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Buildings have a major impact on the environment through excessive use
of resources, such as energy and water, and large carbon dioxide emissions.
In this paper we revisit a previously published study about the economics of
environmentally sustainable buildings and estimate the effect of green build-
ing practices on market rents. For this, we use new matching methods that
take advantage of the clustered structure of the buildings data. We propose a
general framework for matching in observational studies and specific match-
ing methods within this framework that simultaneously achieve three goals:
(i) maximize the information content of a matched sample (and, in some
cases, also minimize the variance of a difference-in-means effect estimator);
(ii) form the matches using a flexible matching structure (such as a one-to-
many/many-to-one structure); and (iii) directly attain covariate balance as
specified—before matching—by the investigator. To our knowledge, exist-
ing matching methods are only able to achieve, at most, two of these goals
simultaneously. Also, unlike most matching methods, the proposed methods
do not require estimation of the propensity score or other dimensionality re-
duction techniques, although with the proposed methods these can be used
as additional balancing covariates in the context of (iii). Using these match-
ing methods, we find that green buildings have 3.3% higher rental rates per
square foot than otherwise similar buildings without green ratings—a moder-
ately larger effect than the one found by the prior study.

1. Introduction: Green buildings, buildings data, overview of matching,
outline.

1.1. Market performance of environmentally sustainable buildings. Buildings
have a major impact on the environment through greenhouse gas emissions and
excessive use of natural resources. For example, the United States Environmen-
tal Protection Agency (EPA) reported that in 2013 nearly 39% of total U.S. carbon
dioxide emissions were due to residential and commercial buildings.2 For the same
year, the U.S. Energy Information Administration reported that about 40% of total
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U.S. energy consumption was from these types of buildings.3 At the same time,
there is growing scientific consensus that current levels of carbon dioxide and re-
lated greenhouse gas emissions greatly increase the risks of climate change, and
that excessive use of resources can lead to resource depletion and habitat degra-
dation. For these reasons, the construction and operation of buildings can have a
substantial impact on the earth’s environment.

In an interesting and relevant study, Eichholtz, Kok and Quigley (2010) ana-
lyzed the effect of environmentally sustainable building practices on their rents
and selling prices. This is an important study subject for the reasons already stated
and also because there is not much empirical evidence for the development of en-
vironmentally sustainable or green buildings. Among the available evidence, there
are the results of a study by the U.S. General Service Administration Public Build-
ings Service that analyzed the performance of 22 green buildings and found that,
compared to national averages, green buildings have 36% fewer carbon dioxide
emissions and 25% less energy use, in addition to 19% lower aggregate opera-
tional costs and 27% higher occupant satisfaction.4 Given the environmental and
social benefits of green buildings, one important question is how much these ben-
efits affect the rent of green commercial buildings. This is important to investors,
developers and property owners in order to invest in green buildings.

In their study, Eichholtz, Kok and Quigley (2010) analyzed a large sample of
commercial green- and nongreen-rated buildings in the United States. Using linear
regression and propensity score methods, they found that buildings with green
ratings have approximately 2.8% higher rental rates per square foot compared to
similar buildings without green ratings. In this paper, we revisit this important
question using new matching methods that adjust more precisely for covariates
and better exploit the structure of the buildings data.

1.2. Buildings data. In the United States, green buildings are certified as en-
ergy efficient or sustainable by different agencies. The EPA gives the “Energy Star”
certification to commercial buildings if their amount of energy used meets certain
criteria.5 The Green Building Council (USGBC) labels a building as LEED (Lead-
ership in Energy and Environmental Design) based on its performance in different
categories such as indoor environmental quality, site sustainability and water con-
servation. Following Eichholtz, Kok and Quigley (2010), we consider a building
to be green if it is certified as Energy Star or LEED and focus our analysis on
commercial buildings.

3http://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf, Table 2.1.
4http://www.gsa.gov/graphics/pbs/Green_Building_Performance.pdf.
5Specifically, the EPA can give the “Energy Star” certification to buildings in the top quarter of

energy efficiency compared to similar buildings nationwide. The energy efficiency calculation is
done by the EPA using a scoring algorithm that takes into account the characteristics of the building,
such as size, location and number of occupants.

http://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf
http://www.gsa.gov/graphics/pbs/Green_Building_Performance.pdf
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To estimate the effect of energy efficiency and sustainability on the economic
returns of buildings, we compare green-rated buildings to similar nongreen-rated
buildings in the same market. For this, we use multivariate matching methods and
find matches of green and nongreen buildings that are nearby and similar along
a number of covariates, including age, amenities, number of stories, quality and
whether the building was recently renovated. However, standard matching meth-
ods do not have the flexibility to exploit the particular structure of the buildings
data and will typically result in imbalanced or inefficient analyses. In particular,
the data consists of 694 green buildings and 7411 nongreen buildings, organized
in 694 geographic clusters. In each of these clusters, there is one green building
and one or more nongreen buildings not further apart than one quarter mile from
the green building. While some clusters have only one nongreen building, others
have as many as 83 nongreen buildings. As a result of this structure, pair matching
(or matching with a 1 : 1 ratio) would result in many nongreen buildings not being
used in the analysis, and matching with a fixed 1 : κ ratio (where κ is an integer
greater than 1) would result in some clusters not being used at all. Naturally, we
would like to use a flexible matching ratio in order to match as many buildings
as possible, while precisely balancing covariates. However, to our knowledge, ex-
isting matching methods are not able to achieve all of these goals simultaneously.
In the following section, we give an overview of standard matching methods, and
then, in the next section, explain more carefully the contribution of the proposed
methods.

