

inspection time depends on the value ofβ, which measures the magnitude of variability of the arrivalrate.

The larger the value ofβ, the more we gain from carefully selecting the inspection times. For our particular

arrival rate function, the peak arrival rate is att= 6. Then, the inspection time that leads to the minimum

time-average expected occupancy level is6 hours before the peak arrival and the inspection time that leads

to the maximum time-average expected occupancy level is6 hours after the peak arrival.

Figure5 plots the time-average expected occupancy level,ζN(T ), for different values ofN . The interval

at N = 1 indicates the range of values that can be achieved by different inspection times when having

only one inspection per day. The horizontal line is atζ∞(T ) = λ̄/µ. Notice that the reduction in time-

average expected occupancy level due to optimizing a singleinspection time (from22.23 to 21.27) can
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Figure 5 Time-average expected occupancy level of an Mt/M(T)/∞ queueing system: ζN(T ) for different

values of N (λ̄= 0.25, β = 0.5λ̄, µ= 1/75)
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be comparable in magnitude to the reduction that can be achieved by adding in a second inspection time

(from 21.27 to 20.25). Additionally, we see that having more inspection times improves performance, but

the marginal gains are diminishing.

While the timing of inspections does not affect the time-average expected occupancy levels when there

are multiple inspections per day, this is not the case for themaximum expected occupancy level. We now

considerηN (T ). We first notice thatmaxtm0(t) =
λ̄
µ
+ β

γ
. When substitutingm0(t) for m(t),

η
(i)
N (T ) =

λ̄

µ
− β

γ
cos(γ(T +(i− 2)∆N))+

∫ T+(i−1)∆N

T+(i−2)∆N

λ(t)dt

=
λ̄

µ
+ λ̄∆N − β

γ
cos(γ(T +(i− 1)∆N)) (1)

We observe from (1) that we can gain some improvement in performance, measuredby ηN (T ), by appropri-

ately choosing the inspection timeT . The magnitude of improvement varies and is determined by the value

of β. The larger the daily variation in arrival rate, the more we gain from a carefully chosen inspection time.

This suggests that the greater the variability in the daily arrival rate, the more important it is to optimize

the timing of the inspections. When there is little variability, system managers can select inspection times

based on ‘convenience’ as it will have little impact on system performance as measured by the maximum

expected occupancy level.

Let Ξ(N) = minT ηN(T ) denote the minimum maximum expected occupancy level when there areN

equally spaced inspection times per day.

Lemma 4 When substitutingm0(t) for m(t), argminT ηN(T ) = 12−∆N/2−⌈N/2− 1⌉∆N , and

Ξ(N) =
λ̄

µ
+ λ̄∆N − β

γ
cos
(

π− π

N

)

.
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Lemma4 indicates that the optimal inspection times are symmetrically distributed aroundt = 12 (the

peak of−β/γ cos(γT )). In particular, if there is an odd number of inspection times, there will always be

one inspection6 hours before the peak arrival, so that there exists somei such thatTi =0.

As with the stability condition, having more inspection times helps, but the marginal effect is decreasing.

Specifically, asΞ′(N)< 0 andΞ′′(N)> 0 for N ≥ 0, Ξ(N) is decreasing inN and

Ξ(N +1)−Ξ(N +2)<Ξ(N)−Ξ(N +1).

This suggests that having more inspection times will improve the system performance, but the improvement

is diminishing. Figure6 plotsΞ(N) for different values ofα= β/λ̄.

Figure 6 Maximum expected occupancy level in an Mt/M(T)/∞ queueing system after optimizing the

inspection time(s) T: Ξ(N) for different values of N (λ̄= 0.25, µ= 1/75)
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We have now seen how the inspection time(s) determines the maximum expected occupancy level in our

infinite server model. Moreover, we can optimize over this expression to minimize the maximum expected

occupancy level. Doing so will likely result in high servicequality given the capacity constraint in our

original finite server model.

5.2. Optimal inspection times

In this section, we numerically test how the choice of inspection times affects the performance of the

Mt/M(T)/s queue and whether the insights we gained from the infinite server model can be carried over to

the finite server case. For our numerical illustrations, we use the arrival rate functionλ(t) = λ̄+ β sin(γt),

whereβ = λ̄/2, γ = π/12, and service rateµ= 1/75. Thus, the mean nominal service time–a lower bound

to the time a customer occupies a server–is about three timeslonger than the arrival rate period (75 hours

versus 24 hours). Our choice of service time is consistent with the typical average ICU length of stay (LOS)

(Chan et al. 2014). In the internal wards, the typical LOS is 127 hours (Dai and Shi 2014). As our results rely

on the assumption thatµ≪ γ, the smaller the service rate, the more accurate we expect our approximations
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will be. Indeed, while we only present results forµ = 1/75, numeric studies suggest our approximations

are even more accurate whenµ= 1/130. Additionally, we vary the value of̄λ to see how the system scale

affects performance.

5.2.1. Measures for the number of customers in the systemWe start by examining the measures we

analyzed for the infinite server model, the time-average expected occupancy level,ζN(T ), and the maximum

expected occupancy level,ηN(T ).

For the infinite server model, recall from Lemma3 and Equation (1) that when there is only one inspection

per day, both the time-average expected occupancy level,ζ1(T ), and the maximum expected occupancy

level,η1(T ), are functions of the inspection timeT . When there are multiple inspections per day, the average

occupancy levelζN(T ) is a constant, while the maximum expected occupancy level,ηN(T ) does vary with

the inspection timeT .

Turning back to the finite server model, letρ = λ̄/(sµ) denote the nominal load for the system–this

ignores the inflation of time spent occupying a server which is introduced by the need for inspection prior

to discharge. We also denoteρe(N) = λ/(sN(1− e−µ24/N)/24) as the effective load when we haveN

equally spaced inspections per day. Notice thatρe(N) > ρ for the same staffing levels as the inspection

time required for discharge prolongs the actual length of stay of each patient.

Figure 7 illustrates how the average occupancy levels,ζN(T ), change with the inspection time using

simulation. We use the method of batch means with 20 batches and each batch containing arrivals for about

5000 days. We plot both the mean values and the95% confidence intervals. We compare the performance

between one inspection per day and two inspections per day. The numerical experiments are conducted for

staffing levels (nominal occupancy rates). As our analysis is based on an infinite server system, we expect

it to be more accurate as the system scale grows. Thus, it is important to also verify our insights translate to

small systems. As such, we also consider system scale parameters.

