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Abstract : Patient access to healthcare is a major problem area duededuate
supplies and misallocation of resources including phgsiej nurses, and hospital
beds. Increasing patient demands due to an aging and mareicdlty ill popula-
tion will exacerbate this situation, leading to longer gsl&or care, hurried treat-
ment times, and adverse clinical outcomes. Though thersignéicant operations
literature focused on methods to mitigate these effectgyested remedies may be
ineffective due to adaptive behavior by both physicians patients. This chapter
will focus on the quantification and impact of such adaptighdvior on the ability
to provide timely patient access to limited health services
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1 Introduction

Demand for healthcare is increasing due to a growing andygmipulation, making
access to care more difficult. Beyond anecdotal evidenegs ik increasing empiri-
cal evidence of access problems, most notably through aweding in Emergency
Departments (EDs¥| 12]. While demand is increasing, the supply of hospital beds,
physicians, nurses, and other health resources remaatived} stagnant or, worse,
is potentially decreasing. It is already the case that tipplsuof nurses is insuffi-
cient to meet demand8][and there are predictions of severe physician shortages in
the coming yearsl[3, 34, 41].

As a consequence of high demand and insufficient supply, rpatignts expe-
rience delays in receiving treatment. The overall mediait twasee an ED physi-
cian increased from 22 minutes in 1997 to 30 minutes by 208¢hdps even more
alarmingly, the median wait for patients diagnosed withtacayocardial infarction
(AMI) (heart attacks) increased from 8 minutes in 1997 to Idutes in 200444].

In one study of patients and their primary care physicia@%p 8f patients cited in-
ability to get an appointment soon as a significant obstadatate 2). The average
wait for a primary care appointment in the U.S. in 2001 wag tlveee weeks3g].
60% of physicians reported being dissatisfied with del&ys [

Delays can result in adverse patient outcomes such as ssttenortality rates
and an overall reduction in quality of outcon®9]. For emergent patients, such as
those suffering acute myocardial infarction, timely asciscare is imperative as
even delays on the order of minutes can increase mortaifl, 5, 23]. Delays can
also result in increased length-of-stay (LOS), resultmgatients consuming more
resources and further intensifying the problem. For examgélays in transfers
from the ED to the Intensive Care Unit (ICU) have been showin¢cease ICU and
hospital LOS 9, 38, 40Q].

As in other service environments, access problems may btodureontrollable
variability which can stem from arrival times of patient#ffeting treatment types
and times, staffing shortages, demand surges due to an apjdten The ability to
effectively react to and navigate through periods of highgastion is imperative
to ensuring timely patient access to care. Operations Résezodels and methods
can be useful in doing just that.

There are a number of behavioral factors in the healthcatiegevhich exac-
erbate access problems. One such factor is planned véyiabilcapacity due to
physician preferences. For example, surgeons often hgu#isant ability to influ-
ence their own operating schedules. Most surgeons preésatipg in the morning
so they can see new patients in the afternoon. This oftefts@alsurgeries being
scheduled within a tight time window without adequate attento the variability
of their durations. Not surprisingly, many surgeries géaged and recovery rooms
get congested causing cancelations of subsequent sw.dgnee inpatient beds are
often reserved for surgical patients, these surgical dedap translate into ED con-
gestion due to the inability to move ED patients into inpattieeds. In one noted
hospital study, the level of ambulance diversions (amhkedanurned away from the
ED) was better correlated with the variability in teeéheduled surgical load than
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with emergency admission83. While some variability in the surgical schedule
is certainly unavoidable, there is potential to utilizetbescheduling of elective
admissions to smooth load variabilityq]. For instance, using stochastic linear pro-
gramming, Denton et al. consider how to assign surgerieariows specialties and
how to determine the number of operating rooms (ORs) to op@mginavoidable
uncertainty in the duration of various surgeriéd][ Golden et al. use integer pro-
gramming methods to improve scheduling the OR and reducelimgeof patients
in the post-anesthesia recovery room due to ICU conge2itinlp fact, there has
been considerable operations literature dealing withisargcheduling, see/] and
related references.

