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Abstract : Patient access to healthcare is a major problem area due to inadequate
supplies and misallocation of resources including physicians, nurses, and hospital
beds. Increasing patient demands due to an aging and more chronically ill popula-
tion will exacerbate this situation, leading to longer delays for care, hurried treat-
ment times, and adverse clinical outcomes. Though there is asignificant operations
literature focused on methods to mitigate these effects, suggested remedies may be
ineffective due to adaptive behavior by both physicians andpatients. This chapter
will focus on the quantification and impact of such adaptive behavior on the ability
to provide timely patient access to limited health services.
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1 Introduction

Demand for healthcare is increasing due to a growing and aging population, making
access to care more difficult. Beyond anecdotal evidence, there is increasing empiri-
cal evidence of access problems, most notably through overcrowding in Emergency
Departments (EDs) [6, 12]. While demand is increasing, the supply of hospital beds,
physicians, nurses, and other health resources remains relatively stagnant or, worse,
is potentially decreasing. It is already the case that the supply of nurses is insuffi-
cient to meet demands [8] and there are predictions of severe physician shortages in
the coming years [13, 34, 41].

As a consequence of high demand and insufficient supply, manypatients expe-
rience delays in receiving treatment. The overall median wait to see an ED physi-
cian increased from 22 minutes in 1997 to 30 minutes by 2004. Perhaps even more
alarmingly, the median wait for patients diagnosed with acute myocardial infarction
(AMI) (heart attacks) increased from 8 minutes in 1997 to 14 minutes in 2004 [44].
In one study of patients and their primary care physicians, 33% of patients cited in-
ability to get an appointment soon as a significant obstacle to care [42]. The average
wait for a primary care appointment in the U.S. in 2001 was over three weeks [36].
60% of physicians reported being dissatisfied with delays [37].

Delays can result in adverse patient outcomes such as increased mortality rates
and an overall reduction in quality of outcome [39]. For emergent patients, such as
those suffering acute myocardial infarction, timely access to care is imperative as
even delays on the order of minutes can increase mortality [32, 11, 5, 23]. Delays can
also result in increased length-of-stay (LOS), resulting in patients consuming more
resources and further intensifying the problem. For example, delays in transfers
from the ED to the Intensive Care Unit (ICU) have been shown toincrease ICU and
hospital LOS [9, 38, 40].

As in other service environments, access problems may be dueto uncontrollable
variability which can stem from arrival times of patients, differing treatment types
and times, staffing shortages, demand surges due to an epidemic, etc. The ability to
effectively react to and navigate through periods of high congestion is imperative
to ensuring timely patient access to care. Operations Research models and methods
can be useful in doing just that.

There are a number of behavioral factors in the healthcare setting which exac-
erbate access problems. One such factor is planned variability in capacity due to
physician preferences. For example, surgeons often have significant ability to influ-
ence their own operating schedules. Most surgeons prefer operating in the morning
so they can see new patients in the afternoon. This often results in surgeries being
scheduled within a tight time window without adequate attention to the variability
of their durations. Not surprisingly, many surgeries get delayed and recovery rooms
get congested causing cancelations of subsequent surgeries. Since inpatient beds are
often reserved for surgical patients, these surgical delays can translate into ED con-
gestion due to the inability to move ED patients into inpatient beds. In one noted
hospital study, the level of ambulance diversions (ambulances turned away from the
ED) was better correlated with the variability in thescheduled surgical load than
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with emergency admissions [33]. While some variability in the surgical schedule
is certainly unavoidable, there is potential to utilize better scheduling of elective
admissions to smooth load variability [30]. For instance, using stochastic linear pro-
gramming, Denton et al. consider how to assign surgeries to various specialties and
how to determine the number of operating rooms (ORs) to open given unavoidable
uncertainty in the duration of various surgeries [14]. Golden et al. use integer pro-
gramming methods to improve scheduling the OR and reduce boarding of patients
in the post-anesthesia recovery room due to ICU congestion [21]. In fact, there has
been considerable operations literature dealing with surgical scheduling, see [7] and
related references.