As with most queueing systems, we observe economies of scaleas the system size increases. In particular,

as the system scale gets larger, we can increase the system load to achieve similar performance seen in

smaller systems with lower loads. Whenλ̄= 5/75= 0.0667, we sets= 9 and10, which correspond to the

nominal load and, correspondingly the nominal occupancy level, of 55.56% and50%, respectively. When

λ̄= 10/75= 0.1333, we sets= 16 and17, which correspond to the nominal occupancy level of62.5% and

58.82% respectively. When̄λ= 20/75 = 0.2667, we sets= 30 and32, which correspond to the nominal

occupancy level of66.67% and62.5% respectively. The effective occupancy level is much higherthan the

nominal occupancy level. For example, whenλ̄= 0.0667, s= 9 and there is only one inspection per day,

the effective (simulated) occupancy level isρe(1) = λ̄/(s(1− e−24µ)/24)= 64.95% (v.s.ρ= 55.56%), and

when λ̄ = 0.2667, s = 30 and there is only inspection per day, the effective occupancy level is ρe(1) =

77.91% (v.s.ρ= 66.67%).
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Figure 7 Mt/M(T)/s queueing system: Time-average expected occupancy level as a function of T for dif-

ferent staffing levels
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(b) λ̄ = 0.1333 (upper:s = 16, middle:
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(c) λ̄ = 0.2667 (upper:s = 30, middle:

s= 32, lower:s=∞)

0 2 4 6 8 10 12
5.2

5.3

5.4

5.5

5.6

5.7

5.8

T

ζ 2
(T
)
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(f) λ̄ = 0.2667 (upper:s = 30, middle:

s= 32, lower:s=∞)

We note that despite the small size of the systems we simulate, the shapeof the average occupancy

levels are very much aligned with that of the infinite server analysis (depicted by a solid line). Specifically,

when there is a single inspection time, the inspection timeT which minimizes (maximizes) the average

occupancy level is the same as that given by the analysis of the infinite server model. When there are two

inspection times, we see that, as suggested by our analysis in Section5.1, the average occupancy level is

almost invariant to the time the inspections occur (the fluctuations of the simulatedη2(T ), for different

T , are less than0.5% of η2(0)). Certainly, as the system becomes less congested, the finite server system

behaves more similarly to the infinite server system, so we see that the average occupancy level approaches

(and will eventually converge to) the solid line given by theinfinite server analysis.

We also observe that adding a second inspection improves system performance significantly. For example,

whenλ̄= 0.1333, s=16, adding a second inspection reduces the average occupancy level from11.8 (when

T = 0) to 11, which is a decrease of7.27%. Moreover, adding a second inspection time makes the system

performance more robust across different choices of inspection times. Indeed, for the average occupancy

level, adding a second inspection makes the choice of inspection time almost irrelevant.
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Figure 8 Mt/M(T)/s queueing system: Maximum expected occupancy level as a func tion of T for different

staffing levels

0 5 10 15 20
6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

T

η
1
(T
)

(a) λ̄ = 0.0667 (upper:s = 9, middle:

s= 10, lower:s=∞)

0 5 10 15 20
12.8

13

13.2

13.4

13.6

13.8

14

14.2

T
η
1
(T
)

(b) λ̄ = 0.1333 (upper:s = 16, middle:

s= 17, lower:s=∞)

0 5 10 15 20
25.5

26

26.5

27

27.5

28

T

η
1
(T
)

(c) λ̄ = 0.2667 (upper:s = 30, middle:
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(d) λ̄ = 0.0667 (upper:s = 9, middle:
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(f) λ̄ = 0.2667 (upper:s = 30, middle:

s= 32, lower:s=∞)

We next consider maximum occupancy levels,ηN(T ). Figure8 demonstrates howηN (T ) depends on

the inspection time(s) based on simulation. We use the same set of parameters as in Figure7. Specifically,

we investigate the system performance for different systemscales and staffing levels. We also compare

performance between the one inspection per day policy and the two inspections per day policy. Similar to

the case forζN(T ), we observe thatηN(T ), when plotted as a function of the inspection timeT , takes the

same shape as for the infinite server queue model. The actual value is a vertical upward shift of the curve

suggested by the infinite sever model; the less heavily loaded the system (increasing the number of servers,

s), the smaller the scale of the upward shift. Additionally, we see that the second inspection time again

improves system performance. While the maximum occupancy level does depend on the precise schedule of

the inspection times, the amount of variation in performance between the optimal and worst inspection times

is less when there are two inspections compared to one. This trend continues as we add more inspection

times. For the sake of space, we do not include the figures.

5.2.2. Measures of waitingWhen considering the number of customers in the system, we find that the

insights from the infinite server model translate very well to the finite server setting. On the other hand, one
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may want to consider other performance measures. In particular, in service settings–especially in healthcare

systems–customer (patient) waits are of great interest. Unfortunately, when considering an infinite server

system, there is never any waiting involved. Still, we wish to explore how our insights from the infinite

server system may provide some insight into measures of waiting in a finite server setting.

We start by considering the mean probability of waiting of each arriving customer:

V̄p(N,T ) := lim
t→∞

1

Λ(t)

∫ t

0

1{Q(u)≥ s}λ(u)du=
∫ 24

0
P∞(W (u)> 0)λ(u)du

Λ(24)
.

From Theorem3 we have

lim
t→∞

∫ Λ(t)

0
1{Q(u)≥ s}dA(u)

A(t)
= V̄p(N,T ).

Using the same simulation depicted in Figures7and8, Figure9plots the simulated probability of waiting,

V̄p(N,T ), as a function of the first inspection time,T . We see that the probability of waiting,̄Vp(N,T ),

follows practically the same shape as the average occupancylevel, ζN(T ). This is because the probability

of waiting, P∞(Q ≥ s), is very closely related to the queue length process. Thus, if our goal were to

simultaneously minimize the average occupancy level and the probability of waiting, we could utilize the

analysis of an infinite server model to select the optimal inspection time(s).