In this chapter, we will focus on a distinctive and prevaleharacteristic of
healthcare delivery systems—adaptive behavior. Therddas growing evidence
that patients and providers dynamically alter their betiadvased on congestion and
backlogs. These adaptive behaviors have been observethinlipatient and inpa-
tient settings. For instance, if patients have to wait a ltmg for an appointment
with a physician, they may cancel at the last minute or jusshow up R0]. When
delays in the ED are long, patients are more likely to leavinavuit being seen,
even though they require caré9. Hospital EDs sometimes adapt to increasing
backlogs by diverting ambulances away from the ED, effetyiveducing patient
arrivals and ED loadZ9]. Though some of these behaviors may reduce the system
workload, some adaptive behavior may actually worsen ti@tsdn. In one study
of a hospital ED, nurses were found to be more likely to notshp for work when
the anticipated patient load was higher, creating an evgeilambalance between
supply (nurses) and demand (patien)] |

In the inpatient environment, providers are often facedwiite difficult task
of caring for more patients than their resources allow ard¢ch, adopt practices to
attempt to mitigate these high stress periods. For instaingesicians may discharge
patients early from an ICU when it is full and space is neededéw patients26).

If there is no room in a hospital stroke unit at the time of algtrpatient’s arrival,
the patient may be placed in a less specialized unit whicltda@sult in a longer
LOS and a poorer clinical outcoméd]. Indeed, patients are often assigned to less
appropriate clinical units due to congestion in the desineitl

Adaptive behavior can sometimes amplify system workload/@nvariability
creating additional problems; alternatively, adaptivedeéor may alleviate conges-
tion when it is most critical to do so. In any case, it is cldattadaptive behavior
can significantly affect patient access, operational efficy and clinical outcomes.
Yet the potential impact of adaptive behavior has not gdiydsaen explicitly con-
sidered in the operations research literature.

There is a need to develop models to account for adaptivevlmehay patients
and physicians. These enhanced models can provide vitghinghich can lead to
better policies and operational guidelines. The first steqo identify the adaptive
phenomenon and quantify its impact on patient care. Suchnderatanding will
provide a foundation to develop models and analyze op@@tjmlicies which are
better able to deal with adaptive behavior.
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The remainder of this chapter is organized as follows. Irti8e@, we discuss
how to quantify the impact of adaptive behavior. SecB8@xamines how to account
for this adaptive behavior when making decisions. Sectidiscusses dynamic de-
cision making in the presence of this dynamic human behakioally, Sections
provides some closing remarks.
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2 Quantifying the Impact of Adaptive Behavior

To develop models that allow us to ultimately identify p@&and practices to bet-
ter manage healthcare systems that are subject to adaptiaibr, we must first

understand the nature and degree of adaptation. This esprinpirical data to quan-
tify the manner in which patient and physician behavior éslapslight changesin a
patient’s health status or in the presented workload of #@dthcare delivery system
in question.

2.1 Empirical Evidence: Adaptive Behavior of Patients

There has been growing empirical evidence of adaptive behava number of
settings where patients react to delays. Using patient datcan measure these
effects via statistical analysis such as linear regression

There are a growing number of healthcare practices and erpéacilities that
operate on an appointment basis. One of the difficultiesdfdgethese facilities
are patients who make last-minute cancelations or fail tiveato their scheduled
appointments. These patients are classified as ‘no-shwsshows often waste al-
ready limited physician availability since it is usuallypassible to fill a last minute
cancelation with another patient. This can result in sigaift monetary losses (up
to 14% of annual revenues) for the clinRy. [Noteto editor: Reference chapter
on no-shows|
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Fig. 1 Observed no-show fraction values and the best-fit expaaentictions for Columbia MRI
data as reported ir2p] as reported inZ0]. Reprinted by permission, L. V. and S. Savin, Reducing
Delays for Medical Appointments: A Queueing Approach, @giens Research, volume 56, issue
6, (November/December, 2008). Copyright 2008, the Ingtifar Operations Research and the
Management Sciences, 7240 Parkway Drive, Suite 300, Hand®21076 USA.
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Empirical evidence has shown that the rate of no-shows ase® with the in-
crease in appointment backlog, i.e. the longer a patientdhasit until their ap-
pointment, the more likely he is to fail to show up. This pheremon was observed
at a mental health clinic, an MRI facility, and a family priaetclinic [20, 22, 31].

