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Preference structures that underlie survey or
experimental responses may systematically vary
during the administration of such measurement.
Maturation, learning, fatigue, and response
strategy shifts may all affect the sequential
elicitation of respondent preferences at different
points in the survey or experiment. The
consequence of this phenomenon is that responses
and effects can vary systematically within the data
set. To capture these structural changes, the authors
present a maximum likelihood–based change-point
multiple regression methodology that explicitly
detects discrete structural changes at various points
in time/sequence in regression coefficients by

simultaneously estimating the number of change
points, their location and duration in the sequence
of data points, and the respective regression
coefficients for each subset of the data defined by
the change points. An application involving a
stated preference or conjoint analyses study of
student apartment choices illustrates
that the structure of preferences changes
significantly over the sequence of profile
responses. Index terms: preference/choice
experiments, behavioral decision making,
maximum likelihood estimation, models of
structural change, conjoint analysis, consumer
psychology.

Introduction

Much of the existent behavioral literature in behavioral decision making has been involved with
the measurement of consumers’ preference or utility functions for a specified stimulus set (e.g., a
product or service). Normative theories of value maximization (e.g., von Neumann & Morgenstern,
1947) posit that each respondent possesses stable preferences for all possible stimulus options—or
what Moore (1999) calls an “internal global preference set.” However, as illustrated by Tversky and
Simonson (1993), without a global preference set, one quickly faces serious problems applying these
value maximization principles. And there is a plethora of research that questions the existence of
such an internal global preference set. For example, Moore argues that cognitive storage limitations
would make such an elaborate set of established preferences virtually impossible.
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Authors such as Herr (1989) and Simonson and Tversky (1992) argue that preferences become
more firmly established with experience—a dynamic process. This view is consistent with the
vast empirical evidence that preferences are not simply revealed but are actually constructed in
the process of their elicitation (Coupey, Irwin, & Payne, 1998; Fischhoff, Slovic, & Lichtenstein,
1980; March, 1978; Payne, Bettman, & Johnson, 1992). This is not stating that respondents have
no preferences before they are asked about them. It does, however, suggest that respondents have
strategies they use for assembling their preferences and that these strategies are unlikely to produce
preferences that are invariant over time.

Other authors such as Bettman (1979), Bettman and Zins (1979a, 1979b), and Bettman and
Park (1980) also support this view in their constructive theories of choice. These authors state that
respondents (here consumers) may not have complete rules or heuristics stored in memory that are
used in the process of preference and choice formation. Rather, respondents/consumers may have
only fragments or elements of heuristics in memory that are then put together during the actual
choice process to “construct” a heuristic. Such elements may involve the beliefs about alternatives,
evaluations, simple rules of thumb, rules for integrating data, and so on. As Bettman and Park note,
the specific elements used for a particular choice and the sequence in which they will be used will
be a function of such factors as the following: what external present information is available, the
format in which that information is presented, the degree to which various pieces of information
“stand out,” intermediate processing results, and so on. (See also Payne, Bettman, & Schkade, 1999,
who also posit that preferences are constructed rather than recalled.)

Such dynamic processes underlying respondent preference/utility have also been examined from
an information integration perspective. Consistent with information integration theory (Anderson,
1981), Johar, Jedidi, and Jacoby (1997) conceptualize stimulus evaluation formation process as
a function of prior evaluation (experience) and new information. With this view, respondents are
likely to anchor their stimulus evaluations on prior evaluations and adjust these evaluations based
on newly acquired information (cf. Einhorn & Hogarth, 1985; Lopes, 1982). When new information
is acquired, evaluations may stay the same, become more favorable, or become less favorable.
Lopes (1982, p. 2) describes such a serial adjustment process as one in which information is
scanned, items are selected for processing, scale values are assessed, and adjustments are made to
an interim quantity that summarizes the results from already processed information. Other dynamic
adjustments in utility functions based on newly acquired information have also been studied by
Gilbert, Krull, and Pelham (1988) and Gilbert (1989). Consequently, as stated explicitly in Kardes
and Kalyanaram (1992), respondent preferences are likely to evolve over time through an anchoring
and adjustment process (Kahneman, Slovic, & Tversky, 1982; Kahneman & Snell, 1990).

Meyer (1987) examined this dynamic process in the context of how multiattribute judgments
are made. He stated that the algebraic cognitive rules underlying such preference elicitation evolve
over time/task through learning. At early stages of learning, knowledge about phenomena (e.g.,
stimulus attributes) is thought likely to consist primarily of recollections of individual experiences
(cf. Hayes-Roth, 1977; Taylor & Crocker, 1981). As the pool of experiences grows, these experiences
become better organized into associative networks or structures that define generalized knowledge
(e.g., Anderson, 1983; Shank & Abelson, 1977). Thus, at early stages, respondents use heuristics
that require only episodic knowledge about a class of stimuli. As experience increases, however,
a wider range of judgment strategies becomes feasible as the decision maker has both a wider
range of experiences to draw on and generalized knowledge about the antecedents of value. Meyer
experimentally demonstrated how judgmental processes change over time during the course of
learning in a context where respondents have high levels of access to the outcomes of previous
judgments.

Although much of this literature focuses on structural changes over time (e.g., prior experience),
such changes can occur within the context of an experiment or survey itself. It has been well
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documented that the reactive nature of the measurement itself can affect such preferences/choices
vis-à-vis fatigue, order effects, learning, response shift patterns, context effects, maturation, and so
forth (cf. Anderson, 1981; Feldman & Lynch, 1988; Jain & Pinson, 1976; Johnson, Lehmann, &
Horne, 1990; Tversky & Simonson, 1993). Thus, the structure underlying preferences in the begin-
ning stages of a repeated-measures or sequential measurements task may often be quite different
from the preference structure that has evolved at the end of the same measurements task.