A separate measure of waiting which may be of interest is the mean waiting time as seen by arriving

customers. Specifically, we define:

V̄w(N,T ) := lim
t→∞

1

Λ(t)

∫ t

0

W (u)λ(u)du=

∫ 24

0
E∞[W (u)]λ(u)du

Λ(24)

again, from Theorem3 we have

lim
t→∞

∫ t

0
W (u)dA(u)

A(t)
= V̄w(N,T )

Figure10plots the average waiting time,̄Vw(N,T ), as a function of the first inspection time,T . We start

by considering the case of a single inspection time. We can see that, unlike the probability of waiting, the

expected waiting time,̄Vw(N,T ), looks quite different from the average occupancy level,ζN(T ). In Section

4, we observed that, for the time-varying performance measures (rather than the arrival rate weighted time

averages considered in this section), the average waiting time,E∞[W (T + t)], behaves quite differently

from the average queue length,E∞[Q(T + t)], and the probability of waitingP∞(W (T + t)> 0). We aim

to give an intuitive explanation for this phenomenon. If thesystem is very heavily loaded, then almost every

incoming customer will need to wait until the next inspection time to be admitted into service. As such,

E

[
∫ T+24

T

(T +24− t)dA(t)

]

=

∫ T+24

T

(T +24− t)λ(t)dt=
242

2
λ̄+24

β

γ
cos(γT ).

which takes exactly the opposite shape ofζ1(T ) = λ̄( 1
µ
+12)− β

2γ
cos(γT ).
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Figure 9 Mt/M(T)/s queueing system: Probability of waiting as a function of T for different staffing levels
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(b) V̄p(1, T ): λ̄ = 0.1333 (upper: s =
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(c) V̄p(1, T ): λ̄ = 0.2667 (upper: s =

30, lower:s= 32)
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(d) V̄p(2, T ): λ̄= 0.0667 (upper:s= 9,

lower: s=10)
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(e) V̄p(2, T ): λ̄ = 0.1333 (upper: s =

16, lower:s= 17)
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(f) V̄p(2, T ): λ̄ = 0.2667 (upper: s =

30, lower:s=32)

We notice that this phenomenon does not seem to exist when there are two inspection times. In fact, as

was the case for the average occupancy level, the expected waiting time is practically invariant to the timing

of the inspections. Thus, we see again that with more inspection times, the system performance is more

robust to the actual choices of the inspection times as long as they are equally spaced.

6. Model Robustness

In this section, we consider several generalizations of theresults in the previous sections. Specifically,

we will relax the following assumptions: exponential service times, equally spaced inspection times and a

sinusoidal arrival rate function. We find that, in many cases, the infinite server approximation continues to

provide useful insights.

6.1. General service time distributions

While the exponential assumption on service times is usefulfor analysis and necessary for our stability

results in Section3, it may be desirable to relax this assumption when considering certain systems. Fortu-

nately, we find that our analysis using the infinite server system can be easily extended to general service

time distributions. For the analysis in this subsection, wekeep the sinusoidal assumption on the arrival rate
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Figure 10 Mt/M(T)/s queueing system: Expected waiting time as a function of T for different staffing levels
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(b) V̄w(1, T ): λ̄ = 0.1333 (upper:s =

16, lower:s=17)
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(c) V̄w(1, T ): λ̄ = 0.2667 (upper: s =

30, lower:s= 32)
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function.

6.1.1. Optimizing inspection timesLet µ= 1/E[V ]. Then for general service times,

m(t) =
λ̄

µ
+
β

µ

∫ ∞

0

sin(γ(t− v))fe(v)dv

=
λ̄

µ
+
β

µ
(E[cos(γVe)] sin(γt)−E[sin(γVe)] cos(γt))

wherefe is the pdf ofVe, the equilibrium distribution of the service times. Based on this explicit expression

for m(t), we can solve the optimization problem, at least numerically, to find the optimal discharge policies

for the infinite server queue model.

Regardless of the service time distribution, we observe from our numerical experiments that the cor-

responding infinite server queues provide useful insight into the dynamics of the queue length processes.

Figure11provides a specific example where the service times are lognormally distributed.

Furthermore, approximatingm(t) with

m0(t) =
λ̄

µ
− β

γ
cos(γt)
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Figure 11 Mt/G(T)/s queueing system with lognormal service time distribution: The average and maximum

expected occupancy level as a function of the discharge time T for different staffing levels ( λ̄=

0.2665, logV ∼N(3.818,1), upper: s=30, middle: s= 32, lower s=∞)
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is still appropriate for a number of service time distributions. As we saw earlier, this can greatly simplify

the calculations. Figure12 shows a few examples wherem0(t) serves as a good approximation. This can

occur when the service rate is a continuous random variable (i.e. F̄ (v) is differentiable) andµ≪ γ, because

m(t) =
λ̄

µ
+β

∫ ∞

0

sin(γ(t− v))F̄ (v)dv

=
λ̄

µ
− β

γ
cos(γt)− β

γ

∫ ∞

0

cos(γ(t− v))f(v)dv

with the last term,(β/γ)
∫∞

0
cos(γ(t− v))f(v)dv≈ 0, in a number of instances.

That said, it is also true that usingm0(t) can be a very poor approximation for some service time distri-

butions. An extreme example is the case when the service timeis deterministic, i.e.V = a for some constant

a. In this case,

m(t) =
λ̄

µ
− β

γ
cos(γt)+

β

γ
cos(γ(t− a))

Depending on the value ofa, it could take exactly the opposite shape asm0(t). In general when the service

time distribution has very small variance,m0(t) will not serve as a good approximation. In the hospital

setting, this could be the case for some surgical units wherepatients undergo very similar procedures that
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Figure 12 Approximation for m(t) with different service time distribution ( λ̄= 0.25,β = λ̄)
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are determined by evidence-based protocols. In such settings, it would be advisable to leverage information

about the service time distribution to determine when inspections should occur, and when the service time

is approximately deterministic, the formula for deterministic service times might serve as a good approxi-

mation.

When the service distribution has moderate variance (e.g. exponential and lognormal),m0(t) serves as

a good approximation ofm(t). Then the essential information we need to know is the mean ofthe service

time and the amplitude of the arrival rate to optimize the inspection times. In particular, we see that the

shape of the time-averaged and maximum expected occupancy for the lognormal service time distribution

is almost the same as that of the exponential service time distribution with the same mean.

6.1.2. Stability analysisOur results in Section3 required the exponential assumption for the service

time distributions. That said, we conjecture that whenm0(t) is a good approximation form(t), these

insights will still hold. This is, in general, the case for service time distributions with moderate variance.

