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Abstract

This article provides a stochastic valuation framework for bond and
stock returns that builds on three dicerent pricing traditions: ad¢ne models
of the term structure, present-value pricing of equities, and consumption-
based asset pricing. Our model provides a more general application of the
a¢ne framework in that both bonds and equities are priced in a consistent
fashion. This pricing consistency implies that term structure variables help
price stocks while stock price fundamentals help price the term structure.
We illustrate our model by considering three examples that are similar in
spirit to well-known pricing models that fall within our general framework:
a Mehra and Prescott (1985) economy, a present value model similar to
Campbell and Shiller (1988), and a model with stochastic risk aversion
similar to Campbell and Cochrane (1999). The empirical performance of
our models is explored, with a particular emphasis on return predictability.



1 Introduction

The pricing of bonds and equities has mostly evolved along separate lines in the fi-
nance literature. Models of the term structure of interest rates are typically silent
on the pricing of equities, while models of equity pricing are typically silent on the
pricing of bonds. This state of affairs is quite surprising from both a theoretical and
empirical vantage point. Given that there is no obvious reason for market segmenta-
tion between bond and equity markets, an internally consistent model should use one
pricing model for both asset classes. Variables that determine the pricing of equity
should also determine the pricing of bonds, and vice versa. For example, dividend
growth rates should help determine the term structure, while the term spread should
help determine the equity return.

The literature on the term structure of interest rates, evolving out of Cox, Inger-
soll and Ross (1985), has been widely applied to the pricing of bonds and interest
rate dependent derivative securities. Much of the most widely-known term structure
models fall into what is known as the affine class, a particularly tractable class of
models in which the yield on any zero coupon bond can be written as an affine func-
tion of the set of state variables.! Equity pricing models have typically fallen into
two classes: present value pricing models and equilibrium pricing models. Present
value models, such as the famous Gordon model, discount an infinite stream of divi-
dends using an exogenous discount rate. Dynamic versions of such models allow for
complex dividend processes and a time-varying discount rate.? Equilibrium equity
pricing models, such as Lucas (1978) and Mehra and Prescott (1985), allow for utility
maximization, production opportunities, and market clearing to result in equilibrium
equity prices.

Empirically, there is substantial evidence that matching equity and bond return
moments simultaneously might provide very powerful tests. From the equity premium
literature [see especially Weil (1989)], it is apparent that the equity premium puzzle is
as much a low risk-free rate puzzle as it is a high expected stock return puzzle. From
the work of Fama and French (1989) and Keim and Stambaugh (1986), we know that
there are common predictable components in bond and equity returns.

This paper makes several contributions to the asset pricing literature. First, we
formulate a general pricing model, consisting of a pricing kernel and a set of state
variables. The specified dynamics imply a set of arbitrage-free asset prices for bonds
and equities. The term structure is affine, whereas equity price-dividend ratios are
equal to the sum of exponentials of an affine function of the state variables. Impor-
tantly, a subset of the set of state variables represents observable economic factors

'Examples include the models of Vasicek (1977), Cox, Ingersoll, and Ross (1985), Ho and Lee
(1986), and Pearson and Sun (1994). Duffie and Kan (1996) provide necessary and sufficient con-
ditions under which an affine term structure model is consistent with the absence of arbitrage. Dai
and Singleton (2000) provides a detailed empirical analysis of affine term structure models.

2See Campbell and Shiller (1988), Bollerslev and Hodrick (1996), Cochrane (1992), and more
recently Ang and Liu (1999), Bakshi and Chen (1998) and Berk, Green and Naik (1999).



such as dividend growth and inflation. This will be critical to both the interpretation
and empirical identification of the model. The remaining state variables represent
unobserved (or difficult to measure) factors such as productivity shocks or stochastic
risk aversion.® The pricing kernel dynamics encompass a very wide class of models,
both models with exogenous discount rates, and models where the pricing kernel is
fully determined by the first order conditions of an equilibrium model, and hence rep-
resents an intertemporal marginal rate of substitution. A similar approach is found in
the SAINTS model of Constantinides (1992), which provides a continuous-time pric-
ing kernel framework that can be supported in equilibrium. However, the SAINTS
model is used only to price bonds, and the equilibrium links are not explored.

Our second contribution is that our general model makes precise the nature of
equilibrium restrictions of a large class of models. Specifically, the pricing model
embeds equilibrium models of equity pricing as well as dividend discount models
with exogenous discount rates. These features are made clear as we work through
specific examples of the general model using a three factor model. For example, when
we illustrate our model with a prototypical example of a dividend discount model
with a time-varying exogenous discount rate [e.g., Campbell and Shiller (1988)], we
demonstrate that a special case of the model is an equilibrium economy in the Lucas
(1978) and Mehra and Prescott (1985) tradition. We also demonstrate how our
framework embeds a consumption-based asset pricing model similar to Campbell and
Cochrane (1999), which permits cyclical variation in risk aversion, and thus in the risk
premia on risky assets. Such models provide a potential explanation for the observed
empirical phenomenon that equity risk premia are larger during economic downturns
than during economic expansions.

Our third contribution is to examine the empirical performance of three versions of
the model. We estimate the structural model parameters using GMM [Hansen (1982)],
in such a way that each model matches salient features of the fundamental processes
(dividend growth rates and inflation), the short rate process, and the equity premium.
Note that, in order to compare our model with present value models, we do not use
consumption growth rates to calibrate it to the data. We then over-identify the model
looking at other moments for equity and bond returns and their covariance. However,
our main focus is on return predictability. We investigate endogenous predictability
by computing variance ratios, regression coefficients of returns on instruments such as
dividend yields and term spreads, and by characterizing the conditional risk premiums
implied by the models. Finally, we revisit the excess volatility puzzle by computing
the variability of price-dividend ratios implied by the various models.

Our paper is organized as follows. Section 2 presents the general affine model
structure and the pricing of bonds and equities. In Section 3, we specialize to a
three-factor variant of the model and provide specific examples that fall within the
affine framework. The models provided encompass both equilibrium and exogenous

3 Ang and Piazzesi (2000) also explore the importance of economic factors in affine term structure
models.



discounting models, and the connections between the two modeling approaches are
made clear. Section 4 discusses the estimation strategy for the three-factor models,
presents parameter estimates and compares some unconditional moments implied
by the models with the data. Section 5 examines the endogenous predictability of
returns. Given the increasingly worrisome evidence on statistical biases in small
samples, we are careful to distinguish small sample from population behavior. Section
6 concludes.

2 The General Model

In this section we specify the dynamics of the underlying sources of uncertainty in the
economy and of the pricing kernel process. We then use these specifications to derive
the pricing equations for bonds and equities. The resulting pricing equations will fall
within an affine class of models. That is, the term structure of interest rates will be
equal to an affine function of the underlying state variables. Similarly, the pricing
structure of equities will fall within what one might refer to as an “exponential-affine”
class. Specifically, the price-dividend ratio will equal a sum of elements, where the
log of each element is an affine function of the underlying state variables.?

Consider an economy with N state variables that summarize the fundamental
uncertainty of the economy. Let Y; be the N-dimensional vector of state variables,
with Y, = (Y14, Yoy, ..., Yn¢). A subset of the N state variables represents observable
economic factors such as dividend growth and inflation, while the remaining state
variables represent unobserved (or difficult to measure) factors such as productivity
shocks or stochastic risk aversion. One of the elements of the vector Y; will always
represent real dividend growth, Ad;, and one element will always represent inflation,
7. Thus, if D; represents the real level of aggregate dividends and A; represents the
price level, then Ad;1 = In(Dyy1/D;) and 741 = In(As1/A¢). The additional state

variables will vary under different specifications. Let 11 - i1 denote the function defined
by:
VY Y0 >0
¥ = { 0 ifY;, < 0. (1)
Let F; denote the N x N diagonal matrix with the elements (i1 YigmnYosn, oouYng )

along the diagonal. Writing this in matrix form,
Ft:(||Y1,t||,||Y2,t||,...,||YN,t||)/®I, (2)

where I is the identity matrix of order N, and ® denotes the Hadamard Product.’

4Our framework does not (nor is it intended to) represent the most general structure for pro-
viding affine bond yields and exponential-affine price-dividend ratios. Our framework is, however,
sufficiently general to embed many well-known asset pricing models, as illustrated in this paper. For
a more general affine framework, one should refer to Duffie and Kan (1996).

5The Hadamard Product operator denotes element-by-element multiplication. We define it for-



The dynamics of Y; follow a simple, first-order vector autoregressive (VAR) sto-
chastic process:

Yip1 = p+ AY; 4+ (ZpF + 3u) €141, (3)

with ;11 ~ N(0, I) representing the fundamental shocks to the economy. The time ¢
conditional expected value of Y, is equal to u + AY;, where p is an N-dimensional
column vector and A is an N x N matrix. The time ¢ conditional volatility of Y;
is represented by X pF; + Xy, where Yr and Xy are N X N matrices representing
sensitivities to the fundamental economic shocks.

In essence, the dynamics of Y; represent a discrete-time system of a multidimen-
sional combination of Vasicek and square-root processes. For example, if A and X p
are diagonal, and X5 = 0, Y; would contain N square-root processes. Similarly, if A
and Yy are diagonal, and ¥ = 0, Y; would contain N AR(1) processes.

Given the specification of the dynamics of Y;, the pricing model is completed by
specifying a pricing kernel (or stochastic discount factor). The (real) pricing kernel,
M, is a positive stochastic process that ensures that all assets ¢ are priced such that:

1=E[(1+ Ritr1) Miya], (4)

where R; ;11 is the percentage real return on asset ¢ over the period from ¢ to 41, and
E; denotes the expectation conditional on the information at time t. The existence
of such a pricing kernel is ensured in any arbitrage-free economy. Harrison and Kreps
(1979) derive the conditions under which M; is unique. Let m; 1 = In(M,1).

The log of the real pricing kernel is specified as:

mH1=Mm+r;m+(zhgq+zg)&H, (5)

where I'y,, X, p, and X, are N-dimensional column vectors, and p,, is a scalar.

In order to price nominally denominated assets, we must work with a nominal
pricing kernel. Let the nominal pricing kernel be denoted by 7,,1. The nominal
pricing kernel is simply the real pricing kernel minus inflation: ;1 = myy1 — mepq.°

mally in the Appendix. A useful implication of the Hadamard Product is that if Y;, > 0, Vj, then
FF, =Y, 01
This is simple to demonstrate. Let P, denote the real price of an asset at time ¢, and let Dy,
denote its real payout at time ¢t + 1. Let A; denote the price level. The nominal price of the asset
is simply PA; = PtN and its nominal payout is Dy11A¢p1 = Dﬁl. Using the real kernel, the real
price may be expressed as:
P, = E; [(Peg1 + Dig1) Miya] .

Rewriting the above expression:

Ay

PA, = E, [(Pt+1At+1 + Dyy1Mi41) (A_1> ]Wt+1]
t+

A
e ot (305 v

Py



In order to ensure that the specification of the process Y;;; and m;;; permits a
well-defined system of pricing equations, as well as ensuring that the resulting pricing
system falls within the affine class, we impose the following four restrictions on the
processes:

SpRYy = 0, (6)
S Fim = 0,
DI 05 I 0,
SrFYm 0.

The main purpose of these restrictions is to exclude certain mixtures of square-root
and Vasicek processes in the state variables and pricing kernel that lead to an in-
tractable solution.