In this chapter, we will focus on a distinctive and prevalentcharacteristic of
healthcare delivery systems–adaptive behavior. There hasbeen growing evidence
that patients and providers dynamically alter their behavior based on congestion and
backlogs. These adaptive behaviors have been observed in both outpatient and inpa-
tient settings. For instance, if patients have to wait a longtime for an appointment
with a physician, they may cancel at the last minute or just not show up [20]. When
delays in the ED are long, patients are more likely to leave without being seen,
even though they require care [19]. Hospital EDs sometimes adapt to increasing
backlogs by diverting ambulances away from the ED, effectively reducing patient
arrivals and ED load [29]. Though some of these behaviors may reduce the system
workload, some adaptive behavior may actually worsen the situation. In one study
of a hospital ED, nurses were found to be more likely to not show up for work when
the anticipated patient load was higher, creating an even larger imbalance between
supply (nurses) and demand (patients) [24].

In the inpatient environment, providers are often faced with the difficult task
of caring for more patients than their resources allow and, hence, adopt practices to
attempt to mitigate these high stress periods. For instance, physicians may discharge
patients early from an ICU when it is full and space is needed for new patients [26].
If there is no room in a hospital stroke unit at the time of a stroke patient’s arrival,
the patient may be placed in a less specialized unit which could result in a longer
LOS and a poorer clinical outcome [46]. Indeed, patients are often assigned to less
appropriate clinical units due to congestion in the desiredunit.

Adaptive behavior can sometimes amplify system workload and/or variability
creating additional problems; alternatively, adaptive behavior may alleviate conges-
tion when it is most critical to do so. In any case, it is clear that adaptive behavior
can significantly affect patient access, operational efficiency and clinical outcomes.
Yet the potential impact of adaptive behavior has not generally been explicitly con-
sidered in the operations research literature.

There is a need to develop models to account for adaptive behavior by patients
and physicians. These enhanced models can provide vital insight which can lead to
better policies and operational guidelines. The first step is to identify the adaptive
phenomenon and quantify its impact on patient care. Such an understanding will
provide a foundation to develop models and analyze operational policies which are
better able to deal with adaptive behavior.
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The remainder of this chapter is organized as follows. In Section 2, we discuss
how to quantify the impact of adaptive behavior. Section3 examines how to account
for this adaptive behavior when making decisions. Section4 discusses dynamic de-
cision making in the presence of this dynamic human behavior. Finally, Section5
provides some closing remarks.
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2 Quantifying the Impact of Adaptive Behavior

To develop models that allow us to ultimately identify policies and practices to bet-
ter manage healthcare systems that are subject to adaptive behavior, we must first
understand the nature and degree of adaptation. This requires empirical data to quan-
tify the manner in which patient and physician behavior adapts to slight changes in a
patient’s health status or in the presented workload of the healthcare delivery system
in question.

2.1 Empirical Evidence: Adaptive Behavior of Patients

There has been growing empirical evidence of adaptive behavior in a number of
settings where patients react to delays. Using patient data, one can measure these
effects via statistical analysis such as linear regression.

There are a growing number of healthcare practices and outpatient facilities that
operate on an appointment basis. One of the difficulties faced by these facilities
are patients who make last-minute cancelations or fail to arrive to their scheduled
appointments. These patients are classified as ‘no-shows’.No-shows often waste al-
ready limited physician availability since it is usually impossible to fill a last minute
cancelation with another patient. This can result in significant monetary losses (up
to 14% of annual revenues) for the clinic [35]. [Note to editor: Reference chapter
on no-shows]