However, it is easy to see that this does not hold for all service time distributions. Consider a simple example

with deterministic service times,D, and an arrival rate pattern where the arrival rate is 0 everywhere, except

that it isΛ(24)/2 patients/hour from 0 to 1 and again from 2 to 3. With 2 inspection times, it is easy to see

that to maximize the stability region, the inspections should occur atT1 = 1+D+ ǫ andT2 = 3+D+ ǫ.

Thus, we see that equally spaced inspection times isnot an optimal strategy in this case.

6.2. Unequally spaced inspection times

Even though equally spaced inspection times maximizes the stability region when service times are expo-

nentially distributed, it may not necessarily optimize system performance as measured by the occupancy

level when the system is stable. Additionally, we just saw that equally spaced inspection times do not max-

imize the stability region in general. As such, we next consider optimizing the inspection times when they

are not evenly spaced.
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In order to gain some insight into the possible gains achieved by relaxing the requirement of equally

spaced inspection, we consider the case of two inspections per day. Moreover, we assume a sinusoidal

arrival rate function and exponential service times. In this case,m0(t) is a good approximation form(t).

We start by analyzing the maximum expected occupancy level of the corresponding infinite server model.

As before, we letT denote the first discharge time in a day and∆ denote the distance between the first

and second inspection time. For the maximum expected occupancy level, we denote the expected occupancy

level right before the first and second inspection times as

g1(T,∆) :=
λ̄

µ
+ λ̄(24−∆)− β

γ
cos(γT ) andg2(T,∆) :=

λ̄

µ
+ λ̄∆− β

γ
cos(γ(T +∆)),

respectively. We observe that for fixedT , g1(T,∆) is decreasing in∆ and g2(T,∆) is increas-

ing in ∆. We also observe thatg1(T,0) > g2(T,0) and g1(T,24) < g2(T,24). Thus, for eachT ,

there is a unique∆, which is denoted as∆(T ∗), that solvesg1(T,∆) = g2(T,∆). Let g∗(T ) :=

min0≤∆≤24−T max{g1(T,∆), g2(T,∆)}. Then

g∗(T ) =

{

g1(T,∆
∗(T )) if ∆∗(T )≤ 24−T ;

g1(T,24−T ) = λ̄T − β
γ
cos(γT ) if ∆∗(T )> 24−T.

The value of∆∗(T ) andg∗(T ) depends on the ratio betweenλ̄ andβ. Figure13 plotsg∗(T ) for different

values ofβ. The dotted line represents the maximum expected occupancylevel when inspections are equally

spaced,η2(T ). We observe thatminT g
∗(T )− η2(6) is in general fairly small and the difference decreases

asβ decreases.

Figure 13 g∗(T ) (solid line) v.s. η2(T ) (dotted line) for the infinite server model for different val ues of β (λ̄=

0.2667, µ=1/75)
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Though the optimal inspection times may not be equally spaced, we are interested in understanding how

the system performance is impacted by requiring equally spaced inspections. We do this via simulation.

We use exponential service time distribution with rateµ= 1/75, sinusoidal arrival rate function with̄λ=
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0.2665 ands= 30 servers. We usẽη2(T,∆) to denote the maximum mean occupancy level when there are

two inspections atT andT +∆ per day. Table1 summarizes our simulation results with the corresponding

95% confidence interval. We notice that the gaps in performance between the two policies are less than

.1%. We also see the difference decreases asβ decreases. In fact, whenβ = 0.1λ, the difference is not even

statistically significant at the95% level. This robustness also translates to the maximum mean waiting time

and maximum probability of waiting. Thus, it seems that requiring equally spaced inspections does not

significantly impact system performance, while also havingthe benefit of being easy to convey to system

administrators.

Table 1 The maximum mean occupancy level ± 95% confidence interval with two inspections per day

Unevenly Spaced InspectionsEvenly Spaced Inspections
β (T ∗,∆∗) η̃2(T

∗,∆∗(T ∗)) η̃2(6,12)
λ (7.61,14.45) 23.18± 0.03 23.41± 0.03

0.5λ (8.31,13.32) 23.31± 0.03 23.39± 0.04
0.1λ (8.73,12.26) 23.34± 0.03 23.36± 0.02

6.3. Empirical arrival rate function

Thus far, we have assumed a sinusoidal arrival rate functionwhich has been amenable to deriving closed

form expressions of interests. We now conduct a case study using the empirical arrival rate functions esti-

mated from real hospital data. We take the scaled arrival rate function of all ED visits in the US during

2010 which is depicted in Figure14(a) (Centers for Disease Control and Prevention 2010). We assume the

service times are exponentially distributed withµ=1/75.

We plot the time-averaged and maximum expected occupancy level for different inspection policies and

staffing levels in Figure14. We use a relatively high effective traffic intensity. (Notethat we find that

the results are very similar for lower traffic intensities).Specifically,Λ(24)/(40(1− e−24µ)) = 0.91 and

Λ/(45(1− e−24µ)) = 0.81. Notice that in this case, the arrival rate function no longer takes a sinusoidal

form. If we assume there is a single peak of the arrival rate function (take the middle point of the two small

peaks), then the peak is around15− 16. We make the following observations from this case study:

a) The infinite server model still serves as a good approximation to determine optimal inspection time

(i.e. the curves take the same shape).

b) For the time-averaged expected occupancy level, when there is a single inspection per day, the optimal

inspection time is at9, which is about6− 7 hours before the peak arrival–as was the case for sinusoidal

arrival rates. When there are two equally spaced inspections per day, althoughζ2(T ) is changing overT ,

the difference for different inspection policies is less than0.5 (< 1% of ζ2(0)), suggesting there is still a

certain level of robustness to the inspection schedule whenthere areN > 1 inspections.
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c) For the maximum expected occupancy level, when there is a single inspection per day,η2(T ) follows

the same shape asζ1(T )with the optimal inspection time at9; when there are two equally spaced inspections

per day, the optimal inspection times are at4 and4+ 12 = 16. In particular, the first inspection is around

11− 12 hours before the peak and the second one is0− 1 hour after the peak. Note that, qualitatively, this

is essentially the same as the case of sinusoidal arrival rate, where the optimal inspection times take place

12 hours before the peak and right at the peak.