In [22], data on the connection between the appointment backldgremlikelihood
of a patient no-show from both a mental health clinic and aagimg facility were
fit to an exponential function as depicted in Figtr& he percentage of no-shows is
monotonically increasing in backlog in these two independata sets, though the
rates are quite different, as would be expected with sudbrdifit patient character-
istics across the two facilities.

In another setting, there has been growing evidence thegased crowding in
the ED has resulted in an increase in patients who leave theitfidbut being seen
[15, 25, 19]. This often means that patients who require care do not thevaccess
they need]].

2.2 Empirical Evidence: Adaptive Behavior of Physicians

Not only do patients react to the supply and demand mismatdihphysicians do
as well. Ideally, physicians should make decisions for ttwvigion of care based
entirely upon medical and physiologic factors. Unfortwhgtthis is not always pos-
sible due to resource constraints. With the increase inisbgdtion of electronic
medical records (EMR) systems and, subsequently, thedseri@ available patient
data, econometric tools can be used to estimate how capacistraints influence
physician behavior. The general methodology begins wiihdita regression model
to the available data and examining the relationships b&tey variables.

In [27, 26], Kc and Terweisch examine the relationship between oaotypkev-
els and patient care. Using data from an ICU unit for carditdhic surgery pa-
tients, they demonstrate that, after controlling for patgeverity, a patient’'s LOS
decreases as the unit occupancy level increases. Thigsgdted in Figur@. This
supports anecdotal reports that patients are sometimelsadged prematurely in
order to accommodate new, more critical patients. We refsuth a discharge as a
demand-driven discharge.

More generally, there is evidence that patients’ LOS in |@us influenced by
bed availability. There are a number of important researgtstions surrounding
such adaptive behavior:

1. Under what circumstances do physicians adapt LOS basectopancy levels?

2. Does reduction in LOS adversely affect patient outcomes?

3. What policies might be employed to guide such adaptgsititthat operational
and clinical performance is improved?

In this section, we will focus on the first two questions; thied will be addressed
in Section4. In addition to the effect of high occupancy levels on patie@S it
may also affect patient readmission likelihood due to thyetischarge of patients.
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Fig. 2 Length of Stay as a Function of Census. Note: Census is dedséite number of patients
in the cardiac unit at the time a patient is admitted. Lendtktay (LOS) is the total number of
days a patient spends at the hospital. Dashed lines rep@s#nconfidence intervals. Reprinted
by permission, D. Kc and C. Terweisch, Impact of workload erviee time and patient safety:
An econometric analysis of hospital operations, Managér8eience, volume 55, issue 9, (July,
2009). Copyright (2009), the Institute for Operations Resk and the Management Sciences (IN-
FORMS), 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

However, there is an inherent endogenity bias, since meera@atients are likely
to have longer length-of-stay in the ICU and have highermaasion risks, which
could lead to a positive bias in estimating the effect of LS @admissions. The
exogenous factors affecting LOS—variables that affectithe spent in the ICU, but
otherwise do not directly affect patient outcomes—coumgtipotential instrumental
variables (1Vs) to mitigate the endogeneity bias. In paitic an indicator variable
which specifies whether or not the ICU is busy (i.e. at highupancy levels) upon
discharge becomes a valid IV (set5] for details on this methodology). Because
operational factors are unlikely to be correlated withgrattimedical factors, such as
severity, which may affect patient outcomes, they can ditensed as instrumental
variables to generate unbiased estimates of these outcomes

