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Abstract

Gallant, Hansen and Tauchen (1990) show how to use conditioning information optimally to

construct a sharper unconditional variance bound on pricing kernels. The literature predomi-

nantly resorts to a simple but sub-optimal procedure that scales returns with predictive instru-

ments and computes standard bounds using the original and scaled returns. This article provides

a formal bridge between the two approaches. We propose a optimally scaled bound, which coin-

cides with the bound derived by Gallant, Hansen and Tauchen (GHT bound) when the first and

second conditional moments are known. When these moments are mis-specified, our optimally

scaled bound yields a valid lower bound for the standard deviation of pricing kernels, whereas

the GHT bound does not. Moreover, the optimally scaled bound can be used as a diagnostic for

the specification of the first two conditional moments of asset returns because it only achieves

the maximum when the conditional mean and conditional variance are correctly specified. We

illustrate the behavior of the bounds using a number of dynamic models for consumption growth

and bond and stock returns. These models exhibit interesting non-linearities in the consumption

growth process.



1 Introduction

Hansen and Jagannathan (1991) derive a lower bound (the HJ bound) on the standard devi-

ation of the pricing kernel or the intertemporal marginal rate of substitution as a function of

its mean. Using only unconditional first and second moments of available asset returns, the

HJ bound defines a feasible region on the mean-standard deviation plane of pricing kernels.

Whereas initially HJ bounds primarily served as informal diagnostic tools for consumption-

based asset pricing models (see Cochrane and Hansen (1992) for a survey), its applications

have rapidly multiplied in recent years. They now include formal asset pricing tests (Burnside

(1994), Cecchetti, Lam and Mark (1994), Hansen, Heaton and Luttmer (1995)), predictability

studies (Bekaert and Hodrick (1992)), mean variance spanning tests (Bekaert and Urias (1996),

DeSantis (1996), Snow (1991)), market integration tests (Chen and Knez (1995)), mutual fund

performance measurement (Chen and Knez (1996), Ferson and Schadt (1996), Dahlquist and

Söderlind (1999)) and more.

HJ bounds are computed by projecting the pricing kernel unconditionally on the space of

available asset payoffs and computing the standard deviation of the projected pricing kernel.

The larger this standard deviation, the stronger the restrictions on asset pricing models. The

standard consumption-based asset pricing model with time-additive preferences dramatically

fails to lie inside the feasible region defined by the HJ bounds computed using a variety of asset

returns. However, the pricing kernels in more recent models, such as the non-separable utility

model in Heaton (1995) or incomplete markets model of Constantinides and Duffie (1996),

satisfy the bounds.

In this article, we study the use of conditioning information to effectively increase the di-

mension of the available asset payoffs and hence, to improve the bounds.1 Gallant, Hansen

and Tauchen (1990) show how to use conditioning information efficiently. The procedure is

in principle straightforward. They construct an infinite space of available payoffs combining

conditioning information and a primitive set of asset payoffs. The variance of the unconditional

projection of the pricing kernel onto that space is the efficient HJ bound, which we will term

the GHT bound.2

1Other methods have been proposed to improve HJ bounds. Snow (1991) studies the restriction on the higher

moments of the pricing kernel. Balduzzi and Kallal (1997) tighten the bounds by using the risk premiums that the

pricing kernel assigns to arbitrary sources of risk.
2While GHT study both conditional as well as unconditional projections, we will only study unconditional

projections.
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The GHT bound depends on the first and second conditional moments of the asset payoffs.

The GHT procedure has not been used very much in practice, and researchers have mostly

resorted to a simpler technique of embedding conditioning information in the computation of

HJ bounds. They simply scale returns with predictive variables in the information set, augment

the space of available payoffs (and corresponding prices) with the relevant scaled payoffs or

returns and compute a standard HJ bound for the augmented space (see, for example, Hansen

and Jagannathan (1991), Cochrane and Hansen (1992), Bekaert and Hodrick (1992), and many

others). This procedure is much simpler to implement than GHT since it does not require

knowledge of conditional moments at all.

In this article, we provide a formal bridge between the optimal but relatively unknown GHT

bound and the ad-hoc scaling methods prevalent in the literature. We prove two main results.

First, we answer the following question: when scaling a return with a function of the condi-

tioning information, what is the function that maximizes the Hansen-Jagannathan bound? The

solution is an application of variational calculus. The resultant optimal scaling factor is decreas-

ing in the conditional variance but is not monotonic in the conditional mean. Second, we show

that our bound, which we term the optimally scaled bound, is as tight as the GHT bound when

the conditional moments are known.

The optimally scaled bound has three important properties. First, it is efficient. Rather than

arbitrarily scaling returns with an instrument, our procedure optimally exploits conditioning

information leading to sharper bounds. We also use this property to explore the relation be-

tween improvements in HJ bounds due to conditioning information and the presence of return

predictability.

Second, it is robust to mis-specification of the conditional mean and variance. Whereas the

GHT bound is also efficient, it is only correct when the conditional moments are accurate. If

they are mis-specified the resulting bound may be larger than the variance of the true pricing

kernel. Since the optimal bound we derive is a standard HJ bound, it always provides a bound

to the variance of the true pricing kernel even if incorrect proxies to the conditional moments

are used.

Third, the optimally scaled bound is a useful diagnostic for the specification of the first

and second moments of asset returns. Our bound only attains the maximum when the first and

second conditional moments are correctly specified. If they are not, the Hansen-Jagannathan

frontier is not even a parabola, so that mis-specification is visually clear. We also suggest a

diagnostic test that can be used to formally compare the fit of alternative specifications of the
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conditional mean and variance. Given the non-negligible modelling and parameter uncertainty

regarding the first and second conditional moments of asset returns, this property of our bound

is likely to be important in many finance applications.

We organize the paper into three parts. Section 2 starts by clarifying the relation between

standard HJ bounds, the GHT bound, ad hoc scaled bounds and our optimally scaled bound.

We then prove our two main results, deriving an optimal scaling function and showing that the

resulting bound reaches the GHT bound when the conditional moments are correctly specified.

Section 3 discusses the three main properties of our optimally scaled bound. We end the section

by comparing our work to that of Ferson and Siegel (2001). They derive and study the optimal

scaling factor in the setting of mean-variance frontiers. Since there is a well-known duality

between Hansen-Jagannathan frontiers and the mean-variance frontier, these results are similar

to ours but there are also some important differences.

Section 4 contains an empirical illustration. We estimate both an asymmetric GARCH-in-

mean model and a regime-switching model on US consumption growth, bond and stock returns

and test the restrictions of the standard consumption-based asset pricing model. This general-

ization of the Hansen-Singleton (1983) model provides a natural null and alternative model for

the first and second moments, whereas the GARCH and regime-switching models provide two

non-nested experiments for the conditional mean and variance. We use these models to explore

the role of misspecification and robustness in the behavior of the various bounds. We briefly

discuss future potential applications of our results in a concluding section.

2 Incorporating Conditioning Information into Variance Bounds

In this section, we first review the standard HJ bound while setting up notation in Section 2.1.

In Section 2.2, we briefly review the standard way of using conditioning information whereas

section 2.3 reviews the GHT bound. Section 2.4 introduces the optimally scaled bound.

2.1 Unconditional Variance Bounds

Let there be a set of assets with payoff vector rt+1 and price vector pt. When the payoff is a

(gross) return, the price equals one. Let the vector yt denote the set of conditioning variables

in the economy and let It be the σ algebra of the measurable functions of yt, that is, It is the
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information set. The pricing kernel mt+1 prices the payoffs correctly if

E[mt+1rt+1|It] = pt. (1)

By the law of iterated expectations, this implies

E[mt+1rt+1] = E[pt] ≡ q. (2)

Hansen and Jagannathan (1991) derive a bound on the volatility of mt+1 that can be computed

from asset payoffs and prices alone. This bound follows from projecting the kernel onto the set

of payoffs and a constant payoff:

m∗
t+1 = v + β′(rt+1 − μ) (3)

= v + (q − vμ)′Σ−1(rt+1 − μ), (4)

where

v = E[mt+1] = E[m∗
t+1], μ = E[rt+1] (5)

and

Σ = E[(rt+1 − μ)(rt+1 − μ)′]. (6)

The variance bound follows from realizing that var(mt+1) ≥ var(m∗
t+1). We denote the bound

var(m∗
t+1) as σ2(v; rt+1) (or σ2(v)), since it depends on the mean of the kernel and the first two

moments of rt+1:

σ2(v; rt+1) = (q − vμ)′Σ−1(q − vμ) (7)

= A − 2Bv + Dv2, (8)

where

A = q′Σ−1q, B = μ′Σ−1q, D = μ′Σ−1μ. (9)

The parabola (v, σ2(v)) is the HJ frontier. Note that if q equals 1 and there exists a risk free

asset such that rf = (E[mt+1])
−1, then σ2(v; rt+1) is proportional to the square of the Sharpe

ratio on the set of assets. Hence, a sharper HJ bound corresponds to a better risk-return trade-off

on the available assets.