1.3. Overview of matching in observational studies. In observational studies,
matching methods are often used in an attempt to compare like with like, that is,
units that are the same ideally in every respect except in their assignment to a treat-
ment [Cochran and Rubin (1973)]. In our study, these units are buildings similar in
terms of age, amenities, number of stories, etc., except in their green building prac-
tices. Of course, this comparison can be assessed in terms of observed covariates
only, and with matching methods (the same as with other regression or weight-
ing methods of adjustment for observed covariates), the question about the influ-
ence of unobserved covariates in effect estimates remains open [see, for instance,
Chapter 4 of Rosenbaum (2002) for a formal discussion]. With standard matching
methods, other devices such as differential effects, evidence factors, multiple con-
trol groups and sensitivity analyses can be used to limit and assess the influence of
such unobserved covariates [see Rosenbaum (2015) for a review of these devices].

The appeal of matching as a method of adjustment lies in part in its concep-
tual simplicity [comparing like with like while keeping the unit of analysis intact;
Rosenbaum and Silber (2001)], that its adjustments are an interpolation instead
of an extrapolation based on a parametric model [Rosenbaum (1987), Imbens
(2015)], and in the fact that it is conducted without using outcomes, thus prevent-
ing exploratory expeditions in the data to choose the adjustments that better suit
the hypotheses of the investigation [Rubin (2008)]. It is for this last reason that
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matching is considered to be part of the design as opposed to the analysis of an
observational study [Rosenbaum (2010)]. However, some matching methods are
cumbersome in practice.

The main goal of matching is to find matched groups with similar or balanced
observed covariate distributions [Stuart (2010)]. Ideally, these groups would be
formed by units identical in every way (by “clones” of treated and control units),
but usually this is not feasible in practice. There is a course of dimensionality in ex-
act matching: as the number of observed covariates increases, there is a combinato-
rial explosion in the resulting types of units. Thus, for an observational study of the
typical size (like our building study with a few thousand observations), there will
not be enough units to match each treated unit to one control exactly. It is for this
reason, and also because randomization does not produce exact matches but bal-
ance in expectation, that weaker, aggregate forms of covariate balance than exact
matching tend to be pursued in practice, leaving exact matching for a few covari-
ates of overriding prognostic importance [see Sections 3.3 and 9.3 of Rosenbaum
(2010)]. The propensity score [Rosenbaum and Rubin (1983)] is an important tool
used to achieve aggregate covariate balance.

The propensity score is the probability of treatment assignment given the ob-
served covariates. It constitutes a dimensionality reduction technique in which a
P -dimensional observed covariate is summarized into a single scalar with im-
portant theoretical properties. Informally, Theorems 1 and 3 in Rosenbaum and
Rubin (1983) state that matching on the propensity score tends to balance the P

observed covariates used to estimate the score, and that for balancing the P covari-
ates, it suffices to balance the one-dimensional propensity score. However, these
are stochastic properties that hold over repeated realizations of the data-generation
mechanism, and, for a given realization (that is, for a given data set), even if the
true treatment assignment is known, it is not certain that the propensity score will
balance the observed covariates [especially if the covariates have many categories
or are sparse; see, e.g., Yang et al. (2012) and Zubizarreta et al. (2011)]. Also, in
practice, the true assignment mechanism is unknown, and this makes the task of
balancing the observed covariates even more difficult due to misspecification of
the propensity score model. Furthermore, while matching on the propensity score
is typically used for balancing means, in some settings it is desirable to balance
other features of the distribution of the P observed covariates, such as its marginal
distributions, and this can be very difficult by matching on the propensity score. It
is for these reasons that matching on the propensity score involves a considerable
amount of guesswork in practice.

A recent method that speaks to these limitations is the covariate balancing
propensity score [Imai and Ratkovic (2015)]. Under a generalized method-of-
moments or empirical likelihood framework, this method estimates the propensity
score penalizing fits for which the covariate distributions are not balanced. In a
similar way to the propensity score, the covariate balancing propensity score can
be used for matching and weighting.
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Related weighting methods include inverse probability tilting [Graham, De
Xavier Pinto and Egel (2012)], entropy balancing [Hainmueller (2012)], the sta-
ble balancing weights [Zubizarreta (2015)], calibration weighting [Chan, Yam and
Zhang (2016)] and the overlap weights [Li, Morgan and Zaslavsky (2016)]. How-
ever, two differences between weighting and matching (as typically used in statis-
tics) are that in matching the unit of analysis typically remains intact, facilitating
simpler outcome analyses and complementary, qualitative descriptions of the data
[Rosenbaum and Silber (2001)], and that the structure of the data after the matched
adjustments resembles more closely that of a randomized experiment, facilitating
more transparent sensitivity analyses to hidden biases [Rosenbaum (2002)].

Other recent matching methods include the following: coarsened exact match-
ing [Iacus, King and Porro (2012)], which matches exactly treated and control
units after coarsening the observed covariates; genetic matching [Diamond and
Sekhon (2013)], which uses a genetic search algorithm to maximize a measure
of covariate balance consisting of several statistics; balance optimization subset
selection [Nikolaev et al. (2013)], which minimizes a global imbalance measure
subject to equally sized matched groups; and optimal matching with refined co-
variate balance [Pimentel et al. (2015)], which uses network flow algorithms to
balance nominal covariates and their interactions according to a prioritized list.

Another recent matching method that addresses the aforementioned limitations
of matching based on the propensity score is optimal cardinality matching, or car-
dinality matching for short [Zubizarreta, Paredes and Rosenbaum (2014)]. Unlike
the previous matching methods, cardinality matching solves an integer program-
ming problem to maximize the cardinality or size of a matched sample subject to
more flexible constraints on covariate balance. In their weakest form, these con-
straints can require the means to be balanced [see Zubizarreta (2012) for details],
but they can also require other forms of distributional balance such as fine balance
[Rosenbaum, Ross and Silber (2007)] and strength-k balancing [Hsu et al. (2015)].
In this way cardinality matching balances the covariates directly.