We can now combine the specification for Y; and m;,; to price financial assets.
The details of the derivations are presented in the Appendix. It is important to note
that, due to the discrete-time nature of the model, these solutions only represent
approximate solutions to the true asset prices. The nature of the approximation
results from the fact that if one of the state variables can become negative, and if the
specific model allows for a stochastic volatility term containing a square-root process,
we must rely on the 1 - 11 function to make the square-root well defined. When the
state variable is then forced to reflect at zero, our use of the conditional lognormality
features of the state variables becomes incorrect. However, this effect is minimized
in the following ways. First, the square-root process is not always utilized in some of
the standard applications of our model, in which case the pricing formulas are exact.
Second, even in the case in which a state variable is forced to reflect at zero, reasonable
parameterizations of the model can ensure that the likelihood of such a reflection is
quite small. Finally, the exact solution can be computed numerically (for example,
using quadrature), which would overcome the analytical approximation, but would
also introduce approximation error. For these reasons, we have decided to present
the simple affine solutions both to ensure the tractability of the results, and because
of the close approximation in most instances.

Let us begin by deriving the pricing of the nominal term structure of interest
rates. Let the time t price for a default-free zero-coupon bond with maturity n be
denoted by P, ;. Using the nominal pricing kernel, the value of P, ; must satisfy:

Pt = By [exp (Myy1) Poo1,041] (7)

where 1M1 = my 1 — m4 is the log of the nominal pricing kernel. Let p,,; = In(P, ).
The n-period bond yield is denoted by v, where y,,; = —p,/n. The solution to

Thus,
- (P2

PtN > exp(th — 7Tt+1) .



the value of p, is presented in the following proposition, the proof of which appears
in the Appendix.

Proposition 1 The log of the time t price of a zero-coupon bond with maturity n,
Pnt, can be written as:
Pnit = Gn + AnY;’ (8)

where the scalar a,, and the N x 1 vector A, satisfy the following system of difference
equations:

G = an1+ iy, + %z;nzm b (Ans —en) [+ Sl )
% (Ap1— ) Sy (An 1 —ex),

A =T + % (Zms © Bmg) + (A1 — €x) [A +3,, 0%k
TR D AV e A —

with ag = 0, Ay = (0,0,...,0), and where e, is an N x 1 matriz with a 1 in the
position that m; occupies in the vector Y;, and zeroes in all other positions.

Notice that the prices of all zero-coupon bonds (as well as their yields) take the
form of affine functions of the state variables. Given the structure of Y;, the term
structure will represent a discrete-time multidimensional mixture of the Vasicek and
CIR models. The process for the one-period short rate process, ry = y; 4, is therefore
simply —(a; + A}Y;). Note that the pricing of real bonds (and the resulting real term
structure of interest rates) is found by simply setting the vector e, equal to a vector
of zeroes.

Let Rfm 41 and rfm 41 denote the nominal simple net return and log return, respec-
tively, on an n-period zero coupon bond between dates ¢ and ¢ 4+ 1. Therefore:

Rg,t—&-l - eXp(an—l — Gy + A;_1Yt+1 — A’n}/t) -1, (10)
be,t+1 = Qp—1 — Ay + A;,1E+1 — Aln}/;

We now use the pricing model to value equity. Let V; denote the real value of
equity, which is a claim on the stream of real dividends, D;. Using the real pricing
kernel, V; must satisfy the equation:

Vi = By lexp(mig1) (Degr + Vig)] - (11)

Using recursive substitution, the price-dividend ratio (which is the same in real
or nominal terms), pd;, can be written as:
} : (12)

v oo n
pdt = Ht = Et {Z exp [Z (mt+j -+ Adt+])
t n=1 1

j=

6



where we impose the transversality condition lim FE; H?Zl exp(my4)Vien| = 0.

n—oo

In the following proposition, we demonstrate that the equity price-dividend ratio
can be written as the (infinite) sum of exponentials of an affine function of the state
variables. The proof appears in the Appendix.

Proposition 2 The equity price-dividend ratio, pd;, can be written as:

o0

pdi =Y exp (bu+ BLY:) (13)

n=1

where the scalar b, and the N x 1 vector B,, satisfy the following system of difference
equations:

R %E;nEm + (Bpo1 + €4) [1t+ S m] (14)
% (Bp_1+ €d) SuSy (Bu 1+ €4)

B, =TI, + % (Zmns © Bmg) + (Boo1 + €q) [A + 5,0 SF
+% S (Bnot +€q) © X5 (B + ed)}l ,

with by = 0, By = (0,0,...,0), and where eq is an N x 1 matriz with a 1 in the
position that Ad; occupies in the vector Yy, and zeroes in all other positions. Given
the expression for pdy, the real value of equity can simply be written as V; = Dy - pd;.

Comparing Equations (9) and (14), the stock price can be seen as the current
dividend multiplied by the price of a “modified” consol bond. The “modified” consol
bond has the following characteristics. First, the consol’s coupons are real, and hence
the inflation component characterized by the e, term does not appear. Second, the
payoffs each period are stochastic depending on how much dividends grow relative to
Dy, hence the appearance of the e; term.

Let R ; and r{, ,; denote the nominal simple net return and log return, respec-
tively, on equity between dates ¢t and ¢ + 1. Therefore:

> exp (bn + B;YtH) +1 . (15)
Y1 exp (bn + BY))

> oo exp (bn + B;LYtH) +1
> 1 €xp (bn + B,Y;) '

f-s—l = eXP(ﬂ'tH + Adt+1) <

7";_1 = (7Tt+1 + Adt+1) + In (



3 Examples of Affine Models

This Section provides a three-factor version of the general model developed in Section
2. We use this simplified framework to investigate two concrete examples within the
three-factor model. In the first, the pricing kernel is exogenously specified; a feature
quite common in the literature. In fact, we construct the economy to be as close
in spirit to the modeling framework of Campbell and Shiller (1988) as possible. In
the second, the pricing kernel is endogenous and reflects the intertemporal marginal
rate of substitution of a representative agent with power utility, appended by slow-
moving external habit as in Campbell and Cochrane (1999). This endogeneity not
only imposes parameter restrictions across model equations and ties the parameters to
structural parameters, but also restricts which stochastic processes enter the kernel
as a function of the specification of the state variables in the economy. To show
the tight link between exogenous discount rate models and models motivated by an
equilibrium, we show how a particular version of the Campbell - Shiller economy can
be interpreted as a particular parameterization of the representative agent endowment
economy in Lucas (1978) and Mehra and Prescott (1985).

3.1 A Three-Factor Pricing Model

Here we specialize the general model presented in Section 2 to a three-factor model.
Two of the factors are observable, fundamentals processes that are necessary to price
nominal bonds and stocks: inflation 7; and dividend growth rates Ad;. We will make
inflation as neutral as possible in our examples, modeling it as a square root process
with no effect on the real pricing kernel and independent of the other state variables.
The implication of this modeling choice is that the Fisher hypothesis will hold in all
our economies. The dividend process is richer and interacts with a third state variable.
The third factor X; is an unobservable state variable, such as a productivity shock or
stochastic risk aversion. Whereas at this point the role and interpretation of this state
variable remains unclear, in all the examples we will present it will provide us with
the necessary degrees of freedom to match salient features of the short rate process.
The three-factor model is summarized as follows:

}/tl = (Adt,Xt,ﬂ't) (16)

mt+1 = Mm + )\dAdt + )\xXt + SdEerl + |:I * Sz + (1 - I) * Uz V Xt:| Eterl

Adt—l—l = Ug + pdAdt + ngt + O'df‘:thrl + |:I cOde + (1 — ]) * Vdx Xt:| €tm+1

Xi1 = py + gy + p, X, + [1 ot (1—1)- vm\/Xt} e
Tip1 = Mg+ PrTe + UW\/W_tgng
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where €,"N(0,1), and where the indicator variable I takes the value 1 for the ho-
moskedastic version of the model, and 0 for the heteroskedastic version of the model.
The restricted VAR structure is necessary to ensure inflation neutrality. The poten-
tial heteroskedasticity in the model (if I = 0) is entirely driven by the X; process. In
the Appendix we demonstrate that this model falls within the general affine class. In
addition, the three-factor model satisfies all of the restrictions listed in (6).

The solution for the pricing of bonds in the three-factor model is as follows:

Pngt = An + BnAdt + CnXt + Dnﬂ-t: (17)
where:

Ay = Ap i iy, — oy + Buoaptg + Croipty + Do1fig (18)
+1/2(84 + Bru104)* + 1/2(83 + Bpo104z + Cr_104)?

B, = M+ B 1p;+Ch 194

Cpn = A+ Bu1ge + Croip, + (1 —1)/2(Vmz + Bpo1Vaz + Cre1v,)?

D, = —p;+ Dy 1p.+1/2(Dpy —1)%02,

with Ay = By = Cy = Dy = 0. Note that all three factors, including dividend
growth rates, are priced in the term structure. When I = 1, the model is a three
factor Vasicek (1977) model, when I = 0, the model is a discrete-time version of a
multifactor CIR model, with one factor following a square root process. The nominal
interest rate equals:

Fo= g — i+ 1/268 4 1/252) — A (19)
- [)\x + 1/2(1 - I)’U?nm] Xt + (p7r - 1/20721')7‘-15’

and the real rate of interest, i = —In {F} [exp(my,1)]}, can be written as:
= =y, +1/285 + 1/252) — MaAdy — [Ny +1/2(1 = DvZ,] Xo. (20)

Note that the nominal short rate is equal to the sum of the real short rate and expected
inflation, minus a constant term (02 /2) due to Jensen’s Inequality. The model thus
yields an “approximate” version of the Fisher equation, where the approximation
becomes more exact the lower the inflation volatility term.” In some examples below,
we will parameterize the state variable dynamics such that the X; process will be the
real rate process.

The solution for the pricing of the equity price-dividend ratio in the three-factor
model is as follows:

"The expected gross ex-post real return on a nominal one-period contract, Ey[exp(ry —my41)] will
be exactly equal to the gross ex-ante real rate, exp(rfe!).
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pdy = Zexp (an + by Ady + ¢, Xy) (21)
n=1
where:
ap = Qp1 1 My, + (1 + bnfl)/id T+ Cn—1Hy (22)

+1/2[sqa+ (1 4 bp_1)oa]> + 1/2[s2 + (1 + bp_1)0dz + Cn_104]?
bn = )\d + (1 + bnfl)pd + Cn—-19d
Cp = )\x + (1 + bnfl)gx + Cn—1Py + (1 - I)/2 [Umx + (1 + bnfl)vdx + cnflvw]2 s

with ag = by = ¢y = 0. Inflation neutrality implies that 7; is not priced in the
price-dividend ratio.

We illustrate the intuition behind the general pricing equations (17)-(18) and
(21)-(22) in the context of the example economies below. Here we introduce the risk
premium on bonds and equities. Let RP,’;t and rpflvt denote the nominal simple risk
premium and nominal log risk premium, respectively, on an n-period zero coupon
bond between dates t and ¢ + 1. These bond risk premiums can be expressed in
closed-form:

RP;;J

Ey (Ry,p41) — exp(r), (23)
{exp [— (65 + 6na Xt + Op )] — 1} exp(ry),

6n = anladsd +1 (anlo'dx + Cnflax) Sz
6711 - (]- - I) (Bn—lvdz + Cn—lvz) Umg

2
6n7r = _‘Dn—10-7|'7

TPy = Ei (rfz,t—i-l) — Tt

= 1/2[s5+1s2 — (sq+ Bnuo104)’ — I(sy + Byo104z + Coo104)?]
+1/2[(1 = DvZ, — (1 = I)(Umg + Bao1vas + Cr1v)?] X,
+ [(1 - Dn71/2)Dn71072r] T¢.