Fig. 1 Observed no-show fraction values and the best-fit exponential functions for Columbia MRI
data as reported in [22] as reported in [20]. Reprinted by permission, L. V. and S. Savin, Reducing
Delays for Medical Appointments: A Queueing Approach, Operations Research, volume 56, issue
6, (November/December, 2008). Copyright 2008, the Institute for Operations Research and the
Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.
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Empirical evidence has shown that the rate of no-shows increases with the in-
crease in appointment backlog, i.e. the longer a patient hasto wait until their ap-
pointment, the more likely he is to fail to show up. This phenomenon was observed
at a mental health clinic, an MRI facility, and a family practice clinic [20, 22, 31].
In [22], data on the connection between the appointment backlog and the likelihood
of a patient no-show from both a mental health clinic and an imaging facility were
fit to an exponential function as depicted in Figure1. The percentage of no-shows is
monotonically increasing in backlog in these two independent data sets, though the
rates are quite different, as would be expected with such different patient character-
istics across the two facilities.

In another setting, there has been growing evidence that increased crowding in
the ED has resulted in an increase in patients who leave the EDwithout being seen
[15, 25, 19]. This often means that patients who require care do not havethe access
they need [1].

2.2 Empirical Evidence: Adaptive Behavior of Physicians

Not only do patients react to the supply and demand mismatch,but physicians do
as well. Ideally, physicians should make decisions for the provision of care based
entirely upon medical and physiologic factors. Unfortunately, this is not always pos-
sible due to resource constraints. With the increase in sophistication of electronic
medical records (EMR) systems and, subsequently, the increase in available patient
data, econometric tools can be used to estimate how capacityconstraints influence
physician behavior. The general methodology begins with fitting a regression model
to the available data and examining the relationships between key variables.

In [27, 26], Kc and Terweisch examine the relationship between occupancy lev-
els and patient care. Using data from an ICU unit for cardiothoracic surgery pa-
tients, they demonstrate that, after controlling for patient severity, a patient’s LOS
decreases as the unit occupancy level increases. This is illustrated in Figure2. This
supports anecdotal reports that patients are sometimes discharged prematurely in
order to accommodate new, more critical patients. We refer to such a discharge as a
demand-driven discharge.

More generally, there is evidence that patients’ LOS in ICUsare influenced by
bed availability. There are a number of important research questions surrounding
such adaptive behavior:

1. Under what circumstances do physicians adapt LOS based onoccupancy levels?
2. Does reduction in LOS adversely affect patient outcomes?
3. What policies might be employed to guide such adaptability so that operational

and clinical performance is improved?

In this section, we will focus on the first two questions; the third will be addressed
in Section4. In addition to the effect of high occupancy levels on patient LOS it
may also affect patient readmission likelihood due to the early discharge of patients.
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Fig. 2 Length of Stay as a Function of Census. Note: Census is definedas the number of patients
in the cardiac unit at the time a patient is admitted. Length of stay (LOS) is the total number of
days a patient spends at the hospital. Dashed lines represent 95% confidence intervals. Reprinted
by permission, D. Kc and C. Terweisch, Impact of workload on service time and patient safety:
An econometric analysis of hospital operations, Management Science, volume 55, issue 9, (July,
2009). Copyright (2009), the Institute for Operations Research and the Management Sciences (IN-
FORMS), 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

However, there is an inherent endogenity bias, since more severe patients are likely
to have longer length-of-stay in the ICU and have higher readmission risks, which
could lead to a positive bias in estimating the effect of LOS on readmissions. The
exogenous factors affecting LOS–variables that affect thetime spent in the ICU, but
otherwise do not directly affect patient outcomes–constitute potential instrumental
variables (IVs) to mitigate the endogeneity bias. In particular, an indicator variable
which specifies whether or not the ICU is busy (i.e. at high occupancy levels) upon
discharge becomes a valid IV (see [45] for details on this methodology). Because
operational factors are unlikely to be correlated with patient medical factors, such as
severity, which may affect patient outcomes, they can oftenbe used as instrumental
variables to generate unbiased estimates of these outcomes.