Figure 14 Time-averaged and maximum expected occupancy lev el with fitted arrival rate function (upper:

s= 40, middle: s=45, lower: s=∞)
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7. TheMt/M(T)/s/s Model

In this section, we consider a system where new arrivals are blocked (and sent elsewhere) if there is no

available server (bed) upon arrival. Recent evidence suggests that when the ICU is busy, patients who are

waiting for ICU admission may be rerouted to lower levels of care (Kim et al. 2015). Allon et al. (2013)

found that when inpatient units (including the ICU) were busy, patients were more likely to be sent to

other hospitals via ambulance diversion. In this section, we analyze properties of anMt/M(T)/s/smodel,

which can also be referred to as a loss model. To differentiate it from theMt/M(T)/s model, we denote

the queue length process of the loss model as{QL(t) : t∈R}.



32

Following the same line of analysis as in Theorem2, we have the following theorem characterizing the

periodic equilibrium distribution of the loss system when there is one discharge per day, which takes place

at τn on dayn. We denoteπL as the stationary distribution ofQL
n := QL(τn) for n ∈ Z, andP∞ as the

periodic equilibrium distribution of{QL(t) : t∈R}.

Theorem 4 If QL
n ∼ πL, thenQL(τn + t) is periodic in distribution with period equal to24. Specifically,

for 0< t< 24 andm<s,

P∞(QL(τn+ t) =m) =
m
∑

l=0

πL(l)P (l+A(τn, τn + t) =m),

and

P∞(QL(τn + t) = s) =
s
∑

l=0

πL(l)P (l+A(τn, τn + t)≥ s).

We observe from Theorem4 that the probability of blocking,P∞(QL(τn + t) = s) is increasing int for

0< t< 24. The proof of this result is practically identical to that ofTheorem2, so is omitted.

Similar to theMt/M(T)/smodel case, the correspondingMt/M(T)/∞ model still serves as a reason-

able approximation of the number in system dynamics of the loss model for different discharge policies.

Moreover, as was the case with theMt/M(T)/s model, the infinite server model is a reasonable approxi-

mation forgeneralservice time distributions. Figure15 plots the average occupancy level,ζLN(T ), and the

maximum expected occupancy level,ηLN(T ),N = 1,2, for different values ofT . We also plot the two mea-

sures of the corresponding infinite server queue model in thesame figure as a solid line. We observe that

both ζLN(T ) andηLN(T ) of the loss model take the same shape as the infinite server model, but the actual

values are smaller than the corresponding infinite server model. Additionally, the higher the staffing levels,

the closer the values are to those of the infinite server queue.

We observe that theshapeof the occupancy level of anMt/M(T)/∞ infinite server model is very similar

to that of theMt/M(T)/s andMt/M(T)/s/s models. When there ares servers and an infinite queue,

the infinite server model underestimates the occupancy level, as customers (patients) have to wait in the

Mt/M(T)/s system. On the other hand, when there is no queue, the infiniteserver model overestimates the

occupancy level, as customers (patients) who arrive to a busy system are lost in anMt/M(T)/s/s system,

resulting in a lower effective arrival rate. In the hospitalsetting, many facilities have policies under which

there is a maximum number of patients who may wait in the ED foradmission to a specific unit such as

the ICU, while others may either be placed in another unit or rerouted to another hospital via ambulance

diversion (e.g.Allon et al. (2013)). This suggests that in these situations the infinite server model may

be an even more accurate approximation to the occupancy level as its behavior seems to be more aligned

with anMt/M(T)/s/(s+ k) system. Figure16 compares the time-average expected occupancy level of

someMt/M(T)/s/(s+k) systems to the corresponding infinite server system when there is one discharge
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Figure 15 Mt/M(T)/s/s queueing system: The time-averaged and maximum expected oc cupancy level as a

function of the discharge time T for one and two discharges per day ( λ= 0.2667, µ= 1/75, upper:

s=∞, middle: s=32, lower s= 30)
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Figure 16 Mt/M(T)/s/s+ k queueing system: The time-average expected occupancy leve l as a function of

the discharge time T for different staffing levels, s, and waiting room sizes, k (λ= 0.2667, µ= 1/75)

0 5 10 15 20
22

22.5

23

23.5

24

24.5

T

ζ 1B
(T
)

(a) k = 3 (upper:s = ∞, middle: s =

32, lower:s= 30)

0 5 10 15 20
22

22.5

23

23.5

24

24.5

T

ζ 1B
(T
)

(b) k = 9 (upper:s = 30, middle: s =

32, lower:s=∞)

per day. We observe that the actual performance curve may be above or below the infinite server curve

depending on the value ofk.

We also investigate the weighted average probability of blocking,V̄B(N,T ), and the stationary maximum
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probability of blocking,VBm(N,T ), when there areN equally spaced inspections per day and the first

inspection happens at timeT . Specifically, the two performance measures are defined as follows:

V̄B(N,T ) := lim
t→∞

1

Λ(t)

∫ t

0

1{QL(u) = s}λ(u)du

and

VBm(N,T ) :=max
k

{P∞(QL(T + k∆N)) = s}.

There are two approximations of the probability of blockingcommonly used for theMt/G/s/s model

(seeMassey(2002) and references therein): the modified offer load (MOL) and the pointwise stationary

(PS) approximation. When the time scale of variability of the arrival rate function is of the same scale or

much smaller than the average service time, the MOL approximation is superior to the PS approximation.

As this is the scenario which we consider, we focus on the MOL approximation. The approximated blocking

probability is then given by the Erlang-C formula, which is the steady state probability of blocking for an

M/G/s/s model, but with the traffic intensity replaced by the mean queue length of the corresponding

infinite server model, i.e.

P (QL(t) = s)≈ E[Q∞(t)]s/s!
∑s

k=0 (E[Q∞(t)]k/k!)
,

whereQ∞(t) is the queue length process of the corresponding infinite server queue. As the MOL approx-

imation is monotonically increasing inE[Q∞(t)], we test this approximation for the stationary maximum

probability of blocking in our model. Note that we do not consider using the MOL approximation for the

stationary average probability of blocking since this would involve integrating the Erlang-C formula multi-

plied by the arrival rate function, for which we are unable toderive closed-form solutions.

Figure 17 plots V̄B(N,T ) andVBm(N,T ) for different values ofT andN = 1,2. We also plot the

MOL approximation for the stationary maximum probability of blocking in the same figure as a solid

line. We observe that these two performance measures take the same shape as the corresponding queue

length process. The MOL approximation is smaller than the actual stationary maximum probability of

blocking. This is because of the unique dynamics introducedby the inspection feature of our model. Unlike a

traditional loss model where the queue length process can fluctuate around levels (total number of servers),

once theMt/M(T)/s/smodel reaches capacitys, it remains there until the next inspection time. As such,

the resulting probability of blocking is much larger than what would be seen in anMt/M/s/s model.