Note that Ad;,; does not enter the expressions for the bond risk premiums since all
of the heteroskedasticity in our model is driven by X; and it is this heteroskedasticity
that drives the time-variation in risk premiums.

Similarly, let RP; and rp; denote the nominal simple risk premium and nominal
log risk premium, respectively, on equity. Thus, RP} = E, (Rf +1) — exp(r¢), and
rp; = E, (rf +1) — ry. In some special cases, we will be able to provide closed-form
solutions for the nominal simple equity risk premium. To do so, note that we can
always express the conditional expected gross return on equity as:

dyy1 + 1
E (L+Riyy) = Ep |exp(mir + Adpy) (pt;—;t)] (24)

10
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3.2 An Extension of Campbell and Shiller (1988)
3.2.1 The Model

In Campbell and Shiller (1988), a linearized version of the present value model for
pricing equities is developed. Their state variables are real dividend growth and a
time-varying discount rate that they measure as the ex-post real return on commercial
paper. Their state variables follow a VAR together with the log price-dividend ratio.
The VAR is used to generate expectations of future state variables. Their model
permits the testing of a present value model with constant expected excess returns
(constant risk premium), along with a time-varying interest rate. This example is
similar in spirit, but does not rely on linearization nor using a VAR to measure
expectations. Our approach imposes more structure on the environment than does
Campbell and Shiller (1988), since we fully specify the stochastic environment and
generate price-dividend ratios that are an exact function of the state of the economy.
The unobserved state variable X; in our version of the Campbell-Shiller present
value framework will represent the real interest process. To accomplish this, we use
equation (20), and set A, = —1, and \y = s; = v, = 0. Furthermore, we do allow
for a non-zero s; and hence must put p,, = —1/2s3. This model will fall within the
homoskedastic class, and thus I = 1. In sum, the kernel process becomes:

11



Y, = (Ady, Xy, ) (25)
M = —1/28%5 — X; + sdefH

The state variables’ dynamics are as in (16) with / = 1.

A process with no innovation (s; = 0), would yield a viable pricing model where
interest rates vary over time, but where the real return on equity has no risk premium.
We assume only dividend innovations enter the kernel process. The correlation with
dividends, and hence the parameter s4, will determine the risk premium on equities
and bonds. Assuming s, = 0 implies that shocks to X; are uncorrelated with shocks
to the pricing kernel. Although we could have left s, non-zero, it would have compli-
cated the risk premium expressions and obscured the link with a the Mehra-Prescott
equilibrium model that we document below.

3.2.2 Bond Pricing

The bond pricing equations for the Campbell and Shiller economy are determined by
equations (17) through (20), with I = 1, A\, = —1, pu,, = —1/2s% and \y = s, =
Umz = 0. Note, in particular, that the equation for the real rate of interest in (20)
results in i = X;.

By examining the nominal log risk premium, rpflyt, displayed in (23), several im-
portant features of bond pricing in this model are brought out. All are a direct result
of the homoskedasticity of the model, and not a result of any parameter restriction
in this particular example. First, for a homoskedastic model (I = 1), rpf, , is equal to
an affine function of inflation, where the function depends on the term of the bond.
Thus, the nominal log risk premium for all bonds is unaffected by the current level
of dividends and the real rate. The real log risk premium will be non-stochastic.

The parameter s; plays an important role in determining the risk premium on
bonds. Inspection of (23), for the case in which I = 1, reveals that rpfm moves linearly
with sy4. Specifically, rpflvt depends on s4 only through the constant —syo4B,, 1. Since
the sign of B,_; is ambiguous, the derivative of the bond risk premium with respect
to sq cannot be signed.

3.2.3 Stock Pricing

Imposing our parameter restrictions on equations (21) and (22), the terms b,, and ¢,
appear in a particularly simple form: b, = p; + psbn-1 + gacn-1, and ¢, = g, — 1 +
gxbnfl + PrCn—1-

The effects of changes in the real rate on the price-dividend ratio are captured by
the ¢, term. There are two effects of an increase in the real rate on the price of equity.
There is a discount rate effect in which the price of equity decreases one-for-one with
an increase in the real rate, and there is a cash flow effect in which the impact of the
real rate changes on expected future cash flows is manifested in price changes. The
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cash flow effect is governed by the parameter g,. If the real rate goes up by 1%, the
conditional mean of dividend growth increases by g,. The two effects are evidenced
in the first two terms for ¢, displayed in equation (37). It is possible that g, can be
negative, leading the two effects to both serve to decrease the price-dividend ratio
and allowing for a greater variability in observed price-dividend ratios. It may in fact
be economically reasonable for g, to be negative, in which higher interest rates are
accompanied by lower future expected cash flows.®

Under certain simplifying parameter restrictions, we can derive an explicit ex-
pression for the nominal simple risk premium on equity, RF;, for this example. For
sq = 0, the equity risk premium has a simple expression:

RP} = [exp(afrﬂt) - 1] exp(ry), for s4 = 0. (26)

The equity risk premium will be positive, and move with the short rate. However,
the real equity risk premium will be precisely zero. This is intuitively clear, since
with s; = 0, the real dividend process is uncorrelated with the log of the pricing
kernel, and thus represents nonsystematic risk. In such case, dividend risk would not
be priced, and equities must yield a real expected return equal to the real rate of
interest.

For the case in which s4 # 0, but in which p; = g4 = 0, the equity risk premium
can again be derived. In this case,

RP} = [exp(o7m = sa0a) — 1] exp(rs),  for py=ga =0. (27)

The equity risk premium will be decreasing in s4. Thus, the parameter s; controls the
magnitude of both the bond and equity risk premia. Importantly, s, plays a crucial
role in determining both the bond and equity risk premia. It is indeed possible that

8Given the linear structure of the expressions for b,, and c,,, the difference equations can be solved

analytically. Let
— Pd W = Pa  9d )
gb‘(%—l) (gz pz>

Then, it is straightforward to show that

(o) =t-wru-wro

Cn
The limit effects (as n — o0) of a change in dividend growth or a change in the discount rate are

thus:
b (1=pg)pg+9a(g:=1)
o ) _ (1=py)(1=py) =92 ga
Cou 9upyH(— pdS(gm y |

(1=p,)(1=pa)—9aga

For example, when the cross-feedback effects are zero (the g terms), the ultimate impact of a change

in the dividend growth rate on the price-dividend ratio equals 3 2 ”;) and the ultimate impact of a

change in the discount rate on the price-dividend ratio equals 1_—1 Hence, if discount rates are

much more persistent than cash flows, their impact on prices will be much larger.
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sq can have opposing effects on the two risk premia; while raising s, will always lower
the equity risk premium, it may raise the bond risk premium.

3.2.4 The Mehra-Prescott Model as a Special Case of the Campbell-
Shiller Economy

Consider a simple equilibrium model in the tradition of Lucas (1978) and Mehra and
Prescott (1985). We will see that this model can be placed into the framework of a
restricted version of the Campbell-Shiller economy.’

A representative agent maximizes the expected discounted sum of a strictly in-
creasing concave von Neumann-Morgenstern utility function U:

oo

ZﬁtU(Ct)

t=0

Ey ) (28)

where C} is consumption at time ¢, 3 is a time discount factor, and F; is the expec-
tation operator conditional on all information up to time t.

In equilibrium, the consumption process C; equals the exogenous aggregate real
dividend process D;. In addition, the first-order conditions of the optimization prob-
lem ensure that the following condition holds for all assets ¢ and all time periods

t:
BU'(Dy11)

U'(De) |°
where R; ;11 is the percentage real return on asset ¢ over the period from ¢ to ¢ + 1.
Thus, as is well-known in this setting, the pricing kernel M;,; is equivalent to the
representative agent’s intertemporal marginal rate of substitution.

We shall assume that the representative agent’s utility function U has constant
relative risk aversion equal to v > 0, that is,

1 - Et (1 + R’i,t+1) (29)

Cl
UlC) = . 30
©) = 1= (30)
Therefore, we have:
My, =j3 (%>_7. (31)
D,

The full description of the economy is completed with the specification of the
dividend growth process and the inflation process. We shall assume that the dividend
growth process is driven by a productivity shock, X;:

9Bakshi and Chen (1997) develop a continuous-time version of the Lucas model that is closely
related to our Mehra-Prescott economy. Labadie (1989) also adds stochastic inflation to a Mehra-
Prescott economy, with a considerably different dividend process from ours.
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ln(ﬂ) Xy

7 + 7 + O-dngrl (32)

-0
2
Xiy1 = g+ X+ 0280y
Tl = Uy + PrTt +0x \% 7Tt8;r+1,

Adt+1 - 3 +

and therefore the log of the real kernel, m;,1, equals m;; = —77203 - X; + vsfﬂ.

Specification (32) can be seen as a special case of the Campbell-Shiller specifica-
tion. In particular, the Mehra-Prescott economy has two new parameters, 3 and 7,
and imposes the following parameter restrictions:

Sa = —0qY (33)
pg = 1/2y05+In(B)/y
gz = 1/7

Ode — pd:gd:O'

This model economizes on parameters in two ways. First, it simplifies the joint
dynamics of dividend growth and the real rate. The dividend growth process is now
driven by a productivity shock X;, but has no direct autoregressive component. The
real rate/productivity shock follows an autoregressive process. Second, cross-equation
parameter restrictions are imposed as the kernel process is fundamentally related to
the dividend growth process.

In the empirical work that follows, we will make this benchmark economy a bit
more interesting by making the real rate a square root process:

X1 = pe + Xt + 00V Xiglh (34)
This implies that the nominal rate of interest, r;, can be written as:
re =y + Xo + (pp — 1/202) m,. (35)

Whereas the real rate follows a one-factor CIR model, the nominal rate follows a
two-factor model that is similar to the continuous-time model of Richard (1978).

The nominal simple risk premium and nominal log risk premium on an n-period
zero coupon bond, RPfZ’t and rp,it respectively, can be written as:

RP,IZJ = [exp (afan,lﬁt) — 1} exp(ry), (36)

1 1
Tpiyt = —51)505_1)@ + 02Dy, (1 — §Dn_1> .
Notably, the real simple bond risk premium is equal to zero, and the real log bond
risk premium is equal to —302B2_| X,, which is proportional to the current real rate

of interest.
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The pricing of equities is greatly simplified in this framework. The expression for
¢, becomes:

1
Cp=—1+ p + ppCn1+ 1/203¢% . (37)

If the representative agent is more risk averse than an investor with log utility
(v > 1), then gp_)?; = ¢n-exp(a, + ¢, X;) will generally be negative, and thus
increases in the real rate will lower the price-dividend ratio. This is because ¢, will
generally be negative when v > 1, as long as v2 is small relative to p,. The intuition
for this result is simple. There are two competing effects of a change in the real
rate. First, an increase in the real rate leads to an increase in the expected return
on all assets, leading to a fall in the price of equity. Second, in this example an
increase in the real rate (the technology shock) also raises the conditional mean of
dividend growth, and hence, leads to an increase in the price of equity. From equation
(32), a 1% increase in X leads to a %% increase in Fy(Ad;41). This combination of
forces is apparent in the first two terms in the expression for ¢, in equation (37).
The —1 term reflects the discount rate effect, and the % term reflects the cash flow
effect.!’ For v > 1,the discount rate effect dominates the cash flow effect, and the
degree of domination will be greater the larger is 4. The parameter restrictions the
equilibrium economy imposes on the Campbell-Shiller economy will likely have severe
consequences for its empirical performance. The fact that there are two competing
effects on the price-dividend ratio will lead to a general lack of variability in the
price-dividend ratio.