In a study of cardiac surgical patients in a single hospital,a 10% increase in occu-
pancy level corresponded to a 20% decrease in ICU LOS–a reduction of nearly 2.5
days [26]. This shortened length-of-stay corresponded to increases in the likelihood
of readmission. Specifically, being discharged one day earlier than one’s expected
LOS translated to an increase of 60% in the odds of being readmitted to the ICU
[27]. This modification of patient LOS due to congestion may initially free capacity
in the ICU, but it can also negatively impact patient outcomes in the long run.
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2.3 Quantifying Effects via Modeling

Empirical models are able to quantify adaptive behavior under the conditions of the
particular patient setting in question. Randomized trialsare generally not possible
in hospital settings where it could result in patients beingdenied needed treatment.
Hence, it can be difficult to empirically measure a variety ofscenarios. By build-
ing and analyzing models which incorporate this behavior, the impact of adaptive
behavior can be estimated for a wider range of scenarios.

Using the ICU described as an example, the first step is to build a stochastic
model of an ICU which incorporates the fact that patients maybe demand-driven
discharged. Such a model can be used to consider how changes in arrival patterns,
ICU capacity, and surgical schedules can affect the likelihood of being discharged
early.

In [17], it is assumed that patients are either scheduled or unscheduled. The state
of the system is given by the remaining length-of-stay of thepatients who occupy
the ICU. If a new patient arrives and there is no space available, a current patient is
demand-driven discharged to accommodate the new patient. Using an aggregation-
disaggregation technique to reduce computational complexity, Dobson et al. calcu-
late the desired performance metrics such as the probability of beingbumped and
the expected number of days remaining when a patient is bumped.

Fig. 3 Average probability of being demand-driven discharged forA) 70% B) 50% and C) 30%
scheduled patients and an ICU of size 13, 14, and 15 beds as reported in [17]. Reprinted by permis-
sion, G. Dobson, H.-H. Lee, E. Pinker. A model of ICU bumping.Operations Research, volume
58, issue 6, (November/December, 2010). Copyright (2010),the Institute for Operations Research
and the Management Sciences (INFORMS), 7240 Parkway Drive,Suite 300, Hanover, MD 21076
USA.

Figure3 plots the probability of being discharged early for a numberof different
scenarios with increasing ratio of unscheduled to scheduled cases and increasing
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size of ICU. As expected, the probability of being bumped is lower when there
are more beds. Additionally, the likelihood of being demand-driven discharged in-
creases with the percentage of unscheduled patients who introduce higher variabil-
ity. One can also vary the number of days in a week that scheduled patients can arrive
(three, five, or seven). Interestingly, when patients are scheduled on three-day plans,
the probability of a demand-driven discharge is the lowest.One possible explana-
tion for this is that patient arrivals are more spread apart,allowing for more time to
recover from busy periods. Such analysis is useful for understanding how various
parameters and schedules affect the undesirable, yet unavoidable, phenomenon of
demand-driven discharges.
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3 Incorporating Adaptive Behavior into Decision-Making

Ignoring the impact of adaptive behavior may result in suboptimal operational deci-
sions, which can further amplify the supply and demand mismatch rather than help
alleviate it. We illustrate how to incorporate the impact ofadaptive behavior in both
the outpatient and inpatient setting.

3.1 Accounting for no-shows when determining patient panel size

As mentioned previously, no-shows are prevalent in many outpatient settings, par-
ticularly when the system is congested. Ignoring this phenomenon can hurt both
providers and patients. One example of this is in determining how large a patient
panel size a group of physicians can handle. Primary care practices and many spe-
cialty care practices, such as cardiology, have a ‘patient panel’–a set of patients who
receive their care from the practice on some regular basis. So in these practices,
patient panel size is the primary lever to align demand and supply in order to offer
timely access.

To identify a panel size that will result in short waits for appointments with high
probability, it is necessary to explicitly consider the nature and impact of cancela-
tions. Although some patients cancel their appointments far enough in advance of
their scheduled time to allow for a new appointment request to be substituted, many
practices experience a high level of patients who cancel toolate for this to happen
or who simply do not show up at the scheduled time. This results in the paradoxical
situation where the physician may be idle for some significant amount of time dur-
ing the day while patient backlogs for appointments are long. In addition, although
some patients fail to appear at the appointed time because the original reason for
the visit no longer exists, other no-shows are due to personal or work-related prob-
lems, or to the patient’s decision to seek treatment elsewhere rather than wait. In
the latter situations, many no-shows schedule a new appointment with their original
physician. This is true even when they have sought treatmentelsewhere because it is
common practice for clinics and emergency rooms to advise the patient to see their
own physician as well.