The flowcharts in Figure 1 compare the basic steps involved in cardinality
matching and in more standard matching methods based on the propensity score
or other summary measures of the observed covariates (such as the Mahalanobis
distance). While these standard matching methods can entail many iterations to
meet the covariate balance requirements by fine-tuning the summary measure, car-
dinality matching directly finds the largest matched sample that meets these re-
quirements. In a sense, with cardinality matching, subject matter knowledge of the
scientific question at hand comes naturally into the matching problem through the
balancing constraints, finding the largest matched data set that satisfies the inves-
tigator’s specifications for covariate balance or comparability between treated and
control units.6 In contrast, with cardinality matching the possibility of covariate

6For simplicity, in Figure 1(a) we omit the decisions involved in propensity score matching about
overlap, but typically additional steps would be present [see, e.g., Chapter 16 of Imbens and Rubin
(2015)].
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(a) Common matching methods (b) Cardinality matching

FIG. 1. Flowcharts of common matching methods and cardinality matching.

distributions exhibiting limited overlap is addressed in terms of the original co-
variates, finding the largest match that meets the investigator’s specifications for
covariate balance.

1.4. Outline. To analyze the effect of energy efficiency and sustainability on
the economic returns of buildings, in this paper we build on the method of cardinal-
ity matching and propose a general matching framework to maximize the informa-
tion content of a balance matched sample. Within this framework, we present new
matching methods that simultaneously achieve three goals: (i) to maximize the in-
formation content of a matched sample and, in some cases, minimize the variance
of a widely used effect estimator; (ii) to form the matched groups of the matched
sample using a flexible matching structure [such as a one-to-many/many-to-one
or, in a sense, a full matching structure; Rosenbaum (1989), Hansen (2004)]; and
(iii) to directly attain covariate balance as specified—before matching—by the in-
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vestigator. On the one hand, standard matching methods such as the ones illustrated
in Figure 1(a) are not designed to achieve goals (i) and (iii), but, on the other hand,
cardinality matching does not allow flexible matching structures beyond a one-
to-many fixed matching ratio. Achieving these three goals simultaneously poses
a number of difficulties. First, maximizing the size of a matched sample with
a flexible matching ratio requires a different notion of sample size than the one
used in cardinality matching, since, for instance, two one-to-one treated and con-
trol matches should not count the same as one one-to-two match. This requires
defining the information content of the matched sample. Second, the differential
weighting of the different matched groups needs to be taken into account when
assessing covariate balance and in the analyses, but this poses a number of chal-
lenges in building a mathematical program and in computing its optimal solutions.
Third, a sound implementation of this method needs to take advantage of modern
advancements in parallel computing.

This paper is organized as follows. In Section 2 we review cardinality match-
ing, discuss different matching structures, and finally present a definition of the
information content of a matched sample for a simple difference-in-means effect
estimator. In Section 3 we first introduce a general framework for matching to
maximize the information content of a balanced matched sample, then show that
cardinality matching is a particular case of this framework, and present a formula-
tion for matching with a variable one-to-many ratio (in two other appendices, we
present formulations for matching to minimize the variance of the difference-in-
means effect estimator and matching with a flexible one-to-many/many-to-one or
full matching structure). In Section 4 we evaluate the building matches in terms of
covariate balance and effective sample sizes, and also describe the details of the
computational implementation. In Section 5 we investigate the economic effects
of green buildings. In Section 6 we discuss the proposed matching methods. In
Section 7 we close with a summary and remarks.

2. Review: Cardinality matching, matching structures, information con-
tent.

2.1. Cardinality matching. As described above, cardinality matching uses the
original covariates instead of a summary of them to match units and directly bal-
ance their distributions [Zubizarreta, Paredes and Rosenbaum (2014)]. Specifi-
cally, cardinality matching finds the largest matched sample that satisfies the in-
vestigator’s specifications for covariate balance. For example, cardinality matching
will find the largest matched sample in which all the marginal distributions of the
covariates are balanced. In this manner, cardinality matching first focuses on co-
variate balance in aggregate, allowing the investigator to then rematch the treated
and control units in the balanced matched sample to emphasize covariates that are
strongly correlated with the outcome. As illustrated in Zubizarreta, Paredes and
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Rosenbaum (2014), this has the effect of reducing the heterogeneity of matched-
group differences in outcomes and, in turn, also reducing sensitivity to biases due
to unmeasured confounders [see Rosenbaum (2005) for a detailed exposition of
this argument and Baiocchi (2011) for an original alternative approach].

From a computational standpoint, cardinality matching requires solving a lin-
ear integer programming problem, and while it has not been found that a poly-
nomial time algorithm solves the cardinality matching problem, there is consid-
erable structure in this problem and many instances of it can be solved in time
that from a user perspective is comparable to that of common matching methods
[see Appendix A in the supplemental article Kilcioglu and Zubizarreta (2016)].
At present, the cardinality matching problem can be solved with the optimization
solvers CPLEX, GLPK, Gurobi and Symphony via the statistical package de-
signmatch for R [Zubizarreta (2012), Zubizarreta and Kilcioglu (2016)].

2.2. Matching structures. In its simplest form, a matched sample is assem-
bled by pairs of treated and control units selected from larger reservoirs. As in
our buildings study, the reservoir of controls is often much larger than the one of
the treated units, and it is feasible to match more than one control to each treated
unit. One possible way of doing this is by matching with a fixed 1 : κ ratio, and
either matching each treated unit to κ controls or not matching it at all. A more
flexible structure is a variable 1 : κ ratio, in which each treated unit is matched at
most to κ controls (if matched at all). The most flexible structure is matching with
a one-to-many/many-to-one structure or, loosely speaking, full matching [Hansen
(2004), Rosenbaum (1989)]. (In rigor, the term full match refers not only to a one-
to-many/many-to-one structure, but also to an optimal design for an observational
study in which all the treated units are matched to controls forming groups as sim-
ilar as possible in terms of a summary of the covariates, s(x); see Section 10.3.6
of Rosenbaum (2002) In this sense, a one-to-many/many-to-one matching struc-
ture always dominates a many-to-many structure [Rosenbaum (1991)].) We denote
the one-to-many/many-to-one structure as 1 : κC/κT : 1, where κC is the maximum
number of control units matched to each treated unit, and κT is the maximum num-
ber of treated units matched to each control. These different matching structures
are illustrated in Figure 2 below.