It is now also straightforward to derive a closed-form expression for the equity
premium, since it is a special case of Equation (27) above with s; = —o47y. Hence,

RP} = [exp(vaﬁ +oim) — 1] - exp(ry). (38)

As would be expected, the risk premium is increasing in the degree of risk aversion
and the volatility of dividend growth.

3.3 The “Moody” Investor Economy
3.3.1 The Model

Consider an economy as in Lucas (1978), but modify the preferences of the represen-
tative agent to have the form:

= (C,—H)"T -1
EO Zﬁt( ! 11)7 ) (39)
t=0

where C} is aggregate consumption and H; is an exogenous “external habit stock”

10The remaining terms account for further effects due to the persistence in X; and a Jensen’s
inequality term.
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One motivation for an “external” habit stock is the framework of Abel (1990, 1999)
who specifies preferences where H; represents past or current aggregate consumption,
which a small individual investor takes as given, and then evaluates his own utility
relative to that benchmark. That is, utility has a “keeping up with the Joneses”
feature. In Campbell and Cochrane (1999), H, is taken as an exogenously modelled

subsistence or habit level. Hence, the coefficient of relative risk aversion equals = -

C
Ci—Hy?

zero, the consumer’s risk aversion goes to infinity. In our model, we view the inverse
of the surplus ratio as a preference shock, which we denote by Q;. Thus, Q; = Cﬁth.
Risk aversion is now characterized by ~ - @y, and Q; > 1.

The marginal rate of substitution in this model determines the real pricing kernel.
Taking the ratio of marginal utilities of time ¢ + 1 and ¢ and imposing C; = D,, we
obtain:

where (Cf%f[t) is defined as the surplus ratio. As the surplus ratio goes to

(Cira/Cy) 7
Mt = PPN ="
" ﬁ(QtJrl/Qt) !

= pexp[—VAdp1 + 7 (Xep1 — Xi)],

(40)

where X; = In(Qy).

This model may better explain the predictability evidence than the Mehra-Prescott
model. The evidence suggests that expected returns and the price of risk move coun-
tercyclically. Using the intuition of Hansen-Jagannathan (1991) bounds, we know
that the coefficient of variation of the pricing kernel equals the maximum Sharpe
ratio attainable with the available assets. As Campbell and Cochrane (1999) also
note, with a log-normal kernel:

Ut(MtH)
Ey(Mg41)

= \/exp [Vary (my1) — 1]. (41)

Hence, the maximum Sharpe ratio characterizing the assets in the economy is an in-
creasing function of the conditional volatility of the pricing kernel. If we can construct
an economy in which the conditional variability of the kernel varies through time and
is higher when @); is high (that is, when consumption has decreased closer to the habit
level), then we have introduced the required countercyclical variation into the price
of risk. Note that our previous models fail to accomplish this. The conditional vari-
ability of the nominal pricing kernel in the Campbell-Shiller economy depends on the
level of inflation, which tends to move pro-cyclically, and the conditional variability
of the real kernel was constant.

Whereas Campbell and Cochrane (1999) have only one source of uncertainty,
namely, consumption growth, which is modeled as an i.i.d. process, we embed the
“Moody Investor” economy in our three-factor model discussed in Section 3.1. The
unobserved state variable, X;, now is stochastic risk aversion. Although the intertem-
poral marginal rate of substitution determines the form of the real pricing kernel
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through (40), we still have a choice on how to model Ad; and X;. Since Q; > 1, we
model X; = In(Q;) as a square-root process. To capture the notion that stochastic
risk aversion behaves countercyclically, we allow the shocks to dividend growth and
stochastic risk aversion to be correlated, expecting this correlation to be negative.
That is, a positive shock to dividend growth is expected to reduce risk aversion as
it leads to an increase in the surplus ratio. We also allow for autocorrelation in the
dividend process.
To summarize, the economy is as follows:

mepr = In(B) —v- Adgr + v (X1 — Xy) (42)
= In(B) — v (g — ta) — Ve + V(py — 1) Xy — yoact ) + 7 (Vo — vaw) vV XeEr 4

Adpyr = pg+ pgAdy + Ud@?ﬂ + Vaz v/ Xt€i41
Xip1 = g+ pXs + v/ Xpef
Tl = Mg + ppm + O-7r\/7?t5175r+1

This model easily fits into the three-factor structure, with the parameter restrictions
f = 10(8) =7 (g — 1e)s Ad = —VPas Ao = V(s — 1), 86 = —Y0d; Vma =¥ (Vo — Vaz),
and g, = g4 = 0.

The real kernel process, my, 1, is heteroskedastic (I = 0), with its conditional
variance moving with X;. In particular,

Vari(me) = v20% + 92 (vp — va)” X (43)

Consequently, increases in X; will increase the Sharpe Ratio of all assets in the econ-
omy, and the effect will be greater the larger are 7, v,, and |vg4,|. If X; and Ad; are
negatively correlated, with vy, < 0, the Sharpe Ratio of assets will increase during
economic downturns (falls in Ady).

3.3.2 Bond Pricing

The bond pricing equations for the Moody Investor economy are determined by equa-
tions (17) through (20), noting the specifications I = 0, p,, = In(B) — v (ug — ts),
A= —YPg Ao = V(py— 1), 8¢ = —v04, and vy, = ¥ (v, — vg,). Of particular interest
is the resulting real rate of interest in the Moody Investor economy, r1*™*  which
can be written as:

ri M = —In(B) 4 (g — po) =1/ 2705 7pa A+ [y (1 = o) = 1/29° (0, — va)’] Xo.
(44)

In this model we did not parameterize the dynamics of the state variables so as to yield

a simplified interest rate process. Now, the interest rate is totally endogenous and a
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function of the dividend growth rate and stochastic risk aversion dynamics. This im-
plies that this economy may be subject to the low risk-free rate puzzle [Kocherlakota
(1996), Weil (1989)].

To understand the risk-free rate in equation (44), first consider the risk-free rate

: rcal M-P
in the standard Mehra-Prescott economy, r,“*"" " :

rea - 1
prealM-P _ —In(B) + VE(Adiya) — 572{/;(Adt+1). (45)

The first term represents the impact of the discount factor. The second term rep-
resents a consumption-smoothing effect. Since in a growing economy agents with
concave utility (y > 0) wish to smooth their consumption stream, they would like
to borrow and consume now. This desire is greater, the larger is v. Thus, since it
is typically necessary in Mehra-Prescott economies to allow for large v to generate
a high equity premium, there will also be a resulting real rate that is higher than
empirically observed. The third term is the standard precautionary savings effect.
Uncertainty induces agents to save, therefore depressing interest rates and mitigating
the consumption-smoothing effect.

The real rate in the Moody investor economy, r;**"™" equals the real rate in the
Mehra-Prescott economy, plus two additional terms:

o o 1
A T (- ) X ] = 57 (02— 200) X (46)

The first of the two extra terms represents an additional consumption-smoothing ef-
fect. In this economy, risk aversion is also effected by X;, and not only v. When X;
is above its unconditional mean, p,/(1— p,), the consumption-smoothing effect is ex-
acerbated. The second of the two extra terms represents an additional precautionary
savings effect. The uncertainty in stochastic risk aversion has to be hedged as well.
Since vg, is expected to be negative, this hedging term is negative as well.

3.3.3 Stock Pricing

The stock pricing equations for the Moody Investor economy are determined by equa-
tions (21) and (22). In this economy, the terms b,, and ¢, can be written as:

bn = =Pyt Pa+t pabn- (47)
cn = =7 (1= py) + paa-1+1/2[(1L+ bp1 — ) Vaz + (cn—1 +7) 7’1]2 :

This model provides an alternative to the preference-free Campbell-Shiller frame-
work for breaking the tight link between cash flow and discount rate effects. It is
still the case that a shock that decreases the dividend growth rate simultaneously
depresses cash flows and discount rates, which have countervailing effects on prices.
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However, there is now an additional discount rate effect that makes the cash flow ef-
fect more pronounced. Since X; and Ad, are negatively correlated, a negative shock
to dividend growth (recession) leads to higher risk aversion. Higher risk aversion
serves to lower prices and the price-dividend ratio. These effects can be seen in the
expressions for the b, and ¢, coefficients in equation (47). The direct discount rate
effect is represented by the —v - p,; term in b,,, hence when dividend growth decreases,
prices increase by 7 - p;. From the dynamics of Ad;, the direct cash flow effect would
be a decrease in the price-dividend ratio of p,;. The direct effect of the resulting
positive shock to X; is represented by the —v (1 — p,) term in ¢,. Thus, prices are
further depressed by 7 (1 — p,). The other coefficients accommodate the persistence
in the process.

4 Estimation and Asset Return Properties

In this section, we begin by outlining the general estimation methodology for the
model parameters. We then briefly discuss the data. Next, we discuss the qualitative
properties of the parameter estimates. Finally, we analyze the implied unconditional
moments of bond and stock returns under each example economy, and compare them
with those estimated from the data. Although our main examples are the Campbell-
Shiller and Moody Investor economies, we also include the Mehra-Prescott economy
as an easily recognizable benchmark.

4.1 General Methodology

The three example economies above have a very similar structure. In particular, the
two “measurable” economic factors in all three economies are inflation and dividend
growth. Moreover, all three economies have one state variable, X;, that we do not
directly measure from the data: the real rate in the Campbell-Shiller and Mehra-
Prescott economies, and the stochastic risk aversion process in the Moody Investor
economy. The state variable vector for our three economies is Y, = [Ady, X;, 7).
Now consider the vector W, = [Ady,r;, 7], recalling that 7; represents the nominal
interest rate. Let the parameters governing the state variables and pricing kernel be
represented by the vector W. The affine structure implies:

W, = c(¥) + C(D)Y,, (48)

where ¢(¥) is a 3 x 1 vector and C(¥) a 3 x 3 matrix of structural coefficients. Using
the stochastic process describing the dynamics of Y;, it is straightforward to derive a
structural VAR relation for W;:

W, = d(¥) + D(U)W,_; + C(V) (SpF,_1 + ) &, (49)
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where it is understood that the change in variables from Y; to W; is made in F;_; as
well, and:

d(¥) = C(W)u+ (I-C(VACW)] ) (D), (50)
D(U) = C(MA[C(D)] .

Since ¢; was assumed to be normally distributed with identity covariance matrix,
maximum likelihood estimation is one possibility to obtain estimates of W. For reasons
that will soon become clear, we will use standard GMM. Given the relation between
W; and Y; in Equation (48), computation of the moments of Y; leads immediately to
the moments of W;. We will restrict attention to the first two moments (given the
log-normal structure). In particular,

BY) = (I—A) ' (1)
vec[Var(Y))] = (I—A® A wee |Sp(EY] 0 D)X, +XuYy, |,
coo(Y,Y, ) = AVar(Yy).

These moments ignore the presence of the function 1 - 11 in Equations (1) - (2).
Although it is possible to derive the exact relations, they will not dramatically alter
our results as long as the mass below zero is small.