These phenomena have been recently demonstrated in the stated preference or conjoint analysis
literature (Huber, Wittink, Johnson, & Miller, 1992), in which there is mention of a “burn-in” period
during which respondents evolve a systematic approach to providing preference judgment as they
examine attributes and attribute levels. More significantly, Johnson and Orme (1996) have noticed
significant changes in attribute weights over the course of a single conjoint survey. (For other litera-
ture involving shifts in [time-varying] parameters with respect to time-series data, see also Hanssens,
Parsons, & Schultz, 2001; Leeflang, Wittink, Wedel, & Naert, 2000; Wildt & Winer, 1983.)

This article presents a method for determining if and where, during the sequence of
responses/observations, significant shifts occur in preference structures in a multiple regression
context. The authors describe a maximum likelihood–based methodology that segments observa-
tions in a contiguous manner such that sets of optimal response models can be estimated. Section 2
reviews the extensive psychometrics, statistics, econometrics, and engineering literature on such
change-point problems. The authors present a modified estimation procedure that is computation-
ally simple and quick, generalizes to multiple change points, can accommodate large data sets and
a variety of model selection criteria/heuristics, and is guaranteed to locate globally optimum solu-
tions. In Section 3, an application to a stated preference or conjoint analysis problem, which deals
with student apartments in which such structural changes are observed and estimated, is described.
Finally, further directions for future research are discussed in Section 4.

Change-Point Multiple Regression

Multiple regression model instability may often be due to a discrete “switch” or change in the
regression equation from one subsample period (or regime) to another. A variety of approaches
currently exist for attacking such problems. As an approximation, curvilinear or nonlinear models
can be fit in such cases in which time/period is an independent variable whose effects vary nonlin-
early. Here, one has to specify a priori the exact specification of such nonlinear functions, and that
specification places constraints as to the nature of how response can change (e.g., monotonicity).
Indeed, in most social science applications with little a priori theory, it is difficult to prescribe a
particular functional form to fit. In addition, issues with using such an approximation exist in mul-
tiple regression contexts in which other independent variables may also exhibit differential effects
over time, especially in a noncontinuous manner.

Chow (1960) proposed an F test (see also Greene, 2003, pp. 130-132) to test for structural
changes in multiple regression specifications for the special case in which the dates and dura-
tion of these separate subsamples are known. In a similar fashion, Neter, Kutner, Nachtsheim, and
Wasserman (1996) and von Eye and Schuster (1998) formulate “piecewise regression” (either con-
tinuous or discontinuous) methods for estimating separate linear or nonlinear regression functions
for subsections of the sample in which the cutoffs for defining the separate functions are known
and given a priori (typically as ranges of some independent variable). However, in most social
science research applications involving repeated measures or sequential measurement, there is no
a priori knowledge of whether or when such change points occur. Quandt (1958, 1960), Farley and
Hinich (1970), and Kim and Siegmund (1989) propose models that permit at most one switch in the
data series with an unknown change point. Quandt (1972); Goldfield and Quandt (1973); Brown,
Durbin, and Evans (1975); Ploberger, Kramer, and Kontrus (1989); Kim and Maddala (1991); and
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Hamilton (1989, 1990) considered regression models that allow for more than one change point.
DeSarbo and Cron (1988) have developed a latent structure multiple regression methodology for
segmenting observations into multiple segments based on information indices. However, this pro-
cedure does not enforce contiguity constraints on the observations that are segmented (i.e., the seg-
ments are not likely to contain consecutive observations). Andrews (1993), Wecker (1979), Sclove
(1983), Neftci (1984), and Hamilton (1989) have also proposed similar methods and tests.

As an alternative approach, one can manipulate the Nonlinear Models Module of SYSTAT
Software V10.2 to estimate regimes in some multiple regression contexts. Here, Gauss Newton,
Quasi-Newton, and/or Simplex algorithms are used to estimate a user-specified nonlinear response
model incorporating regime changes in either a least squares or maximum likelihood estimation
(MLE) context. However, this approach cannot be gainfully applied to situations involving the
presence of both cross-sectional (respondents) and longitudinal (sequence) data. One could average
the responses across respondents and apply this approach, but that would destroy the sequence
information. Or, if one were to concatenate the responses and independent variables, there would
be no guarantee that the estimated change point(s) would occur between different respondents. In
addition, the optimization procedure used in SYSTAT assumes a continuous range for the change
point(s). (In fact, in the Example 10 provided in the SYSTAT manual, the estimated change point
for a two-regime model was not an integer value.) This would not be a feasible solution to problems
in which the cutoff points represent discrete time or sequence observations in which such structural
changes occur. Finally, there is no adjustment for the number of parameters estimated in terms of
the criterion to be optimized. How is the “optimal” number of regimes then to be determined when
SYSTAT’s ordinary least squares (OLS)/MLE loss function is monotonically decreasing/increasing
with the number of regimes/parameters estimated? Kim and Nelson (1999), Chen and Gupta (2000),
and Gustafsson (2000) have written excellent books summarizing the various classical and Bayesian
statistical approaches to change point or switching regression from the statistics and engineering
perspective.

