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ABSTRACT

Polemarchakis, H.M. and Selden, L. -- Incomplete Markets and the Observability
of Risk Preference Properties.

In the framework of possibly incomplete asset markets, we derive observable
conditions which are necessary and sufficient for an agent's demand function to
be compatible with the maximization of some monotone, concave, von Neumann-
Morgenstern objective function. On the other hand, we demonstrate that, in
general, as long as markets are incomplete, it is not possible to infer from
the observed asset demand function whether the generating representation of
preferences necessarily satisfies monotonicity, risk aversion, or the expected
utility hypothesis. Finally, we suggest extensions of the analysis to multi-
attribute allocation problems under uncertainty, and we discuss the implications

of the results for prediction and welfare comparisons.
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1. INTRODUCTION

Rational behayior in choice problems under uncertainty is typically
associated with the existence of a complete preordering which is defined over
some appropriate space of distribution functions, is continuously representable
and satisfies the following three properties

(i) monotonicity;

(ii) risk aversion;

(iii) strong independence.

Under. these conditions, roughly speaking, the representation can be expressed
as an expected utility function, with the NM (von Neumann-Morgenstern) index
being increasing and concave. In this paper, we examine conditions under which
each of the above three unobservable preference properties corresponds to ob-
servable restrictions on consumer demand behavior,

In the standard formulation of the single-period, finite state asset
allocation problem, an individual is assumed to divide his initial income, or

wealth, among m assets (or complex securities) so as to maximize his expected
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n
utility z wsu(cs), where T denotes the probability of state s and <,
s=1

denotes consumption in state s. The index u is monotone, ''state indepen-
dent! and concave and asset markets need not be complete, m < n (see Section 2
below) .

Under the supposition that the state probabilities and asset returns
are known and the only observable characteristic of the agent is his demand
for the assets x = (x1,...,xm) as a function of prices and income, one can

pose a number of questions:

Question 1: What are necessary and sufficient conditions for x to
be derivable from some representation ¢ which satisfies monotonicity and risk
aversion and which (ordinally) is an expected utility function, ¢(c1’°"’cn)=
n
TLY mu (e )], T > 07
s s
s=1
Question 2: Suppose that a given asset demand system x is generated
by a representation ¢ satisfying monotonicity and risk aversion; when can

x also be generated by a representation not satisfying these properties?

Question 3: Suppose that x is generated by an expected utility
function; when can x also be generated by a representation which is not

an expected utility function?

Question L: Assuming that there exists a monotone, risk averse expected
utility function which generates x, when can it be recovered uniquely from

the class of monotone, risk averse expected utility representations?




Question 1 is answered in the next section. Necessary and sufficient
conditions are derived for at least one of the utility functions generating a
given set of asset demands to be a monotone, concave NM representation. Although
restrictive, these conditions provide, if satisfied, the means for (in principle)
recovering the entire class of generating NM representations. In Section 3, we
show that the answer to both Question 2 and Question 3 is "almost always''. Thus
under incomplete asset markets, the hypothesis that a given demand system was
generated by maximizing some non-NM representation (or one which fails to satis-
fy monotonicity and risk aversion) can almost never be refuted. The point is
simply that very different representations will generally be indistinguishable
at the demand level even assuming complete knowledge of the agent's demand
function, the state probabilities and the matrix of asset returns. Question 4
is concerned with the issue of recoverability where it is assumed that somehow
one knows that the given demand function is indeed generated by a monotone, risk
averse expected utility representation. This question was analyzed in Dybvig and
Polemarchakis [7] and Green, Lau, and Polemarchakis [31.

Conditions for the existence of a generating utility function in the con-
text of ordinal preferences and complete markets are well known (Hurwicz and
Uzawa [12]), as are those for uniqueness (Mas-Colell [14]). The two distinguishing
features of the questions considered in the present paper are the requirement
that the generating preferences possess an additively separable representation
and the possibility that the asset markets may be incomplete. The earlier work
of Houthakker [11], deriving observable demand restrictions corresponding to
(ordinally) additive utility functions is not immediately applicable since it is

cast in the equivalent of complete markets.l/




Section 4 first considers briefly the implications of our results for
the case of joint income and asset return uncertainty and then raises the
analogues of Question 1- Question 4 for the standard two-period consumption-
savings and consumption-portfolio decision problems (see Polemarchakis and
Selden [16, 17]).

We conclude the paper with a discussion of some of the implications
of not being able, in incomplete asset markets, to infer from observable demand
behavior whether the generating representation is an expected utility function.
On the one hand, we consider the implications for the prediction of agent
behavior under different (incomplete) market regimes, and, on the other, for
standard welfare questions. This material represents a fairly comprehensive
statement of the implications of not only the present study but also of a
number of related papers, and thus some readers may wish to begin with

Section 5 rather than 2.

2. EXISTENCE
In this Section we give necessary and sufficient conditions for at least
one of the representations generating a given asset demand function to be a
monotone, concave expected utility function.

Notation and Definitions

Consider an individual who must allocate his initial income vy > 0
among m > 2 assets (or complex securities) indexed by the subscript j = 1,...,m.
There are n states of nature indexed by the subscript s = 1,...,n, where, in

general, n exceeds m. The vector of state probabilities is denoted by

_ n 2/ =
T = (TI'.I,...,1T ,...,ﬂn)e R, = The vector x = (x],...,x.

= m
5 J,...,Xm)em




describes the agent's asset holdings. (The fact that his holdings of asset

Jy xj, can be negative means that short sales are allowed.) The prices of the

- " s - M
m complex securities are given by the price vector p = (p1,...,pj,...,pm) SRR

Let rsj denote the (gross) return of asset | in state of nature s. The

payoffs from each asset in each state of nature are summarized in the n X m

 Ep, |

return matrix R = (r .)?: , for which the following is assumed to hold:

sj'j=1,...,m

Assumption [R]: The return matrix R satisfies

# 0-for all 8= Tyueis J * T,ues M,
(ii) the column vector r'j cannot be written as a linear combination
of frk}, k=1,...,j =1,j+1,...,m for all j=1,...,m, and

(iii) forany s =1,...,n, r_. >0 for some | =1,...,m.