Of the examples in Section 3, the Mehra-Prescott economy is the most parsimo-
nious; it has 9 parameters whereas the Campbell-Shiller economy has 13 and the
Moody Investor economy has 12. As a consequence, it is possible to identify all the
parameters from the first and second moments of W(t), for example in an exactly
identified GMM system. Such an approach would then match some moments of the
nominal rate process exactly. Instead, we choose to work with economies that match
salient properties of dividend growth, inflation, the nominal short rate and that match
the equity risk premium. To accomplish this, we fix the critical parameter (7 in the
utility-based models and s, in the Campbell-Shiller model) in order to match the
equity premium (measured in logs) in the data and then re-estimate the remaining
parameters. Specifically, this involves using our analytical solutions to set a reason-
able initial estimate for the risk parameter, estimating the other parameter values
using the GMM and re-iterating a few times until an endogenous risk premium mean
results that is close to that in the data.!’ As we will further discuss below, matching
the equity premium in our models is not as big a challenge as is portrayed in the
equity premium literature, since we use dividend and not consumption data.

With the various economies fully parameterized, we can use Equation (48) to
recover the state variables relevant for our particular observed sample. We then
investigate other return properties predicted by the model by computing small sample

11 Alternatively, we could have appended equity moments to the set of moments to match, but
since these moments involve infinite sums the computational time is much increased.
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moments for model-implied bond and stock returns. Hence our empirical procedure
does not use population moments and thus avoids small sample problems in statistical
inference. Given the obvious stochastic singularities in all of the models, it would not
be very hard to reject them. However, it remains useful to test and examine which
moments the model can and cannot match.

4.2 Data Properties

The data inputs for this paper are annual stock and bond returns, a one-year nominal
rate, inflation, a long-term bond yield, and dividend growth rates, all for the U.S.
Most of the data are from the Ibbotson Database. We use annualized data to avoid the
seasonality in dividend payments. Both Campbell and Shiller (1988) and Cochrane
(1992) use annual data for this reason. The use of annual data also diminishes the
small mis-matches that occur, for example, in matching inflation data collected during
the month with asset price data.

To arrive at an annual dividend to be used in computing dividend growth rates
and dividend yields, Campbell and Shiller simply add the dividends paid out during
the year, whereas Cochrane measures the aggregate dividends assuming they were
invested in the market. Below, we will show the properties of dividend growth rates
using both of these assumptions. For stock returns, we use the actual total returns
with re-invested dividends.

The one-year interest rate is supplied by Ibbotson. It represents the yield on
Treasury bills with maturity closest to one year. The Ibbotson bond series uses a
one bond portfolio with a term of approximately 20 years. We define the yield on
this bond series as our long rate. Unfortunately, the yield data series only goes
back to the 1950’s. We obtain a time series of the yield on a similar bond portfolio
from statistics supplied by the Board of Governors. For the overlapping years, the
correlation between the two series is 97%.

Table 1 indicates the data sources for the time series we use and their avail-
ability. In Table 2 we analyze the time-series properties of the “state variables,”
the exogenous variables in our model and the “instruments,” the variables that are
most typically used to empirically track predictable components in returns. These
instruments include the term spread, dividend yield and nominal interest rate. In
our model, the instruments are endogenous. Note that the instruments and state
variables are mostly quite persistent time series, except for real dividend growth.
Long-term bonds on average yield about 1% more than a one-year bond investment.

4.3 Parameter Estimates

In this section we discuss the qualitative properties of the estimation results and some
important parameter values.
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4.3.1 Mehra-Prescott Economy

As indicated above, we begin by fixing v at reasonable values ranging from 2 to 10 and
re-estimate the 8 remaining structural parameters to match 9 moments: the mean,
variance and autocovariance of dividend growth, inflation, and the nominal rate of
interest. Since there is one over-identifying restriction, we can use the standard J-test
[Hansen (1982)] to verify that the fit with the moments is satisfactory. We did not
reject the restrictions for any of the parameters we tried.

Since the economy is fully parameterized, we can recover the implied state vari-
ables for the sample using equation (48). The implied real rate process is persistent
with an autocorrelation of about 0.85 (with a standard error of 0.33). Table 3 reports
the implied mean excess equity return, at different levels of v.!?> The last line in the
table reports the corresponding data moment with a GMM standard error, reveal-
ing the equity premium (in logs) to be 6.14% with a standard error of 2.40. As ~
increases, agents with greater risk aversion will value the exogenous dividend stream
less and require higher expected returns in order to hold the claim to it.

Whereas in the original Mehra-Prescott paper, the equity premium could not
be matched for moderate levels of risk aversion, our economy produces an equity
premium larger than that in the data at ¥ = 6. The main reason is the use of dividend
growth rates as the fundamental process. The variability of dividend growth is an
order of magnitude larger than the variability of consumption growth (see Table 2)
and as Equation (38) shows, the equity risk premium is directly impacted by the
product of dividend growth variability and 7. At v = 5.55, we obtain a value for the
equity premium that is indistinguishable from that of the data.'? We use that risk
aversion value and the corresponding parameter estimates for the remainder of the
analysis.

4.3.2 Campbell-Shiller Economy

For the Campbell-Shiller model, we use 12 moments to estimate all parameters except
sq4. The moments we add to the ones used in the Mehra-Prescott world are cross-
moments between dividend growth and interest rates. After some experimentation,
we find that the equity premium is almost matched at a sy value of —0.45.1* Another

12Tt is straightforward to compute population moments as well, either analytically (as in the case
of bond variables) or by simulation (as in the case of equity variables).

13Hagiwara and Herce (1997) also construct an asset pricing model using dividends. They are
able to explain the equity premium with a much lower level of risk aversion than in models using
consumption data. Burnside (1994) uses both consumption and dividend growth rates to price
equities.

14 Recall that for Pa = ga = 0, the two models are linked by sq = —7v - 04. With o4 estimated to
be 0.114 in the Mehra-Prescott estimation and 7 equal to 5.55, we deduce that s;’s in the range of
—0.5 to —0.7 should be tried. In reality p; and gq are not zero, p, is estimated to be 0.175 with a
standard error of 0.185, and g4 is estimated to be —0.035 with a standard error of 0.012. Hence,
these parameters are indeed either statistically insignificant from zero, or close to zero in magnitude,

23



parameter of interest is g,. In the Mehra-Prescott model g, was constrained by the
structure of the model to equal 1/v; here it is a free parameter. We estimate g, to
be —0.605, but it is not estimated very precisely (the standard error is 2.33). That
implies that at the estimated value, this model will likely generate more price-dividend
variability, since shocks to real rates now generate cash flow and discount rate effects
in the same direction (an increase in X; increases the discount rate, depressing prices,
but also depresses cash flows, which in turn depresses prices further). We will discuss
the magnitude of this effect below.

4.3.3 Moody Investor Economy

For the Moody Investor Economy, we attempt to estimate all parameters from the
same 12 moments that were used for the Campbell-Shiller model. For v equal to
2.6, we obtain an equity premium very close to the one observed in the data.!> The
parameters of interest here are of course the ones driving the X; process, since these
determine how much variation there will be in risk aversion and hence the price of
risk. With standard errors between parentheses, the estimates were 0.233 (0.085) for
py/(1—p,), 0.358 (0.100) for p, and 0.099 (0.114) for v,.

What are the implications of these parameter estimates? First recall that risk
aversion is stochastic in this model, equalling v();. Hence, our parameters imply a
time series of risk aversion. The average risk aversion coefficient is 3.29 and its stan-
dard deviation over the sample is only 0.17. Very high risk aversion is not required
as in Campbell and Cochrane (1999) because of the higher variability of dividend
growth. Second, risk aversion is indeed positively correlated with recessions, and
reaches its peak in the Great Depression, while still remaining below 4.0. One inter-
pretation of this behavior of risk aversion, and hence the price of risk in this model, is
the wealth-based risk premium idea of Sharpe (1990). Sharpe postulates that when
people become wealthier their risk aversion drops. This has only price implications
when it happens for society as a whole, that is, when aggregate economic growth has
been unusually high propelling wealth levels above normal levels. Third, does the re-
lation between X; and current and past dividend levels conform to a habit formation
story? It is straightforward, using the same first-order approximation as Campbell
and Cochrane, to write the log habit level as slowly decaying moving average of past

explaining why our guess for the relevant range was rather accurate.

15The estimation for this model was decidedly less smooth, and we had trouble obtaining con-
vergence, for example because autocorrelation parameters drifted into non-stationary regions. We
finally dropped two cross-moments and fixed the parameter for the unconditional mean of dividend
growth at its sample value. That yielded an exactly identified system for which reasonable parame-
ter values were obtained, but with huge standard errors. These are not so surprising since in this
model the parameters vq, and v, are hard to identify jointly. In our model, the critical sensitivity
ratio, determining how risk aversion reacts to dividend shocks, equals —vg, /v,. In Campbell and
Cochrane (1999), this sensitivity ratio is explicitly modelled as a time-varying, non-linear process.
We fixed vg, at its estimated value, as expected smaller than 0 (—0.246), and re-estimated, now
obtaining more reasonable standard errors.
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consumption, but the relation is more complex because of the presence of separate
X-shocks and the autocorrelation in consumption growth. However, Campbell and
Cochrane have more flexibility in modelling the sensitivity of the surplus ratio to
consumption shocks and they ensure that the derivative of log(habit) with respect
to log(consumption) is always positive. In our model, this condition corresponds to
Vz/Var > 1 —exp(Xiyq) for all . Although we could impose parameter restrictions
that would make this condition likely to hold, we choose to let the data “speak.” At
the current parameter values, this particular restriction is not satisfied, but it would
be if we were to drop vy, to —.40.

4.4 Unconditional Properties of Asset Returns

Table 4 reports the mean price-dividend ratio and the mean and variance of the
equity premium (in logs) for all three models. By construction, the equity premium
is matched by all three economies. The mean price-dividend ratio is similar across
the three examples at around 16.4, which is substantially lower than what is observed
in the data, where it is 25.23. One potential explanation is that the price-dividend
ratio mean in the data is upwardly biased, because of the recent trend of distributing
cash to shareholders through repurchases rather than dividends, but using the data in
Cole, Helwege and Laster (1996), such an adjustment is of much smaller magnitude.
Most noticeable about the table, is that the additional richness of the Campbell and
Shiller and Moody Investor economies leads to higher, and more realistic variability
of equity returns.

In Table 5 we look at the term structure implications of the three models. In
the data, we observe on average a positive term spread and bond premium (in logs).
Also, we observe a bond return volatility of about 8%, which is much lower than the
equity return variability, and low correlation between equity and bond returns. In the
Mehra-Prescott model, although excess bond return variability is of the right order
of magnitude compared to the data, the model generates an on average downward-
sloping yield curve and a negative bond premium. Both other models, however, do
generate positive bond premiums and they also generate more variability in excess
bond returns. Hence, we need the added flexibility of the Campbell-Shiller type
economy or the Moody Investor economy to be able to simultaneously match simple
mean and variance properties of both bond and equity returns.

A final interesting statistic to examine is the correlation between bond and equity
returns. As the final column in Table 5 indicates, the correlation in the data is quite
low (0.189), although it is not very precisely estimated. Despite equity behaving as a
consol bond in all of our economies, the role of stochastic dividends is such that the
endogenous correlation between bond returns and equity returns need not be very
high. In particular, it is even slightly negative for the Mehra-Prescott economy, but
all economies generate correlations within a two-standard error band of the empirical
estimate. The Moody Investor economy comes closest to matching the data moment
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with a bond/equity correlation of 0.10.