It is desirable to extend cardinality matching to matching with a variable one-
to-many or a one-to-many/many-to-one structure, but a question that arises is how
to define the size of the matched sample with these flexible matching structures.
Naturally, five 1 : 1 matches of green and nongreen buildings [exemplified in Fig-
ure 3(a)] should count more than two 1 : 2 matches plus one 1 : 1 match [Fig-
ure 3(b)], and this, in turn, should count more than one 1 : 5 match [Figure 3(c)].
Although the first and second matchings have the same number of different con-
trols, in the second matching there are only two different treated units, and so,
subject to the same constraints on covariate balance, the first matching should be
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FIG. 2. Different matching structures.

preferable. Intuitively, there is more information in the first match. In the follow-
ing section we formalize this notion using the concept of information content of a
matched sample for a difference-in-means effect estimator.

2.3. Information content of a matched sample. Let i ∈ I = {1,2, . . . , I } index
the set of matched groups and j ∈ Ji = {1,2, . . . , Ji} index the set of units (in
our study, buildings) within each of these matched groups. Using this notation, for
example, in Figure 2(a), Ji = 2 for each i ∈ I and the matched groups constitute
pairs and, in Figure 2(c), J1 = 4 and J2 = 3, and so the groups form quadruples
and triples, respectively. To accommodate the more general one-to-many/many-to-
one or full matching structure, we adopt the convention that the first unit in each
group is either a treated unit and all the other units are controls, or that the first
unit is a control and all the other units are treated.

1

2

3

4

5

6

7

8

9

10

(a) 5 matches with
10 units

1

2

3

4

5

6

7

8

9

10

(b) 5 matches with
8 units

1

2

3

4

5

6

7

8

9

10

(c) 5 matches with
6 units

FIG. 3. Different matching structures with the same number of matches.
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Following Haviland, Nagin and Rosenbaum (2007), we pose a simple treatment
effect model

(2.1) Yij = αi + βZij + εij ,

where Yij is the observed outcome of unit j in matched group i, αi is a group effect
for all the units in group i (this indicates there is dependence between units in each
group, but that it may be eliminated by taking differences within groups), Zij is
the treatment assignment indicator, and εij is a residual term with εij ∼ N (0, σ 2).
Here, we use model (2.1) for variance calculations to motivate our matching ap-
proach, but we do not explicitly use it for inference, as we want our inference to
be valid under more general conditions than those of the model [Tukey (1986)].
Consider the matched group difference in outcomes

(2.2) Di = Zi1

(
Yi1 −

∑
j �=1 Yij

κi

)
+ (1 − Zi1)

(
−Yi1 +

∑
j �=1 Yij

κi

)
,

where κi is the number of control units in matched group i. We can calculate the
variance of this difference and find that

(2.3) Var(Di) = σ 2
(

1 + 1

κi

)
∝

(
2

1
1 + 1

κi

)−1
.

In other words, the variance of the difference is inversely proportional to the har-
monic mean of the number of treated and control units in each matched group
[Kalton (1968); see also Hansen and Bowers (2008)]. We denote h(κ) as the har-
monic mean of the number of units in a matched group with a 1 : κ (or κ : 1)
matching ratio

(2.4) h(κ) = 2
1
1 + 1

κ

= 2κ

1 + κ
.

In this manner, in a 1 : 1 match or pair match, h(1) = 1; in a 1 : 2 match, h(2) = 4/3;
in a 1 : 3 match, h(3) = 3/2; and so on.

We call the information content of a matched sample the sum of the har-
monic means of the number of treated and control units in each matched group,∑

i∈I h(κi), that is, the sum of the Fisher information of the matched groups. In
this way, for example, the information content of two 1 : 1 matches will be 50%
larger than the information of one 1 : 2 match (1 + 1 = 2 instead of 4/3), and the
information of three 1 : 1 matches will be the same as the information of two 1 : 3
matches (1 + 1 + 1 = 3/2 + 3/2).

Another way of defining the information content in a matched sample about the
parameter β is the reciprocal of the variance of an effect estimator, for example,
the average of the group differences

(2.5) δ̂ = 1

I

∑
i∈I

(
Zi1

(
Yi1 −

∑
j �=1 Yij

κi

)
+ (1 − Zi1)

(
−Yi1 +

∑
j �=1 Yij

κi

))
.
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However, other estimators may be preferable in practice, such as regressing the
group differences in outcomes on group differences in covariates as in Rubin
(1979), or using the weighted M-statistics in Rosenbaum (2014). Also, this defini-
tion is less intuitive and more difficult to implement in practice (see Appendix B),
and has a weaker connection with cardinality matching. Clearly, if the matching
ratio given by κi is constant, then maximizing the information content is equiva-
lent to cardinality matching with a fixed 1 : κ ratio as in Zubizarreta, Paredes and
Rosenbaum (2014), and so this provides a more general framework and a richer
interpretation for cardinality matching.

For these reasons we consider maximizing the sum of the harmonic means of
the number of treated and control units in each matched group, in other words,
maximizing the sum of the Fisher information of the matched groups. Building
upon this notion of information content, in the next section we present a matching
framework and specific matching formulations within this framework that maxi-
mize the information content of a matched sample subject to covariate balance and
matching structure constraints.