Given the types of social science research applications typically dealt with for this class of
problems (large samples, repeated measures, sequential trials, long time series), computational
feasibility is an important issue. In addition, the ability to perform “parameter segmentation” while
optimizing a relevant objective function is appealing. Finally, having the ability to solve for a
globally optimal solution would be a major plus. As in Yao (1988) and Chen and Gupta (2000), the
authors start with a maximum likelihood framework. Later, they demonstrate that this is equivalent
to selecting solutions for a specified number of regimes that minimizes the total error sum of squares
in the prediction.

Let

t = 1, . . . , T observations/time periods;

k = 1, . . . , K independent variables;

r = 1, . . . , R (unknown) regime or change points.

The standard multiple regression model examined is

yt = X′
t β + εt , t = 1, . . . , T , (1)

where

X′
t = (1, X1t , X2t , . . . , XKt ), (2)

and

β′ = (β0, β1, . . . , βK) (3)
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is a (K +1) unknown regression parameter vector; εt is a random error distributed as N(0, σ 2), with
σ 2 unknown; and εt is uncorrelated from observation to observation (extensions of the methodology
to deal with such restrictions are discussed later). Thus, yt ∼ N(X′

t β, σ 2); that is, the dependent
variable is conditionally normally distributed.

The authors examine single-stimulus judgment situations in which there is interest in testing
whether there is a change in the regression model at some unknown location S, where (K + 2) ≤
S ≤ (T − K − 2) due to the number of parameters to be estimated per regime. For now, the
simple case of a single change point (R = 1) whose location (S) is unknown will be examined.
The generalization to multiple change points unfolds easily from this development. In essence, the
authors (cf. Chen and Gupta) are interested in testing the null hypothesis:

H0 : µyt
= X′

t β for t = 1, . . . , T (4)

versus the alternative hypothesis:

H1 :

[
µyt = X′

t β1
µyt = X′

t β2

]
t = 1, . . . , S

t = S + 1, . . . , T
(5)

where S, S ∈ (K + 2, . . . , T −K − 2), is the unknown location of the change point, and β, β1 , β2
are the unknown regression parameters.

Now, define

y =




y1
y2
...

yT


 , X =




1 x11 · · · xk1
1 x12 · · · xk2
...

...
...

...

1 x1T · · · xKT


 ≡




x′
1

x′
2
...

x′
T


 , and β =




β0
β1
...

βK


 ;

then the null hypothesis H0 corresponds to the following model:

µy = Xβ,

where

µy =




µy1

µy2
...

µyT


 .

Here, the likelihood function under H0 in matrix notation is:

L0(β, σ 2) = f (y1, y2, . . . , yT ; β, σ 2)

= (2π)−T/2(σ 2)−T/2 exp{−(y − Xβ)′(y − Xβ)/2σ 2}, (6)

and the well-known MLEs of β and σ 2 are

β̂ = (X′X)−1X′y, (7)

σ̂ 2 = 1

T
(y − Xβ̂)′(y − Xβ̂). (8)
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Then, the maximum likelihood function under H0 is

L0(β̂, σ̂ 2) = (2π)−T/2
[

1

T
(y − Xβ̂)′(y − Xβ̂)

]−T/2

e−T/2. (9)

Burnham and Anderson (2002) provide an excellent review and comparison of various model
selection criteria for such maximum likelihood problems. In particular, a number of information-
based heuristics are examined and related to Kullback-Leibler information. A general form for such
criteria for a given model or parameterization m can be expressed as follows:

GICm = c1(−2lnLm) + c2(Pm) + c3(Cm), (10)

where c1, c2, c3 are specified scaling/weighting constants; Lm is the likelihood function calculated
at its maximum value under model m; Pm is the number of free parameters associated with the
estimation of model m; and Cm is the complexity of model m. The complexity of a particular
model is often indicated by the variances and covariances of the estimated parameters vis-à-vis the
determinant of the estimated information matrix. A variety of such information-based heuristics,
including Akaike’s information criterion (AIC), the corrected or modified Akaike’s information
criterion (AICc), Takeuchi’s information criterion (TIC), the quasi-likelihood AIC (QAIC), the
Bayesian or Schwartz information criterion (BIC), the consistent AIC (CAIC), ICOMP, MDL, and
so forth can all be expressed as special cases of GIC above. Given the work by Bozdogan (1987,
1994) showing the superior performance of CAIC, that heuristic for model selection was chosen
in this context, although the combinatorial optimization framework to be presented can be trivially
extended for any such GIC-based measure.

Under the null hypothesis for this regression problem, one can define the consistent AIC, denoted
by CAIC(T), as

CAIC(T) = −2 log L0(β̂, σ̂ 2) + (K + 2)(log(T ) + 1)

= T log[(y − Xβ̂)′(y − Xβ̂)] + T (log 2π + 1) + (K + 2 − T ) (log(T ) + 1). (11)

Now define

y1 =




y1
y2
...

yS


 , y2 =




yS+1
yS+2

...

yT


 ,

X1 =




1 x11 · · · xK1
1 x12 · · · xK2
...

...
...

...

1 x1S · · · xKS


 ≡




x′
1

x′
2
...

x′
S


 ,

X2 =




1 x1(S+1) · · · xK(S+1)

1 x1(S+2) · · · xK(S+2)

...
...

...
...

1 x1T · · · xKT


 ≡




x′
S+1

x′
S+2
...

x′
T


 ,

β1 =




β1
0

β1
1...

β1
K


 , β2 =




β2
0

β2
1...

β2
K
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for S ∈ (K +2, . . . , T −K −2). Then the alternative hypothesis, H1, corresponds to the following
models:

µy1
= X1β1, µy2

= X2β2, σ1, σ2 (12)

where

µy1
=




µy1

µy2
...

µyS


 , and µy2

=




µyS+1

µyS+2
...