In Table 6, we examine whether these example models can replicate the non-
linearities in stock and bond returns. In the data, both equity and bond returns
display leptokurtosis, but equity returns are negatively skewed whereas bond returns
are positively skewed. All models generate negatively skewed equity returns as in the
data, but produce too much kurtosis in equity returns. They also match the positive
skewness and excess kurtosis in bond returns. It is important to remember that
these are small sample results. For example, log bond returns in the Campbell-Shiller
economy should be normally distributed, since we did not allow for heteroskedasticity
in the state variables. The skewness and kurtosis we see here are purely a small sample
phenomenon (as they may be in the real data).¢

5 Empirical Analysis of Predictability

This section examines the performance of the various models with respect to pre-
dictability, using a variety of measures. We compute variance ratios to measure long-
run autocorrelations in returns, we estimate univariate predictability regressions with
“yield” variables, we analyze empirical and model-based conditional risk premiums,
and finally, we compute the variability of price-dividend ratios.

5.1 Variance Ratios

In Table 7 we report variance ratios for both stock and bond returns. The variance ra-
tios observed in the data suggest some long-run persistence in bond returns (variance
ratios above 1), whereas the evidence for stocks suggests some slight mean reversion
(variance ratios below 1), consistent with the well-known evidence in Poterba and
Summers (1988). The Mehra-Prescott economy generates slightly too much persis-
tence in stock returns, and too much mean reversion in bond returns, with the latter
being significantly different from the positive sample variance ratios. In the Campbell
and Shiller world, the relative magnitudes are more realistic, in that equity returns
are much more mean-reverting than bond returns, but the model also fails to gener-
ate positive persistence in bond returns. The Moody Investor economy is the only
one that generates some weak positive persistence in bond returns, and strong mean
reversion in equity returns.

16 A5 a check, we compute kurtosis and skewness for our three example economies in population,
using a simulation of 25,000 observations. As expected, for the Campbell-Shiller economy, we
indeed find a normal population distribution for log bond returns as well as for equity returns.
Interestingly, the dramatic excess kurtosis and negative skewness for equity returns generated by
the Mehra-Prescott economy are not present in the population moments. Hence, the negative
skewness observed in equity returns can be matched in an economy which in population generates
symmetric equity returns. The extreme realizations of dividend growth during the Depression years
are the likely cause of this phenomenon.
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It is important to realize that variance ratios are biased downward in small samples
and that the asymptotic standard errors we use to compare data with model moments
may not be appropriate in our small sample. Nevertheless, both are based on the
same small sample and hence the bias in both computations may be similar.!”

5.2 Univariate Predictability Regressions

To examine linear predictability, we focus on two measures of “yield” as predictive
instruments: the dividend yield in excess of the nominal interest rate [see Harvey
(1991)], and the long-term yield in excess of the short rate (the term spread).!®

The univariate regressions in the data, reported in the last row of Table 8, provide
weak evidence of predictability in the stock return equation. Both an increase in the
term spread and the dividend yield indicate a higher risk premium on equity. Whereas
the excess dividend yield fails to predict the future stock return significantly at the
10% level, the term spread coefficient is significantly different from zero at the 10%,
but not the 5% level. The sign and magnitude of the coefficients are similar to the
coefficients found in previous studies. One reason for the weak predictability results
is the annual data frequency, as most predictability studies use monthly data. In
addition, the literature has typically found stronger evidence of predictability for
longer-horizon returns.

The univariate bond return regressions reveal that the dividend yield does not
seem to predict bond returns. However, the coefficient is positive, as it was in the
stock return equation. The term spread is a very strong predictor of excess bond
returns. This result is very closely related to one of the long-standing puzzles in the
term structure literature. Campbell and Shiller (1991) point out that the yield spread
provides the wrong prediction for changes in future long rates relative to the prediction
implied by the Expectations Hypothesis. In particular, when one regresses the change
in the long rate multiplied by the duration of the bond onto a constant and the yield
spread, one finds significantly negative coefficients that become more negative for
longer maturities. Changing signs in the regression and adding the yield spread, the
dependent variable becomes an excess bond return. The regression coefficient that we
find is then approximately one minus the regression coefficient in the Campbell-Shiller

17To examine the effect of small sample biases, we also compute the population variance ratios
implied by the three models (not reported). For the Mehra-Prescott economy, the variance ratio for
equity returns is severely biased downward in small samples, but the bond return variance ratios
remain close to the small sample values. The same is true for the Campbell-Shiller economy where
equity returns in population are also slightly positively correlated. Hence, both economies fail to
generate both in population and in small samples persistence in bond returns. The exception is the
Moody Investor economy where in population variance ratios are well over 1.0 for bond returns.
Moreover, equity returns show some weak mean reversion in population.

18Practitioners often view these relative yields as indications of fundamental value and use them
in tactical asset allocation models. Although we do not focus on them, univariate regressions of
both bond and stock returns on inflation and nominal interest rates typically yield insignificant
coefficients.
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regression. The link is not exact, since we use a coupon bond, whereas Campbell and
Shiller use continuously compounded zero coupon rates. Recent research by Bekaert,
Hodrick and Marshall (1997), among others, suggests that this empirical finding may
constitute a serious challenge for any model of risk.

The slope coefficients implied by the models are reported in Table 8. It is re-
markable how well the three models seem to capture the (weak) predictability in the
data. Of the 12 coefficients displayed in the table, only one (equity on term spread
in the Campbell-Shiller economy) has the wrong sign, and only one coefficient is not
within two standard errors from the sample moment (the bond return on term spread
regression in the Moody Investor economy).

One possibility is that the good performance is driven by small sample effects.
That is, since all of these regressions feature rather persistent regressors, the coef-
ficients will be biased in small samples [see Stambaugh (1986)]. Hence, if our the-
oretical economies generate persistent term spreads and dividend yields, that may
be enough to obtain similar regression results as in the data, even though there is
little true predictability in population. We checked this by deriving population re-
gression coefficients through simulation. For the Mehra-Prescott economy we find
that the population coefficients are uniformly smaller than the small sample regres-
sion coefficients, the largest being the bond return on the term spread, yielding a
slope coefficient of 0.313 (versus 2.137 in the data). Not surprisingly, the bond re-
turn regression coefficients are essentially zero in the Campbell-Shiller economy as we
know there is no time-variation in the bond premium in this model. The other slope
coefficients are similarly small. Although the Moody Investor generates the highest
positive regression slopes that seem most consistent with the data, the population
slopes are small. In fact, the regression slope of excess equity on term spreads is even
negative. Essentially, the Moody Investor economy has a channel to generate sub-
stantial time-variation in risk premiums, but overall the price of risk is very smooth.
Given the observed state variables during our sample (which includes the Depression
years, and some major recessions in the seventies and eighties), the effect on measured
predictability is, however, rather substantial.'?

5.3 Conditional Risk Premiums

To potentially gain more power, we also produce an alternative test of the performance
of the various models with respect to predictability. Using the expressions for risk
premiums on bonds and stocks in Equations (23) and (24), we can create unexpected
returns predicted by the various models:

ul(t+1) =R (t+1) - B[R/ (t+1)|I(t)]  with j = s,b. (52)

19 Analogously, Bekaert, Hodrick and Marshall (2000) were also only able to explain the deviations
from the Expectations Hypothesis by combining time-varying term premiums and small sample
problems. As is the case here, term premiums in population were small and showed little variation.
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If the model captures all relevant information about time-variation in expected re-
turns, this unexpected return should be orthogonal to any pre-determined set of
variables. We use as the instrument set a constant, the dividend yield, the term
spread and also the nominal interest rate, since our closed-form solutions often pre-
dict a particular relation between risk premium and the nominal rate. In constructing
the test, there are two sources of sampling error we have to take into account.

The first source arises from the small sample used in computing the moments
themselves, and the second source is the uncertainty surrounding the true structural
parameters. For a particular pre-estimated parameter configuration, we present a
GMM-based predictability test taking both sources of standard errors into account.
The predictability test is described in the Appendix.

This test is carried out in Table 9. The results are uniform across the three
models. There is not enough power to reject the null that the model’s unexpected
equity returns are not predictable by the instruments, but for bond returns the null is
rejected for all three models at the 1% level, with the test statistic value being lowest
for the Moody Investor economy.

Table 9 also reports some characteristics, such as the minimum, maximum, mean,
and volatility of the (gross) bond and equity return premiums implied by the model.
There are no counterparts to these in the data. A naive approach to modeling ex-
pected returns would be to simply use the linear projections implied by the regression
evidence. The last line reports some characteristics for the fitted values of a regression
of returns onto our two yield instruments. However, the risk premiums obtained in
this way seem excessively variable and often become negative. Generally, the model
risk premiums behave more reasonably, in that their variation is more moderate and
that equity premiums are always positive. As expected from the moment analysis
above, bond premiums are always positive in the Campbell-Shiller and Moody In-
vestor economy, but negative in the Mehra-Prescott model. It is here that the power
of the Moody investor economy to generate time-varying prices of risk shows up
most forcefully. Focussing on equity premiums, the sample variability in the other
two models is negligible, but in the Campbell-Cochrane model it is 1.88%. Our
regression-based procedure yields a variability of over 4%.

5.4 Excess Volatility Tests

Arguably the most powerful way to test for long-horizon predictability is to use the
present value model directly. Intuitively, the price-dividend ratio should predict future
dividend growth and future required rates of returns [Campbell and Shiller (1988)
and Cochrane (1992)]. Its variability in the data (see Table 10) is estimated to be 7.70
with a standard error of 0.79. The challenge for our models is to match some salient
features of bond and equity returns, whereas at the same time providing enough time-
variation in discount rates to be able to match this large variability of price-dividend
ratios.
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Table 10 reports the implied variability of price-dividend ratios. Because of the
close connection between discount rate and cash flow effects, it is not surprising to
find that the Mehra-Prescott economy generates price-dividend variability that is
much lower than in the other economies. However, the endogenous price-dividend
variability generated by all three models remains starkly low. Since we failed to
match the mean of the price-dividend ratio, and its variability will likely rise with
the mean, we also report the coefficient of variation. In the data, the coefficient
of variation equals 0.305. The models still fall considerably short of this, with the
Campbell-Shiller economy, which has no equilibrium restrictions, being the one that
comes the closest. Clearly, if we calibrate the models as we do, using dividend growth
data and a close matching of the interest rate process, the excess variability puzzle
of Shiller (1981), Kleidon (1986) and others remains.

These results generate somewhat of a puzzle. How can the Campbell-Shiller and
Moody Investor economies generate realistic equity return variability, but fail to

match price dividend ratio variability? After all, we have R}, ; = (%) exp (1 +

Ady11) — 1. Hence, if the price dividend ratio displays little variability, equity return
variability is very close to the variability of nominal dividend growth rates. This is
essentially what happens for the Mehra-Prescott economy. The equity return variabil-
ity this model generates is not much higher than that of dividend growth. However,
for the other economies, dividend variability accounts for less than 50% of the total
variability of equity returns. The remainder is price dividend ratio variability, but
the variability of equity returns is also increased by the positive correlation these
models generate between dividend growth and price dividend ratios. In the Mehra-
Prescott economy on the other hand, this variability is even less than zero for our
sample. The actual numbers for the variance decomposition are reported in the fi-
nal columns of Table 10. Intuitively, we would expect cash flows and prices to be
positively correlated, but dividends may affect the discount rate process as well, and
in an equilibrium context such as Lucas (1978), they may drive up discount rates,
reducing prices. In our parameterization of the Mehra-Prescott economy, dividend
growth is not directly priced (only X; is priced) explaining the weak link between
dividend growth and price dividend ratios.