In [22], Green et al. model a single-physician practice via a modified M/D/1/K
queue where patients arrive according to a Poisson process,service times are de-
terministic, and there is a finite appointment backlog limitK such that any patients
who arrive when the queue length isK are ‘lost’ in the sense that they are not given
an appointment and so potentially seek treatment elsewhere. For more information
on the standard M/D/1/K queue, we refer the reader to examinea book on queueing,
such as the one by Kleinrock [28]. The modified M/D/1/K model approximates the
no-show process by assuming that a customer who is scheduledto begin service
has a state dependent probability of being a no-show, resulting in an idle period for
the server and, with a fixed probability, the customer rejoining the queue. The like-
lihood of no-show is non-decreasing in the number of patients who are still in the
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backlog upon the appointment (i.e. service) time of the patient in question. Such an
approximation is able to capture wasted capacity by patientno-shows as well as the
increased likelihood of such events when the system is more congested. Addition-
ally, it allows for analytical tractability of the steady-state behavior of the system.

Fig. 4 Expected appointment backlog as a function of the patient panel size for the M/D/1/K model
with and without no-shows (using a no-show model based on an MRI facility data, assuming 20
slots per day, K = 400 appointment slots and a probability of rescheduling equal to 1) as reported
in [22]. Reprinted by permission, L. V. and S. Savin, Reducing Delays for Medical Appointments:
A Queueing Approach, Operations Research, volume 56, issue6, (November/December, 2008).
Copyright 2008, the Institute for Operations Research and the Management Sciences, 7240 Park-
way Drive, Suite 300, Hanover, MD 21076 USA.

Figure4 compares the expected appointment backlog of the M/D/1/K queue with
and without no-shows. Using a no-show model calibrated fromdata of a MRI facil-
ity, one can see that the impact of patient no-shows is very significant [22]. Since
no-shows result in wasted appointment slots and rescheduled appointments, they
result in longer appointment backlogs and hence more no-shows. Thus there is a
adverse feedback cycle and the backlog grows much more rapidly than in a model
without no-shows. Ignoring no-shows in a model of a clinic may result in a physi-
cian electing to maintain a panel size that is too large to provide timely access to
care for his/her patients.

An increasingly important performance metric for access inthis setting is the
probability of being able to get a same-day appointment. In fact, 33% of patients
reported that the ‘inability to get an appointment soon’ inhibited access to care [42].
Figure5 compares the probability of getting a same-day appointmentwith and with-
out no-shows. If no-shows are not considered, the figure suggests that a panel size
of 2,400 would provide timely access since patients will be able to get a same-day
appointment 80% of the time. (This performance level would be consistent with data
that suggests about 20% of appointments are for follow-up care and are scheduled
weeks in advance.) However, in actuality, this probabilityis likely to be close to
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Fig. 5 Probability of getting a same-day appointment as a functionof the patient panel size for
the M/D/1/K model with and without no-shows (using a no-showmodel based on an MRI facil-
ity data, assuming 20 slots per day, K = 400 appointment slotsand a probability of rescheduling
equal to 1) as reported in [22]. Reprinted by permission, L. V. and S. Savin, Reducing Delays for
Medical Appointments: A Queueing Approach, Operations Research, volume 56, issue 6, (Novem-
ber/December, 2008). Copyright 2008, the Institute for Operations Research and the Management
Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA.

0, due to the no-show phenomenon. Such an analysis highlights the importance of
accounting for the adaptive behavior of patients when making operational decisions.
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4 Dynamic Policies which Account for Adaptive Behavior

Along with macro-level decisions such as patient panel sizing, staffing levels, and
the number of beds, OR models can provide insights on how to dynamically account
for adaptive behavior and unavoidable periods where demandexceeds supply.