8. Conclusions and Further Research

Motivated by the need for physician examinations to discharge patients from hospital beds, we introduce a

multi-server queueing system where a customer can only be released from the server when an inspection

occurs and the customer has completed service prior to the inspection time. We analyze how the number and

timing of the inspections affects system performance. Our analysis incorporates the feature that the arrival
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Figure 17 Mt/M(T)/s/s queueing system: The average and maximum probability of blo cking as a function

of the discharge time T for one and two discharges per day ( λ = 0.2667, µ = 1/75, upper: s =∞,

middle: s= 32, lower s=30)
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rate is time varying and the service time is of a much larger scale than the time scale of variability in the

arrival rate. These are features commonly observed in the healthcare setting.

We introduce the concept of effective service rate based on stability analysis of the system and find that

when havingN inspections per day, evenly spaced inspections maximize the effective service rate. The

effective service rate is increasing inN but the increments are decreasing inN . Given the other demands

on physician time, it is neither practical, nor desirable, to allow for frequent discharges throughout the day.

Fortunately, our analyses indicate that the most substantial gains are achieved by increasing from one to two

inspection times per day.

We also characterize the periodic equilibrium of the time dependent performance measures. Because

the number of servers is fixed while the arrival rate is time-varying and because the service time is much

longer than the period of the arrival rate, traditional steady state approximations fail in our setting. Another

challenge is that the size of the system can be very small, so we cannot rely on heavy-traffic approximations,

which tend to be more accurate for very large systems. As such, we leverage the tractability of an infinite

server model where the optimal inspection times can be characterized in closed form. We also show through

numerical experiments that the insights from the infinite server model carry over to the finite server case. In
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particular, we observe that adding a second inspection timenot only improves system performance but also

adds a lot of robustness to the performance with respect to the actual timing of the inspections. With two or

more evenly spaced inspection times, the performance of thesystem is practically invariant to the precise

schedule of inspection. We also consider model extensions of general service times and a loss model. Again,

we see that the insights from the infinite server model also carry over to these cases.

In this work, we focus on performance measures related to thequeue length process. These measures are

very important to hospital administrators who are concerned with timely access to care for patients in order

to improve clinical outcomes, and the cost-effective use ofresources such as beds and nurses (e.g.Renaud

et al. (2009), Rincon et al.(2010)). Specifically, we find that our infinite server model provides insight

into how one can simultaneously minimize the average occupancy level and the probability of waiting.

In fact, such a goal is likely highly attractive to hospital administrators. Typically, measures of delayed

admission by the medical community have a binary notion: delayed versus not delayed (e.g.Chalfin et al.

(2007), Renaud et al.(2009)). Moreover, minimizing the average occupancy level will ensure timely access

to care for patients and could potentially allow for reductions in unit sizes (i.e. fewer beds and staff) thereby

reducing operating costs. In our analysis of these system performance metrics, we have seen that precisely

quantifying the expected waiting time in our setting is quite challenging. An interesting area of future

research would be to extend the time-varying version of Little’s Law to our queueing system.

From our analysis, we can ascertain a number of specific insights for practice: 1) Our analysis suggests

that with a single inspection time, itshould take place6 hours before the peak in arrivals. In a hospital

the peak arrival typically occurs in the afternoon, likely between 1-4pm. Thus, it is likely that the current

scheduling of rounds, which typically takes place in the early morning, say at about 7am, is very good in

terms of minimizing the average and maximum occupancy levels. 2) We find that it is possible to sched-

ule inspections in order to simultaneously minimize occupancy and probability of waiting (or blocking);

however, minimizing the expected waiting times will likelyrequire different inspection times. 3) When

adding additional inspection times, there are many benefits(e.g. increased stability region and robustness)

to scheduling them at evenly spaced intervals throughout the day. Moreover, we find that while it might be

worth considering adding one additional inspection, additional inspections have decreasing marginal gains

and are probably not worthwhile.

In the ICU setting, administrators are quite concerned about patients who are ready to be discharged but

are still occupying beds because they have not yet been examined by a physician who can issue the discharge

order. This ‘boarding’ in the ICU may have strong implications as to the availability of beds for new ICU

patients waiting to be admitted. Alternatively, patients who are ready to be discharged from the ICU may

remain in ICU beds even after a physician’s approval for discharge because there are no beds available in

downstream units. Such a phenomenon also occurs in other hospital units. As such, extending our analysis



37

to a network perspective in order to gain insights on the impact of each unit’s inspection/discharge policies

would be an interesting area for further exploration.

There are number of extensions of our model and analysis which would be interesting to explore as future

research. For instance, one could consider the impact of a (possibly random) delay between inspection time

and the freeing of a server to capture the tasks necessary to complete between the time a doctor places a

discharge order and the time the bed is ready for a new patient. Additionally, one could consider the duration

of time necessary to complete an inspection.

Another potentially interesting area for future research would examine capacity decisions in light of the

dynamics that arise from the need for inspections. Simple numerical explorations suggest that standard

square-root staffing rule concepts (e.g.Kolesar and Green(1998)) to determine the number of beds needed

to satisfy desired performance benchmarks do not immediately translate to this setting.

In a healthcare setting, patients are highly heterogenous with different care needs and priorities. Another

potentially interesting future direction would be to incorporate priorities into a queueing system with inspec-

tions. It would be interesting to see how the optimal inspection times depend on patient mix and how

different priority rules could impact congestion.

Finally, from a theoretical standpoint, it could be interesting to consider dynamic inspection schedules.

For instance, one could consider a policy which has a baseline inspection only once a day but schedules

an additional inspection every time the queue length exceeds a given threshold. It would be interesting to

understand how various system primitives impact that optimal threshold. Of course, such dynamic policies

may be difficult to implement in practice, but analysis of these policies could provide insight into what is

potentially lost by requiring predictable and consistent inspection schedules.
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Appendix A: Proof of stability conditions

PROOF: [Proof of Lemma1] We start by recognizing that{Qn} is a Markov Chain on a countable state spaceS =Z
+.

Moreover, it is irreducible.