3. Maximizing the information of a balanced matched sample.

3.1. A general matching framework. Let t ∈ T = {1, . . . , T } index the set of
treated units (in our study, green buildings) and c ∈ C = {1, . . . ,C} index the set of
controls (nongreen buildings) with T ≤ C. Define p ∈ P = {1, . . . ,P } as the label
of the P observed covariates. Each treated unit t ∈ T has a vector of observed
covariates xt = {xt,1, . . . , xt,P }, and each control c ∈ C has a similar vector xc =
{xc,1, . . . , xc,P }. We introduce the decision variable mtc, which is 1 if treated unit
t is matched with control c, and 0 otherwise.

In the abstract, we want to solve

(3.1) max
m

{
I(m) : m ∈ M∩B

}
,

where I(m) is the information content of the matched sample, and M and B are
matching and balancing constraints, respectively. This general formulation pursues
the goal of finding the largest matched sample—or, in general, the matched sample
with the largest information content—that satisfies certain requirements for match-
ing structure M and covariate balance B. Generally, the requirements for covariate
balance are guided by scientific knowledge of the research question at hand. Of-
ten one would match with a flexible matching structure, but, as we discuss below,
this imposes computational restraints. We now discuss the specific forms of I, M
and B when matching with a 1 : κ fixed ratio, a 1 : κC variable ratio, and, due to
space considerations, we relegate the case of matching with a flexible 1 : κC/κT : 1
matching ratio to Appendix C.
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3.2. Matching with a fixed 1 : κ ratio. Matching with a fixed 1 : κ ratio is
equivalent to cardinality matching. In (3.1), I, M and B take the forms

I(m) = ∑
t∈T

∑
c∈C

mtc,(3.2)

M =
{∑

c∈C
mtc = κ, t ∈ T if κ > 1 and

∑
c∈C

mtc ≤ κ, t ∈ T if κ = 1;
(3.3) ∑

t∈T
mtc ≤ 1, c ∈ C;mtc ∈ {0,1}, t ∈ T , c ∈ C

}
,

B =
{
−εp

∑
t∈T

∑
c∈C

mtc ≤ ∑
t∈T

∑
c∈C

mtc

(
f (xt,p) − f (xc,p)

)

≤ εp

∑
t∈T

∑
c∈C

mtc,(3.4)

mtc ∈ {0,1}, t ∈ T , c ∈ C;p ∈ P
}
,

where εp ≥ 0 is a given constant, and f (·) is a suitable transformation of the co-
variates. For example, if f (x·,p) = x·,p , then (3.4) constrains the matched samples
to have means that differ at most by εp for covariate p. Also, if f (·) is a binary
indicator for the categories of a nominal covariate p and εp = 0, then (3.4) re-
quires the matched samples to have the same number of treated and control units
within each category, but without constraining which units are matched together
[Rosenbaum, Ross and Silber (2007)]. Similar ideas can be used to balance the in-
teractions of several nominal covariates. See Zubizarreta (2012) and Zubizarreta,
Paredes and Rosenbaum (2014) for more balancing examples.

3.3. Matching with a variable 1 : κC ratio. To generalize cardinality matching
for maximizing the information content of the matched sample with a variable
1 : κC matching ratio, we introduce a new decision variable nt , the number of
control units that treated unit t is matched to, which is bounded above by κC . Then
problem (3.1) becomes

I(m,n) = ∑
t∈T

h(nt ),(3.5)

M =
{∑

c∈C
mtc = nt , t ∈ T ;nt ≤ κC, t ∈ T ; ∑

t∈T
mtc ≤ 1, c ∈ C;

(3.6)

mtc ∈ {0,1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T
}
,

B =
{
−εp

∑
t∈T

h(nt ) ≤ ∑
t∈T

h(nt )xt,p
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− ∑
c∈C

(∑
t∈T

mtc

h(nt )

nt

)
xc,p ≤ εp

∑
t∈T

h(nt ),(3.7)

p ∈P,mtc ∈ {0,1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T
}
.

Here, we let f (x) = x for mean balance. Note that, by using transformations
of the covariates, it is possible to balance other statistics besides means [e.g., by
mean balancing indicators for the quantiles of x in the treated units, it is possible
to approximately balance its marginal distribution; see Zubizarreta (2012) for de-
tails]. Also, note that h(κ) is an increasing, convex transformation of κ ; that is, h(κ)

increases as κ increases at a decreasing rate. However, this optimization problem

has the expressions h(nt ) and mtc
h(nt )

nt
which are not linear in mtc and nt . To lin-

earize h(nt ), we define a new decision variable m
(r)
t , which is 1 if treated unit t is

matched with at least r controls, and 0 otherwise (t ∈ T , r ∈ {1, . . . , κC−1}). This
new decision variable can be written using linear constraints as

m
(r)
t ≤ nt −

r−1∑
s=1

m
(s)
t , t ∈ T , r ∈ {1, . . . , κC−1},(3.8)

κCm
(r)
t ≥ nt −

r−1∑
s=1

m
(s)
t , t ∈ T , r ∈ {1, . . . , κC−1}.(3.9)

Here we do not need to define the decision variable m
(κC)
t since m

(κC)
t = nt −∑κC−1

s=1 m
(s)
t . Using the variables m

(r)
t , we can rewrite h(nt ) as

w
(1)
t := h(nt )

(3.10)

=
κC−1∑
s=1

(
h(s) − h(s−1))m(s)

t + (
h(κC) − h(κC−1))(nt −

κC−1∑
s=1

m
(s)
t

)
.

Hence, we can write the objective function in the linear form
∑

t∈T w
(1)
t .