µyT


 for S ∈ (K + 2, . . . , T − K − 2). (13)

Here, the likelihood function is

L1(β1, β2, σ
2
1 , σ 2

2 ) = f
(
y1, y2, . . . , yT ; β1, β2, σ

2
1 , σ 2

2

)
= (2π)−T/2 (σ 2

1 )−S/2 exp{−(y1 − X1β1)
′(y1 − X1β1)/2σ 2

1 }
· (σ 2

2 )−(T −S)/2 exp{−(y2 − X2β2)
′(y2 − X2β2)/2σ 2

2 }, (14)

and the MLEs of the parameters are

β̂1 = (X′
1X1)

−1X′
1y1, (15)

β̂2 = (X′
2X2)

−1X′
2y2, (16)

σ̂ 2 = 1

S
[(y1 − X1β̂1)

′(y1 − X1β̂1)], (17)

σ̂ 2
2 = 1

T − S
(y2 − X2 β̂2)

′(y2 − X2 β̂2). (18)

Then, the concentrated maximum likelihood function can be written as (cf. Chen and Gupta, 2000)

L1(β̂1, β̂2, σ̂
2
1 , σ̂ 2

2 )

= (2π)−T/2e−T/2

[
(y1 − X1 β̂1)

′(y1 − X1 β̂1)

S

]− S
2

[
(y2 − X2 β̂2)

′(y2 − X2 β̂2)

T − S

]− (T −S)
2

.

(19)

Note that an option exists in the methodology that permits the estimation of common regime-
specific variance terms (σ1 = σ2) as well. Therefore, under H1, the consistent Akaike information
criterion, CAIC(S), for S ∈ (K + 2, . . . , T − K − 2), is

CAIC(S) = −2 log L1(β̂1, β̂2, σ̂
2
1 , σ 2

2 ) + (2K + 4)(log (T ) + 1)

= T (log 2π + 1) + S log

[
(y1 − X1 β̂1)

′(y1 − X1 β̂1)

S

]

+ (T − S) log

[
(y2 − X2 β̂2)

′(y2 − X2 β̂2)

T − S

]
+ (2K + 4)(log(T ) + 1). (20)

According to the principles of the information criterion in model selection, H0 will be
accepted if CAIC(T) ≤ min

K+2≤S≤T −K−2
CAIC(S), and H1 will be accepted if CAIC(T) >
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min
K+2≤S≤T −K−2

CAIC(S). If H1 is accepted, the estimated position of the change in the linear model

will be Ŝ such that

CAIC(Ŝ) = min
K+2≤S≤T −K−2

CAIC(S). (21)

Thus, for a specified number of change points R∗ ≥ 1, one selects the set of regressions that
results in minimum CAIC.1 Conditioned on R∗, CAIC is monotone with the sum of the error
sum of squares in both regimes, and an equivalent (and much less computationally burden-
some) approach is adopted to select the change points, given R∗ ≥ 1, which renders minimum
total error sums of squares. The modification reduces the computational effort immensely, espe-
cially when programming in an interpreted matrix-oriented language such as APL, MATLAB, or
Gauss. Such minimization is equivalent, given R∗, to selecting a solution that renders the largest
confidence value in rejecting H0 in the traditional Chow (1960) F test for structural change.
Then, across these optimal R∗ = 1, 2, 3, . . . solutions, one can use the min CAIC heuristic for
determining the optimal number of change points. Given the ease of computation, a complete
enumeration of all possible feasible, contiguous solutions, given R∗, is used. As such, a glob-
ally optimum solution is guaranteed for every regime analysis at very reasonable computational
speeds.2

Consumer Psychology Application: Apartment Preference Analysis

Introduction to Stated Preference or Conjoint Analysis

Luce and Tukey (1964) published a seminal paper concerning the conditions under which
measurement scales for both dependent and independent variables exist, given only (a) order infor-
mation on the joint effects of the independent variables and (b) a hypothesized composition rule.
This “conjoint measurement” idea further spawned several theoretical extensions and algorithmic
contributions (cf. Carroll, 1969; Kruskal, 1965; Young, 1969). One of the areas that grew under this
paradigm was called conjoint analysis, in which interest was focused primarily on parameter esti-
mation and scaling in the context of the multiattribute preference measurement problem (cf. Green
& Rao, 1971). That is, conjoint analysis is a “decompositional” multivariate technique used specif-
ically to understand how respondents develop preferences for a specified stimulus (e.g., product,
service, activity, apartments, etc.). According to Hair, Anderson, Tatham, and Black (1995), conjoint
analysis is based on the simple premise that respondents evaluate the value or utility of a stimulus
(real or hypothetical) by combining the separate amounts of utility provided by each attribute. Con-
joint analysis is unique among multivariate methods in that the researcher first constructs a set of
hypothetical stimuli by combining the selected levels of each attribute. These hypothetical stimuli
are then presented to respondents, who provide only their overall evaluations. Respondents need
not tell the researcher anything else, such as how important an attribute is to them or how well the
stimulus performs on a number of attributes. Because the researcher constructs the hypothetical
stimuli via efficient experimental designs, the importance of each attribute and each value of each
attribute can be determined from the respondents’ overall ratings.