The random variable r = (r‘,...,rj,...,rm) determines for any vector
of asset holdings x € R™, random (end-of-period) consumption. We denote by
c = (Cl""’cs""’cn) the contingent commodity consumption vector and by
C the strictly positive orthant E£+.

It is assumed throughout this paper that the consumer possesses a com=
plete preordering over the space of consumption random variables (or contingent
commodi ty vectors)éf which is representable by the twice continuously differ-
entiable ordinal index ¢: C = IR.. The representation ¢ fully characterizes
an agent.

We will be concerned with the observable demand restrictions correspond-

ing to three further properties imposed on the agent's preferences (which, for

simplicity, are stated in terms of the representation ¢).




-

Definition: We say that preferences are monotone if ¢ is strictly

2 ; : L/
increasing in each Cgs™
Dp(c) >> 0

Definition (Debreu [3, p. 101]): Preferences are said to be (strictly)
risk averse if ¢ s (strictly) quasiconcave, (Dz¢ is negative definite on

- =L
the orthogonal complement of D¢, denoted i0p]).

Definition: An agent's preferences are said to be NM (von Neumann-

Morgenstern) representable if ¢ satisfies

n
¢(c1,...,cn) - T[5£1n5ucc5)] ; TE @,

where the continuous NM index u: E1++ - Ris “state;tndependent“.éf

Remarks: (1) For a discussion of risk aversion measures in the
absence of the expected utility hypothesis (but where the state space is
finite) and of the use of these measures in analyzing asset demand behavior,
see Yaari [23] and Mayshar [15]. (2) It follows from Arrow [1, p. 127] and
Stigum [21] that if ¢ {is an NM representation, then ¢ will be (strictly)
quasiconcave if and only if u is (strictly) concave. (3) Clearly, monotonicity

of ¢ = monotonicity of the NM index wu.

When an agent's preferences are NM representable, we shall assume the

following:

Assumption [UJ]: The NM index u satisfies:
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(i) u' >0 everywhere on R and

(ii) u" < 0 everywhere on R _ .
The matrix of asset returns, R, and the vector of state probabilities,

m, will be held fixed. The agent's objective function for his asset demand
problem is given by
_ t t t
¢(c],...,cs,...,cn) = ¢(r1x,...,rsx,...,rnx) (1)
or, if his preference ordering is NM representable, by
o t
. P ]
$(c1,...,cs,...,cn) = T[szlwsu(rsx)] , T'>0 . (2)
For the present, we shall only consider the stronger representation hypothesis (2).
Faced with prices p € El:+ and income y € El++, the agent chooses
x(p,y) € R" by solving the following maximization problem
t
s

n
max Z Wsu(r:x) s.t: ptx =y , r.x= ¢S>0 ; 8§ =T, ..y (3)

X s=1
where the transform T in (2) has been dropped since, of course, it has no

effect on the solution.

Constrained Contingent Commodity Formulation

wWhile the agent's maximization problem (3) is stated in terms of observa-
ble demands, it will prove not to be the most convenient formulation since the
objective function w(x1,...,xm) = Elﬁsu(rzx) will, in general, fail to inherit
the "preference'' properties imposed 2; #. For instance, assuming ¢ to be

NM representable implies that ¢ s (ordinally) additively separable across

contingent commodities but does not imply that the objective function V¥ is
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(ordinally) additively separable in the choice variables XqaewesXoo We next

consider an alternative formulation of the agent's optimization problem
equivalent to (3), but for which the objective function is ¢(:1,...,cn) and
thus exhibits the properties of monotonicity, quasiconcavity and (ordinal)
additive separability. Because of the equivalence between the two formulations,
the contingent commodity demand functions derived below will possess a simple
relation to the observable demands x(p,y) solving (3) and hence can, without
loss of generality, also be viewed as being observable.

In order to ensure that the contingent commodity formulation is, in
fact, equivalent to (3) when asset markets are incomplete (m < n), it is
necessary for us to constrain the agent to buying only particular linear
combinations of the (CI""’CS"“’Cn)' Let us begin by noting that since,
under Assumption [R], the asset return matrix R has full column rank, we can
partition it into a pair of submatrices R_ and RB’ where Ra is an (m x m)

a

matrix of full rank and RB is the complementary submatrix (i.e., Rt = [Ra H RS]).

Next define the matrix At = RBR;1 which is ((n = m) x m). Let Cay and CB

denote the corresponding partitions of the state contingent commodity vector

. t= t:t = = H
(C1""’Cs""’cn)’ ] ey 6 [ca : CB]. Clearly ¢, = R x and cg RBx,

without loss of generality, it is assumed that Gy ™ (ci,...,cm) and ¢, =

8
..,cn). It then follows from the invertibility of Ra that the agent's

(c

constraint on the purchase of contingent commodities can be expressed as

n=-m"

The constrained contingent commodity problem can thus be defined as




follows:
L t B
max ¢(c) = ) ﬁsu(cs) s.t. 4.6, = Y » Cg -~ Ae, =0 ,
c s=1
n
(CG’CB) ER . > (L)

where 9y € R™ is a price vector corresponding to the contingent commodi ty

vector c.. It is evident that for q. = p(R;)'} , the maximization problems

(3) and (4) are equivalent (see Fischer [8]). Observe that the contingent
commodity price vector g, may have negative elements. This does not violate
the '!no arbitrage condition'' common in the literature since, in addition to

the budget constraint, the agent faces the constraint cg ~ Atca = 0. Further-
more, the choice--implicit in (4)-- of setting dg = 0 is arbitrary but in-
volves no loss of generality. The vector x solves (3) at (p,y) if and only

t)"'l

if (Rax’AtRax) solves (4) at (qa,y) = (p(Ra ,y). Thus as suggested above,

we may, with no loss of generality, suppose that the observable characteristics

of the agent consist of the constrained contingent commodity demand function.