In a study of cardiac surgical patients in a single hosmt&a0% increase in occu-
pancy level corresponded to a 20% decrease in ICU LOS-atiedwd nearly 2.5
days R#6]. This shortened length-of-stay corresponded to incieasthe likelihood
of readmission. Specifically, being discharged one dayezaHan one’s expected
LOS translated to an increase of 60% in the odds of being ritsthto the ICU
[27]. This modification of patient LOS due to congestion mayiatly free capacity
in the ICU, but it can also negatively impact patient outcenimethe long run.
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2.3 Quantifying Effects via Modeling

Empirical models are able to quantify adaptive behaviorutide conditions of the
particular patient setting in question. Randomized tréaks generally not possible
in hospital settings where it could result in patients balegied needed treatment.
Hence, it can be difficult to empirically measure a varietysoénarios. By build-
ing and analyzing models which incorporate this behaviw,itpact of adaptive
behavior can be estimated for a wider range of scenarios.

Using the ICU described as an example, the first step is ta lrudtochastic
model of an ICU which incorporates the fact that patients i@ylemand-driven
discharged. Such a model can be used to consider how change#/al patterns,
ICU capacity, and surgical schedules can affect the libelthof being discharged
early.

In[17], it is assumed that patients are either scheduled or udstde: The state
of the system is given by the remaining length-of-stay ofgihents who occupy
the ICU. If a new patient arrives and there is no space aveilalcurrent patient is
demand-driven discharged to accommodate the new patisimgldn aggregation-
disaggregation technique to reduce computational coritp|®obson et al. calcu-
late the desired performance metrics such as the prolyabilibeingbumped and
the expected number of days remaining when a patient is bdimpe
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Fig. 3 Average probability of being demand-driven dischargedApi70% B) 50% and C) 30%
scheduled patients and an ICU of size 13, 14, and 15 beds@sa@jin [L7]. Reprinted by permis-
sion, G. Dobson, H.-H. Lee, E. Pinker. A model of ICU bumpi@gerations Research, volume
58, issue 6, (November/December, 2010). Copyright (2ahe)Institute for Operations Research
and the Management Sciences (INFORMS), 7240 Parkway [Bivige 300, Hanover, MD 21076
USA.

Figure3 plots the probability of being discharged early for a numifetifferent
scenarios with increasing ratio of unscheduled to schéldcgses and increasing
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size of ICU. As expected, the probability of being bumpedoiwdr when there
are more beds. Additionally, the likelihood of being demaniven discharged in-
creases with the percentage of unscheduled patients wioalirte higher variabil-
ity. One can also vary the number of days in a week that scbdgbatients can arrive
(three, five, or seven). Interestingly, when patients anedualed on three-day plans,
the probability of a demand-driven discharge is the low@sie possible explana-
tion for this is that patient arrivals are more spread adlawing for more time to
recover from busy periods. Such analysis is useful for wtdading how various
parameters and schedules affect the undesirable, yet idaie, phenomenon of
demand-driven discharges.
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3 Incorporating Adaptive Behavior into Decision-M aking

Ignoring the impact of adaptive behavior may result in suimog@l operational deci-
sions, which can further amplify the supply and demand mismeather than help
alleviate it. We illustrate how to incorporate the impactadaptive behavior in both
the outpatient and inpatient setting.

3.1 Accounting for no-shows when determining patient panel size

As mentioned previously, no-shows are prevalent in mangatiént settings, par-
ticularly when the system is congested. Ignoring this phesmon can hurt both
providers and patients. One example of this is in deterrgihiow large a patient
panel size a group of physicians can handle. Primary cacipea and many spe-
cialty care practices, such as cardiology, have a ‘patianép-a set of patients who
receive their care from the practice on some regular basish $hese practices,
patient panel size is the primary lever to align demand apglgun order to offer
timely access.

To identify a panel size that will result in short waits forpapntments with high
probability, it is necessary to explicitly consider theuratand impact of cancela-
tions. Although some patients cancel their appointmemtsriaugh in advance of
their scheduled time to allow for a new appointment requebttsubstituted, many
practices experience a high level of patients who cancelateofor this to happen
or who simply do not show up at the scheduled time. This resulthe paradoxical
situation where the physician may be idle for some signifieamount of time dur-
ing the day while patient backlogs for appointments are ltém@ddition, although
some patients fail to appear at the appointed time becaeseritinal reason for
the visit no longer exists, other no-shows are due to petswneork-related prob-
lems, or to the patient’s decision to seek treatment elseavtegher than wait. In
the latter situations, many no-shows schedule a new appeirtwith their original
physician. This is true even when they have sought treateleeivhere because it is
common practice for clinics and emergency rooms to advis@étient to see their
own physician as well.