The researcher must describe the stimuli in terms of both its attributes and the relevant values for
each attribute. The term factor is used when describing a specific attribute or other characteristic
of the stimuli. The possible values for each factor are called levels. In conjoint terms, a stimulus is
described in terms of its levels on the set of factors characterizing it. When the researcher selects
the factors and the levels to describe a stimulus according to a specific experimental design or plan,
the combination is known as a treatment or profile.
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Then, as described in Hair, et al. (1995), by constructing specific combinations (treatments
or profiles), the researcher is attempting to understand a respondent’s preference structure. The
preference structure “explains” not only how important each factor is in the overall decision but also
how differing levels within a factor influence the formation of an overall preference. This overall
preference, which represents the total worth or utility of an object, can be thought of as based on
the part-worths for each level. The general form of a conjoint model can be shown as follows:

Total utility for stimulusij,...,n = Part worth of leveli for factor1

+ Part worth of levelj for factor2

+ · · · + Part worth of leveln for factorm,

where the stimulus has m attributes, each having two or more levels (cf. Hair, et al., 1995). The
profile consists of leveli of factor1, levelj of factor2, . . . , up to leveln of factorm. Given the potential
for the creation of literally millions of potential hypothetical profiles of stimuli, conjoint analysts
make extensive use of highly fractionated factorial designs (cf. Addelman, 1962; Green, 1974) to
reduce the number of profile descriptions to a small fraction of the total number of combinations
while still allowing for main-effects estimation. Most often, metric ratings of overall preference are
collected from each respondent for each of the profiles contained in such fractional factorial main-
effects designs. Multiple regression is typically used for such conjoint analysis when the fractional
design, converted either to dummy variables or effects codings, is used as the set of independent
variables, and overall preference is the dependent variable. The estimated regression coefficients
are the factor part-worths.

Study Design

The current study involves descriptions of privately offered, unfurnished student apartments
located near a large, eastern university. Respondents for the experiment were undergraduate business
students (juniors and seniors), most of whom were living in a student apartment or were contem-
plating renting one during the next school year. The context of this experiment was adapted from
Johnson and Meyer (1984), Huber and Hansen (1986), and Green, Helsen, and Shandler (1988),
who each performed stated preference (cf. Louviere, Hensler, & Swait, 2000) or conjoint analyses
regarding student apartments. Based on this past research and a series of in-depth personal inter-
views with this particular student population, 10 attributes or factors were derived that these students
claimed to be important in making their decisions for apartment selections. Table 1 lists these
10 factors as well as the three levels tested for each factor. As mentioned, most of these factors
have appeared in past empirical stated preference/conjoint research on student apartments cited
above.

A main-effects, fractional factorial design (as used in past research cited above) was imple-
mented involving 27 profiles. Three additional profiles were formulated for predictive validation.
Each conjoint profile contained a description of a hypothetical apartment available for rent where
specific levels of all 10 factors were displayed according to the experimental design. The respon-
dent was to use a 100-point preference scale to indicate his or her stated interest in actually rent-
ing such an apartment for the upcoming academic year. A total of 27 different orderings of the
profiles were formulated, with each profile having a different order of presentation (from 1-27).
In addition, the presentation of the three profiles was altered for validation to occur either prior
to the conjoint task or immediately following it. Thus, 27 × 2 = 54 different questionnaires
were used in this experiment. A student sample of n = 162 students was obtained, allowing
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Table 1

Apartment 310 Experimental Design

Factor Level Code Effects Dummy

1. Rent $200 1 −1 1 0
$350 2 0 0 0
$500 3 1 0 1

2. Distance 5 min. 1 −1 1 0
13 min. 2 0 0 0
21 min. 3 1 0 1

3. Size 1 bedroom 1 −1 1 0
2 bedroom 2 0 0 0
3 bedroom 3 1 0 1

4. Amenities None 1 −1 1 0
Cable TV or utilities 2 0 0 0
Cable TV and utilities 3 1 0 1

5. Maintenance Poor 1 −1 1 0
Average 2 0 0 0
Good 3 1 0 1

6. Condition Poor 1 −1 1 0
Average 2 0 0 0
Newly renovated 3 1 0 1

7. Noise Very quiet 1 −1 1 0
Average 2 0 0 0
Very noisy 3 1 0 1

8. Safety Very unsafe 1 −1 1 0
Average 2 0 0 0
Very safe 3 1 0 1

9. Cleanliness Very dirty 1 −1 1 0
Average 2 0 0 0
Very clean 3 1 0 1

10. Privacy Unannounced inspections 1 −1 1 0
1-day notice 2 0 0 0
3- to 5-day notice 3 1 0 1

for three complete replications of these 54 questionnaires in which each student was randomly
assigned to a questionnaire containing all 27 + 3 profiles. Thus, for any/all particular sequence(s),
the orthogonality of the fractional factorial design remains in place, ensuring efficient estimation.
All questionnaires contained additional (identical) sections measuring memory, stated attribute
importance, demographics, willingness to pay, budget, current rent levels, and current apartment
descriptions.
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Table 2

Aggregate Conjoint Regression Analysis: Effects Coding

Intercept: 45.45
Variable Coefficient

Rent −5.50**
Distance −3.95**
Size 5.11**
Amenities 1.56**
Maintenance 3.33**
Condition 4.06**
Noise −4.89**
Safety 6.15**
Cleanliness 3.97**
Privacy 0.73

ANOVA Table

Source Sum of Squares df Mean Square F Calculated

Regression 524862.60 10 52486.26 114.75
Error 1995648.63 4,363 457.40
Total 2520511.23 4,373