Although (4) need not, of course, possess a solution for an arbitrary

9y € R , we next show that there is an open subset of contingent commodi ty

prices such that a solution exists and is well-behaved. Let Int Qa denote

the interior of the subset Qu of R™ with the property that for Ay € Qa

a solution to (4) exists, is unique and is characterized by the first-order

conditions




=10~

Dada(c) - gyh - Au =0 (5)

DB¢(C) + Iu= 0
t =
qaca Y

t
-A Cy +c¢c,=0 ,

B

where A € R_., UuE€ Eifzm are the unique Lagrange multipliers associated with

the constraints in (4). The demand function c(qa’y) has as its domain

Qa x R _,_and thus, by definition, is well defined for any (qa,y) € Int Qu X R,

so long as the set 1Int Qu is not empty.

Lemma 1: The set Int Qx # 8.

(The proof is given in the Appendix.)

From now on we work with the demand function c(qa,y) and the first-

order conditions (5) for (qa,y) € Int Qu X E&+.

""Slutsky Equations'

Since we know from standard demand theory that utility function properties
such as (ordinal) additive separability correspond to restrictions on the
Slutsky matrix, we next derive the appropriate ''Slutsky equations' for our
constrained contingent commodity problem. Totally differentiating the system

of equations (5) yields:
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0 =q, -A dca ldqa
2
0
Dagd 0 I deg
(6)
-.t -
0 0 0 dA coda,- dy
I 0 0 du 0
n
where by the additive separability of ¢, blc) = ) wsu(cs), both cross terms
s=1
D2 ¢ and 02 ¢ wvanish and
ab Ba.
w1u“(c1) 7
2
D 0 (c) = and (7)
. [}
T u (cm)
L]}
USRTL CRAY |
2
- "
mu (cn)

Define the matrix on the LHS of equation (6) to be B.

Then it follows

from the assumed negative definiteness of the matrix Dz¢ that B s

invertible.

The demand function is thus continuously differentiable,



as are the functions A and u. Setting

[gaa Sag Va o
Sga g Vg g g
= B ; (8)
t Lt t
-va VB e d
t t
-w -w d G
| 8 2
equations (6) and (8) imply the following:
t . = 5
anca = xsaa T VeCq Dyca ¥y 3 (9)

t t . = - .
ank = kva + ec, : Dyk e ;

t t y - - .
anu Awa + dca s Dyu d ;

where Dq c, and Dyca denote, respectively, the matrix of partial deri-
o

vatives of the form acs(QI,...,qm,y)/qu s,i € {1,...,m} and the vector

of marginal propensities to consume of the form acs(qT,...,qm,y)/ay. The

first expression in (9) clearly resembles the standard Slutsky equation.

6/

The following notation will be used to denote ''compensated'' derivatives<

* = = t *
anca ksaa ancOt + (Dyca)ca : (10)




-‘]3_

g t
D¥ A = =Av Dq A (Dyh)ca ;

9 o a

E t
D* “-Aw- =D u+ (D u)c
qau - 0 ( ey

The Existence Proposition

In order to prove our basic existence result, we shall require the
demand functions for contingent commodities to satisfy two sets of conditions.
The first of these, referred to as regularity conditions, can be defined as

follows:

Regularity Conditions: A function c(qa,y) = (ca(qa,y), CB(qa’Y))

is said to be a regular constrained contingent commodity demand function if

and only if the following are satisfied everywhere on Int Qa x R,
(i) ca(qa,Y) is positive and continuously differentiable,
.. t _ t _

(i1) qeey(a,,y) =y and A’c (q,,y) = cglaysy) and

(iii) Dycs(qa,Y) # 0 s=1,...,n.

In the presence of complete markets, where m = n, the matrix A vanishes
and regularity follows from the monotonicity and concavity of u. The marginal
propensity to consume for each contingent commodity would then be strictly
positive. In the case of incomplete markets, requirements (i) and (ii) are both
straightforward and relatively innocuous while (iii) is more substantive.Z/

Next we define a consistency requirement to be satisfied by the contingent

commodity demand function and by the Lagrange multipliers l(qa,y) and u(qa,y)

which are associated with the constraints in (4). These conditions will be seen
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in the proof of Proposition 1 to correspond to the stationarity of the agent's

utility function over contingent commodities.

Consistency Conditions: The continuously differentiable functions (A,u)

defined on Int Qu X E&+ with images in R and R , respectively, will

be said to satisfy the consistency requirement for a given regular demand

function c(qa,y) if and only if the following conditions are satisfied every-

. - 1 1
where on Int Qu X E&+. whenever cs(qa,Y) cs,(qa,y ),

t 1 t 1
(Aq, + asu)m (g, +agm')

if s,s' ¢ {1,...,m}

=
=

s s'
H Ho
_s = s - l
- e If s,8' € Im + Tyee0,n}
s s

s' ;
i if se{1,...,m}, s'e€{m+1,...,n} ,
s s

where a:, azl are rows of the matrix A.

We next define the function

((D Aq_ - atp u)
e [T K. : s=1,...,m (11)
D c
y's
6 (aysy) Ej

-D Mg

-EZE- s=m+ 1,...,n s

\ Y S

where as long as A and u are continuously differentiable and the contingent
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commodity demand function is regular, the {6],...,65,...,5n} are well defined

and continuous on Int Qu X Ea+. The function 65 will be seen to correspond
in the recovery of the utility function in Proposition 1 to ﬁsu“(cs). Finally,

we shall use the notationﬁf

ﬁa = diag (8 .,Gm) ; A, = diag (Gm

8 .,Gn) :

1,.- +1,-.