In [22], Green et al. model a single-physician practice via a medifil/D/1/K
queue where patients arrive according to a Poisson prosessce times are de-
terministic, and there is a finite appointment backlog likhisuch that any patients
who arrive when the queue lengthKsare ‘lost’ in the sense that they are not given
an appointment and so potentially seek treatment elsewReranore information
on the standard M/D/1/K queue, we refer the reader to exaanim®k on queueing,
such as the one by Kleinrock§]. The modified M/D/1/K model approximates the
no-show process by assuming that a customer who is schettuleehin service
has a state dependent probability of being a no-show, negutt an idle period for
the server and, with a fixed probability, the customer reéjmjrihe queue. The like-
lihood of no-show is non-decreasing in the number of paiertto are still in the
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backlog upon the appointment (i.e. service) time of thegoaiin question. Such an
approximation is able to capture wasted capacity by patierghows as well as the
increased likelihood of such events when the system is mamgested. Addition-
ally, it allows for analytical tractability of the steadyase behavior of the system.
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Fig. 4 Expected appointment backlog as a function of the patiemglgaze for the M/D/1/K model
with and without no-shows (using a no-show model based on B fitility data, assuming 20
slots per day, K = 400 appointment slots and a probabilityes€heduling equal to 1) as reported
in [22]. Reprinted by permission, L. V. and S. Savin, Reducing efar Medical Appointments:

A Queueing Approach, Operations Research, volume 56, Bs(ldovember/December, 2008).
Copyright 2008, the Institute for Operations Research hedtanagement Sciences, 7240 Park-
way Drive, Suite 300, Hanover, MD 21076 USA.

Figure4 compares the expected appointment backlog of the M/D/180guvith
and without no-shows. Using a no-show model calibrated fiaita of a MRI facil-
ity, one can see that the impact of patient no-shows is vemyifstant R2]. Since
no-shows result in wasted appointment slots and resche:@dypointments, they
result in longer appointment backlogs and hence more nasshbhus there is a
adverse feedback cycle and the backlog grows much morelydapah in a model
without no-shows. Ignoring no-shows in a model of a clinicymesult in a physi-
cian electing to maintain a panel size that is too large twigdetimely access to
care for his/her patients.

An increasingly important performance metric for accesthia setting is the
probability of being able to get a same-day appointmentati, f33% of patients
reported that the ‘inability to get an appointment sooniliited access to cardf].
Figure5 compares the probability of getting a same-day appointmihtand with-
out no-shows. If no-shows are not considered, the figureestgghat a panel size
of 2,400 would provide timely access since patients will bledo get a same-day
appointment 80% of the time. (This performance level wo@dbnsistent with data
that suggests about 20% of appointments are for follow-ug and are scheduled
weeks in advance.) However, in actuality, this probabiktyikely to be close to
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Fig. 5 Probability of getting a same-day appointment as a funatibtihe patient panel size for
the M/D/1/K model with and without no-shows (using a no-showdel based on an MRI facil-
ity data, assuming 20 slots per day, K = 400 appointment slotsa probability of rescheduling
equal to 1) as reported i”22]. Reprinted by permission, L. V. and S. Savin, Reducing efar
Medical Appointments: A Queueing Approach, Operationsgiaesh, volume 56, issue 6, (Novem-
ber/December, 2008). Copyright 2008, the Institute fori@pens Research and the Management
Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21038.U

0, due to the no-show phenomenon. Such an analysis highligatimportance of
accounting for the adaptive behavior of patients when ngpperational decisions.
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4 Dynamic Policieswhich Account for Adaptive Behavior

Along with macro-level decisions such as patient panehgizstaffing levels, and
the number of beds, OR models can provide insights on howrtamjcally account
for adaptive behavior and unavoidable periods where deracekds supply.