4.1 Accounting for no-shows when scheduling patient
appointments

An important aspect of outpatient clinic management is scheduling patients as they
call for appointments. As with panel size planning, patientno-shows are an im-
portant factor in crafting schedules so that the number of idle appointment slots is
minimized. In [31], Liu et al. analyze a dynamic scheduling model which captures
this no-show phenomenon. Each day, the appointment scheduler must determine
which day to assign to each patient who calls for an appointment. The longer a pa-
tient waits for an appointment, the more likely she is to cancel or be a no-show. On
any given day, a scheduled patient can show up or not show up for her appointment
that day, or cancel an appointment which may be on a future date.

This scheduling problem can be formalized as a dynamic optimization problem
in which the objective is to maximize the number of patients cared for each day
or, equivalently, minimize the number of idle slots withoutincurring high overtime
costs. There is an inherent tradeoff between providing timely access for patients
and potentially incurring high overtime costs in order to ensure this versus allocat-
ing a large amount of initial capacity which may end up being wasted if there is
not enough demand in a particular day. In principal, the optimal scheduling policy
can be determined using dynamic programming and numerical methods. However,
dynamic programming often suffers from thecurse of dimensionality and solving
such a recursion for problem sizes of interest is practically infeasible. An alternative
course of action is to develop heuristic algorithms.

Two simple heuristics are to optimize the scheduling policyassuming appoint-
ments depending on the how quickly a patient must be seen [31]. The first heuristic,
referred to asOpen Access, requires appointments to be provided on the current
day. Hence, patients are guaranteed same-day appointments, even if this requires
the physician to spend significant overtime to treat all patients beyond the initial al-
located daily capacity. Another heuristic, theTwo-day policy, requires an appoint-
ment to be provided on the current or following day. In doing so, it tries to reduce
overtime costs at the expense of immediate access.

These heuristics can serve as the basis for additional heuristics using policy im-
provement. The policy improvement heuristic selects the best scheduling decision
in the current state under the assumption the suboptimal base policy is used for
all subsequent decisions. Hence, it is a one-step policy improvement over the base
heuristic (see [3] for more details on this methodology). Finally, these heuristics are
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compared to the following benchmarks: aThreshold heuristic where patients are
scheduled on the earliest day with fewer thanM patients scheduled; aLoad balanc-
ing heuristic where patients are scheduled on the day with the fewest appointments;
and aRandom heuristic where patients are scheduled on a random day.

Using data calibrated from empirical data of a family medicine clinic, [31] com-
pares the performance of the proposed algorithms via simulation. Table4.1summa-
rizes the relative costs of the various heuristic policies in comparison to the Open
Access scheduling policy for various daily capacities (M) and cost of scheduling one
patient (h). Note that the number of patients scheduled in a day,z, can be greater or
less thanM. If there are more patients than appointment slots (z > M) all of these
patients will be treated and overtime cost is incurred. Thisis in contrast to theK in
the M/D/1/K model of Section3 as in that case, overtime was not allowed. Smaller
M suggests the clinic is more overloaded. The simulations suggest that the threshold
heuristic, two-day policy, and policy improvement heuristics based on Open Access
and the two-day policy generate more revenue compared to Open Access. Interest-
ingly, even the Random heuristic sometimes outperforms Open Access. In an under
loaded system, Open Access would be optimal. Under Open Access, all patients are
scheduled on the current day, which minimizes their likelihood of being a no-show.
However, as the practice becomes more heavily loaded, this will result in frequent
overload, requiring physicians to work overtime, thus incurring high costs. Hence,
Open Access is not the best scheduling policy to use in general.