Proposition 1: Let c(qa,y) be a constrained contingent commodity
demand function which satisfies the regularity condition. Suppose that the
matrix of asset returns satisfies Assumption [R]. Then c(qa,y) is generated
by an NM representation satisfying monotonicity and risk aversion if and only
if there exist two functions (A,u) which satisfy the consistency requirement

and the following three conditions hold everywhere on Int Qa X E&+:

(1) A(qa,y) is continuously differentiable and strictly positive,
N(QG,Y) is continuously differentiable and strictly negative

(component-wise),

. t " -
(2) (i) (lfl)daDgaca + qa(Dyca} - (1 /A]Agaau T.

ae t
(ii) (1/A)QBA (Dgaca)A + (1/1)(D§au)A =0, and

(3) &, <0, s=1,...,n.

(The proof is given in the Appendix.)

Remark: The conditions (1)-(3) are the demand analogues to the prefer-

ence properties of monotonicity, (ordinal) additive separability and cencavity,

respectively, and the consistency condition corresponds to stationarity. Condition
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(2) is, when A vanishes in the case of complete markets (m = n), precisely

the Houthakker [11] demand restrictions for additive separability.

Remark: |If the necessary and sufficient conditions in Proposition 1
are satisfied then {5s(qa,y)} will be observable and will permit (in princi-
ple) integration of the full set of generating NM representations.gf

L}
3. NON-UNIQUENESS

Having derived necessary and sufficient conditions for at least one of
the possibly multiple utility functions generating an asset demand function,
x(p,y) == or equivalently, a constrained contingent commodity demand function,
c(qay) -- to be a monotone, concave (risk averse) NM representation, we next
consider two uniqueness questions. First, suppose that a given demand system
is generated, under incomplete markets, by a representation ¢ satisfying
monotonicity and risk aversion, then when can the demands also be generated
by a representation EgE_satisFying these properties? The second question
addressed below is when can a given demand function generated by an expected
utility function also be generated by a representation which is not an expected
utility function.

As we shall show next, when asset markets are incomplete, unique
recoverability is too much to hope for. Thus asset demand functions cannot
be used to verify whether the properties of monotonicity, risk aversion and

strong independence are satisfied by the agent's representation.

Proposition 2: Assume the return matrix satisfies [R] and m < n. Let




...]7..

& be a twice continuously differentiable, strictly monotone and risk averse
representation. Then there exists a pair of twice continuously differentiable
functions ¢* and ¢**, such that ¢* fails to be monotone and ¢** fails

to be risk averse (quasiconcave) and yet both generate the same asset demand

function as ¢.
(The proof is given in the Appendix.)

Proposition 3: Assume the matrix of asset returns satisfies Assumption

[(R] and m < n. Let ¢(c1,...,cn) be an NM representation where the NM index

satisfies Assumption [U]. Suppose that
u''(c_) is bounded away from zero on bounded subsets of R . (12)

Then there exists a twice continuously differentiable strictly monotone,
-~

strictly quasiconcave objective function ¢ which is not NM and yet generates

the same asset demand function as ¢.
(The proof is given in the Appendix.)

Remark: THe condition (12) invoked in order to establish the non-
uniqueness of the representation is really quite mild (and, in fact, could be
relaxed somewhat). It should, for instance, Be noted that (12) is satisfied
by the frequently employed expected utility function

ATy g
tplc) =-)] —=c , =1 <a<= |, (13)
o s
s=1
One implication of our results is that a given asset demand system exhibiting

portfolio separationlg/ and corresponding to (13) might well have been generated
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by a non-NM representation, perhaps very different from the class of power

function-based NM representations.

Remark: Propositions 2 and 3 demonstrate that, as long as markets
are incomplete, full knowledge of the agent's asset demand function is not
sufficient to ensure that his preferences satisfy monotonicity, risk aversion
or the expected utility hypothesis. The question can then be raised whether
any additional information-=short of "completing the market''--can suffice
to guarantee that any of these properties hold. Since, however, the only
assumption concerning market structure employed in the argument for Propo-
sitions 2 and 3 is the existence of a single non-zero vector in the kernel
of R, it follows that ''completion of the market'' is, in some sense, necessary

to guarantee monotonicity, risk aversion or the expected utility hypothesis.

(Also see Section 5 below.)

In Proposition 1, we derived necessary and sufficient conditions for
the existence of some NM representation satisfying [U] to generate the demand
function for assets whose return structure satisfies [R]. Taking for granted
that a generating NM objective function does indeed exist, it is then natural
to ask whether it need be the only NM generating representation and whether
it is recoverable. In earlier papers, uniqueness and recoverability have been
attained under alternative additional restrictions on the NM index u or on
the return matrix R. Namely, either it is assumed that u is analytic on
R, (Green, Lau and Polemarchakis [9]), or that some linear combination of
the availabBle assets is riskless (Dybvig and Polemarchakis [7]). Furthermore,

examples are known where uniqueness fails in the absence of a riskless asset
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(see Dybvig and Polemarchakis [7]). We want now to show how the existence
argument in Proposition 1 can be used to yield uniqueness and recoverability

in the presence of a riskless asset.

Proposition 4 (Dybvig and Polemarchakis [7]): Assume there exists

an NM representation satisfying [U] which generates a given asset demand
function. Let the matrix of asset returns satisfy [R] and suppose some
linear combination of the assets is riskless. Then the generating NM utility

function is unique and recoverable.
(The proof is given in the Appendix.)

The intuition behind unique recoverability in the presence of a risk-
less asset is straightforward: Whenever state contingeqt consumption is con-
stant across states =-=- Cy ™ c for all s == the consistency requirement
implied by the existence of an NM index u prevents any digression in the
specification of the functions k(qa,y) and u(qa,y) and, thus, u''(c) is
determined unambiguously.