The next step is to write mtc
h(nt )

nt
in linear form. For this, define

w
(2)
t := h(nt )

nt
(3.11)

=
κC−1∑
s=1

(
h(s)

s
− h(s−1)

s − 1

)
m

(s)
t +

(
h(κC)

κC
− h(κC−1)

κC − 1

)(
nt −

κC−1∑
s=1

m
(s)
t

)
,

where h(0)

0 is set to 0. The expression of interest becomes mtcw
(2)
t , which is still

not linear. To linearize it, we define the decision variable qtc = mtcw
(2)
t , which is
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equal to w
(2)
t if mtc = 1, 0 otherwise, and write

qtc ≤ mtc, t ∈ T , c ∈ C,(3.12)

qtc ≤ w
(2)
t , t ∈ T , c ∈ C,(3.13)

qtc ≥ w
(2)
t − (1 − mtc), t ∈ T , c ∈ C.(3.14)

Last, we define wc = ∑
t∈T qtc, c ∈ C, and rewrite the mean balancing con-

straints as

(3.15) −εp

∑
t∈T

w
(1)
t ≤ ∑

t∈T
w

(1)
t xt,p − ∑

c∈C
wcxc,p ≤ εp

∑
t∈T

w
(1)
t , p ∈ P .

This program is no longer a pure integer programming (IP) problem, as in cardi-
nality matching; it is a mixed integer programming (MIP) problem with consider-
ably less structure than the MIP problem solved by Zubizarreta (2012). In fact, the
constraints (3.8)–(3.15) make the program quite complicated to solve in general.

3.4. Matching with a flexible 1 : κC/κT : 1 ratio. One step further is to formu-
late (3.1) to match with a flexible 1 : κC/κT : 1 matching ratio or full matching.
Due to space constraints, this is discussed in Appendix C.

4. Description of the matches. In our study, we find the matched sample
of green and nongreen buildings with largest information (3.5) that satisfies the
matching structure (3.6) and that balances the original covariates according to
(3.7). In particular, we match with a variable 1 : κC matching ratio because each
geographic cluster has only one green building and a variable number of nongreen
buildings. We choose κC = 4 because the gains from matching with a higher 1 : 5
or a 1 : 6 ratio are not very marked assuming the same number of treated units
are matched [see Table 2 of Haviland, Nagin and Rosenbaum (2007)] and because
increasing the maximum matching ratio by one adds 2T constraints and T binary
variables to the mathematical program, making it more difficult to solve (see Sec-
tion 4.4 below). In accordance with Eichholtz, Kok and Quigley (2010), we match
green and nongreen buildings within the same geographic clusters that define the
markets. For this, we use constraint (E.1) in Appendix E, although this constraint
is not necessary for solving (3.5)–(3.7) in general.

4.1. Covariate balance. Table 1 shows the absolute standardized differences
in means of the observed covariates before and after matching with a variable 1 : 4
ratio. In the table, before matching there are a number of substantial differences,
most notably in the building classes, age (>40 years) and amenities, whereas after
matching all these differences are smaller than 0.1. Within the framework of (3.1),
we designed the matched sample to be balanced in this way.
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TABLE 1
Standardized differences in means before and after matching

Standardized difference in means

Covariate Before matching After matching

Building size 0.362 0.076
Building class A 1.005 0.096
Building class B −0.650 0.053
Building class C −0.557 −0.068
Net contract 0.127 0.020
Employment growth 0.043 0.000
Employment growth missing −0.010 0.000
Age ≤10 years 0.323 0.049
Age 11–20 years 0.400 0.034
Age 21–30 years 0.392 0.018
Age 31–40 years −0.066 −0.044
Age >40 years −0.974 −0.050
Age missing −0.150 −0.007
Renovated −0.389 0.033
Stories low −0.145 −0.066
Stories intermediate 0.032 0.046
Stories high 0.141 0.031
Stories missing −0.061 −0.014
Amenities 0.474 0.079

4.2. Information of the matched samples. Table 2 below shows the infor-
mation content or, loosely speaking, the effective samples sizes of the samples
matched with fixed 1 : 1, 1 : 2, 1 : 3 and 1 : 4 ratios, and with a variable 1 : 4 ra-
tio. With a 1 : 1 ratio or pair matching, the resulting information content is 666,
meaning that 666 buildings were paired. With fixed 1 : 2, 1 : 3 and 1 : 4 ratios, the
information content is equivalent to 757, 708 and 642 pairs, respectively, whereas
with a variable 1 : 4 ratio, it is 941. In other words, matching with a variable 1 : 4

TABLE 2
Effective sample sizes as measured by I in (3.5)

Matching structure Information or effective sample size

1 : 1 fixed 666
1 : 2 fixed 757.3
1 : 3 fixed 708
1 : 4 fixed 641.6
1 : 4 variable 940.6
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ratio produces an effective sample size 47% larger than matching with a fixed 1 : 4
ratio. This shows the gains from matching with a variable ratio.

4.3. Comparison to optimal matching. Following the suggestion of a re-
viewer, we compare our method to optimal matching as implemented in opt-
match [Hansen (2007)]. In optimal matching, we calculate the Mahalanobis dis-
tance with propensity score calipers as suggested in Rosenbaum and Rubin (1985).
For a strict comparison, in both methods we use a variable 1 : 4 matching ratio. As
a result, with optimal matching the effective sample size is smaller than with our
method (730 versus 940.6) and there are imbalances in several covariates (more
than half of the covariates exhibit differences in means larger than 0.1 standard
deviations). Arguably, covariate balance could be improved by recalculating the
covariate distances, but this would involve iteration in order to achieve covariate
balance [as described in Figure 1(a) above]. With the proposed method, the dif-
ferences in means are constrained to be at most 0.1 standard deviations by design.
However, optmatch is optimal in another important sense—it minimizes the to-
tal sum of covariate distances between matched units—and it runs in polynomial
time, so relatively large data sets can be handled quickly [Hansen and Klopfer
(2006)]. As we discuss in the following section, computation is an important as-
pect to consider in the implementation of our method.