6 Conclusion

In this paper, we have presented a stochastic valuation framework for pricing bonds
and equities. We have first shown, in a tractable fashion, how the framework embeds
a number of well-known pricing paradigms in both the term structure and equity
pricing literature. In several examples we were able to derive closed-form solutions for
equity and bond premiums. When confronted with the data, a three factor model can
simultaneously match the equity premium and equity volatility, provided that either
equilibrium restrictions are relaxed in a Campbell-Shiller like economy, or that a time-
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additive preference economy is generalized to an economy with preference shocks, as
in the Moody Investor economy. The latter two models also generate upward sloping
term structures on average, as is true in the data, but they still fail to match the
variability of price-dividend ratios present in the data. Nevertheless, we took the
data, in particular dividend growth, very seriously in our empirical exercise, despite
their noisy nature. Lewellen and Shanken (2000) argue that parameter uncertainty
can spuriously induce return predictability and price volatility even though the true
process about which investors learn does not exhibit such predictability or volatility.

The basic model is flexible enough to be extended in many directions. First, our
model has been extended to include a more generalized “external habit stock” in the
style of Abel (1999).2° Abel (1999) specifies an alternative and more general model
of “external habit,” in which the benchmark level of consumption can depend both
on current and past consumption. His model embeds both the original “catching
up with the Joneses” specification of Abel (1990) and the consumption externalities
preferences of Gali (1994). Whereas Abel derives closed-form solutions for asset prices
(bonds and stocks) under the assumption of i.i.d. consumption growth, his setup fits
within our general model and we can accommodate more general dynamics for the
state variables.?!

Second, our model has been extended in several directions to explore the effects of
dividend uncertainty on equity prices and examine the role it plays in accounting for
endogenous asymmetric volatility in asset returns (the tendency of market volatility
to rise more after bad news than after good news).?

Third, Brennan (1997) discusses how the evidence on predictability clashes with
the practice of using a static CAPM for capital budgeting. In order to generate a
time-varying discount rate, Brennan uses an empirical approach to first estimate the
joint process for short and long-term interest rates, the market dividend yield, and
the return on the market portfolio. He then performs a Monte Carlo simulation to
estimate the expected return (and discount rate) on the market portfolio over a T-
year horizon. The approach followed in this paper [and other related papers such
as Ang and Liu (1999)] allows one to create discount functions that are consistent
with predictability, change with the state of the economy, and use the information
present in the term structure. That is, the present model allows one to construct an
internally consistent model of time-varying risk premiums that follows directly from
a simple, underlying theory. Such an approach could prove quite useful in capital
budgeting applications.

Our approach has some disadvantages that provide substantial challenges for fu-
ture work. First, we do not fully specify the general equilibrium that can support the
kernel process, particularly on the monetary side. There are many ways to introduce

20This extension is available upon request from the authors.

2 However, part of Abel’s results do not assume log-normality, while ours do.

22This extension is available upon request from the authors. See Abel (1988), Campbell and
Hentschel (1992) and Wu (2000).
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money in a general equilibrium economy, but outside of putting real money balances
in the utility function, it is difficult to retain tractability. Second, the preference
structures allowed by our framework are not entirely general. An important class
of models that does not fit into our framework are models with Kreps-Porteus pref-
erences (1978) that allow the separation of risk aversion for timeless gambles from
temporal elasticity of substitution. Campbell (1993) and Restoy and Weil (1998) have
recently delivered tractable solutions for risk premiums in such models, relying on a
log-linear approximation. Third, the permissible state variable dynamics are restric-
tive and do not allow for non-linearities except through stochastic volatility of the
square root form. GARCH-type processes as in Bekaert (1996) or regime-switching
processes as in Hung (1994) and Cecchetti, Lam and Mark (1990) cannot be accom-
modated. Such processes may be necessary to match the higher order moments of
higher frequency return data.
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Appendix

In this Appendix we derive the general solutions for the pricing of bonds and equities
presented in Propositions 1 and 2. We begin by defining the Hadamard Product,
denoted by ®. The use of this operator is solely for ease of notational complexity.

Definition: Suppose A = (a;;) and B = (b;;) are each N x N matrices. Then
A® B = C, where C = (¢;;) = (a;jb;;) is an N x N matrix. Similarly, suppose
a = (a;) is an N-dimensional column vector and B = (b;;) is an N x N matrix. Then
a® B = C, where C = (¢;;) = (a;b;;) is an N x N matrix. Again, suppose a = (a;)
is an N-dimensional row vector and B = (b;;) is an N x N matrix. Then a ® B = C,
where C' = (¢;;) = (a;b;;) is an N x N matrix. Finally, suppose a = (a;), and b = (b;)
are N x 1 vectors. Then a © b = C, where C' = (¢;) = (a;b;) is an N x 1 vector.

We shall find it useful to prove several lemmas. Let ¢ be an N x 1 vector and let
a be a scalar.

Lemma 1: Vart(c/Y}H) = [(Z/Fc) ® (Z/Fc)}l Y; + C'ZHEIHC.
Proof:

Var(cYu1) = ¢ |(SrFi+ ) (SrFi + 2 | e

DS 50 YIS S 0 S UNINED 5 0 10 S T S 10 5 8 I

— dsemens, + EHE’H} ¢
= |:(EIFC) © (ZIFCH Y + Yy
where we use the conditions in (6) and the properties of the ® operator to simplify

the expression.

Lemma 2: Var (my1) = (Epr © Emf)l Y, + % Y.
Proof:

Vary(me,) = (z;ant + z;n) (z;ant + z;n)
= S B F S + 0 FiSm + 20, Fy Sy + 20,50
= 2, (Y, 0)Sm+2,5,
= (Sonf O Zy) Yo+ 250

where we use the conditions in (6) and the properties of the ® operator to simplify
the expression.

Lemma 3: Cov;(c Y11, mep1) = ¢ [(E;nf ® ZF) Y + EHEm].



Proof:

C’ovt(cIYtH,th) = ¢ |(BpF,+Xp) (E;ant + Z;n) ]

I

= ¢ |SpFF Sy + NS + SuF S + S S

I

= ¢ [Sp (Y, ® D) Sy + S

I

— ¢ (S O 3r) Vit SuTal .

where we use the conditions in (6) and the properties of the @ operator to simplify
the expression.

Lemma 4: FE, [exp (a +c Y + mt+1)] =exp (g0 +9'Y),
where:

1 ! ! 1 !
go = a+um+§§]m§]m+c(,u—l—ZHZm)—}-§c'EHEHc
7 ]_ ! ! ! 1 ! I !
J = rm+§(2mf®2mf) +c [A+(me®zp)} +§(EFc®EFC) .

Proof: By log-normality,

E,; [exp (a + cIYtH + mt+1)} = exp [Et (a + c'Yt+1 + mt+1) + %Vart (c'YtJrl + th)] .
We can first write:
E, (a +c Y + mt+1) —a+c (u+ AY) +p, + T, Y,

In addition,
Var, (clYtH + th) = Var, (CIYQH) + Var, (myy1) + 2Cov, (c'Y;H, th)

- [(Z’FC) © (E’Fc)}' Y+ SYe+ (Smy © Sp) Vi + 2 S

+2¢ | (Thy © ) Vi + ST
= IYuY e+ S 426 SuSn,

where we apply lemmas 1, 2, and 3, and the properties of the ® operator.
Thus,

I ]. I I
E; (C Yia+ mt+1) + évart (C Yian + mt+1) =go+ 9 Y



Proof of Proposition 1
The derivation begins by guessing that the solution for the log of bond prices equals:

Pt = Qn + A;Yt. (A.1)

We shall verify that the guess is indeed correct.
Under the nominal pricing kernel, the time ¢ value of an n-year bond must satisfy:

exp(pPnt) = Eilexp(ius1 + poi,e41)] (A.2)
= Lk [exp(th - e;rYtH +pn71,t+1):|

where we write the nominal kernel as the real kernel minus inflation.
Using our “guess” for the form of p,;, we can then write:

exp(pn) = Ei [exp (an_l + (A’n_l - e;r) Yii1 + mt+1)} ) (A.3)

Using lemma 4, with a = a,,_; and ¢ = (A,,_; — e,), we have:

exp(pn,t) = exp (g0 + g'Y), (A4)
with:

1, ,

go = Qn1+p,+ Eszm + (Ap1 —ex) [p+ 2uXm] (A.5)
1 , ,
+§ (Anfl - e7r) 2HEH (Anfl - e7r) )
/ / 1 ’ ’ ’
g = Tt 5 Ty © Tug) + (w1 — ) [A+ 3000 0T

]_ 7 I !
+3 [T (At = €0) © B (Apor — eﬁ)} .

Thus, p,: = go + ¢'Y, and our guess is verified by setting a,, = go, and A, = g .

Proof of Proposition 2
From equation. (12), the price-dividend ratio, pd;, can be expressed as:

pd; = %tt =F {Z exp [Z (mugj + Adyy) } . (A.6)

n=1 7j=1
Define q,,+ = E; {exp [Z?Zl (Mg + Adtﬂ-)} } =F, {exp [Z?Zl (mtﬂ- + eIdYtﬂ-)} },
for n = 1,2, .... Thus,

pdi = s (A7)
n=1



We will now prove by mathematical induction that ¢, ; can be written as:
qnt = €Xp (bn + B;LY,:) , (A.8)

where b,, and B,, are defined by the difference equations in (14).

First, we show that ¢;; = exp(m41 + e,Yi11) can be written in this affine form
as qi; = exp (bl + B’lYt). This is clear, since we can use lemma 4 by setting @ = 0
and ¢ = e4. The proposed solution holds provided:

1 7 ]. / 7
by = U, + 2Em2 +e,(p+XuX,) + EedEHEHed (A.9)
! / 1 ! ! ! 1 ! / !
Bl = Pm+§(2mf®2mf) + ey |:A+ (EmeEF)} +§ (EFedQZFGd) .

Thus, we have verified our solution for the case of n = 1.
Now, assume that ¢, 1; = exp (bn,l + B;L%Y}). We now show that ¢,; =

exp (bn + B;LYt).
} (A10

n—1

(mt+1 + edY;Jrl) + Z (mt+1+j + 6:1Yt+1+j)] }

i=1

n

> (mt—H + edYH-J)

Lj=1

qnt =

—

n—

exp mt+1 + edYtH) - exp ( (mt+1+j + €IdYt+1+j)> }

exp (
J

(mt+1+j + 621Yt+1+j)> }
= LEyqexp (mt+1 + €dYt+1 + Gn—1 t-‘,—l)}

= {eXP (bn 1+ (Bpo1 + €d,) Yio+ mt+1)} :

O

exp | my41 + edYt+1) “Fi

1

s
e
e
e
{

We can use lemma 4 by setting o = b,,_; and ¢ = (B,,_1 + e4). The proposed solution
holds provided:

1 /
by, = bpo1+p, + 22m2 + (Bn—1 +€q) [p+XuEn) (A.11)
1 /
+§ (Bp-1+ €d) YuXy (Bno1+eq),
’ ’ 1 ’ ’ ’
B, =1T,+ 3 (Xnf © Zmy) + (Bn1 + €q) [A + X © Xk

I

E’F (anl + ed) ® E’F (anl + ed)} .

1
2



We have therefore verified the solution in Proposition 2.