The unique recoverability result based on the analyticity of u can
not be immediately derived in the present context. One would, first of all,
have to extend the analysis to allow for a zero level of consumption and,
furthermore, rely on higher derivatives of the demand function at the origin.
Presumably, knowledge of all the derivatives of the demand function at the
origin, combined with the analyticity of A and p implied by the analyti-
city of u, eliminates any degrees of freedom involved in the specification

of A and u.
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L4, EXTENSIONS

The analysis so far has been carried out in the simple framework of a
single time period and a single preference attribute. In this section we
discuss, somewhat informally, several possible extensions.

Let us begin by assuming that the allocation problem is the same as
before except for the fact éhat now the agent faces uncertainty not only
concerning the returns of the various assets but concerning his income as
well. (This income uncertainty will not be resolved until after the asset
allocation decision is made.) That is, his income is given by the vector
(y,e) where y >0 s regeived at the beginning of the period and € >0,
s=1,...,n, is the end-of-period income received under state of nature s.
The contingent commodity consumption vector corresponding to the asset hold-
ings x is then given by c = Rx + € and the budget constraint by ptx =y
-- the agent is required to be solvent in each state s.ll!

In order to derivg the observable demand restrictions corresponding to
various preference properties, we shall, as in the previous sections, transform
the portfolio problem into an equivalent constrained contingent commodity
problem. Paftitioning R into a full rank submatrix Ra and the complementary

-1

o " t t
submatrix RB’ and setting A RBRa and a = -A €y + EB, we see that

t
= +
c8 Ac a ,

where (ea,ss) and (ca,cg) are the corresponding partitions of the vectors
¢ and c, respectively. Thus, the linear dependence between <y and c8 has
been transformed into an affine relationship. This change leaves the first-

order conditions substantially unaltered and, as the reader may verify,




Propositions 1, 2 and 3 remain valid with only very minor modifications

required. However, the uniqueness result, Proposition 4, no longer holds:

Proposition 5: Assume there exists an NM representation satisfying

[U] which generates a given asset demand function. Let the matrix of asset
returns satisfy [R]. Then in the presence of income uncertainty, the existence
of a riskless asset is not sufficient to guarantee the uniqueness and re-

coverability of the generating NM utility function.
(The proof is given in the Appendix.)

Alternatively, we could imagine an agent who must allocate his initial
wealth, y, between current consumption < and m assets indexed by
j=1,...,m. His future (second-period) contingent consumption would then

be given by

€ = rsx + ss ;, S = 1. ...,0

2s

where A is the vector of asset returns in state s and ¢ denotes his
uncertain period-two income.

One could raise in this two-period setting a number of questions

analogous to those considered for the one-period case:

(1) What are necessary and sufficient conditions for the demand
function (cl,x) to be compatible with the maximization of
some monotone, concave, NM representation?

(2) Can monotonicity, risk aversion and the (two-period) expected
utility hypothesis be guaranteed in the absence of complete

markets?
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Finally, the analysis of Sections 2 and 3 could be extended to
the more general '"Ordinal Certainty Equivalent'' preference

setting considered in Polemarchakis and Selden [16, 17].

5. PREDICTION AND WELFARE

Our analysis leads to the general conclusion that as long as asset
markets are incomplete one is almost never able to infer from observable
demand Behavior the ''true'' representation of preferences over contingent
commodities. In particular, questions such as whether the agent is charac-
terized by monotonicity and risk aversion or whether he satisfies the von
Neumann-Morgenstern expected utility axioms simply can not be answered
conclusively. Since asset markets are indeed incomplete, this issue of
non-observability raises a number of vexing problems of considerable prac-
tical importance.

Non-uniqueness of the generating representation precludes, above
all, the general possibility of forecasting the agent's behayior outside
a given market regime. In the case of complete markets, we Rnow from
Mas-Colell [14] that, under mild regularity conditions, the preferences
generating a given demand function are unique and recoverable. But, of
course, in this case there is no real issue of prediction: one can readily
determine from the agent's ''complete markets'' demand function what his
demand for assets will be under any alternative incomplete market regime.
The desirabhility of prediction arises only in the framework of incomplete

markets; but that is precisely when it is not possible. One has no way

of telling which of the multiple representations generating the given asset




demands is the unique ''true'' representation in the sense of generating the

"complete markets'' demand function. And it is only with this "true' utility
function that one can predict accurately the agent's behavior under differ-
ent market regimes. Observations under several different (incomplete
market) regimes will generally be of no help in identifying the ''true' re-
presentation--although some inferences may Be possible. More generally, it
remains an open question to determine the class of preference properties
which on the one hand can be verified in an incomplete market setting, and
on tHe other hand do have predictive content concerning the agent's response
to alternative choice sets.lg!

In addition to raising serious obstacles to predicting individual
behavior, the existence of incomplete markets also poses serious problems
for standard welfare analysis. Knowledge of an agent's indifference map
can serve to determine the compensation necessary for his ''welfare'' to be
unaffected by a change in the opportunities available to him. [t is in
this context, that Mas-Colell's [14] recoverability result for complete
markets is of interest. Suppose alternatively that markets are not complete
and that an agent is confronted with an alteration in the random return
on one of the assets in which he has a non-zero investment. One interesting
example of such a case would be that of a stockholder facing a change in
the stochastic production plan of a firm. To determine how--if at all
possiblelé/—-the agent is to be compensated for the change so that he does
not suffer a welfare loss requires knowledge of his representation of pre-
ferences over contingent commodities. Again, however, if the oamly information

available, as is likely to be the case, is the agent's asset demand func-




tion under incomplete markets, the ''true'' representation and hence the correct
compensation can not be unambiguously determined. It is an open question

to determine the individual welfare conclusions that can be inferred from
incomplete market data.

fn @ related vein, one can ask how the Grossman-Hart [10] firm
decision criterion for evaluating production plans under incomplete markets
is to be implemented. Their criterion is based on a weighted sum of ex ante
stockholder marginal rates of substitution between present and future
contingent consumption (cf., Diamond [5] and Dréze [6]). In general, it
will not Be possible to infer an individual stockholder's '"'true preferences
from complete knowledge of his asset demand function (even assuming that (R,T)
is given). The alternative tack of simply asking stockholders to supply their
marginal rates of substitution, of course, raises many of the standard
problems associated with the ''revelation of preferences."