4.1 Accounting for no-shows when scheduling patient
appointments

An important aspect of outpatient clinic management is dalieg patients as they
call for appointments. As with panel size planning, patieotshows are an im-
portant factor in crafting schedules so that the numberlefagpointment slots is
minimized. In B1], Liu et al. analyze a dynamic scheduling model which caggtur
this no-show phenomenon. Each day, the appointment sarechuist determine
which day to assign to each patient who calls for an appointniée longer a pa-
tient waits for an appointment, the more likely she is to ehioc be a no-show. On
any given day, a scheduled patient can show up or not showrugefappointment
that day, or cancel an appointment which may be on a futuee dat

This scheduling problem can be formalized as a dynamic agdition problem
in which the objective is to maximize the number of patierdased for each day
or, equivalently, minimize the number of idle slots withanturring high overtime
costs. There is an inherent tradeoff between providinglyiraecess for patients
and potentially incurring high overtime costs in order te@e this versus allocat-
ing a large amount of initial capacity which may end up beirasted if there is
not enough demand in a particular day. In principal, theratischeduling policy
can be determined using dynamic programming and numerietilods. However,
dynamic programming often suffers from therse of dimensionality and solving
such a recursion for problem sizes of interest is practi¢afeasible. An alternative
course of action is to develop heuristic algorithms.

Two simple heuristics are to optimize the scheduling poéisguming appoint-
ments depending on the how quickly a patient must be s#BnThe first heuristic,
referred to a®Dpen Access, requires appointments to be provided on the current
day. Hence, patients are guaranteed same-day appointreeeisif this requires
the physician to spend significant overtime to treat allgyat beyond the initial al-
located daily capacity. Another heuristic, theo-day policy, requires an appoint-
ment to be provided on the current or following day. In doingistries to reduce
overtime costs at the expense of immediate access.

These heuristics can serve as the basis for additionaldtiesrusing policy im-
provement. The policy improvement heuristic selects tha beheduling decision
in the current state under the assumption the suboptima pakcy is used for
all subsequent decisions. Hence, it is a one-step policydugment over the base
heuristic (see3] for more details on this methodology). Finally, these listigs are
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compared to the following benchmarksTareshold heuristic where patients are
scheduled on the earliest day with fewer tivupatients scheduled;laoad balanc-
ing heuristic where patients are scheduled on the day with the fewest ajppeints;
and aRandom heuristic where patients are scheduled on a random day.

Using data calibrated from empirical data of a family meaictlinic, [31] com-
pares the performance of the proposed algorithms via stinnlarable4.1summa-
rizes the relative costs of the various heuristic policresomparison to the Open
Access scheduling policy for various daily capacitiéd &nd cost of scheduling one
patient ). Note that the number of patients scheduled in a dayan be greater or
less tharM. If there are more patients than appointment slats M) all of these
patients will be treated and overtime cost is incurred. Thia contrast to th& in
the M/D/1/K model of Sectior® as in that case, overtime was not allowed. Smaller
M suggests the clinic is more overloaded. The simulationgestghat the threshold
heuristic, two-day policy, and policy improvement heucsbased on Open Access
and the two-day policy generate more revenue compared to @peess. Interest-
ingly, even the Random heuristic sometimes outperformsx@peess. In an under
loaded system, Open Access would be optimal. Under Opens&ca# patients are
scheduled on the current day, which minimizes their likatith of being a no-show.
However, as the practice becomes more heavily loaded, thiseault in frequent
overload, requiring physicians to work overtime, thus imcwy high costs. Hence,
Open Access is not the best scheduling policy to use in genera