Demonstrating That the Three-Factor Model Falls Within the General
Affine Class

The model outlined in system (16) is a special case of the general affine class where
the following parametric definitions are applied:
I =1 (homoskedastic model)

Hq Pa 9z O Ad
p=\ te A=1| 94 p, 0 =1 A
iy 0 0 p, 0
000 04 Ogz O 0 Sq
ZF— 00O EH— 0 [ 0 me— 0 Zm: Sz
0 0 o, 0O 0 0 0 0
I = 0 (heteroskedastic model)
Hq Pa 9z O Ad
p=1\ p, | A= 94 p O Ln=1{ A
iy 0 0 p, 0
0 vge O oqg 0 0 0 Sd
YF= 0 v, O Y= 0O 00 Ymp = Vmna Ym = 0
0 0 O 0O 00 0 0

Description of the GMM-Based Predictability Test

The predictability test can be described as follows. Denote the orthogonality condi-
tions used to estimate ¥ as ¢g17(V) and the orthogonality conditions we wish to test
as gor(V). By the Mean Value Theorem,

Gor (V) =" gop (W) 4 Doy (W) - (‘i’ - ‘1’0) ; (53)

where U is the true parameter vector, and U is the estimated parameter vector, and

9gor (Vo)
Dop(Vy) = ———. 54
() = 22218 59
Since we estimate ¥ from the first set of orthogonality conditions:
U — W= — (A Dir) ™ A - gar (W), (55)
with
9g17(Po)
D = 51§)
1T 8\11 ) ( )

7
-1
An = DlT : Sn )



where Sp; is the spectral density at frequency zero of the orthogonality conditions
g17- But then, X
gor (V) = Mgr(¥o), (57)

with
M == [—DQT . (AllDlT)_l A/117 I] (58)

Since we can assume that v/T'gp(¥g) — N(0,S), where S is the spectral density at
frequency zero of the orthogonality conditions, and

I

gr(¥o) = [QIT(WO)IaQQT(\I’O)/} ; (59)

the statistic )

T gor(¥) |MSM'|  gar(¥) (60)

will have a x?(k) distribution under the null, where k is the number of moments
considered in gop. In our case, k = 4, since we use four instruments and test bond
and stock return predictability separately.



Tablel

Data Sour ces
Series Symbol Source Availability
Nomina Stock Return 1 Ibbotson (S& P 500) 1926:96
Nomina Bond Return P Ibbotson (20 year 1926:96
bond)
Nominal Interest rate It Ibbotson (one year T- 1926:96
bill)
Inflation T Ibbotson 1926:96
LongYield Ire Board of Governors 1925:96
Real Dividend growth Adiq Own Computations 1927:96
(end-of -period)

Real Dividend Growth Adi2 Own Computations 1927:96

(additive)
Price Dividend Ratio = pd; = 1/dy; Own Computations 1926:96

1/Dividend Yidd

Term Spread Ire-ry Own Computations 1926:96

Note: Stock and bond returns, the nominal interest rate, inflation, the long yield, real dividend growth and
the term spread are al in logs. To compute nominal dividend growth, assume ¢; is the gross capital gain

return over the year and i; the income return (ir = D, /Q;, with D/}, the nominal dividend, and Q; the price
level). In the end-of-period case, the income return is computed assuming dividends are re-invested in the

stock market. In the additive case, we smply add the dividends paid out during the year. Then, D;,,/D;" =
(it+1/iy) &, and red dividend growthisAd; = log(D;,/D;") - 7.



Table?2

Empirical Propertiesof the Variables

State Variables
Dividend Growth Dividend Growth Inflation
(end-of -period) (additive)
Mean 0.008 0.008 0.037
(0.016) (0.016) (0.005)
o 0.137 0.123 0.031
(0.012) (0.023) (0.004)
rho -0.098 0.185 0.922
(0.109) (0.1%9) (0.040)
Instruments
Dividend Yield Term Spread Interest Rate
Mean 0.044 0.009 0.040
(0.002) (0.002) (0.005)
o 0.015 0.013 0.032
(0.002) (0.001) (0.004)
rho 0.667 0.735 0.906
(0.094) (0.051) (0.042)

Notes: All variables are in logs, except for the dividend yield. All moments were estimated usng GMM

[Hansen (1982)] allowing for one Newey-West |ag.



Table 3

Example of Calibration of y Parameter in the Mehra-Prescott Economy

% Mean
Equity
Premium
Estimate = 0.283
2 151
3 2.78
5.55 6.09
10 11.90
Data 6.14
(se) (2.40)

Notes: We estimate the parameter set for the Mehra-Prescott economy ¥ = [[3, Og, M Pr O Mxs Pxs Ox]’
using 9 moments of dividend growth, the nominal rate and inflation in a GMM-system. The estimated
parameter values are used to infer the state variables from the data and to compute the mean equity
premium (in logs). The last line reports the data moment with a GMM-based standard error between
parentheses.



Table 4

Equity Characteristics of the Three Example Economies

Mean Mean Equity
Equity pok Variability

Premium
M P-model 6.09 16.81 12.64
(y=5.55)
CS-model 6.31 16.34 19.36
(s4=-0.45)
MI-model 6.18 16.72 18.56
(y=2.60)
Data 6.14 25.23 19.58
(se) (2.40) (1.20) (2.16)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and M1 for Moody Investor. The parameter
y is chosen to roughly match the mean equity premium in the M ehra-Prescott Economy and in the Moody
Investor economy. In the Campbe I-Shiller economy, the parameter 4 issimilarly calibrated. We report
the mean equity excess return and its volatility and the mean price dividend ratio computed over the actual
data sample, with the state variables inferred from data on dividend growth, nominal rates, and inflation.
The last line reports the data moment with a GMM-based standard error between parentheses.



Table 5
Bond Characteristics of the Three Example Economies
Mean Mean Bond Bond/Equity

Term Bond Variability  Correlation
Spread Premium

MP-model 019  -057 7.38 -0.04
(y=5.55)
CS-model 0.35 0.44 7.80 0.34
(s4=-0.45)
MI-model 0.59 0.54 9.81 0.10
(y=2.60)
Data 0.95 0.90 7.82 0.189
(se) (021)  (0.92) (0.77) (0.089)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and M1 for Moody Investor. The parameter
y is chosen to roughly match the mean equity premium in the M ehra-Prescott Economy and in the Moody
Investor economy. In the Campbell-Shiller economy, the parameter sy issimilarly calibrated. We report
the term spread, the mean bond excess return and its volatility and the correlation between bond and equity
returns computed over the actual data sample, with the state variablesinferred from data on dividend
growth, nomind rates, and inflation. Thelast line reports the data moment with a GMM-based standard
error between parentheses.



Table 6

Skewness/Kurtosisfor the Three Example Economies

Equity Bonds
Skewness Kurtosis | Skewness  Kurtosis
M P-model -1.19 3.96 0.73 1.56
(y=5.55)
CS-mode -0.69 3.22 0.54 1.05
(S0 =-0.45)
MI-model -1.13 6.43 0.84 1.59
(y=2.60)
-0.906 1.187 1.157 1.716
Data (0.283) (0.780) (0.294) (1.096)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and M1 for Moody Investor. The parameter
y is chosen to roughly match the mean equity premium in the M ehra-Prescott Economy and in the Moody
Investor economy. In the Campbell-Shiller economy, the parameter sy issimilarly calibrated. We report
skewness and excess kurtosis for equity and bond returns computed over the actual data sample, with the
state variables inferred from data on dividend growth, nomina rates, and inflation. Thelast line reportsthe
data moment with a GMM-based standard error between parentheses.



Table 7

Variance Ratiosfor the Three Example Economies

Equity Bonds
VRG) VR(10) | VR() VR(10)
MP-model 0.92 0.79 0.76 0.75
(y=5.55)
CS-model 0.50 0.39 0.77 0.74
(s1=-0.45)
MI-mode! 0.52 0.43 0.96 1.03
(y=2.60)
Data 0726 0734 | 1397 1.885
(se) (0137)  (0.150) | (0.260) (0.416)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and M1 for Moody Investor. The parameter
y is chosen to roughly match the mean equity premium in the M ehra-Prescott Economy and in the Moody
Investor economy. In the Campbe I-Shiller economy, the parameter sq issimilarly calibrated. VR(k) stands
for variance ratio computed using k autocorrelations of the underlying process. We report variance ratios
using 5 or 10 autocorrelations for stock and bond returns computed over the actual data sample, with the
state variablesinferred from data on dividend growth, nominal rates, and inflation. The last line reportsthe
corresponding variance ratios in the data with the standard errors computed by estimating the correlations
jointly inaGMM framework. We use 11 Newey - West lags for this estimation.



Table 8

Predictability Propertiesfor the Three Example Economies

Equity Bonds
Excess Term Excess Term
Dividend Spread Dividend Spread
Yield Yield
M P-model 0.370 0.634 0.273 0.909
(y=5.55)
CS-model 0.294 0.028 0.350 1.427
(s4=-0.45)
MI-model 0.864 2.640 0.515 6.376
(y=2.60)
Data 0.875 2.936 0.179 2.137
(se) (0.595) (1.698) (0.276) (0.622)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and M1 for Moody Investor. The parameter
y is chosen to roughly match the mean equity premium in the M ehra-Prescott Economy and in the Moody
Investor economy. In the Campbell-Shiller economy, the parameter sy issimilarly calibrated. We report
dope coefficients from univariate regressions of equity or bond excess returns onto excess dividend yield or
term spreads. The regression variables are computed over the actua data sample, with the state variables
inferred from data on dividend growth, nominal rates, and inflation. The last line reports the coefficients
actually obtained in the data using heteroskedasticity-robust standard errors.



Table9

Analytical Risk Premiums. Testsand Properties

Bond Returns Equity Returns
Test Min. Max. Mean Val. Test Min. Max. Mean Vol
MP- 1453 -0.0039 0.0000 -0.0010 0.0009 570 0.0741 0.0861 0.0782 0.0028
model  (0.006) (0.223)
Cs 1454  0.0080 0.0106 0.0100 0.0005 5.66 0.0836 0.0966 0.0882 0.0029
model  (0.0058) (0.226)
MI- 1355 0.0027 0.0182 0.0099 0.0021 594 0.0222 0.1555 0.0858 0.0187
model  (0.009) (0.204)
Data -0.054 008 0009 0.031 -0.044 0139 0061 0.042

Notes: The column labelled “Test” reports the value of the test statistic described in section 5.3 and in the
Appendix, which is distributed x*(4). The p-vaueisindicated between parentheses. The columns min.,
max., mean and vol. report these sample characteristics for the (gross) bond or equity return premiums
implied by the model. MP stands for Mehra-Prescott Economy, CS for Campbell-Shiller Economy and Ml
for Moody Investor Economy. The last line reports the same properties for fitted values from multivariate

regressions of stock or bond returns on the two “yield” instruments.



Table 10

Variability in Price Dividend Ratios

Standard Coefficient of Variance of Variance of
deviation variation equity return  equity return
accounted for  accounted for
by price- by dividend
dividend ratio growth
MP-model 0.662 0.039 14.30 95.03
CS-model 1.697 0.104 36.80 40.36
M I-model 1.116 0.067 19.73 45.88
Data 7.670 0.305 126.12 40.32
(se) (0.792) (0.148)

Notes: MP stands for Mehra-Prescott, CS for Campbell-Shiller and M1 for Moody Investor. Thefirst
column reports the standard deviation (volatility) of price-dividend ratios, the second its coefficient of
variation both for the three models and the data. The number between parenthesesis a GMM-based
standard error. For the coefficient of variation, the standard error is computed using the delta method, since
itisafunction of thefirst two moments. We could also view it as afunction of the mean and the volatility,
in which case the standard error is reduced to 0.030. The last two columns report the results of avariance

pd

. I : . 1+ . -
docomposition of the logarithmic equity return into two components. In(———) and nominal dividend
t

growth. The numbers are in percentages.