To facilitate comparison with the derivations in GHT (1990), we provide an alternative

formulation of m∗
t+1 in terms of the uncentered moments of rt+1:

m∗
t+1 = (q − wμ)′(μμ′ + Σ)−1rt+1 + w (10)

4



with

w =
v − q′(μμ′ + Σ)−1μ

1 − μ′(μμ′ + Σ)−1μ
=

v − b

1 − d
, (11)

where the definition of b and d is implicit.3 That m∗
t+1 unconditionally prices the returns follows

immediately by substituting (10) into (1). The relation between w and v is apparent from taking

the expected value of m∗
t+1 in (10):

v = q′(μμ′ + Σ)−1μ + (1 − μ′(μμ′ + Σ)−1μ)w. (12)

The intuition behind equation (10) is rather straightforward. Rewrite the equation as

m∗
t+1 = q′(μμ′ + Σ)−1rt+1 + (1 − μ′(μμ′ + Σ)−1rt+1)w.

The first part of the right hand side expression is the projection of mt+1 onto the original asset

payoff space (not augmented with a constant payoff). However, we would like to project m∗
t+1

on this space augmented with a constant payoff. The coefficient multiplying w is the residual

of the projection of a unit payoff onto the rt+1-space and hence orthogonal to that space. Con-

sequently, w is the projection coefficient of m∗
t+1 onto that residual. The two parts together

constitute the projection of m∗
t+1 onto the rt+1 space augmented with a constant payoff.

2.2 Scaled Variance Bounds

The presence of the conditioning variables yt allows construction of an in principle infinite

dimensional payoff space (see Hansen and Richard (1987)). Let zt = f(yt), where f is a

measurable function, and zt is a n × 1 vector. Scaled returns are simply assets with payoffs

equal to z′trt+1 and prices z′tJ (where J is a n×1 vector of ones), and do not raise any difficulty

in computing standard HJ bounds.

Such scaling has an intuitive interpretation when excess returns, re
t+1 = rt+1 − rf , are

scaled as in Bekaert and Hodrick (1992) and Cochrane (1996). The gross ”scaled” return,

rt+1 = z′tr
e
t+1 + rf = z′trt+1 + (1 − z′tJ)rf can then be interpreted as a ”managed” portfolio

with z′tJ being the time-varying proportion of the investment allocated to the risky assets.

Scaling likely only improves the HJ bound if the weight zt has information on future returns.

In the literature, one sets zt = Gyt where G is a selector matrix of 1’s and zeros selecting the

variables in yt believed to predict rt+1 or to capture the time-variation in the expected returns.

3Alternatively, equation (10) can be derived from (4) directly using the identity (F +gg′)−1 = F−1−F−1g(I+

g′F−1g)−1g′F−1 with F = μμ′ + Σ and g = μ.
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Most studies stack actual returns with scaled returns (see for example Bekaert and Hodrick

(1992) and Cochrane and Hansen (1992)), considering the system

[
rt+1

rt+1 ⊗ yt

]
. This amounts

to considering many different zt’s where each zt is represented by a selection matrix with only

one non-zero element, selecting a particular instrument out of the available instruments. It

is fairly unlikely that this is the optimal way to select from the set of information variables.

Therefore we sometimes refer to the bounds resulting from this ad hoc approach to scaling as

”naive bounds”.

2.3 The GHT Variance Bound

GHT (1990) show how to use conditioning information efficiently. Recall that a scaled asset

is a one dimensional asset, r̃t+1 = z′trt+1, where zt is a n-dimensional vector whose entries

are measurable functions of yt (so they belong to It). The space of all such scaled payoffs

is an infinite dimensional conditional Hilbert space P = {z′trt+1 : ∀zt}. Gallant, Hansen and

Tauchen directly project the pricing kernel onto this space augmented by a riskless payoff. They

show that the projected pricing kernel is4

m∗
t+1 = (pt − wμt)

′(μtμ
′
t + Σt)

−1rt+1 + w (13)

where μt is the conditional mean vector and Σt the conditional variance-covariance matrix of

the returns and w is given by

w =
v − b

1 − d
, (14)

Here the symbols b and d are the conditional analogues of the definitions in 2.1:

b = E[μ′
t(μtμ

′
t + Σt)

−1pt] (15)

and

d = E[μ′
t(μtμ

′
t + Σt)

−1μt]. (16)

The GHT bound by definition is

σ2
GHT (v) = var(m∗

t+1). (17)

4Note that the projection is an unconditional not a conditional projection.
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It is a lower bound to the variance of all valid pricing kernels. The result in GHT is not sur-

prising given our alternative derivation of the standard pricing kernels in 2.1. The GHT kernel

is identical, replacing unconditional with conditional moments, and expected prices with ac-

tual prices. (Compare equations (10) and (13) ). This is because the kernel now prices all

payoffs conditionally. There is an equivalent representation of the GHT kernel to the standard

kernel representation in equation (4), but it involves the conditional mean of the pricing kernel,

vt = Et[m
∗
t+1],

m∗
t+1 = (pt − vtμt)

′Σ−1
t (rt+1 − μt) + vt. (18)

Hence, vt is the price of a conditionally risk-free asset and v = E[vt].

2.4 The Optimally Scaled Variance Bound

The approach in this paper is different. Consider the family of infinitely many one dimensional

scaled payoff spaces Pz = {αz′trt+1 : α ∈ R1} indexed by zt. There is a Hansen-Jagannathan

bound σ2(v; rt+1) associated with each scaling vector zt, which only depends on the uncondi-

tional moments of z′trt+1,

σ2(v; z′trt+1) =
(E[z′tpt] − vE[z′trt+1])

2

var(z′trt+1)
. (19)

Equation (19) simply applies equation (7) to the single scaled return z′trt+1. The optimally

scaled bound is the highest such Hansen-Jagannathan bound:

σ2
OSB(v; z′trt+1) = sup

zt

σ2(v; z′trt+1). (20)

The question we answer is: what zt yields the best (largest) HJ bound? Since zt = f(yt), this is

a problem of variational calculus.

Proposition 1 The solution to the maximization problem

σ2
OSB(v; z′trt+1) = sup

zt

σ2(v; z′trt+1). (21)

is given by

z∗t = (μtμ
′
t + Σt)

−1(pt − wμt) (22)

where

w =
v − b

1 − d
, (23)
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with b and d are as defined in (15) and (16). Furthermore, the maximum bound is given by

σ2
OSB(v; z′trt+1) ≡ σ2(v; z∗′t rt+1) (24)

=
a(1 − d) + b2 − 2bv + dv2

1 − d
, (25)

where a is as defined as follows:

a = E[p′t(μtμ
′
t + Σt)

−1pt]. (26)

Proof: The Appendix contains a formal proof. The proof proceeds in two steps. First, the

optimal functional form is solved for. Second, the remaining constant parameter characterizing

the function is solved for in a separate maximization.

Not surprisingly, the optimal scaling factor depends on the conditional distribution function

only through the first and second conditional moments. Whereas the optimal scaling factor

is decreasing in the conditional variance Σt, it is not monotonic in the conditional mean μt.

The non-monotinicity is easy to understand using the duality with the mean-variance frontier.

Consider two independent risky assets with a different expected return but identical variance. In

this case, the minimum variance portfolio is the equally weighted portfolio. Also, the inefficient

part of the frontier goes through a point where the expected return is the return on the lowest

yielding asset and all funds are invested in that asset. When, without loss of generality, the

expected return on the best yielding return is raised, the minimum variance point is raised as

well, but the inefficient part of the frontier still intersects the point where all is invested in the

lowest yielding asset. The part of the new frontier beyond that point is below the old frontier.

Both bounds σ2
GHT (v) and σ2

OSB(v) depend on the conditional mean and the conditional

variance of the payoffs. When these moments are known to researchers, the relation between

σ2
GHT (v) and σ2

OSB(v) is described by the following proposition:

Proposition 2 For a n-dimensional payoff rt+1 with price vector pt, conditional mean μt, and

conditional variance-covariance matrix Σt,

σ2
OSB(v) = σ2

GHT (v) =
a(1 − d) + b2 − 2bv + dv2

1 − d
, (27)

where b, d, and a are defined in equations (15), (16), and (26).

Proof: Since Pz ∈ P (the GHT bound represents the most efficient way of using conditional

information), it follows:

σ2(v; z′trt+1) ≤ sup
z

σ2(v; z′trt+1) = σ2
OSB(v) ≤ σ2

GHT (v). (28)
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From Proposition 1, we know that σ2(v; z∗′t rt+1) has the form described in the proposition. Now

consider the variance of m∗
t+1:

σ2
GHT (v) = var(m∗

t+1) = E[(z∗′t rt+1)
2] − (E[z∗′t rt+1])

2. (29)

Using the expression for z∗t , the law of iterated expectations and simplifying algebra, it follows

σ2
GHT (v) = var(m∗

t+1) = E[(pt − wμt)
′(μtμ

′
t + Σt)

−1(pt − wμt)]

− E[(pt − wμt)
′(μtμ

′
t + Σt)

−1μt]. (30)

Using the definition for a, b and d, the result follows.

This result is at first surprising. Our optimally scaled bound is a standard HJ bound for

a scaled return. Since the scaling factor depends on v, the mean of the pricing kernel, the

optimally scaled bound is the ratio of a quartic polynomial in v over a quadratic polynomial

in v which is generally not a quadratic polynomial in v. Nevertheless, when evaluated at the

true conditional moments, the quartic polynomial in the numerator becomes the square of the

quadratic polynomial in the denominator, and the optimally scaled bound becomes quadratic in

v. The optimal scaled frontier becomes a parabola, identical to the GHT frontier. Since this

insight is useful later on, we prove it explicitly.