4.4. Computation and details of the implementation. Matching with a variable
1 : κC ratio, (3.5)–(3.15), as in our study, and also matching with a flexible 1 :
κC/κT : 1 ratio, (C.3)–(C.29), as in Appendix C, have more complicated structure
than cardinality matching, mainly due to the harmonic means used in the objective
function and mean balancing constraints. Specifically, while cardinality matching
with a 1 : 1 ratio and mean balancing has T × C binary decision variables and
T + C + 2 × P constraints, matching with a variable 1 : κC ratio with harmonic
means has additional T × (κC + C) continuous decision variables and T × (2 ×
κC + 3 × C − 1) constraints after some simplifications.

Although these two matching problems are considerably larger than cardinal-
ity matching, by using optimization solvers such as CPLEX and Gurobi, it is still
possible to reach solutions with a small optimality gap in a reasonable amount of
time depending on the problem size (see Appendix D for a simulation study using
the buildings data). Nemhauser (2013) reports that algorithmic speed in solvers
such as CPLEX and Gurobi has increased 256,000 times between 1991 and 2013.
This, combined with a modest computer speedup of 1000 times, translates into the
ability to solve problems that took nearly seven years in the early 1990s to one
second today [Nemhauser (2013)]. These major improvements have been made
possible by a combination of advancements in preprocessing and heuristics for
finding good feasible solutions quickly, branch-and-bound methods to reduce the
feasible set, linear programming implementations as the basic tool for solving IP
and MIP problems, and parallel computing [Bixby and Rothberg (2007), Linderoth



MAXIMIZING THE INFORMATION OF A BALANCED MATCHED SAMPLE 2013

and Lodi (2010), Nemhauser (2013); see also Bertsimas (2014) for a related dis-
cussion and applications of MIP to statistical and machine learning].

In addition to these optimization techniques, we used exact matching constraints
on the location covariate (see Appendix E), and divided the problem into 10 sub-
problems to solve each of them in parallel. Using the R packages doParallel
and foreach [Weston and Calaway (2014)], we solved the 10 subproblems in-
dependently and simultaneously using 10 processors with a 15-minute time limit.
Among these subproblems, one gives the optimal solution within the time limit,
and the others give solutions with about a 2% optimality gap at the end of the
specified time. This computational implementation method enables us to solve this
problem under 20 minutes. It would take more than 2 hours to reach the same so-
lution if no parallel computing methods were used. At the present time, the code
that we used for the analyses is available upon request, but soon it will be available
within the package designmatch for R.

5. Economic performance of green buildings. From our balanced matched
sample, we find that green buildings have 3.3% higher rental rates per square
foot than otherwise similar nongreen buildings, with a 95% confidence interval
of [1.3%,5.5%].

To obtain these estimates, we used the weighted test statistic in Hansen, Rosen-
baum and Small [(2014); Sections 2.3 and 2.4], and, under an additive constant
treatment effect model, solved the Hodges–Lehmann estimating equation to derive
the point estimate, and then inverted the test to obtain the confidence interval [see
Chapter 2 of Rosenbaum (2002) and Chapter 3 of Lehmann (2006) for details].
Following Eichholtz, Kok and Quigley (2010), we used log rents as the outcome
variable and interpreted differences within matched groups as a percentage change
or rate. For comparison, the 3.3% estimate is moderately larger than the one of
Eichholtz, Kok and Quigley (2010), who reported that green buildings have rental
rates 2.8% higher per square foot than similar nongreen buildings (with a 95% con-
fidence interval of [1%,4.6%]). However, our estimand is not strictly comparable
to the one of Eichholtz, Kok and Quigley (2010) since they use linear regression,
in principle weighting all the observations [Aronow and Samii (2016)], whereas
we use matching, restricting the analysis to the sample with the largest informa-
tion that is balanced (in our study, these are 675 out of the 694 green buildings
available before matching).

In order to get a better understanding of the representativeness of our matched
sample, in Table 4 of Appendix F we provide a description of the samples of green
buildings before matching, after matching, and of those green buildings that were
unmatched and left out from the analyses. Overall, this sample closely resembles
that of all the available green buildings before matching, and so, in principle, these
results can be generalized to a population of buildings of similar characteristics.

Next, when conducting a sensitivity analysis to hidden biases, we find that, for
an unobserved covariate to explain away the estimated effect of 3.3%, it would
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need to simultaneously increase the odds of a building having green ratings and
of a positive difference in rent both by a factor of 1.9, and so the results are only
moderately insensitive to hidden biases [see Rosenbaum and Silber (2009) and
Hansen, Rosenbaum and Small (2014) for details of this analysis].

To interpret these results, let us remember that approximately 30% of building
operating costs are driven by energy consumption and that green buildings typi-
cally have 25% less energy use and 19% lower operating costs. Therefore, in broad
terms, savings from operating costs overcome the extra amount paid for a green
building rent if the rent to operating costs ratio is 5.75 (= 0.19/0.033) or more.
Thus, it is an economically sound decision for some companies to prefer green
buildings and pay more rent. Moreover, as Eichholtz, Kok and Quigley (2010) dis-
cuss, a small improvement on the energy use of existing buildings can also have
a big impact on the environment. In this way, companies are also willing to pay
more to “go green” for a sustainable environment.

6. Discussion. The main objective of matching in observational studies is to
balance observed covariates and thereby remove biases due to systematic differ-
ences in their distributions [Cochran (1965), Section 2.2]. As discussed in Sec-
tion 8.7 of Rosenbaum (2010), efficiency is a secondary concern in observational
studies. The explanation is that if there is a bias that does not decrease as the
sample size increases, then it tends to dominate the mean squared error in large
samples, resulting in a very precise estimate of the wrong quantity [Haviland, Na-
gin and Rosenbaum (2007)]. For these reasons, in view of the bias-variance—or,
stated differently, the balance-precision—trade-off involved in matching, we give
priority to balance over precision, and, subject to removing systematic biases by
balancing covariates, we maximize precision or, more specifically, the information
content of the matched sample.