Standard error of the estimate = 21.39
R2 = .208
Adjusted R2 = .206

**p ≤ .01.

Traditional Aggregate-Level Preference Analysis

An analysis over the entire sample was first conducted at an aggregate level, using all 27 responses
per respondent. Main-effects models were tested using both continuous effects and dummy variable
coding. Based on the fact that the dummy variable coding increased R-square by less than 2% at a
cost of nearly double the number of parameters, the simpler but more restrictive continuous-effects
coding scheme (which treats the three levels of each factor as an interval scale) was retained because
the levels within each factor were a priori constructed to be monotone. Table 2 presents the results
of the aggregate regression analysis for these 10 factors. All independent design variables, except
privacy, were significant, and all coefficient signs were in the anticipated direction. As shown by
the magnitudes of the absolute values of the coefficients, safety, rent, size, noise, condition, and
cleanliness are the most important apartment design variables in order of importance. Such trade-
off analysis also suggests specific preference orderings. For example, as implied by Table 2, a
high-rent, high-safety combination (−5.50 + 6.15 = 0.65) appears to be preferred to a low-rent,
low-safety one (−.065), holding all other factor levels the same. A key issue, therefore, is whether
this is a “stable” result or whether such comparisons change over the course of the study (e.g., rent
increases in importance over the course of the conjoint experiment). Put differently, if respondents’
burden were restricted here to a few profiles (say, eight), would the resulting interpretation be the
same as an analysis based on subsequent profiles?
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Table 3

First Versus Last Profile Conjoint Regression Solutions

First Last Aggregate

Intercept 39.95** 47.61** 45.45**
Rent −5.18** −6.08** −5.50**
Distance −6.05** −4.48* −3.95**
Size 6.37** 5.63** 5.11**
Amenities 1.94 −0.41 1.56**
Maintenance 3.30 −2.39 3.33**
Condition 2.94 2.00 4.06**
Noise −6.94** −3.35 −4.89**
Safety 4.60* 4.65* 6.15**
Cleanliness 7.83** 5.39** 3.96**
Privacy 0.62 −2.05 0.73
Standard error 20.76 21.40 21.39
F 6.47** 3.89** 114.75**
Adjusted R2 .25 .15 .21

*p ≤ .05.
**p ≤ .01.

Note that given the design of this particular experiment, part-worths can be estimated at each of
the 27 stages of the experiment (after each profile is completed) separately at the aggregate level.
For example, Table 3 displays the estimated part-worths from the responses collected in Step 1 (first
profile) and Step 27 (last profile). Some substantial changes are seen in these part-worths compared
to each other and from those obtained from the aggregate analysis in Table 2. Part of this variability
reflects sampling error, small numbers of observations per analysis, and perhaps the design itself.
Figure 1 represents the estimations performed in a cumulative fashion in which the observations
from previous steps are included in a particular stage of analysis. Uniformly, an erratic sequence or
time series is initially observed, which then starts to converge to some stationary level. It is clear
from these two analyses that changes occur in the part-worths (especially early in the task) as the
sample progresses through the task. Part of this may be due to fatigue, part may be due to sample
participants learning their preference structures as they accumulate experience, part may be due
to simplifications in the response patterns to expedite the conjoint task (e.g., focusing on fewer
attributes), and part may be a result of more data being cumulated in the analyses. As shown in
Table 3, the factor importances change in order when computed from Step 1 versus Step 27. In Step
1, the top five factors in order of importance were as follows: (1) cleanliness, (2) noise, (3) size,
(4) distance to class, and (5) rent. In Step 27, that order changes to the following: (1) rent, (2) size,
(3) cleanliness, (4) distance to class, and (5) safety. There appears to be a change toward stressing
more concrete and quantitative attributes (rent and size). Again, only the first and last profiles are
examined here. These orders both differ from that obtained from the total or complete analysis
computed over all collected 27 profiles (Table 2), in which the order was the following: (1) safety,
(2) rent, (3) size, (4) noise, and (5) condition.

Thus, even where the signs or relative sizes of the part-worth estimates for significant factors
do not change dramatically, there is a noticeable change in the order of importance for the various
design factors. Obviously, because these analyses were all done at the aggregate sample level,
there is little insight as to the dynamics of learning, fatigue, response patterns, order bias, and so on
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Figure 1

Cumulative Effects Coding Regression Part-Worths

INTERCEPT

Sequence

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

46

45

44

43

42

41

40

39

DISTANCE

Sequence

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

-3.5

-4.0

-4.5

-5.0

-5.5

-6.0

-6.5

AMENITIES

Sequence

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

(continued)



W. S. DESARBO, D. R. LEHMANN, and F. GALLIANO HOLLMAN
MODELING DYNAMIC EFFECTS 199

Figure 1

(continued)
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Figure 1

(continued)
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Note. The vertical axis is identified by the label at the top of each graph.

that may be occurring at the individual level. However, the location and duration of any significant
structural changes are now examined in the aggregate utility function that might occur as these
respondents progress through this task.

Change-Point Multiple Regression Analysis

The change-point multiple regression methodology is applied next, as developed in Section 2, to
the 27 conjoint profiles’ responses. Here, different regimes are allowed for that involve differences
in both part-worths and variances. Initially, the optimal splits (i.e., those that provide minimum
CAIC given R) of the sequence of profiles for sequential values of R (from 0-4 change points)
are tracked. Figure 2 presents a graphical decomposition of this profile segmentation for various
optimal splits (recall that R = the number of change points, R + 1 = the number of splits or
regimes, and S = the locations of the change points). As depicted in Figure 2, the sequence of
splits appears hierarchical or nested until R + 1 = 5 splits/regimes for this application. What is



202
Volume 28 Number 3 May 2004
APPLIED PSYCHOLOGICAL MEASUREMENT

Figure 2

Recursive Regime Splits for Conjoint Application
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of particular interest here is the fact that most of the splits or regimes for R = 1, 2, and 3 occur
early in the sequence of profiles, suggesting that adaptations in the aggregate utility function occur
early in the task. This may reflect their adaptation or learning as they familiarize themselves with
this full-profile conjoint task. That is, it may take some experience before respondents are able to
calibrate the heuristics they use to complete the task.