Corollary 1 Let

σ2
OSB(v) = σ2(v; z∗′t rt+1) =

A

B
, (31)

with

A = (E[z∗′t pt] − vE[z∗′t rt+1])
2

B = var(z∗′t rt+1)

If the conditional moments are known, then A = B2.

Proof: First note that B = σ2
GHT (v), the GHT bound. Hence, from Proposition 2 we know that

B =
a(1 − d) + b2 − 2bv + dv2

1 − d
.

But A, the numerator is the square of:

E[(pt − wμt)
′(μtμ

′
t + Σt)

−1(pt − wμt)] = a − w(b − dv) − bv. (32)

Substituting for w = v−b
1−b

, and collecting terms the result follows. This corollary provides the

basis for a diagnostic test in section 3.3.
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3 The Optimally Scaled Bound: Discussion

Three important properties make the optimal scaled bound very useful in applied work. First,

if there is time-variation in expected returns and volatility, the optimally scaled bound should

be sharper than standard ad hoc bounds. In Section 3.1 we explore the relation between pre-

dictability and the optimally scaled bound. Second, Section 3.2 discusses how the optimally

scaled bound is robust in that it always is a valid lower bound to the pricing kernel, which is not

the case for the GHT bound. Third, Section 3.3 suggests how the optimally scaled bound could

form the basis of a diagnostic test for the correct specification of the first and second moments.

Finally, we discuss how our work relates to two recent articles by Ferson and Siegel (2001 and

2002).

3.1 Efficiency and Predictability

Whereas the optimally scaled bound uses conditioning information efficiently, it would be use-

ful to derive conditions under which scaling improves the bound. In particular, one would

hope that predictable variation in returns would result in sharper HJ bounds. Unfortunately, it

is difficult to derive sufficient conditions but it is straightforward to derive a necessary con-

dition. Let us, without loss of generality, focus on a univariate return space. If the scal-

ing factor zt is uncorrelated with the first and second conditional moment of rt+1 (that is,

cov(pt, zt) = cov(rt+1, zt) = cov(r2
t+1, z

2
t ) = 0, then scaling the return with zt will decrease

the HJ bound. To see this, note that

σ2(v; zr) =
E2(z)(E(p) − vE(r))2

E(z2)E(r2) − E2(z)E2(r)

=
(E(p) − vE(r))2

E(r2) − E2(r)
× E2(z)(E(r2) − E2(r))

E(z2)E(r2) − E2(z)E2(r)

= σ2(v; r) × E(r2) − E2(r)

(E(z2)/E2(z))E(r2) − E2(r)
≤ σ2(v; r),

where we omitted the time subscripts. The last inequality follows since E[z2
t ]

E2[zt]
≥ 1. Intuitively,

scaling by an independent random variable just adds noise to the return. Conversely, the scaling

factor has to be correlated with the future return for the scaled HJ bound to improve relative to

the standard bound. In other words, when the return is scaled with a conditioning variable (for

example, a stock return with its lagged dividend yield) the variable must predict the return in

order for the HJ bound to improve. This is intuitively clear: when a variable predicts an asset
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return, it may be possible to create managed portfolios that improve the risk-return trade off as

measured by the Sharpe Ratio and it is well-known that HJ bounds and Sharpe ratios are closely

related.

This intuition remains intact for the case where two-dimensional spaces of the form(
rt+1

z′trt+1

)
, (33)

where zt = Gyt, are considered. In this case, since rt+1 ∈ {rt+1, z
′
trt+1}, we know for sure

σ2(v; rt+1) ≤ σ2(v; (rt+1, z
′
trt+1)), ∀zt. (34)

Even in this case, for the bound to strictly improve, predictable variation in the conditional

mean or variance is a necessary condition. To see this, first note that the optimal scaling factor

remains the same for this ”stacked” return and scaled return case, which we show in the next

proposition.

Proposition 3 Suppose there is an asset vector with payoff rt+1, price pt. Let It denote the σ

algebra of the measurable functions of the conditioning variables yt. Then the solution z∗t to

the maximization problem

sup
z

σ2(v; (rt+1, z
′
trt+1)) (35)

is given by

z∗t = (μtμ
′
t + Σt)

−1(pt − wμt). (36)

The proof is given in the appendix.

Now, suppose μt and σt are constants (that is, there is no predictable variation in condi-

tional means or variances), then z∗t is a constant and rt+1 and z∗′t rt+1 are linearly dependent.

It follows that σ2(v; (rt+1, z
∗′
t rt+1)) = σ2(v; rt+1). But since our bound is optimal, this im-

plies σ2(v; (rt+1, z
′
trt+1)) ≤ σ2(v; rt+1). Conversely, for the bound to improve, zt must predict

rt+1. In the empirical illustrations below, we will use standard scaling in the ”stacked” space as

indicated above. Apart from our optimally scaled bounds, we will also report ”stacked” opti-

mally scaled bounds, σ2(v; (rt+1, z
∗′
t rt+1))), which ought to be identical to the optimally scaled

bounds when the conditional moments are known.

Our work here is related to Kirby (1998), which is the only paper we are aware of that pro-

vides an explicit link between linear predictability and HJ bounds. More specifically, he shows
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that the Wald test of the null of no predictability in a linear regression is proportional to the stan-

dard HJ measure. He then uses this insight to investigate whether several asset pricing models

are consistent with the evidence on predictability. Our work suggests that if the predictability

is correctly described by a linear predictive model, our optimally scaled return should lead to a

sharper HJ bound, and hence sharper restrictions on these asset pricing models. Furthermore,

our framework can also accommodate non-linear predictive relations.

3.2 Robustness

The GHT bound is given by var(m∗
t+1), where mt+1 depends on the conditional mean μt and the

conditional variance Σt of the returns. In practice, these conditional moments are not known.

We use a proxy for them and thus a proxy m̂∗
t+1 for m∗

t+1. In that case, the proxy for the GHT

bound, var(m̂∗
t+1) , may either underestimate or overestimate var(m∗

t+1). When it overesti-

mates, var(m̂∗
t+1) fails to be a lower bound for the variance of valid pricing kernels. On the

other hand, the optimally scaled bound is σ2(v, z∗′
t rt+1), where zt depends on the first two con-

ditional moments. When the conditional moments are unknown z∗t is unknown and so is z∗′t rt+1.

However, for every zt, σ2(v, z′
trt+1) remains a lower bound to the variance of all pricing kernels

since σ2(v, z′
trt+1), is a HJ bound. Hence, even when using a proxy for the conditional moments

to get a proxy ẑ∗t for z∗t the resultant optimally scaled bound remains a valid lower bound to the

variance of pricing kernels.

This robustness property is important since conditional moments are notoriously difficult

to estimate from the data. GHT (1990) propose to use the SNP method to estimate condi-

tional moments. The SNP method approximates the conditional density using a Hermite expan-

sion, where a standardized Gaussian density is multiplied with a squared polynomial. In their

preferred model, the leading term is a linear vector-autoregressive (VAR) model with ARCH

volatility. In GHT’s application on stock and bond returns, the conditioning set is restricted

to contain only past returns, and SNP estimation may be adequate. However, when the data

generating process for returns contains jumps or regime - switches, and involves other predic-

tive variables, such as dividend yields, or term spreads, it is not clear that the SNP approach

provides a good approximation.5 The risk of over-estimating the variance bound can be avoided

by applying our method.

5More and more research reveals that some of the predictable patterns detected in returns, even in linear settings,

may be spurious, for one example, see Kirby (1997).
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Given an empirical specification for the conditional moments, our ”optimally” scaled bound

is as easy to implement as the original Hansen-Jagannathan bounds, since we only need to

compute unconditional moments. For example, if we deem the time-variation in the conditional

mean to be more important than the time-variation in the conditional variance, we obtain valid

bounds by just replacing the conditional variance with the unconditional variance. The resulting

bound will not be optimal if there truly is time-variation in the conditional variance. However,

it may still be sharper than using arbitrary scaling.

3.3 Diagnostics

The fact that optimally scaled bounds computed from mis-specified conditional moments re-

main valid bounds which are best when the true conditional moments are used, suggests an

interesting application of our procedure. We can use the optimally scaled bound to diagnose the

accuracy of competing models for the first two conditional moments. There are several ways in

which mis-specification of the the conditional moments may manifest itself. First, it need not be

the case that σ2(v; rt+1) ≤ σ2(v; z∗′t rt+1). Hence, mis-specified conditional moments may re-

veal themselves through poorly performing optimally scaled bounds relative to the conditional,

“naively” scaled or stacked optimally scaled bounds.

Second, and most strikingly, the HJ bound need not be a parabola, since its numerator is a

quartic in v and its denominator a quadratic in v. That is, mis-specification should be visibly

clear from graphing the optimal bound and we will illustrate this behavior in the empirical

section below.

This reasoning also makes it possible to develop a general diagnostic test for the first and

second conditional moments of asset returns.6 To develop such a test, let’s revisit Corollary 1

in Section 2.4. The optimally scaled bound can be written as A2 = B, where B is the GHT

bound, and correct moment specification implies A = B. This suggests a simple diagnostic

test. The GHT bound is a quadratic in v where the coefficients are non-linear functions of the

three unconditional moments a, b, and d, defined above. For the parabola A to coincide with B

for all v’s, it should be the case that its coefficients are equal to the coefficients in B. Re-write

A as E[f1t + f2tv + f3tv
2], and denote the estimated constants a, b and d by â, b̂, and d̂. It is

6We thank the referee for stimulating our thinking on this issue. The test in Kirby (1998) diagnoses the perfor-

mance of several asset pricing models with respect to linear predictability but does not accommodate heteroskedas-

ticity.