PI PI Open Load
2-day 2-day Access Threshold Balancing Random

h = 0 2.11 .78 2.18 2.11 -6.30 -3.28
M = 55 h = .2 4.10 3.23 3.08 3.25 -5.48 -1.53

h = .5 12.74 12.14 3.72 4.39 -5.48 2.68
h = 0 6.77 2.75 5.42 6.45 -2.22 -1.20

M = 50 h = .2 8.28 5.48 6.96 8.21 -1.09 0.50
h = .5 18.56 15.29 9.25 12.11 0.72 5.31
h = 0 10.63 6.23 9.25 5.24 4.11 1.81

M = 45 h = .2 13.35 9.13 11.53 6.28 4.91 3.28
h = .5 25.01 20.32 21.78 10.40 8.10 9.16
h = 0 9.84 9.12 10.21 2.79 2.99 4.23

M = 40 h = .2 13.03 12.48 13.69 3.57 3.83 6.05
h = .5 27.41 26.82 28.13 6.79 7.32 13.58

Table 1 Simulation Study Results: percentage improvement of totalreward (number of patients
served less daily fixed cost and scheduling cost) compared toOpen Access scheduling for daily
capacityM and costh for scheduling a patient as reported in [31]. Adapted with permission from
N. Liu, S. Ziya, V. G. Kulkarni, . Dynamic Scheduling of Outpatient Appointments Under Patient
No-Shows and Cancellations, Manufacturing & Service Operations Research volume 12, issue
2, (October, 2010). Copyright (2010), the Institute for Operations Research and the Management
Sciences, 7240 Parkway Drive, Suite 300, Hanover, Maryland21076 USA.



Adaptive Behavior 15

4.2 Improving demand-driven discharge decisions

Inpatient care is another setting in which dynamic policiescan be useful to provide
effective treatment. As an example, physicians are often faced with the difficult task
of determining whether and when to discharge an ICU patient early due to limited
bed availability. As seen in Section2.2, there is empirical evidence that physicians
adaptively alter patient discharge times based on congestion levels.

Various factors can affect how often demand-driven discharges must occur [17].
A natural question is how one should determine which patientto discharge. Section
2.3assumed that patients were discharged in order of shortest remaining LOS. How-
ever, given the natural variability in patient stays, this quantity is not always known.
Additionally, it ignores the potential impact of readmissions on ICU congestion. In
[10], a dynamic optimization model is developed to help guide such decisions.

The model in [10] assumes that whenever a new patient arrives and there are no
available beds, a physician must decide which patient to discharge in order to ac-
commodate the new, higher acuity patient. Each patient is identified by type, which
specifies the expected initial ICU length of stay, the likelihood of readmission upon
a demand-driven discharge, and the expected ICU length-of-stay upon readmission.
Any cost function which accounts for a patient’s disservicedue to a demand-driven
discharge can be incorporated. A cost function which is estimable from currently
available data is given by thereadmission load, i.e. expected ICU treatment time
required by the demand-driven discharged patient following the initial discharge.

In principle the optimal policy can be computed numericallyvia dynamic pro-
gramming. Unfortunately, the size of the state space makes it practically infeasible
to solve. Utilizing properties of the optimal value function, the authors show that
the performance of a greedy heuristic, which discharges thepatient with the lowest
readmission load is a(ρ̂ + 1)-approximation for the optimal policy, wherêρ is a
measure of utility [10]. Such a bound is useful to quantify the worse-case perfor-
mance of such a greedy policy.

Using patient data from 7 different hospitals in a single hospital network, Chan
et al. simulate the performance of the greedy discharge policy relative to several
relevant benchmarks. In the medical community, the decision of which patient to
discharge is made by assessing which patient is the ‘least critical’ (see, for instance,
[43]) which can be somewhat subjective and is generally not based upon quantita-
tive measures. Each of the discharge policies studied belowcan be interpreted as a
measure of criticality:

• Probability of readmission index: Discharge the patient with the smallest prob-
ability of readmission. Readmitted patients tend to be morecritical (see [18]), so
that the rationale here is that a lower likelihood of readmission translates to lower
patient criticality.

• Length-of-stay (LOS) index: Discharge the patient with the smallest remaining
service time. This policy thus equates criticality with thenominal length-of-stay
of a patient. This policy is analyzed in [17] albeit for a model that is agnostic to
readmission loads.
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• The Greedy index: This is the proposed heuristic from [10] which prioritizes
patients in increasing order of readmission load.