PI PI Open Load
2-day 2-day | Access| Threshold| Balancing] Random
h=0 211 .78 2.18 211 -6.30 -3.28
M=55|h=.2| 4.10 3.23 3.08 3.25 -5.48 -1.53
h=.5| 1274 12.14 3.72 4.39 -5.48 2.68
h=0 6.77 2.75 5.42 6.45 -2.22 -1.20
M=50 |[h=.2| 8.28 5.48 6.96 8.21 -1.09 0.50
h=.5| 18.56 15.29 9.25 12.11 0.72 5.31
h=0| 10.63 6.23 9.25 5.24 4.11 1.81
M=45|h=.2| 13.35 9.13 11.53 6.28 491 3.28
h=.5| 25.01 20.32 | 21.78 10.40 8.10 9.16
h=0 9.84 9.12 10.21 2.79 2.99 4.23
M=40|h=.2| 13.03 12.48 | 13.69 3.57 3.83 6.05
h=.5| 2741 26.82 | 28.13 6.79 7.32 13.58

Table 1 Simulation Study Results: percentage improvement of tetahrd (number of patients
served less daily fixed cost and scheduling cost) compar&@pém Access scheduling for daily
capacityM and costh for scheduling a patient as reported 81]. Adapted with permission from
N. Liu, S. Ziya, V. G. Kulkarni, . Dynamic Scheduling of Outnt Appointments Under Patient
No-Shows and Cancellations, Manufacturing & Service Ogpmna Research volume 12, issue
2, (October, 2010). Copyright (2010), the Institute for &piens Research and the Management
Sciences, 7240 Parkway Drive, Suite 300, Hanover, Mary2ai¥6 USA.
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4.2 1 mproving demand-driven discharge decisions

Inpatient care is another setting in which dynamic policias be useful to provide
effective treatment. As an example, physicians are ofteedavith the difficult task
of determining whether and when to discharge an ICU patiariy @ue to limited
bed availability. As seen in Sectidh2, there is empirical evidence that physicians
adaptively alter patient discharge times based on corgelsvels.

Various factors can affect how often demand-driven dispesamust occurd[7].

A natural question is how one should determine which pateedtscharge. Section
2.3assumed that patients were discharged in order of shoetastining LOS. How-

ever, given the natural variability in patient stays, thisgtity is not always known.
Additionally, it ignores the potential impact of readm@ss on ICU congestion. In
[10], a dynamic optimization model is developed to help guidshsiecisions.

The model in L0] assumes that whenever a new patient arrives and there are no
available beds, a physician must decide which patient tchdigje in order to ac-
commodate the new, higher acuity patient. Each patieneistified by type, which
specifies the expected initial ICU length of stay, the liketid of readmission upon
a demand-driven discharge, and the expected ICU lenggtagfupon readmission.
Any cost function which accounts for a patient’s dissendoe to a demand-driven
discharge can be incorporated. A cost function which isvestie from currently
available data is given by threadmission load, i.e. expected ICU treatment time
required by the demand-driven discharged patient follgvtire initial discharge.

In principle the optimal policy can be computed numericaily dynamic pro-
gramming. Unfortunately, the size of the state space makmadtically infeasible
to solve. Utilizing properties of the optimal value funcatiche authors show that
the performance of a greedy heuristic, which dischargepatient with the lowest
readmission load is 0 + 1)-approximation for the optimal policy, whefeis a
measure of utility 10]. Such a bound is useful to quantify the worse-case perfor-
mance of such a greedy policy.

Using patient data from 7 different hospitals in a singleditas network, Chan
et al. simulate the performance of the greedy dischargeyadlative to several
relevant benchmarks. In the medical community, the detisiowhich patient to
discharge is made by assessing which patient is the ‘leiisetr(see, for instance,
[43]) which can be somewhat subjective and is generally notbapen quantita-
tive measures. Each of the discharge policies studied bedovbe interpreted as a
measure of criticality:

e Praobability of readmissionindex: Discharge the patient with the smallest prob-
ability of readmission. Readmitted patients tend to be noateal (see L8]), so
that the rationale here is that a lower likelihood of readhiois translates to lower
patient criticality.

e Length-of-stay (LOS) index: Discharge the patient with the smallest remaining
service time. This policy thus equates criticality with th@minal length-of-stay
of a patient. This policy is analyzed id 7] albeit for a model that is agnostic to
readmission loads.
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e The Greedy index: This is the proposed heuristic from{] which prioritizes
patients in increasing order of readmission load.