13



straightforward to derive:

f1t = p′t(μtμ
′
t + Σt)

−1pt +
b

1 − d
μ′

t(μtμ
′
t + Σt)

−1pt,

f2t = −μ′
t(μtμ

′
t + Σt)

−1pt

1 − d
− p′t(μtμ

′
t + Σt)

−1rt+1 − b

1 − d
μ′

t(μtμ
′
t + Σt)

−1rt+1,

f3t = −μ′
t(μtμ

′
t + Σt)

−1rt+1

1 − d

To test the equality of A and B, we use the following orthogonality conditions:

gt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p′t(μtμ
′
t + Σt)

−1pt − a

μ′
t(μtμ

′
t + Σt)

−1pt − b

μ′
t(μtμ

′
t + Σt)

−1μt − d

p′t(μtμ
′
t + Σt)

−1rt+1(1 − d) + (μ′
t(μtμ

′
t + Σt)

−1rt+1)b − b

μ′
t(μtμ

′
t + Σt)

−1rt+1 − d

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (37)

where the first three conditions estimate and define the fundamental constants, the fourth con-

dition is a re-write of E[f2t] = −2b, including a re-scaling by 1 − d̂ that ensures that all or-

thogonality conditions are of similar order of magnitude and the fifth condition is the re-scaled

version of E[f3t] = d̂/(1 − d̂). The restriction E[f1t] = â + b̂2/(1 − d̂) does not yield any

conditional moments restrictions since returns do not enter this expression.

There are three parameters to be estimated, so that there are 2 over-identifying restrictions,

which can be tested using the usual statistic Tg′
T WgT , where gT is the mean of gt, T is the

number of observations, and W is a suitable weighting matrix for example obtained from a

Newey - West estimate (1987) of the inverse of the spectral density matrix of gt at frequency

zero. Note that whatever the dimensionality of returns, the test is always a χ2(2) and can be used

to compare the performance of non-nested models for the first and second conditional moments.

Of course, in a formal application, the sampling error in the parameters generating μt and Σt

should be taking into account. In a GMM context, this can be easily accomplished employing a

sequential GMM procedure, as in Bekaert (1994), Heaton (1995) and Burnside (1994).

The economic intuition for the test is straightforward. In a standard unconditional HJ frame-

work, the HJ bound, which is the variability of the projected pricing kernel, can be viewed as a

quadratic form in the deviations from risk neutral pricing (see Hansen and Jagannathan (1991)).

Let’s consider A: A = E[z′tpt]− vE[z′trt+1]. If a risk free asset exists than v is the inverse of the

risk free rate and A can be seen as the deviation from risk neutral pricing for the portfolio with

weights zt (the optimally scaled portfolio), since the first term is the expected actual price and

14



the second term is the risk-neutral price. Note that the portfolio weights do not need to add up

to one. B on the other hand is simply the variability of the optimally scaled portfolio and at the

same time the variability of the GHT kernel. If the scaling is done with the correct moments,

the variability of the scaled return exactly equals the deviation of risk neutral pricing.

This suggests another useful diagnostic statistic that could be used to compare alternative

models. One could simply select two economically relevant v’s (v1 and v2, say) and create a

quadratic form using the following orthogonality conditions:

gt =

[
zt(v1)

′pt − v1zt(v1)
′rt+1 − B(v1)

zt(v2)
′pt − v2zt(v2)

′rt+1 − B(v2)

]
, (38)

where B(vi) is the GHT bound evaluated at vi and zt(vi) is the optimal scaling function eval-

uated at vi. This statistic ignores the sampling error in a, b, and d and the original model

parameters, but can be viewed as a distance measure to rank alternative models.

To fully explore the properties of diagnostic tests based on the optimally scaled bound is

beyond the scope of the present paper. In our empirical illustration, we report the test developed

in equation (37) above for a number of different cases, including cases with simulated data

where the true first and second moments model is known.

3.4 Relation to Ferson and Siegel (2001 and 2002)

Ferson and Siegel have two contemporaneous articles that are related to the present paper. Fer-

son and Siegel (2001) solve for unconditionally minimum variance portfolios while using con-

ditioning information efficiently. They provide explicit solutions for the portfolio weights as a

function of the conditional means and volatilities of the available asset returns, both when a risk

free asset exists and when it does not. Since there is a duality between HJ frontiers and mean

-standard deviation frontiers, the Ferson and Siegel portfolios have some similarities to our op-

timally scaled returns, as Ferson and Siegel note in a final section. However, there are also

many differences between our analysis so that our respective articles should really be viewed as

complements rather than substitutes.

First, the HJ bounds derived from the Ferson and Siegel procedure are not as sharp as our

bounds, because of the restriction that the portfolio weights have to sum to 1. To appreciate the

potential effect of this restriction, consider the extreme case where a researcher examines HJ

bounds using one asset return (the equity return for example) and multiple instruments (dividend

yields, default spreads and short rates for example). One would imagine that conditioning
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information should be very valuable in increasing the HJ bound, but the Ferson and Siegel bound

would equal the unconditional bound, since the conditioning information is useless with only

one return, which forces the weight to be one for all t. Second, the optimality proof in Ferson

and Siegel basically guesses the right solution for the optimal portfolio weight and verifies that

it is correct, so no variational analysis is used. Third, Ferson and Siegel do not attempt to link

their results to the GHT optimal HJ bound and finally, they assume the conditional moments to

be correctly specified.

Whereas our focus is mostly on the relation between GHT bounds and our optimally scaled

bound, Ferson and Siegel extensively analyze the form of the weight function. In particular,

they provide extensive intuition on the non-linear relation between the optimal portfolio weight

and the magnitude of the expected return. In particular, extreme values for the expected return

for a risky asset decrease the optimal weight on that asset, providing an interesting form of

conservativeness to optimal scaling. This result applies to our bounds too, since it derives from

the influence of the expected return on the uncentered second moment.

Ferson and Siegel (2002) is a purely empirical paper that provides useful information about

the small sample properties of alternative methods to embed conditioning information into HJ

bounds. They compare the naively scaled (multiplicative) bounds, the GHT bound, and a bound

based on their unconditionally efficient portfolios. Perhaps not surprisingly, all bounds suffer

from significant biases that increase the bounds relative to their true values. They conclude that

the parsimony of the Ferson and Siegel (2001) bounds enhances their attractiveness in small

samples and that they are often close to optimal (that is close to the GHT bound). The analysis

in Ferson and Siegel (2002) also assumes correct specification of the conditional moments. In

a sense, our results strengthen their conclusions since we show that the use of optimally scaled

bounds is robust to misspecification. We show that this remains true even in the presence of

significant non-linearities as generated by a regime-switching model.
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4 Empirical Application

4.1 The Econometric Model

4.1.1 An Extension of Hansen and Singleton (1983)

Let Ri
t be the logarithm of the stock return (i = s) and the bond return (i = b) and let Xt be the

logarithm of gross consumption growth. Define

Yt = [Xt, R
s
t , R

b
t ]
′.

Hansen and Singleton (1983, henceforth HS) assume that yt follows a vector-autoregressive

(VAR) process with normal disturbances. HS then examine the restrictions imposed by the

standard consumption - based asset pricing model with time-additive Constant Relative Risk

Aversion (CRRA) preferences on the joint dynamics of the variables. A critical assumption is

the time-invariance of the conditional covariance matrix of yt. It is well known that in this log-

normal version of the consumption-based asset pricing model, time-variation in expected excess

returns is driven by the time-variation in this covariance matrix. To accommodate predictability

in excess returns, a natural extension of the HS framework is to allow for heteroskedasticity

using the GARCH-in-Mean framework of Engle, Lilien and Robins (1987). Surprisingly, apart

from an application to international data (Kaminsky and Peruga (1990)), there is little work in

this area. Two reasons may be the parameter proliferation that occurs with multivariate GARCH

models and the lack of heteroskedasticity in consumption growth (which may be due to a tem-

poral aggregation bias7). Nevertheless, we will use this familiar framework to illustrate the

properties of our “optimally scaled bound”.

Our first specification has two important features. First, we impose a parsimonious factor

structure on the conditional covariance matrix inspired by Engle, Ng and Rothschild (1990).

Second, we allow negative shocks to have a different effect on the conditional variance than

positive shocks, that is, we accommodate asymmetric volatility as in Glosten, Jagannathan and

Runkle (1993) and Bekaert and Wu (2000). The presence of asymmetry in stock volatility is

well known but in a previous version of this paper (Bekaert and Liu (1998)) we also document

asymmetry in the conditional variance of quarterly consumption growth. While it is intuitively

plausible that uncertainty about future consumption growth is higher in a recession than in a

boom, we could not find articles in the business cycle literature that document this phenomenon.

7See Bekaert (1996) for an elaboration of this point
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In the finance literature, the available empirical evidence is mixed. Ferson and Merrick (1987)

report U.S. consumption volatility to be higher in a non-recession sample relative to a recession

sample. Kandel and Stambaugh (1990) find peaks in the standard deviation of U.S. consumption

growth to occur at the end of recessions or immediately after them.