Using the CAIC to select the most parsimonious solution over all optimal splits presented in
Figure 2, the R + 1 = 2 split/regime solution provides the minimum CAIC3 value. The first regime
contains the data from Profiles 1 through 8, whereas the second regime contains the remaining
sequence of Profiles 9 through 27. Table 4 provides the optimal two-regime solution in comparison
to the aggregate regression analysis computed over all 27 profiles. Note that the computed F statistic
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Table 4

The Two-Regime Optimal Conjoint Regression Solution

Regime 1 Regime 2 Aggregate

Intercept 43.20** 46.40** 45.45**
Rent −5.10** −5.67** −5.50**
Distance −4.27** −3.81** −3.95**
Size 6.71** 4.44** 5.11**
Amenities 1.46* 1.60** 1.56**
Maintenance 3.43** 3.29** 3.33**
Condition 3.97** 4.10** 4.06**
Noise −4.78** −4.93** −4.89**
Safety 4.75** 6.73** 6.15**
Cleanliness 4.49** 3.74** 3.96**
Privacy 1.63* 0.34 0.73
Standard error 21.70 21.16 21.39
F 34.35** 82.76** 114.75**
Adjusted R2 .20 .21 .21

*p ≤ .05.
**p ≤ .01.

for the Chow test of structural change (R = 0 vs. R = 1) is 3.34, which is significant at p < .01.
(Theoretically, this test is questionable because the R = 1 optimal split involved a pretest analysis
of the same data.)

A number of observations are appropriate here. First, there is a somewhat higher propensity or
preference for apartment profiles in general as respondents progress through the response task. This
is reflected in the different intercept values between the two regimes. Second, the relative order
of importance of the conjoint factors changes between the two regimes. This was noted earlier in
comparing the first versus last profile in Table 2. In Regime 1, size, rent, noise, safety, and cleanliness
are the top five (in order) important factors. In Regime 2, the order is safety, rent, noise, size, and
condition. This suggests an adaptation or evolution of the utility function as respondents progress
through this task, with safety increasing and size decreasing in importance. As such, the implicit
preferences and resulting trade-offs among profiles change. For example, for the first regime of
eight profiles, a low-rent, low-safety option (+0.35) would be preferred to a high-rent, high-safety
one (−0.35). By contrast, for the second regime involving the later observations, the high-rent,
high-safety option would be preferred (+1.06), holding all other factor levels constant. Thus, the
managerial implications of the conjoint analysis differ depending on which estimated regime is
used for decision making. Third, the coefficient estimates from the second regime are much closer
to that of the aggregate utility function in sign and magnitude (as the second regime contains more
than two thirds of the data points). Finally, there are sharper spikes witnessed in the computed
factor importances (higher peaks/larger coefficient magnitudes) for those part-worths estimated in
the first regime.

Validation

Recall that each respondent was given three holdout profiles for validation that were not included
in the estimation sample. Half of the respondents (FIRST) were given these profiles as the first
three profiles they received, whereas the other half (LAST) received the validation profiles as the
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Table 5

The Two-Regime Optimal Conjoint Regression Validation

Regime 1 Regime 2 Aggregate

FIRST 21.09 21.38 21.28
LAST 17.45 16.79 16.97

Note. Numbers represent average mean square error.

last three conjoint profiles to evaluate. Table 5 presents the average mean square errors (MSE) in
predictive validation for each of these two groups of respondents (FIRST, LAST) over the three
holdout validation profiles. The results are examined in a two-way table in which the mean square
errors are calculated for each group using one of three sets of estimated part-worth functions:
those computed over Regime 1, Regime 2, and the aggregate sample. One would expect that more
accurate predictions would occur in using the part-worth coefficients computed from data closer in
sequence to when the validation occurred. There is a slight improvement in MSE for the FIRST
group when Regime 1’s coefficients were used. A more pronounced improvement is seen with
respect to the LAST group in using the coefficients from Regime 2. The aggregate function is
always in the middle in terms of MSE in this predictive validation, as expected. What is most striking
concerning the MSEs in Table 5 is the stark contrast in magnitudes of these error rates across the
different rows (FIRST vs. LAST) of the table. That is, it appears that there is smaller prediction
error in predictive validation when the validation occurs after the conjoint task. This suggests that
respondents may require a “burn-in” period to properly calibrate their utility function, that these first
eight observations do not help prediction, and/or that later responses are artificially more consistent
in terms of response structure as a result of respondents adopting a simple and consistent process
as they progress through the response task.

Discussion

This article has proposed a method for assessing whether significant changes occur in the param-
eters of a multiple regression model over a sequence of data points. Such changes might occur
within a consumer survey due to order effects, learning, boredom, fatigue, and so on. The authors
demonstrate the method with a stated preference or conjoint study that, through randomization,
controls for order effects. Even in these data, evidence is found for two distinct sets of parameters
over the sequence of data.