Finally, our analysis raises a number of questions concerning the
aggregation of preferences and social welfare. In addition to the indiyidual
observability problems discussed above, we are now faced with the problems
associated with aggregating individual utility functions under uncertainty.

In the case of complete markets, even if agents have homothetic NM preferences
and constant income shares and thus ordinal aggregation is indeed possible, the
aggregator need not be (ordinally) NM representable (cf., Polemarchakis and
Selden [16]). Suppose, however, that individual and aggregate demand
observations are limited to a set of assets which do not span. Then it

may be the case that even though the ''true' (i.e., complete markets) aggre-

gator either does not exist or exists but is not NM, the aggregate demand
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for existing assets happens to be compatible with the maximization of some
expected utility function. |If now this ''false' aggregator is used for
social welfare judgements, the results can be erroneous.

We conclude this section with a simple example cast in the context of
an optimal tax problem. It illustrates the difficulties raised for welfare
judgements by the inability to distinguish between NM and non-NM preferences
on the basis of asset demand functions. We note, however, that these diffi-
culties persist even when one assumes away, as we do in the example, the pro-

blem of the existence of an aggregator.

Example. Consider the simple setting of one agent (or equivalently,
a group of identical agents), three equiprobable states of nature (ns =1,
s = 1,2,3) and two complex securities (j = 1,2) with return matrix
1 0
R=(0 1 ]. (14)
0 0
Assume that the agent's true preferences are representable by the non-NM ob-
jective function
3
3 e
- T _s T ¥ a
(b(C] $C2:c3) s s£1 3 + kC.ICZC3 »
where k >0 and 0 < a < 1. Observe furthermore that the same asset demand
function which is generated by the true non-NM objective function. is also pro-
duced by the NM objective function
' %

b )= 13
[/ (2 = —_
L s=1 3

That, for the existing assets and return structure, the functions ¢ and ¢

generate exactly the same demands at all prices (p1, p2) and income levels



follows immediately by observing that c3 = x]r31 + x2?32 =0 given (14),

and hence, effectively ¢ reduces to £ . Suppose now that the government
needs to raise a revenue B and as a consequence taxes the individual. The
instruments at the government's disposal are a proportional tax t on capi-
tal gains (where the constant rate t, which applies only to gains, is the same
for the two assets) and a lump-sum ''income maintenance'' transfer T which is
paid to the taxpayer in state 3. The objective of the government is to
choose (t,T) so as to maximize the individual's utility for after-tax

(and transfer) consumption subject to raising an expected tax revenue net

of the income transfer T equal to the required quantity B. It must be
stressed that, of course, this is only one of the possible formulations of

the optimal tax problem under uncertainty, but it suffices to illustrate the
difficulties which can arise in welfare judgements due to the non-uniqueness
of preferences generating asset demands. It is assumed that the agent chooses
his portfolio with full knowledge of the tax-income transfer structure and the
exogeneously given prices for the securities, p; and pz.l&/ To simplify the

argument, we assume that the agent's income equals 1 and that p1 =P, =P It

follows that the budget constraint of the agent can be written as

X, + x, = 1/p,

1 2

and it is clear that the optimal asset holdings are given by Xy = Xy = 1/2p

and hence

cq = X -(1 - p)xIt =[1-(1 - p)t]/2p
c, =%, -(1 - p)xzt =[1-(1 -p)t]/2p

c3 = T,
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The expected taxes raised by the government are then given by
4 1 - p)t
(1 - p)xlt + 301 - p)xzt - 4T = -%[( = - T]

Equating this to the revenue requirement B and rearranging yields the condition

t = '(TEE'(BB + T). (15)

Using this expression to eliminate t from <, and C,, we can reduce the op-
timal tax problem to one of choosing T so as to maximize the agent's utility
function. Now were his preferences to be representable by the NM function ¢,

then he would seek to maximize

~ %
R [Ty

which has as its solution
T+ = (1/3p) -B, (16)
and using (15),

th = TJ-_lﬂ{zpa + %] (17)

Now on the other hand based on the agent's true non-NM representation ¢, pro-

ceeding in the same fashion yields in the limit as k gets large

3¢ [ 1
Téior etrplest = B] (18)
t = ey 308 * a]. 13/ (19)

Remark: The example illustrates that optimal taxes can indeed be quite

different for the cases of NM and non-NM preferences even when the two different




utility functions are indistinguishable at the level of asset demands. As a
result, the government is unable to identify the true preference structure

and hence will not know which tax policy to follow. Of course under certain tax
structures, it can be the case that not only do ¢ and @ yield the same asset
demands but they also result in the same optimal tax rates. Then as long as

R does not change, it will not matter whether ¢ or ; is the true utility
function. But what if the govermment expects the return matrix R to change

to R'? Based on R', ¢ and 5 will no longer, in general, yield the same
asset demand functions and no longer determine the same tax rates. Once again,

the government will be in the position of not knowing which tax policy to

follow.
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Appendix

Proof of Lemma 1: Since all we want to show is that Int Qh is

not empty, it will suffice for us to do so with regard to the following

subsets of contingent commodity vectors:

c

m m
o ™ def {cae R |ca Rax where x € R+} .

m m
* = I =
CE = us {ca € R jc, Rax for some x € R,.,} , and

k= = n * = t
c def {CCI. (CQ’CB) e R ’Ca € {:C!, and CB A Ca.} .