For the multivariate set-up, we begin by parameterizing an unconstrained model:

Yt = ct−1 + AYt−1 + Ωt−1et (39)

where

ct =

⎛
⎜⎜⎝

cxt

cst

cbt

⎞
⎟⎟⎠ , (40)

and et|It−1 is N(0, Ht) with Ht a diagonal matrix where the diagonal elements, hiit, follow

hiit = δi + αihiit−1 + κie
2
iit−1 + ηi(max(0,−eiit−1))

2. (41)

If ηi > 0, volatility displays the well-known asymmetric property. The et-vector contains the

fundamental shocks to the system. The error terms of the system are linked to et through Ωt. A

parsimonious factor structure arises by assuming that Ωt is time-invariant and upper triangular:

Ωt = Ω =

⎛
⎜⎜⎝

1 0 0

fxb 1 0

fxs fbs 1

⎞
⎟⎟⎠ , (42)

To further limit parameter proliferation, we set fbs = 0 and let the consumption shock be the

only factor. This is consistent with the standard consumption-based asset pricing model, where

consumption growth is the only state variable. In addition, we set

αb = κb = ηb = αs = κs = ηs = 0. (43)

All the time-variation in volatility of the Yt-system is driven by time-varying uncertainty in

consumption growth. The covariance of the error terms becomes

Σt = ΩHtΩ
′. (44)

We denote its elements by σijt with i, j = x, b, s. Since the consumption-based asset pric-

ing model introduces elements of the conditional variance-covariance matrix in the conditional
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mean, the unconstrained model should allow the conditional covariance matrix to affect the

conditional mean as well. Therefore, we let

cit = vihxxt + ci, (45)

where i is either b or s. This simple expression for the constant arises because of the one-factor

structure of the conditional covariance matrix. The parameter vector to be estimated is

Θ = [vec(A)′, cx, cb, cs, vb, vs, fxb, fxs, δx, αx, κx, ηx, δb, δs]
′.

Hence, there are a total of 22 parameters and it is clear that relaxation of some of the parameter

restrictions we impose would be stretching the data too far. This unconstrained model serves

as a natural alternative to the model constrained by the consumption-based asset pricing model.

Let γ be the CRRA and let β be the discount factor. The model implies

Et[R
i
t+1] = −1/2σiit − 1/2γ2σxxt + γσixt + γEt[xt+1] − ln β.

If conditional variances are constant, the time variation in the conditional means of asset returns

and consumption growth is proportional and the proportionality constant is the CRRA. The

restriction also shows the role of γ as the price of risk with the risk being the covariance with

consumption. With our particular GARCH structure, the model further simplifies to

Et[R
i
t+1] = −(ln β + 1/2hii) − 1/2(γ − fxi)

2hxxt + γEt[xt+1].

Note hii does not depend on t for i = b, s because of equation (43). Our particular parameter-

ization has the implication that increased uncertainty about future consumption growth always

decreases expected returns. This seems at odds with the data where the price of risk has been

shown to move countercyclically. The model does predict that, if shocks to returns depend posi-

tively on consumption shocks, an increased covariance with consumption will drive up expected

returns. Furthermore, the covariance with consumption increases when consumption volatility

increases because of the factor structure. However, this effect is swamped by the Jensen’s in-

equality terms which depend negatively on consumption volatility. As a result, this comparative

static is not necessarily true for gross returns:

Et[exp(Ri
t+1)] = exp(− ln β − γ/2(γ − 2fxi)hxxt + γEt[xt+1]).

Depending on the relative size of the sensitivity to consumption shocks, fxi and the CRRA,

higher consumption volatility may now increase the gross expected asset return. Empirically,
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our unconstrained model potentially allows for a positive relation between consumption volatil-

ity and expected log returns and so we can test whether this feature of the model is a source for

rejection. The restricted parameter vector ΘR contains 14 parameters,

ΘR = [cx, A11, A12, A13, β, γ, fxb, fxs, δi, αx, κx, ηx]
′, , i = x, b, s.

4.1.2 A Non-Linear Dynamic Model

Although the above unconstrained model features non-linearities in the volatility dynamics,

the conditional mean is linear in the information variables. There are two reasons to explore

non-linear models more explicitly. First, empirical research has documented regime-switching

behavior in both equity return data and consumption growth (see, respectively, Ang and Bekaert

(2002) and Whitelaw (2001)). Second, if non-linear predictability is present, it can be easily

accommodated in our optimally scaled bound, whereas naively scaled bounds are not likely to

reflect it.

Consequently, we formulate a regime-switching version of the unconstrained VAR model

of section 4.1.1. With St a discrete regime variable that can take on the values of 1 or 2, we

assume

Xt = μx(St) + φx(St)R
b
t−1 + σx(St)ε

x
t , (46)

Ri
t = μi(St) + φi(St)R

b
t−1 + biσx(St)ε

x
t + σiε

i
t, (47)

where i = b, s. Note that to avoid parameter proliferation, we constrained the conditional

mean dynamics to only depend on the past bond return, but not on past consumption growth

or stock returns. The correlation between bond and stock returns in this model stems either

from conditional mean dynamics or from their joint dependence on consumption shocks. The

St variable follows a Markov chain with either constant transition probabilities or transition

probabilities that depend on the past bond return. Ang and Bekaert (2002) find evidence of

non-linear short rate predictability in monthly equity returns.

P = prob(St = 1|St−1 = 1, It−1) =
exp(a1 + d1R

b
t−1)

1 + exp(a1 + d1Rb
t−1)

, (48)

Q = prob(St = 2|St−1 = 2, It−1) =
exp(a2 + d2R

b
t−1)

1 + exp(a2 + d2Rb
t−1)

, (49)

The parameter vector for this system contains 20 elements, with two additional parameters for

the case of time-varying transition probabilities:

ΘRS = [μi(j), φi(j), σx(j), σk(j), bk, aj, dj],
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with j = 1, 2 (denoting regime dependence), i = x, s, b, and k = s, b. It is straightforward to

derive a representation of this model that imposes the restrictions of the consumption based asset

pricing model, as we did for the model in section 4.1.1. This requires imposing the restrictions

”within” each regime. For reasons explained in the next section, we do not use this model in

the empirical illustration of the bounds.

4.2 Data and Estimation Results

Our consumption measure is the sum of per capita real non-durables and services consumption

in the US. These data were downloaded from DATASTREAM. The stock return is the quarterly

value - weighted dividend-inclusive index return on the NYSE, taken from Wharton’s web site

(http://wrdsx.wharton.upenn.edu). The interest rate is the U.S. 3 month Treasury Bill rate taken

from the Federal Reserve web site. We use a data set on weekly secondary market rates (av-

erages of daily) and use the rate closest to the end of the month. All data run from the second

quarter in 1959 to the end of 1996.

Table 1 shows the results from the unconstrained estimation. Despite the presence of very

large coefficients on the GARCH-in-mean term, consumption growth and bond returns show

strong autocorrelation as they do univariately. Although the standard errors for the GARCH-

in-mean coefficients seem very small, they should be interpreted with much caution. Standard

errors computed from the cross-product of the first derivatives of the likelihood are quite large

and more adequately represent the uncertainty regarding these parameter estimates. In fact, the

likelihood function is very flat with respect to these parameters, and a number of locals exist

where the GARCH-in-mean parameters are in fact positive. This is not that surprising. Much

work on GARCH-in-mean models for stock returns (see Bekaert and Wu (2000) for a survey)

has stressed the weakness of a positive relation between stock return volatility and its condi-

tional mean. In this model, stock and bond returns are linked to consumption volatility which

in turn drives asset return volatility. The much smaller magnitude of consumption volatility

relative to stock return volatility explains the large coefficients we find relative to the GARCH-

in-mean literature for stock returns. When we estimate a univariate GARCH-in-mean model for

stock returns we find a GARCH-in-mean parameter of 6.29 with a large standard error of 5.23.

Note that there is virtually no GARCH in the volatility dynamics but strong asymmetry with the

coefficient on positive shocks being slightly negative. This is somewhat problematic since the

conditional variance may theoretically become negative although it never does in sample.

The constrained model (see Table 2) is not surprisingly rejected by a likelihood ratio test.
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The χ2 test statistic is 75.32 with a p-value of 0.000 (there are 8 restrictions). The CRRA is

estimated to be 14.675 and the discount factor β is 1.071. Although the latter is above 1, we

know from Kocherlakota’s (1996) work that the economy remains well defined and in fact our

parameter values are quite close to the ones he uses to explain the equity premium puzzle. The

estimation results reveal that the key parameter the model attempts to match is the autoregressive

coefficient in the bond equation, which is almost perfectly matched. Given the proportionality

restrictions imposed by the model on expected returns, this causes a bad fit for both stock

returns and especially consumption dynamics. Because the GARCH-in-Mean parameters are

pretty similar, and are imprecisely estimated, it is very likely that the model rejection is driven

by this phenomenon.

Table 3 contains the estimation results for the regime-switching model. The construction of

the likelihood function for such models is by now standard (see for instance Hamilton (1994)).

Identifying a global maximum in a regime-switching model is difficult and we followed an

elaborate procedure to ensure that we indeed identified the global maximum. We first used

20 different sets of starting values, covering the parameter space as widely as possible. We

identified a number of local maxima and then, for each local maximum, ran 3 to 4 estimations

with starting values randomized around the converged local optimum parameter values. Finally,

we ran some 20 estimations with starting values randomized around the global maximum con-

verged values. The global maximum we report in Table 3 has been confirmed more than 20

times in our different estimation experiments.