The framework we proposed in Section 3.1 encompasses these objectives in a
general way. Within this framework, cardinality matching is a special case when
matching with a fixed 1 : κ ratio. Also, the formulations presented in Section 3.3,
and in Appendices B and C, are different methods for maximizing the informa-
tion content of a balanced matched sample. Ideally, if the outcome model follows
(2.1) and if the outcome analyses use the effect estimator (2.5), then one would
solve the matching problem in Appendix B, but, as discussed, this is a very com-
plicated optimization problem because the number of matched pairs I is also a
decision variable. If the solution to the cardinality matching problem uses all the
available treated units, then this solution also minimizes the variance of the effect
estimator (2.5). With other estimators or nonconstant variances across units, the
formulations in Section 3.3 and Appendix C may be more appropriate.7 As dis-
cussed in Section 2.3, these formulations are not only easier to implement but also

7In model (2.1), we assumed that the variance is constant across units. One way to relax this
assumption is to assume instead that the variance in the treated group is f times larger than the
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more intuitive, as they maximize the sum of the Fisher information of the matched
groups.

Building on cardinality matching, the proposed methods do not require esti-
mation of the propensity score as they directly balance the original covariates.
Nonetheless, the propensity score may be used as an additional covariate in
the balancing constraints B. In this paper we mainly discussed mean balancing
constraints, but other constraints can be implemented for distributional balance
[Zubizarreta (2012)].

Assessing common support or overlap in covariate distributions is a common
practice in observational studies to avoid extrapolating or fabricating results from
regression models that assume a particular functional form [Rosenbaum (2010),
Section 18.2; Imbens and Rubin (2015), Chapter 14]. This is typically done in two
steps: first, by trimming the sample on the propensity score and, second, by check-
ing balance. For instance, Imbens (2015) suggests dropping units with extreme
values of the estimated propensity score and then checking balance in normal-
ized differences in average covariates. As in cardinality matching, the methods
proposed in this paper directly “trim” the sample to satisfy the requirements for
covariate balance of the original covariates. To the extent that these requirements
balance the covariates adequately, these methods will avoid extrapolation by re-
stricting the analysis to the matched treated and control samples that overlap the
most (again, in the sense of information and the balance requirements).

Of course, restricting the analysis to the samples of treated and control units
that overlap will typically change the estimand. In the case that treated units are
matched to a subset of the controls, the estimand will cease to be the effect of treat-
ment on the treated and it will become a more local estimand that depends on the
sample data [Crump et al. (2009)]. In view of this limitation imposed by the data,
one way to proceed without further modeling assumptions is by describing both the
matched and unmatched samples as in Appendix F. This provides a basic under-
standing of the population to which, in principle, the results of the matched anal-
ysis can be generalized [Hill (2008); see also Traskin and Small (2011), Fogarty
et al. (2016) and Silber et al. (2015)]. Another way to proceed is by weighting the
matched samples to a target population of greater policy interest, for example, by
using methods in Hartman et al. (2015).

In cardinality matching, finding the largest balanced matched sample is fol-
lowed by rematching the pairs or groups that constitute the matched sample to

one in the control group. Then h(κ) becomes the harmonic mean of the sum of 1 and κi/f units
for each matched group. As another example, suppose that the variance in one category of a binary
covariate is f times larger than the one in the other category. Then the weighting becomes h(κi )/f

for the matched group with greater variance, therefore requiring to match f times as many groups
from the strata with smaller variance. Extending this example, there may be important strata, and
one could estimate the variance in those strata and plug in the estimates, but this would require using
the outcomes for matching. In general, if the variances vary arbitrarily, then the weights become
intractable.
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minimize their total sum of covariate distances. If these covariates are predictive of
the outcome, this rematching will reduce heterogeneity within matched groups and
therefore sensitivity to biases due to unobserved covariates [Rosenbaum (2005)].
A possible direction for future research would be to extend the proposed meth-
ods along these lines. Also, the proposed methods can be used for adjustment
in observational studies with a time-dependent treatment and time-dependent co-
variates via risk set matching [Li, Propert and Rosenbaum (2001), Lu (2005)].
Under weaker identification assumptions than “no unmeasured confounders,” the
proposed methods can also be used for treatment effect estimation with an instru-
mental variable [Baiocchi et al. (2010), Zubizarreta et al. (2013)] or a discontinuity
design [Keele, Titiunik and Zubizarreta (2015)].

7. Summary. In this paper we revisited the study of Eichholtz, Kok and
Quigley (2010) about the market performance of green buildings. To analyze the
effect of energy efficiency and sustainability on the economic returns of buildings,
we used new matching methods that take more advantage of the clustered struc-
ture of the buildings data than standard matching methods. We proposed a general
framework for matching in observational studies and specific matching methods
within this framework that simultaneously achieve three goals: (i) maximize the
information content of a matched sample (and, in some cases, also minimize the
variance of a widely used effect estimator); (ii) form the matches using a flexible
matching structure (such as a one-to-many/many-to-one structure); and (iii) di-
rectly attain covariate balance as specified—before matching—by the investigator.
To our knowledge, existing matching methods are only able to achieve, at most,
two of these goals simultaneously. Using these methods, we obtained a larger ef-
fective sample size and found that green buildings have 3.3% higher rental rates per
square foot than otherwise similar buildings without green ratings [a moderately
larger effect than the one previously found by Eichholtz, Kok and Quigley (2010)].
Thus, besides being environmentally responsible, it is also an economically sound
decision to pursuel environmentally sustainable building practices.
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SUPPLEMENTARY MATERIAL

Supplement to “Maximizing the information content of a balanced matched
sample in a study of the economic performance of green buildings” (DOI:
10.1214/16-AOAS962SUPP; .pdf). In this on-line supplement, we include the ap-
pendices to “Maximizing the information content of a balanced matched sample
in a study of the economic performance of green buildings” by Kilcioglu and Zu-
bizarreta (2016).

http://dx.doi.org/10.1214/16-AOAS962SUPP
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