By Assumption [R], C* is a non-empty, open cone in R$+. Furthermore, if

Q

Cy € C;, then by definition of the matrix At we have that

t =1 1

= B - n=m
cB A ca RBRd cOL = RBRG Rax Rsx = c8 € El++

Consequently, for any ¢y € Cg, substitution into thHe first-order conditions

m+1+(n-m) which supports ¢ = (ca,csl € C*,

(5) yields a unique (qa,l,u) € R
Existence follows from the concavity of u (and hence the quasiconcavity
of ¢), while uniqueness follows from the differentiability of u. Further-
more, the assumed strict concavity of the NM index u 'implies that if
1 ] 1 1 : 3
Cy # s 9y # 9y where Ay and qy Support c and o respectively.
Next, observe that from the first-order conditions (5) and the fact
that u' > 0 everywhereon R __, H € ]Ri:m - To see that XA € R__, begin
by premultiplying the first equation in (5) By c;, where c, € Cé:
= t
[ePu® = cgHl §
v - -

0 -

R - - SR - =
0 = cana¢ caqak caAu = A

To see that Int Qa is not empty, it suffices for us to show that (for y = 1)



the price 9y supporting ¢ € C* is a continuously differentiable function

- & e H !
qa(ca) defined on the open cone C% and that |anI # 0. Using the first

- . ot €0 4y -1 fet §
order conditions again, q, (Cana¢ - caADB¢) EDa¢ + ADB¢] from which it

follows that
g, = (<50 6 + c;ADB¢)—2{[c;Da¢ + CIADOI[DL 0 + AD§B¢At]
2 2
- [0 6 + A°B¢][°;°aa¢ + c;ADBB¢At + (D0 + ADB¢)t]}

Now, lﬁqa| # 0 iff there exist m linearly independent vectors {ZI""’zm}

such that (an)z_ #0, i=1,...,m. To see that this is indeed the case,
1

observe that for 2z € [Da¢ + ADB¢]L, z #0,

zt(an)z = (c;0a¢ + c;ADB¢)-Zzt[D§a¢ + AD§B¢At]z <0

from the assumed strict concavity of u. Since dim [Dq¢ + ADB¢] =m-1,
it remains only to find one z ¢ EDa¢ + ADB¢]L such that (an)z # 0. Let
o 2 2 L ta-1 2 ¢ ' Z
z [Dua¢ + ADBB¢A ] [Da¢ + ADB¢], where the inverse exists by the strict

concavity of u. Furthermore, [Da¢ + AD8¢]r£ # 0 from the negative defin-

2
BB
since 0 ﬁ'Qa, A > 0. Finally, since

: 2 t
iteness of [Daa¢ + AD_ _¢A"] and the fact that [Da¢ + ADB¢] = Aqa #0,

t - -2
(Da,)z = =(c D ¢ + c ADO) (D ¢ + ADZOIL(D ¢ + ADB¢)t
« (0% 6 + ADZ.0A) "1 (D ¢ + AD_$)]
Qo 88 o 8 4
we have that (an); # 0. Q.E.D.

Proof of Proposition 1: First, we demonstrate necessity. From the
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first-order conditions (5), it follows that Mg = -wsu'(cs), s € {m+1,...,n},
m n

and A = (1/y)[ Z cmu'(c) - Z c_H_]. Consequently, u_ <0 and XA >0,
=y S S s s=m+] S S s

and both functions are continuously differentiable. That the consistency con-

dition is satisfied follows immediately from the first-order conditions for a

maximum and the stationarity of the NM index u. To see why conditions (2.1)

and (2.ii) must hold, observe that BB"1 =1 implies the following:

2 t t
(Dua¢)(5aa) +qv, * Awa =T ,

I
(o]

2 ot
(Dgg?) (Sgg) = wg
(Diad:)va +qe+Ad=0 ,

2
(D88¢)VB -d=20 ’

t
ws I-A Wy s

SBG = SGB = A SCm ,
t
SBB A SaaA i
Furthermore, as was noted in the text following equation (8), e = -Dyk,
t
= - = = * = - % i i
d Dyu, Vg, Dyca’ Suat (1/1)Dq €y and W, (lll)Dq 4. Finally, since

a o
v and VB contain no zero elements under the regularity conditions, the

5 . . 2 2
above equations together with (11) imply that A =D =
q g (11) imply tha 4 ¢ and QB DBB¢ and
thus Gs = wsu“(cs) < 0 (condition (3)). Direct substitution yields the

expressions referred to as conditions (2.i) and (2.ii).

To prove sufficiency, we give a constructive argument. Given c(qa,y),



k(qa.Y) and u(qa.y), we define e = -Dyk, d=-Dpu, v.-= S = (I/A)Da Y

Dc,

y o y o’ “oa "
t:=|— % i

and w/ (I/A)anu. We can also define saB’ Sea? SBS’ Vg and Wg as was

done above. By the regularity of the demand function, Dycs LN #0, s =1,...,n

and hence A, and &B can be defined as in (11). Finally, we can set G = Bowg-

Now all of the entries in the matrix B-] as well as the following matrix have

been defined:

%3 a “dy -A
0 &B Q I
B* = L]
t
9, a Q a
-at I 0 a

We want to show that B* = (B_T)-1 B by construction. To check that the

diagonal elements of B*B ! are all equal to unity observe that aasaa + qav; *

Aw; =TI from condition (2.i) in the proposition while SBSBB - wé =1 from

E

. . t
condition (2.ii). That quVy = 1 follows from the fact that quca(qa,y) = y.

Finally, the definition of Wg. implies that AFWG'T Wg = I. Proceeding in the
same fashion, one can readily show that atl of the off diagonal elements are
equal to zero.