Stability: We analyze the stability condition first. We will use the following Lyapunov function:V (q) = |q|. Let

ǫ= s(1− e−24µ)−Λ(24). By assumptions(1− e−24µ)>Λ(24)); it immediately follows thatǫ > 0.

Consider the case where the number of customers in the system, q, is more than the number of servers:q > s. Then,

Dn ∼Binomial(s,1− e−24µ).

E[V (Q1)|Q0 = q]−V (q) =E[An]−E[Dn] = Λ(24)− s(1− e−24µ)≤−ǫ.

On the other hand, when there is no queue,q≤ s:

E[V (Q1)|Q0 = q]−V (q)≤E[An] = Λ(24)<∞.

Thus, it satisfies the Foster-Lyapunov Criterion for a positive recurrent Markov process on countable state space (Meyn

and Tweedie 2009).

Instability: We next prove the instability condition. Findθ > 0 small enough such that

i) (1− e−24µ)(eθ − 1)< 1

ii) Λ(24)(1− e−θ)> s(1− e−24µ)(eθ − 1)

It is clear that such aθ exists, since1− e−24µ < 1 andΛ(24)> s(1− e−24µ). Let Ṽ (q) = e−θq. Then we have when

q > s,

E[Ṽ (Q1)|Q0 = q] = Ṽ (q) exp
(

Λ(24)(e−θ − 1)
)

exp
{

s log(1+ (1− e−24µ)(eθ − 1))
}

≤ Ṽ (q) exp
{

−(Λ(24)(1− e−θ)− s(1− e−24µ)(eθ − 1))
}

< Ṽ (q)

and

inf
q≤s

Ṽ (q) = exp(−θs)< exp(−θ(s+1)).

Thus it satisfies the Foster-Lyapunov Criterion for a transient Markov process on countable state space (Meyn and

Tweedie 2009). ✷

PROOF: [Proof of Theorem1] We provide a proof for the caseN = 2. The proof for generalN follows exactly the

same line of analysis.

{Qn} is a Markov Chain on a countable state spaceS =Z
+, which is irreducible.

Stability: We analyze the stability condition first. LetV (q) = |q|. As s(1 − e−∆
(1)
2 µ) + s(1− e−∆

(2)
2 µ) > Λ(24)

by assumption, we can findδ > 0 small enough, such thats(1 − e−∆
(1)
2 µ) + (1 − δ)s(1 − e−∆

(2)
2 µ) > Λ(24). Let

ǫ = s(1− e−∆
(1)
2 µ) + (1− δ)s(1− e−∆

(2)
2 µ)− Λ(24)> 0. Findκ > 0 large enough such thatP (D̄(1)

n > κ) ≤ δ. Set

K = {q ∈Z
+ : q≤ s+ κ}. Whenq 6∈K,

E[V (Q1)|Q0 = q]−V (q) = E[A
(1)
1 +A

(2)
1 ]−E[D

(1)
1 ]−E[D

(2)
1 ]
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≤ Λ(24)− s(1− e−∆1µ)−E[D
(2)
1 |D(1)

1 <κ]P (D
(1)
1 <κ)

= Λ(24)− s(1− e−∆1µ)− (1− δ)s(1− e−∆2µ)

= −ǫ;

whenq ∈K,

E[V (Q1)|Q0 = q]−V (q)≤Λ(24)<∞.

We thus verified the Foster-Lyapunov Criterion for positiverecurrent Markov process on countable state space (Meyn

and Tweedie 2009).

Instability: We next analyze the instability condition. Findθ > 0 small enough such that

i) (1− e−∆
(1)
2 µ)(eθ − 1)< 1 and(1− e−∆

(2)
2 µ)(eθ − 1)< 1

ii) Λ(24)(1− e−θ)> (s(1− e−∆
(1)
2 µ)+ s(1− e−∆

(2)
2 µ))(eθ − 1)

Let Ṽ (q) = e−θq. Then we have whenq > s,

E[Ṽ (Q1)|Q0 = q] = Ṽ (q) exp
(

Λ(24)(e−θ − 1)
)

E
[

exp
(

θ(D
(1)
1 +D

(2)
1 )
)]

≤ Ṽ (q) exp
(

Λ(24)(e−θ − 1)
)

E
[

exp
(

θD̄
(1)
1

)]

E
[

exp
(

θD̄
(2)
1

)]

= Ṽ (q) exp{Λ(24)(e−θ − 1)+ s log(1+ (1− e−∆
(1)
2 µ)(eθ − 1))

+s log(1+ (1− e−∆
(2)
2 µ)(eθ − 1))}

≤ Ṽ (q) exp{Λ(24)(e−θ − 1)+ (s(1− e−∆
(1)
2 µ)+ s(1− e−∆

(2)
2 µ))(eθ − 1)}

= Ṽ (q) exp
(

−(Λ(24)(1− e−θ)− (s(1− e−∆
(1)
2 µ)+ s(1− e−∆

(2)
2 µ))(eθ − 1))

)

< Ṽ (q)

and

inf
q≤s

Ṽ (q) = exp(−θs)< exp(−θ(s+1))

We thus verified the Foster-Lyapunov Criterion for transient Markov process on countable state space (Meyn and

Tweedie 2009). ✷

PROOF: [Proof of Lemma2] Let δi = 24/N −∆
(i)
N . Thenδi < 24 andδiµ< 1.

N
∑

i=1

(1− e−∆
(i)
N

µ) = N − e−µ24/N

N
∑

i=1

exp(δiµ)

≤ N − e−µ24/N

N
∑

i=1

(1+ δiµ)

= N −Ne−µ24/N

Whenδi =0,
∑N

i=1(1−e−∆
(i)
N

µ) =N−Ne−µ24/N . Thus,
∑N

i=1(1−e−∆
(i)
N

µ) attains its maximum when∆(i)
N =24/N

for i= 1,2, · · · ,N . ✷
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Appendix B: Proof of periodic equilibrium results

PROOF: [Proof of Theorem2] Q(τn+ t) =Q(τn)+A(τn, τn+ t).A(τn, τn+ t) is independent ofQ(τn) and have the

same distribution asA(τn+1, τn+1+ t) for t∈ (0,24). WhenQ(τn)∼ π,Q(τn+1)∼ π by the definition of stationarity.