Several implications emerge. First, it will often be advisable to check for changes in parameters
and, to the extent these are substantial, adjust interpretations and forecasting accordingly. In the
specific case of conjoint analysis, deciding which set of parameters to use is less clear. Parameters
from the end of a sequence of responses may represent greater thought and expertise with the
choice options themselves or merely an adaptation to the survey and represent an efficient method
for responding to questions. On the other hand, early responses could represent “true” reactions
to low-involvement choices or just random responses as the respondent learns to think about the
alternatives. Put differently, it may be that experts and highly involved respondents give their most
accurate responses early (before fatigue sets in) and novices and less involved respondents their
most useful responses late in the sequence, or at least in the middle after they develop a defined
preference structure. In any event, a clear direction for future research is to investigate which
responses are most predictive for different categories of respondents, as well as to understand what
mechanisms (e.g., boredom, fatigue, learning, etc.) are at work in producing such dynamic effects.
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Another direction worth pursuing is to develop a general typology of which attributes become more
(or less) important through studies in terms of either specific attributes (e.g., price) or general type
(e.g., concrete vs. abstract). More detailed estimation is required on either an individual or market
segment level. An aggregate solution as presented here may not be appropriate in the presence of
severe heterogeneity or alternative utility structures. Finally, further validation is required in hopes
of identifying application guidelines as how to properly weight the derived regimes in obtaining
more accurate forecasting models.

On the methodological side, several enhancements to the current procedure are possible. One of
the clear limitations of the current work stems from the fact that respondent heterogeneity is not
explicitly modeled in the proposed framework. Theoretically, one could argue for individual-level
coefficients and/or regimes. Although such detailed analyses in a classical statistical framework are
implausible due to overparameterization and limited degrees of freedom, other potential interme-
diate solutions are plausible concerning this issue of respondent heterogeneity. Given the similarity
of the present data collected in such conjoint studies to panel data involving both cross-sectional
(here, different respondents) and longitudinal (here, the sequence of profiles completed), one could
theoretically fit a random-effects model (or, more generally, a fully random-coefficients model) in
which the intercept (and part-worth coefficient) varies across respondents (see Diggle, Heagerty,
Liang, & Zeger, 2002; Lindsey, 1999). If respondent-level covariates are available with a theory as
to how they affect the conjoint part-worth functions, one might also employ what Greene (2003)
calls “hierarchical models” to attempt to explain the specific nature of respondent heterogene-
ity. Unfortunately, these types of more complex models involve much more difficulty in terms of
computational complexity. Although these can all be cast in a maximum likelihood framework à
la generalized least squares, the associated computational effort increases dramatically, especially
when the elements of the error covariance matrix are unknown. In addition, difficulties involving
sufficient data points evolve when the number of regimes is large and the subsequent sequence of
observations become sparse per regime.

A related potential extension of the proposed methodology would be to consider general linear
mixed models that would remove the assumption of the independent errors and allow for corre-
lated errors in repeated measures in such conjoint analysis applications. Laird, Lange, and Stram
(1987) introduce an EM-based algorithm for cases involving serial measurements. Verbeke and
Molenberghs (2000) present an excellent review of such mixed linear models for longitudinal data
as well as applications using SAS PROC MIXED. Note that no one has yet considered the case of
regime switching in such longitudinal data using these mixed linear models. Obviously, one starts
to worry about the number of parameters to be estimated when covariance matrices by regime are
to be estimated, in addition to supplementary parameters for respondent heterogeneity, as men-
tioned above. Also, there are computational issues because many of the proposed EM procedures
for this type of regime estimation would involve iterative estimation procedures with only linear
convergence properties and susceptibility to local optimum solutions.

As fertile ground for future research, one might also consider the application of dynamic linear/
nonlinear models for such repeated-measures conjoint analysis applications. Lindsey (1999) dis-
cusses the use of Markov autoregressive models, Kalman filtering, and recent Bayesian dynamic
models for such “panel”-type data. Such representations would provide a more continuous evolu-
tion or path of the part-worth functions over the sequence of profiles as opposed to the discrete
dynamic representation provided with the proposed methodology (this discrete representation of
such dynamics approaches the continuous or evolutionary approach as the number of regimes
increases). Unfortunately, there is usually insufficient theory available to appropriately specify a
particular nonlinear structure, especially in the multivariate situation such as this study’s application,
in which some 10 independent variables are present.
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In addition, extensions to other forms of multivariate analyses are possible. For example, such
change point models can be extended to structural equation models in which different theoretical
structures may hold over different portions of the data. Alternatively, change-point multidimen-
sional scaling models can be constructed where one expects an evolutionary process to occur with
respect to evoked perceptions and preferences. In these contexts, comparisons with “hidden Markov”
switching models and dynamic linear models can be devised using more complex Bayesian schemes
(cf. Carlin, 1992; DeSarbo, Hollman, Fong, & Leichty, 2001; Henderson & Matthews, 1993;
Stephens, 1994) and more complicated estimation routines (e.g., hierarchical Bayes methods) that
allow for individual-level estimation. More experimental work is needed to identify optimal stopping
rules in conjoint analysis, as well as to locate and estimate optimal part-worths. Monte Carlo simu-
lations with synthetically constructed data with known structures are needed to investigate the per-
formance of the proposed methodology as a number of different factors are experimentally varied
(e.g., number of regimes, sample size, amounts and types of error, heterogeneity across respon-
dents, etc.). Finally, extending the proposed procedure to choice-based conjoint analysis, hybrid
conjoint analysis, and self-explicated preference analysis would be also desirable.

Notes

1. Any form of the GIC class of heuristics in equation (11) can be so optimized with use of this
complete enumeration-based procedure.

2. In the proposed methodology, computational speed varies according to the size of R. For the
application to be discussed, global optimum estimates were all obtained for one, two, three,
four, and five regimes under 20 minutes each.

3. The number of observations here reflects both the number of respondents and the number of
conjoint profiles as an adjustment to the CAIC formula developed in Section 2.
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