In addition to the preceding index rules, one can also censiRandom policy.

Figure6 compares the readmission load of the greedy heuristic coadpa the
other benchmark policies. The savings relative to the negt policy corresponds
to 237 hours over one week at a net patient arrival ratd of 0.021 (or 1 ICU
bed out of 10 for 1 day per week). Figureshows the number of deaths per week
for the same discharge policies. One can see that the nurloleaths is practi-
cally identical for all policies, while the readmission tbe& very different. Hence,
without sacrificing patient quality, in terms of mortalithie greedy heuristic which
incorporates readmission risks can significantly reduegottient load on the ICU,
and subsequently increase the number of patients who eecefical care.

120 ; T i e
e- o Random ; ;
% = LOS index ¥
100F| »x P(R)index [ O
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7 :
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Fig. 6 Performance of greedy policy compared to benchmarks foowssarrival rates and distri-
bution across patient types according to the proportioes s®the empirical data as reported in

[10].
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5 Conclusions and Future Research

As demonstrated in this chapter, behavior can have a signtfimpact on the effi-
ciency and effectiveness of healthcare delivery and so beuspbnsidered in making
both design and operational decisions. Operations Réssardies and methodolo-
gies are needed to both understand the nature of adaptiavibehand identify
policies that incorporate such behavior in order to imprageess to care. In ad-
dition to the examples presented here, there are severl mtiportant areas of
healthcare delivery where adaptive behavior is prevapgotjiding potential oppor-
tunities for future research.

One consequence of adaptive behavior is that the true semigiirements and
arrival rates of patients may be censored. These potgntialeading measure-
ments of the system load make it difficult to assess the acaeplired capacity
requirements. Due to the chronic mismatch of supply and deimauch of the ob-
served behavior of healthcare systems do not accurategctéfiie true dynamics.
Hence, there is a need to analyze the impact of adaptive lmeban patient de-
mands and treatment times when estimating required cgdacitany healthcare
resources ( e.g., ICU beds, obstetrics beds, surgicakspitenary care physicians,
nurses). For instance, ignoring endogenous nurse abgantean result in under-
staffing 4].

Adaptive behavior can also induce downstream effects wbash create very
complex decision-making environments. For instance, whaking demand-driven
discharges, one must account for the immediate impact odittoharged patient
as well as the propagation effects due to his potential réssiom. This could be
expanded to consider how transferring patients to a leseopgpte unit (i.e. an
intermediary care unit rather than an intensive care umipaicts patient LOS and
outcomes.

There is significant heterogeneity in patient types. Ini®a@, all patients were
assumed to have identical characteristics. However,tatezre likely to have dif-
ferent service requirements and/or no show rates. Similarie could consider
appointment scheduling for two patient types: routine wensrgent patients as in
Dobson et al. 16]. This work does not account for the no-show phenomenon. An
interesting research direction would be to consider howotmlzine heterogenous
patients with the no-show phenomenon.

There has been a growing interest in the operations researamunity to un-
derstand how human behavior impacts operations. Accayfain‘behavioral op-
erations” when designing system can improve performadicé\[recent survey of
this area emphasizes the need for experimental data tafidére impact of hu-
man behaviorZ]. While randomized controlled experiments are often naisiiule
in healthcare settings, adaptive behavior can be measunedétrospective data as
described in this chapter.

With an increase in the sophistication of electronic mdd®eord systems, more
patient data is becoming available. Combining operatiessarch methodologies
with real patient data will help facilitate the identificati and modeling of adaptive
behaviors in various healthcare settings. Models that @akdata to demonstrate
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the impact of adaptive behavior and identify policies andcfices that mitigate

the potentially negative consequences of these behadarbe extremely useful in
improving access to healthcare. Moreover, it will providglfier evidence and cred-
ibility to physicians who may be considering making poligydgoractice changes.
There is a great deal of potential to significantly improve tperational perfor-

mance of healthcare systems and enable better accesseot gatie by accounting
for adaptive behavior when modeling, analyzing, and deyiatppolicies for such

systems.
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