Whereas the identification of regimes its typically driven by differences in volatilities across

regimes, we find the volatility of consumption shocks to be very similar in the two regimes.

However, regime 1 is a regime with overall high consumption growth, whereas consumption

growth in regime 2 is often negative although it depends positively and significantly on the bond

return. In this recession regime, expected asset returns are high, consistent with the conventional

wisdom. In the recession regime, bond returns are not positively but negatively serially corre-

lated. Bond returns have a small, insignificant consumption beta, whereas stock returns have a

large, positive and statistically significant consumption beta. We verified by simulation that this

model matches the first and second moments of the data very well.

When we allow the transition probabilities to depend on the past bond return, we find

d1 = 0.3785 with a standard error of 1.0048 and d2 = 13.08 with a standard error of 8.65.

A likelihood ratio test rejects the restriction of constant transition probabilities at the 5% level.

For the sake of completeness, we should mention that we estimated two other regime switch-
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ing models that we decided not to use in the empirical illustration. First, we estimated the model

in Table 3, subject to a set of restrictions imposed by the consumption based asset pricing model

with CRRA preferences. This model was strongly rejected by the data and the CRRA coeffi-

cient was negative. Hansen and Singleton (1983) also found convex utility for some of their

specifications. Furthermore, we estimated a model using only data on bond and stock returns.

By freeing the regime variable from having to fit regimes in consumption growth, we conjec-

tured that this model would provide a better fit with the return data. However this was not the

case: the joint model estimated in Table 3 provides sharper HJ bounds!

4.3 The HJ Bounds

This section illustrates the performance of our optimally scaled bound along the three dimen-

sions that we discussed in section 3: efficiency, robustness and diagnostics.

We have four candidates for the computation of the conditional moments we need in de-

riving the optimally scaled and GHT bounds: the VAR model for stock and bond returns

and consumption growth in its unconstrained and constrained form, and the regime-switching

model with constant and time-varying transition probabilities. We will also use these models as

data generating processes in simulations. Simulations both serve to illustrate the effect of mis-

specifications where the conditional moments are known, and to help interpret data results that

may be sensitive to sampling error in our short sample. Simulations use 10,000 observations. 8

Table 4 provides a complete guide to the Figures we produce. Importantly, we always focus on

both stock returns and bond returns and naive scaling uses the past bond and stock returns as

instruments for both returns.

4.3.1 Efficiency

Figure 1 uses the unconstrained VAR model and the two regime switching models to compute

the conditional moments in the optimally scaled bounds. Also on the graph are the uncondi-

tional and naively scaled HJ bounds. Three results stand out. First of all, the difference between

the unconditional and scaled bounds reveals considerable predictability. The main source of the

predictability is the autoregressive component in bond returns.

8We simulate 10,100 observations but discard the first 100 observations to reduce dependence on initial con-

ditions. Such dependence is unavoidable in the graphs using short sample data. Our sample estimates of the HJ

bounds may also be subject to the finite sample bias documented in Ferson and Siegel (2002), but the number of

asset returns we use is much smaller than theirs.
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Second, the difference between the various scaled bounds is small, but the arbitrarily scaled

bound is even somewhat sharper for small v’s than is the optimally scaled bound computed from

the unconstrained VAR. This can be due to either mis-specification of the conditional moments

or chance (sampling error). To examine this issue more closely, we first produce the same

graphs for a long simulated sample from the unconstrained model in Figure 2. We also show

the GHT bound. As should be the case, the GHT and optimally scaled bound are on top of one

another and dominate ad-hoc scaling, but only slightly. In other words, in a world where the

unconstrained model generates the data, naive scaling will closely approximate the efficient use

of the conditioning information. In fact, since the unconstrained model describes the data rather

well, the dominance of the naively scaled bound in Figure 1 may be simply due to sampling

error, which we confirmed by performing simulations using 151 data points only.

It is no mystery why the use of the true conditional moments adds little in this setting. The

feature of the data that arbitrary scaling would most likely fail to capture is the GARCH-in-

mean feature, which happens to be weak in quarterly data. The importance of optimal scaling

in generating sharper Hansen-Jagannathan bounds is likely more dramatic when strong non-

linearities are present. This brings us to the third important result captured by Figure 1: the

bounds generated by both regime-switching (RS) models are indeed sharper than the naively

scaled bound, with the sharpest bound delivered by the most non-linear model, the model with

time-varying transition probabilities. Hence, there appear to be non-linear conditional mean

effects in the data, but it is not surprising that they are not terribly strong in this quarterly data

set. To investigate this further, Figure 3 simulates data from the regime-switching model with

time-varying transition probabilities and produces the unconditional, naively scaled, optimally

scaled and GHT bound, the latter two using the true model to compute conditional moments. As

expected, the optimally scaled bound and the GHT bound are practically on top of one another,

but there is now a bit more of a wedge between naive and optimal scaling. To further demon-

strate that naive scaling produces inefficient bounds when non-linear predictability is present,

we simulate data from a regime - switching model with stronger non-linear predictability. In

Figure 4, we use the parameter estimates from Table 3, but multiply the parameters governing

the state dependence of the transition probabilities (d1 and d2) by 10. The wedge between the

naively scaled and the efficient optimally scaled and GHT bounds now gets much larger.
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4.3.2 Diagnostics

In Figure 5, which uses the constrained VAR model to generate the conditional moments, two

results stand out. First, the stacked optimally scaled bound gets pretty close to the naively

scaled bound, despite the mis-specification of the conditional moments. Of course, the con-

strained model manages to reproduce the most important aspect of the predictability, namely

the autoregressive component in bond returns, so this result is not so surprising. What may

strike some readers as surprising is the second main fact: the optimally scaled bound is not a

parabola. As we indicated above, if the moments are correctly specified it ought to be. Since we

know the model is rejected, the optimally scaled bounds seem to provide a striking alternative

specification test. Of course, it is again possible that some quirk in the constrained model cou-

pled with sampling error generates this result. This is not the case. Figure 6 uses data simulated

from the constrained model. Since the model for conditional moments is correctly specified in

this case, we now do obtain smooth parabola. We also produced these bounds for a number of

simulated samples of length 151 and never found the same ”strange” behavior.

To illustrate the diagnostic power of the optimally scaled bound more starkly, we can use

simulations and our estimated data generating processes to generate mis-specified bounds. Fig-

ure 7 uses observations simulated from the model that best fits the data: the RS model with

time-varying transition probabilities. We show the optimally scaled bounds using the true model

and the three other models to compute the conditional moments. In the last three cases, the mo-

ments are of course mis-specified. The three models not constrained by the consumption based

asset pricing model generate similar optimally scaled bounds with no obviously visible mis-

specification. Of course, the bound from the true model is the sharpest. However, the optimally

scaled bound computed using constrained VAR moments shows striking non-parabolic behav-

ior near the trough of the graph. The bound is also far from efficient, which may suggest that

mis-specification may lead to very inefficient bounds. In this rather stylized example, this is

of course true by construction, but the graph also shows that mis-specified models (the uncon-

strained VAR and the RS model with constant transition probabilities) that get the dynamics

”almost” right, yield rather tight bounds. Moreover, in the case of mis-specification, one can al-

ways do better by using the stacked optimal bound. Figure 8 illustrates this by repeating Figure

7 with optimally scaled stacked bounds. Of course, for the true model, the optimally scaled and

the optimally scaled, stacked bound are identical. The constrained VAR model still generates a

non-parabolic optimally scaled bound, but the bound is now much closer to the true bounds.

As another illustration, Figure 9 generates data satisfying our worst model, the constrained
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VAR model, but computes the optimally scaled bound using moments according to the true

and our three other, now mis-specified models. Now, all mis-specified models generate non-

parabolic optimally scaled bounds.

Finally, Table 5 produces the diagnostic test of section 3.3 (see equation (37)), ignoring the

sampling error in the original parameters, but taking the sampling error in estimating the a, b and

d constants into account. All test values are χ2(2) and the p-values are in between parentheses.

We first produce the test for the data, using all four of our models to compute the conditional

moments. The test rejects the constrained model, as did the likelihood ratio test, at the 1% level.

However, the diagnostic test also provides a test of the first and second moment specification

embedded in the other models, including the regime switching models. Here the test fails to

reject in each case with p-values of over 90%. Testing the constrained or unconstrained VAR

models versus the regime switching models would be a difficult task because of the presence of

nuisance parameters under the null. Our specification test clearly shows that the models that do

not impose the restrictions of the consumption-based asset pricing model provide a reasonable

specification of the first and second moments, but that the constrained VAR model does not.

Our simulated samples offer a controlled environment to examine the performance of the

test. We consider 16 cases simulating from the 4 different models and computing the moments

according to each model (which will be mis-specifying the conditional moments in three of the

4 cases). Given the size of the simulated samples (10,000 observations), we expect to reject

when the moments are clearly mis-specified as in the constrained VAR model. The three other

models all generate very similar first and second moments but for the test to be useful (that is,

consistent) it must be able to distinguish these small differences in conditional moments and

reject when given enough observations. This indeed happens. Focussing on the simulation

rows and columns in Table 5, the moments are correctly specified along the diagonal and there,

the test yields small, insignificant test values. For all off-diagonal elements, the moments are

mis-specified and the test should reject. It does in each and every case at less than the 1%

significance level. For entries involving the constrained model, the test generates very large test

values. We conclude that the test behaves reasonably.