In addition to the preceding index rules, one can also consider aRandom policy.
Figure6 compares the readmission load of the greedy heuristic compared to the

other benchmark policies. The savings relative to the next best policy corresponds
to 23.7 hours over one week at a net patient arrival rate ofλ = 0.021 (or 1 ICU
bed out of 10 for 1 day per week). Figure7 shows the number of deaths per week
for the same discharge policies. One can see that the number of deaths is practi-
cally identical for all policies, while the readmission load is very different. Hence,
without sacrificing patient quality, in terms of mortality,the greedy heuristic which
incorporates readmission risks can significantly reduce the patient load on the ICU,
and subsequently increase the number of patients who receive critical care.
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Fig. 6 Performance of greedy policy compared to benchmarks for various arrival rates and distri-
bution across patient types according to the proportions seen in the empirical data as reported in
[10].
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5 Conclusions and Future Research

As demonstrated in this chapter, behavior can have a significant impact on the effi-
ciency and effectiveness of healthcare delivery and so mustbe considered in making
both design and operational decisions. Operations Research studies and methodolo-
gies are needed to both understand the nature of adaptive behaviors and identify
policies that incorporate such behavior in order to improveaccess to care. In ad-
dition to the examples presented here, there are several other important areas of
healthcare delivery where adaptive behavior is prevalent,providing potential oppor-
tunities for future research.

One consequence of adaptive behavior is that the true service requirements and
arrival rates of patients may be censored. These potentially misleading measure-
ments of the system load make it difficult to assess the actualrequired capacity
requirements. Due to the chronic mismatch of supply and demand, much of the ob-
served behavior of healthcare systems do not accurately reflect the true dynamics.
Hence, there is a need to analyze the impact of adaptive behaviors on patient de-
mands and treatment times when estimating required capacity for many healthcare
resources ( e.g., ICU beds, obstetrics beds, surgical suites, primary care physicians,
nurses). For instance, ignoring endogenous nurse absenteeism can result in under-
staffing [24].

Adaptive behavior can also induce downstream effects whichcan create very
complex decision-making environments. For instance, whenmaking demand-driven
discharges, one must account for the immediate impact on thedischarged patient
as well as the propagation effects due to his potential readmission. This could be
expanded to consider how transferring patients to a less appropriate unit (i.e. an
intermediary care unit rather than an intensive care unit) impacts patient LOS and
outcomes.

There is significant heterogeneity in patient types. In Section 3, all patients were
assumed to have identical characteristics. However, patients are likely to have dif-
ferent service requirements and/or no show rates. Similarly, one could consider
appointment scheduling for two patient types: routine versus urgent patients as in
Dobson et al. [16]. This work does not account for the no-show phenomenon. An
interesting research direction would be to consider how to combine heterogenous
patients with the no-show phenomenon.

There has been a growing interest in the operations researchcommunity to un-
derstand how human behavior impacts operations. Accounting for “behavioral op-
erations” when designing system can improve performance [4]. A recent survey of
this area emphasizes the need for experimental data to identify the impact of hu-
man behavior [2]. While randomized controlled experiments are often not possible
in healthcare settings, adaptive behavior can be measured from retrospective data as
described in this chapter.

With an increase in the sophistication of electronic medical record systems, more
patient data is becoming available. Combining operations research methodologies
with real patient data will help facilitate the identification and modeling of adaptive
behaviors in various healthcare settings. Models that use real data to demonstrate
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the impact of adaptive behavior and identify policies and practices that mitigate
the potentially negative consequences of these behaviors can be extremely useful in
improving access to healthcare. Moreover, it will provide further evidence and cred-
ibility to physicians who may be considering making policy and practice changes.
There is a great deal of potential to significantly improve the operational perfor-
mance of healthcare systems and enable better access to patient care by accounting
for adaptive behavior when modeling, analyzing, and developing policies for such
systems.
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