Then for anym∈ Z
+

P (Q(τn + t) =m) =

m
∑

l=0

P (Q(τn)+A(τn, τn + t) =m|Q(τn) = l)P (Q(τn) = l)

=

m
∑

l=0

P (l+A(τn, τn + t) =m)π(l)

=
m
∑

l=0

P (Q(τn+1)+A(τn, τn + t) =m|Q(τn+1) = l)P (Q(τn+1) = l)

= P (Q(τn+1 + t) =m)

The expression forP∞(W (t)> 24k), k ∈ Z
+, follows directly from the simple relationship betweenQ(t) andW (t).

✷

PROOF: [Proof of Proposition1] We first observe that if a customer arrived at timeτn+ t, for some inspection time

τn and0< t < 24, then, he has to wait at least until the next inspection time.In other words, ifW (τn + t)> 0, then

W (τn + t)≥ 24− t. Likewise, ifW (τn + t)> 24k, thenW (τn + t)≥ 24k+24− t.

If we assume the system starts empty from the infinite past then it would be in periodic equilibrium att for t≥ 0

(seeThorisson(1985) for theoretical support for initializing non stationary models att=−∞). We also set time0 as

the beginning of a day. Taking the queue (customers waiting to be served) as the system, applying time varying Little’s

law (Bertsimas and Mourtzinou 1997), we have

E∞[(Q(τn + t)− s)+]

=

∫ τn+t

−∞

P (W (u)> (τn + t− u))λ(u)du

=

∫ τn+t

τn

P (W (u)> τn + t− u)λ(u)du+
∞
∑

k=1

∫ τn−24(k−1)

τn−24k

P (W (u)> τn + t− u)λ(u)du

=

∫ τn+t

τn

P∞(W (u)> 0)λ(u)du+

∞
∑

k=1

∫ τn+24

τn

P∞(W (u)> 24k)λ(u)du

ForE∞[W (τn + t)], we have

E∞[W (τn + t)] =

∫ ∞

0

P (W (τn + t)>u)du

=

∫ 24−t

0

P (W (τn + t)>u)du+

∞
∑

k=1

∫ 24(k+1)−t

24k−t

P (W (τn + t)>u)du

=

∫ 24−t

0

P (W (τn + t)> 0)du+

∞
∑

k=1

∫ 24(k+1)−t

24k−t

P (W (τn + t)> 24k)du

= P∞(W (τn + t)> 0)(24− t)+ 24
∞
∑

k=1

P∞(W (τn + t)> 24k).

✷

PROOF: [Proof or Proposition2] AsQ(t) andW (t) are regenerative process andλ(t) is periodic,X(t)λ(t) is also a

regenerative process. We define the regeneration set as{Q(τn) = 0} (i.e.{Qn = 0}). We also defineκ := inf{τn > 0 :
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Q(τn) = 0} andK := inf{n> 0 :Qn = 0}. Without loss of generality, we assumeτ0 =0 and letE0[·] :=E[·|Q0 = 0].

Then we have

1

t

∫ t

0

X(u)λ(u)du → E0

[∫ κ

0
X(u)λ(u)du

]

E0 [κ]
ast→∞

=
E0

[

∑K−1
n=0

∫ τn+1

τn
X(u)λ(u)du

]

E0 [κ]

=
E0

[

∑K−1
n=0 E

[

∫ τn+1

τn
X(u)λ(u)du|Qn

]]

24E0[K]

=
1

24
E

[
∫ τ1

τ0

X(u)λ(u)du|Q0 ∈ π
]

=
1

24
E∞

[
∫ τ1

τ0

X(u)λ(u)du

]

=
1

24

∫ 24

0

E∞[X(u)]λ(u)du

As λ(t) is a periodic function with periodT = 24, we also have

24
Λ(t)

t
→Λ(24) ast→∞.

Thus,
1

Λ(t)

∫ t

0

X(u)du=

∫ 24

0
E∞[X(u)]λ(u)du

Λ(24)
.

✷

Appendix C: Proof of performance approximations of the infinite server queue model

PROOF: [Proof of Lemma3]

ζN (T ) =

N
∑

k=1

(

λ̄

µ
− β

γ
cos(γ(T +(k− 1)∆N))+

1

2

∫ T+k∆N

T+(k−1)∆N

λ(t)dt

)

∫ T+k∆N

T+(k−1)∆N

λ(t)dt

Λ(24)

=

N
∑

k=1

{(

λ̄

µ
+

1

2
λ̄∆N − 1

2

β

γ
cos(γ(T +(k− 1)∆N))−

1

2

β

γ
cos(γ(T + k∆N))

)

× λ̄∆N + β/γ cos(γ(T +(k− 1)∆N))− β/γ cos(γ(T + k∆N))

Λ(24)

}

=
λ̄

µ
+

1

2
λ̄∆N − β

Nγ

N
∑

k=1

cos(γ(T +(k− 1)∆N))

WhenN = 1, ζ1(T ) = λ̄(1/µ+12)− β/γ cos(γT ). WhenN ≥ 2, ζN (T ) = λ̄(1/µ+∆N/2). ✷

PROOF: [Proof of Lemma4] η(i)N (T ) = λ̄/µ+ λ̄∆N −β/γ cos(γ(T +(i− 1)∆N)). As− cos(γx) is increasing on

[0,12) and decreasing on[12,24), η(i)N (T ) attains its maximum at the closest inspection time point to12.

Let Θ(T ) =min{argmini |12− (T +(i− 1)∆N)|}. ThenT +(Θ(T )− 1)∆N is the closest inspection time point

to 12. If there are two points that are of the same distance to 12,T +(Θ(T )− 1)∆N is the smaller one. To minimize

η
(i)
N (T ), we want to haveT +(Θ(T )− 1)∆N as far from12 as possible.

WhenN is even,minT ηN (T ) is achieved when theN/2-th inspection time and the(N/2+ 1)-th inspection time

are symmetric around12. That is whenT +(N/2− 1)∆N = 12−∆N/2. ThenT = 12−∆N/2− (N/2− 1)∆N.
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WhenN is odd,minT ηN (T ) us achieved when(N+1)/2-th inspection time and the((N+1)/2+1)-th inspection

time are symmetric around12. That is whenT +((N +1)/2− 1)∆N = 12−∆N/2. ThenT = 12−∆N/2− ((N +

1)/2− 1)∆N .

In summary,argminT ηN (T ) = 12−∆N/2−⌈N/2−1⌉∆N andminT ηN (T ) = λ̄/µ+ λ̄∆N −β/γ cos (π− π/N).

✷
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