4.3.3 Robustness

We have so far not focused on the GHT bounds very much. Generally, optimally scaled bounds

do not perform much worse or better than the GHT bound. Moreover, our simulations reveal

that the GHT bounds quite often over-estimate the variance of the true pricing kernel. A first
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example is in Figure 10. In Figure 10, we generate data from the regime switching model with

time-varying transition probabilities. When we correctly specify the conditional moments, the

GHT bound mimics the behavior of the optimally scaled bound, which was graphed in Figure

7: it starts out high on the left (a little over 1) and ends up at a level of about 0.6 at the right.

When we use the unconstrained VAR and the constant transition probabilities RS model, the

GHT bounds are not too different. Nevertheless, at the right hand side of the graph they slightly

over-estimate the true variability of the pricing kernel. When we use mis-specified moments

from the constrained VAR model, the GHT bound generates way too high values for the bounds

on the right-hand side. When we use the constrained VAR model to generate truth in Figure 11,

a similar phenomenon appears. This time, the GHT bound over-estimates to varying degrees at

the left hand side of the graph for all three mis-specified models.

This lack of robustness is a serious drawback to the GHT bound. The optimally scaled bound

never exceeds the true GHT bound but manages to be quite close to it. Figures 7,8 and 9 amply

demonstrate this fact. The top HJ bound in these figures corresponds to the GHT bound in either

Figure 10 or 11. Importantly, when the moments are mis-specified, the optimally scaled bound

always remains below the true bounds and the mis-specification shows up in non-parabolic

behavior of the bound. The latter is particularly apparent in Figure 7. This surprising robustness

should make the optimally scaled bound the preferred method of incorporating conditioning

information efficiently.

5 Conclusions

With the continued interest of the finance profession in the use of (unconditional) HJ bounds on

the one hand, and the growing evidence of time-variation in conditional means and variances

of asset returns on the other hand, it becomes important to optimally incorporate conditioning

information in these bounds. Our paper provides a bridge between the insightful but complex

analysis of GHT (1990), and the simple but sub-optimal practice of arbitrarily scaling of re-

turns with instruments that predict them. The advantage of the latter approach is that it always

produces valid bounds to the variance of the pricing kernel, whereas the GHT bound may over-

estimate the variance of the pricing kernel when the conditional moments are mis-specified.

In this article, we derive the best possible scaled bound, the optimally scaled bound. As does

the GHT bound, this bound requires specifying the conditional mean and variance of the returns

and we show that the optimally scaled bound is as good as the GHT bound when these moments
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are correctly specified. When they are mis-specified our bound is robust, in the sense that it will

always produce a valid bound to the variance of the pricing kernel since it is a HJ bound.

There are potentially many interesting applications of our framework. First, the bounds

can be used to re-examine the predictability of asset returns and to examine which instruments

yield the sharpest restrictions on asset return dynamics. In our application here, using the op-

timally scaled bound does not sharpen the bounds dramatically. However, Ferson and Siegel

(2002) show cases where the efficient use of conditioning information substantially increases

the efficient volatility bound.

Second, the bounds can also yield information on expected return and conditional variance

modeling and serve as a diagnostic tool to judge the performance of dynamic asset pricing

models. The reason is that the optimal scaling function depends on the conditional mean and

conditional variance of the returns and that the resulting HJ bound is best when they represent

the true conditional moments. We use this property of the optimally scaled bound to develop

a GMM-based specification test for the first and second moments, but much more needs to be

done. We ignored the sampling error in the parameter estimates of the original models, and did

not examine the small sample properties of the test.9

Third, using the duality with the mean-variance frontier, the optimally scaled bound can

be used in dynamic models of optimal asset allocation that seek to maximize an unconditional

mean-variance criterion. Fourth, the bounds could be used in developing performance measures

for portfolio managers. In the standard mean-variance paradigm, there is no role for a portfolio

manager since the optimal portfolio weights are fixed over time. In a dynamic setting, with

changing conditional information, the role of the portfolio manager is to adjust the portfolio

weights according to the arrival of information, preferably optimally.

9See Hansen, Heaton and Yaron (1996) for a study of the small sample properties of GMM estimators.
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6 Appendix

Proof of proposition 1: The problem we would like to solve is

sup
z

σ2(v; z′trt+1) = sup
z

(E[z′tpt − vz′
trt+1])

2

E[(z′trt+1)2] − E2[z′trt+1]
.

This is a well defined problem since σ2(v; z′trt+1) is bounded from above by the GHT bound

σ2
GHT (v) and from below by 0. Note that

E[z′tpt] = E[f ′(yt)pt],

E[z′trt+1] = E[f ′(yt)rt+1] = E[f ′(yt)μt],

E[(z′trt+1)
2] = E[f ′(yt)Et[rt+1r

′
t+1]f(yt)] = E[f ′(yt)(μtμ

′
t + Σt)f(yt)],

where μt and Σt are the conditional mean and conditional variance of the return respectively.

So the above problem is reduced to the problem (we omit the subscript t in the derivation),

sup
f(y)

(E[(p − vμ)′f(y)])2

E[f ′(y)(μμ′ + Σ)f(y)] − E2[f ′(y)μ]
, (50)

where

E[(p − vμ)′f(y)] =

∫
(p − vμ)′f(y)ρ(y)dy, (51)

E[f ′(y)(μμ′ + Σ)f(y)] =

∫
f ′(y)(μμ′ + Σ)f(y)ρ(y)dy, (52)

E[f ′(y)μ] =

∫
μ′f(y)ρ(y)dy, (53)

where y is a multi-dimensional vector and ρ(y) is the multi-variate distribution function of y.

This is a variation-like problem and we adapt the calculus of variation technique to solve it. Let

g(y) = f(y) + εh(y), where ε > 0, the first order condition with respect to ε gives

E

[
(p − vμ)′h

E[(p − vμ)′f ]

]
= E

[
(f ′(μμ′ + Σ) − E[μ′f ]μ)′h
E[f ′(μμ′ + Σ)f ] − E2[μ′f ]

]
, ∀h,

where we write f or h instead of f(y) or h(y) whenever there is no confusion. This implies that

(p − vμ)

E[(p − vμ)′f ]
=

((μμ′ + Σ)f − E[μ′f ]μ

E[f ′(μμ′ + Σ)f ] − E2[μ′f ]
. (54)

Note that the probability density function ρ(y) of y does not appear explicitly. Solving for f

from equation (54), we obtain:

f = (μμ′ + Σ)−1

(
E[f ′(μμ′ + Σ)f ] − E2[μ′f ]

E[(p − vμ)′f ]
(p − vμ) − E[μ′f ]μ

)
. (55)
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This completes our solution for the functional form of f(y), since the expectations on the right-

hand side of (55) only depend on y through some constant parameters, representing uncondi-

tional moments. Hence, we obtain,

f = (μμ′ + Σ)−1(αp + λμ),

where α and λ are constants. Further, note that the scaling by a constant does not change the

Hansen-Jagannathan bound, so we can solve f only up to a constant. We can thus let α = 1.

With the functional form of the scaling factor known, we can determine the constant λ (note that

−λ is w in equation (10) ) by solving a standard maximization problem (instead of a functional

problem):

sup
λ

g(λ) = max
λ

(E[(p − vμ)′(μμ′ + Σ)−1(p + λμ)])2

E[(p + λμ)′(μμ′ + Σ)−1(p + λμ)] − E2[μ′(μμ′ + Σ)−1(p + λμ)]
(56)

So we have

g(λ) =
(a − vb + λb − λvd)2

(a + 2λb + λ2d) − (b + λd)2
(57)

where

a = E
[
p′(μμ′ + Σ)−1p

]
,

b = E
[
p′(μμ′ + Σ)−1μ

]
, (58)

a = E
[
μ′(μμ′ + Σ)−1μ

]
.

Now we can just use the standard first order conditions to determine λ. The first order condition

in λ gives

0 =
2(a − vb + λb − λvd)(b − vd)

(a + 2λb + λ2d) − (b + λd)2
(59)

−2(a − vb + λb − λvd)2(b + λd − (b + λd)d)

((a + 2λb + λ2d) − (b + λd)2)2 . (60)

Factoring out (a− vb + λb− λvd) (this is not a problem because λ = vb−a
b−vd

is a minimum since

it leads to σ2
OSB(v) = 0), we have

(b − vd)
(
(a + 2λb + λ2d) − (b + λd)2

) − (a − vb + λb − λvd)
(
b + λd − (b + λd)d

)
= 0.

Solving this equation gives

λ =
b − v

1 − d
.
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So the optimal scaling factor is

z∗t = (μtμ
′
t + Σt)

−1(pt + λμt). (61)

and the optimal scaled asset is

r∗t+1 = (pt + λμt)
′(μtμ

′
t + Σt)

−1rt+1. (62)

Substituting the optimally scaled returns into equation (7), we obtain the optimally scaled bound

σ2
OSB = σ2(v; z∗′t rt+1) =

a − ad + b2 − 2bv + bv2

1 − d
. (63)

We should remark that the above formulas constitute solutions to the first order condition which

is only a necessary condition for optimality. We need to verify that the solution is a maximum.

We can argue that the first order condition is sufficient in the following way. Note that in the

problem of equation (50),

sup
f(y)

(E[(p − vμ)′f(y)])2

E[f ′(y)(μμ′ + Σ)f(y)] − E2[f ′(y)μ]
,

is homogeneous of degree zero in f(y), so it is equivalent to the problem10:

inf
f(y)

E[f ′(y)(μμ′ + Σ)f(y)] − E2[f ′(y)μ]

s.t. (E[(p − vμ)′f(y)])2 = 1.

Because both E[f ′(y)(μμ′ + Σ)f(y)] and (E[(p − vμ)′f(y)])2 are convex in f(y) and there is

interior point, this is a convex programming problem and there is a minimum. In fact, one can

easily verify that the solution is the one we obtained above.

Proof of proposition 3: Note that the pricing kernel written in terms of scaled assets formed

using rt+1 and z′trt+1 can always be written as z̃′trt+1 for some z̃t. So we have

max
zt∈It

σ2(v; rt+1, z
′
trt+1) = max

zt∈It

σ2(v; z′trt+1) = max
zt∈It

σ2(v; z∗′t rt+1).

But

σ2(v; z∗′t rt+1) ≤ σ2(v; rt+1, z
∗′
t rt+1).

Combining the above two expressions, we get

σ2(v; rt+1, z
∗′
t rt+1) = σ2(v; z∗′t rt+1).

10We would like to thank Darrell Duffie for suggesting this proof
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Table 1: Unconstrained GARCH-In-Mean Model

Equations Coefficients

Constant Xt−1 Rb
t−1 Rs

t−1

Xt 0.0030 0.361 -0.029 0.008

(0.0005) (0.033) (0.022) (0.005)

Rb
t 0.0056-162.65hxxt -0.198 0.738 -0.0002

(0.0006)(0.0001) (0.031) (0.037) (0.0043)

Rs
t 0.0188-58.02hxxt -1.734 1.029 0.077

(0.0083)(0.0003) (0.005) (0.014) (0.034)

Constant αi κi ηi

h11t 0.000019 -0.0265 0.0008 0.2705

(0.000018) (0.0807) (0.7898) (0.0426)

h22t 0.000014 0 0 0

(0.000002)

h33t 0.006134 0 0 0

(0.00103)

fxb=-0.0564 fxs=3.182

(0.1425) (0.003)

Notes: The model estimated is described in equations (39) to (45). Standard er-

rors are in parentheses and are robust to mis-specification of the error distribution

in the sense of White (1982). Parameter values without standard errors reflect

constrained parameters.
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Table 2: Constrained GARCH-In-Mean Model

Equations Coefficients

Constant Xt−1 Rb
t−1 Rs

t−1

Xt 0.005 -0.018 0.050 0.0001

(0.0005) (0.005) (0.005) (0.0003)

Rb
t 0.0053-108.97hxxt -0.264 0.734 0.0012

Rs
t 0.0021-82.086hxxt -0.264 0.734 0.0012

γ= 14.675 β= 1.071

(0.0376) (0.0082)

Constant αi κi ηi

h11t 0.000022 -0.0652 0.00 0.3907

(0.000006) (0.0208) (0.00) (0.0876)

h22t 0.000013 0 0 0

(0.000002)

h33t 0.006457 0 0 0

(0.001009)

fxb=-0.0877 fxs=1.847

(0.0813) (0.0872)

Notes: The model estimated imposes the following constraint on the uncon-

strained model reported in Table 1:

Et

[
Ri

t+1

]
= −(log β +

1
2
hii) − 1

2
[γ − fxi]

2
hxxt + γEt

[
Xi

t+1

]
The table reports all parameters, including parameters constrained by the model.

Robust standard errors are in parentheses.

33



Table 3: Regime-Switching Model

Equations Coefficients

Constant Rb
t−1 σi bi

St = 1 St = 2 St = 1 St = 2 St = 1 St = 2

Xt 0.0055 -0.0103 0.005 0.813 0.0042 0.0042

(0.0005) (0.0020) (0.064) (0.306) (0.0017) (0.0003)

Rb
t 0.0009 0.0087 0.802 -0.721 0.0034 -0.0044

(0.0004) (0.0018) (0.051) (0.269) (0.0002) (0.0663)

Rs
t 0.0071 0.0332 1.31 1.11 0.0773 4.62

(0.0084) (0.0385) (1.19) (5.70) (0.0045) (1.52)

Notes: The model estimated is described in equations (46) to (49). Standard errors

are in parentheses and are robust to mis-specification of the error distribution in

the sense of White (1982).
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Table 4: Guide to Figures

Figure Number Data Generating Process Model for (μt, Σt) Illustration

1 Data UC VAR, CP RS, TP RS Efficiency

2 Simulation, UC VAR UC VAR Efficiency

3 Simulation, TP RS TP RS Efficiency

4 Simulation, TP RS TP RS Efficiency

5 Data CO VAR Diagnostic

6 Simulation, CO VAR CO VAR Diagnostic

7 Simulation, TP RS all Diagnostic/Robustness

8 Simulation, TP RS all Diagnostic/Robustness

9 Simulation, CO VAR all Diagnostic/Robustness

10 Simulation, TP RS all Robustness

11 Simulation, CO VAR all Robustness

Notes: The data generating process column records the origin of the data in the

construction of the optimally scaled and GHT bounds: actual data (”data”), sim-

ulated data from one of the models: UC VAR (unconstrained VAR), CO VAR

(constrained VAR), CP RS (regime-switching model with constrained transition

probabilities), TP RS (regime-switching model with time-varying transition prob-

abilities). The simulated samples are of length 10,000. The Model column records

either the unconstrained (”UC”) or the constrained (”CO”) model. The last col-

umn identifies the property of the optimally scaled bound the Figure purports to

illustrate. Figures 10 and 11 only graph GHT bounds to be contrasted with Fig-

ures 7 through 9 which only graph optimally scaled bounds. The first 6 figures

graph a variety of bounds, including unconditional HJ bounds ( denoted by hj in

the figures) and naively scaled bounds. For the scaled bounds, the instruments are

the past returns for both returns.
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Table 5: Diagnostic Test

UC VAR CO VAR CP RS TP RS

Data 0.117 14.97 0.295 0.050

(0.9433) (0.0006) (0.8630) (0.9751)

Sim. 1.77 761.55 12.98 24.37

(UC VAR) (0.4128) (0.0000) (0.0015) (0.0000)

Sim. 510.19 0.543 438.56 374.00

(CO VAR) (0.0000) (0.762) (0.0000) (0.0000)

Sim. 23.00 517.73 0.666 46.09

(CP RS) (0.0000) (0.0000) (0.7167) (0.0000)

Sim. 27.34 834.22 9.47 3.52

(TP RS) (0.0000) (0.0000) (0.0088) (0.1720)

Notes: This table produces the diagnostic test proposed in section 3.3 for 20 dif-

ferent environments, depending on which model was used to construct the con-

ditional moments and which data were used (actual data or simulated samples of

10,000 observations according to one of the models). The model nomenclature is

as follows: UC VAR for unconstrained VAR, CO VAR for constrained VAR, CP

RS for regime-switching model with constrained transition probabilities, TP RS

for regime-switching model with time-varying transition probabilities. All statis-

tics are χ2(2) distributed and p-values are in parentheses.
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Figure 1: Hansen-Jagannathan bounds for real data with conditional moments calculated from three models.
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Figure 2: Hansen-Jagannathan bounds for simulated data according to the unconstrained VAR model with condi-

tional moments calculated from the unconstrained VAR model.

38



0.992 0.993 0.994 0.995 0.996 0.997 0.998
0

0.2

0.4

0.6

0.8

1

mean of pricing kernel

st
an

da
rd

 d
ev

ia
tio

n 
of

 p
ric

in
g 

ke
rn

el

hj
naive scaling
optimal scaling (TP RS)
ght (TP RS)

Figure 3: Hansen-Jagannathan bounds for simulated data with conditional moments calculated from the regime-

switching model with time-varying transition probabilities.
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Figure 4: Hansen-Jagannathan bounds for simulated data according to the TP RS model with conditional moments

calculated from the TP RS model (stronger predictability).
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Figure 5: Hansen-Jagannathan bounds for real data with conditional moments calculated from the constrained

VAR model.
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Figure 6: Hansen-Jagannathan bounds for simulated data according to the constrained VAR model with conditional

moments calculated from the constrained VAR model.
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Figure 7: Optimally scaled HJ bounds for simulated data according to the TP RS model with conditional moments

calculated from different models.
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Figure 8: Optimal stacked HJ bounds for simulated data according to TP RS model with conditional moments

calculated from different models.

44



0.992 0.993 0.994 0.995 0.996 0.997 0.998
0

0.2

0.4

0.6

0.8

1

mean of pricing kernel

st
an

da
rd

 d
ev

ia
tio

n 
of

 p
ric

in
g 

ke
rn

el

optimal scaling (CO VAR)
optimal scaling (UC VAR)
optimal scaling (CP RS)
optimal scaling (TP RS)

Figure 9: Optimally scaled HJ bounds for simulated data according to the constrained VAR model with conditional

moments calculated from different models.
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Figure 10: GHT bounds for simulated data according to the TP RS model with conditional moments calculated

from different models.
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Figure 11: GHT bounds for simulated data according to the constrained VAR model with conditional moments

calculated from different models.
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