Consider next the family of functions {Gs(qa,y)[s‘= 1,...,n and
(qa,y) € Int Q X HQ++}' Composing these functions with the inverse demand
relation yields the family {Gs(ca)|s =1,...,n and Cy € Cé} where as in
the proof of Lemma 1, we define Cg = {ca E_Rm_‘_!_[ca =RX, x € ]RmH}. But
it then follows from the consistency condition and the definition of Gs(qa,y)

(in terms of the functions A and u) that Ss(ca) is a well defined




_33-

continuous function of C.» S = 1,...,n. Integrating twice, we obtain a

family of twice continuously differentiable functions us(cs) such that

ala
W

= » . . . ; 5
us(cs) Gs(cs) and the objective function defined on C {(CG’CB)!CQ €C

o
t
and cg = A ca} by
n
¢(c1,...,cn) = Z us(cs)
s=1
generates the observed demand function. To complete the proof, it remains
to be shown thatn uS(cs)/'rr5 = us,(cs,)/ws, for all nc5 = c_i, and hence
¢(c1,...,c ) = J mu(c.), where 0 < T <1 and J m_ = 1. But this
n =1 S S - s=1 S
follows from the consistency requirement. Q.«E.D.

Proof of Proposition 2: Let x(p,y) be the asset demand function

generated by the twice continuously differentiable, strictly monotone
(D6 >> 0) and strictly quasiconcave (Dz¢ is negative definite on [D¢]L)

representation ¢. Define
% = t
9*(c) = 4o 0(c) +nEc ,

where n is a scalar and £ lies in the kernel of the return matrix R
and is non-zero (as long as m < n, there exists at least one £ ¢ iz
different from zero, such that £tR = 0). By an appropriate choice of

n, 9% will fail to have an everywhere positive gradient. On the other
hand, the induced objective function for assets ¢*(Rx) = ¢ (Rx) + nEtRx

= ¢(Rx) since for any choice of asset holdings, x € K", the resulting
contingent commodity vector, c = Rx, satisfies Etc = 0. Thus, the demand
function generated by the new representation ¢%*, denoted x*(p,y) is

identical to x(p,y) which was generated by ¢(c).



Concerning quasiconcavity, or risk aversion, an analogous argument

applies. Let
s (c) = d(c) + pnle)[ct(EEDe]

where £ is again a non-zero vector in the kernel of R while n is a

positive twice continuously differentiable function. Then

Do = D6 + on(c)[c®(€6%)c] + nle) [t (EEH)T
while
p2gxx = 0% + 20°n(e) [t (E5%)e] + 20n(e) [t (BEF) T + n(e)(&E"].
Consequently, by appropriate choice of the function n(c), DZ¢** will fail
to be negative semi-definite on [D¢*=‘=]L everywhere on Eg+. At the same
time, ¢**(Rx) = ¢ (Rx) + n(Rx)[xtR(EEt)Rx] = $(Rx), and hence ¢** generates

the same asset demand function as does &. Q.E.D.

Proof of Proposition 3: Let x(p,y) be the asset demand function

n
generated by the NM representation ¢(c1,...,cn) = Z T u(r:x), satisfying
s=1

(12). As before, since m < n, we can find £ € K", £ # 0, such that EtR

S

and hence Etc = 0 whenever ¢ =Rx, any x € R™. Let n(a) be a twice
continuously differentiable function defined on R, ., such that n(a) = n'(a)
n'(a) = 0 for o € [a, &], where 0 < g < o are fixed constants; that is,
the function n(a) vanishes outside a non-degenerate compact interval [a,a].
Consider now the objective function g(cl,...,cn) = 0p(c) + n(llcll)[:Etc]k
where llcll is the Euclidean norm © > 0 and k is an integer > 3. First
observe that even though g(c) is not (ordinally) additively separable--and

hence not NM--it does generate the asset demand function x(p,y) for the
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existing assets. Second, the following argument shows that for © large,
¢(c) inherits the strict monotonicity (Dd(c) >> 0) and strict concavity
(Dz¢(c) negative definite) of ¢(c) on EQ:+ -- it is clearly twice con-

tiﬁuous]y differentiable. Since for Il j{[g,&], Do (c) = Dd(c) and

1

Dz¢(c) = Dz¢(c), we only need to consider ¢ €C = {c € EE:+|HCH € [o,a]}.

But C is bounded from above. Since the functions 8¢/8cs, 82¢/8c§
s € {1,...,n} are continuous and since 3¢/3cs >0 while 82¢/8c§ < 0 and

~

both are bounded away from 0 on C, there exist constants Yy > 0 and & <0
such that 3¢/3c5 >y and 82¢/3c§ <é s €{1,...,n} everywhere on C.
Then choosing © large guarantees that the first and second derivatives of ¢

will dominate those of n(HcH)[Etc]k, and hence ¢ will satisfy Do >> 0

and Dz¢ << 0 on C, and hence on El:+. Q.E.D.
Proof of Proposition 4: It suffices to demonstrate that c(qa,y)

determines u''(+)/u'(+) everywhere on R ... The existence of a riskless
asset is central to the argument. We want therefore, first, to derive

the equivalent for the constrained contingent commodity problem of the
existence of the riskless asset in the corresponding complex security
problem. The contingent commodity vector, c, and the vector of complex
security holdings, x, are related by the relation ¢ = Rx. Furthermore,
given the decomposition of the contingent commodity vector c = (ca,cs}
and the return matrix R = [Ru’ RB] defined before, ¢, = Rax and

cB = Rsx. Since a riskless asset exists, and since R has full column

rank, there exists a unique x* such that Rx* = e--the unit vector in

n . . . s o - *
R . But this implies that . Rax and eB Rsx , where e, and eg

- - m -
are the unit vectors in R and Eln—m, respectively. But then, x* = Ra e ,
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eg = RBR&Iea and, since At = RBR;1, eB = Atea, or ﬂe; = e;A. For any

c >0 choose (53,;) such that C(EQ,J) = ce where e’ = (e;,eé) = 1 e sl
Since the demand function is observable, so is the inverse demand function

qa(c) on the range of the demand function and, in particular on C* (as de-
fined in the proof of Lemma 1). From the existence of a riskless asset and the
first-order conditions, (5), we can derive the following system of equations:

7 j @t § 4
T u'( = A
gy v 8 =1

vlu‘(c1) - a,_ ,m [u'(cs,) = Aq1 :

1s''s

n
)
s '=m+1

In order to derive these two equations, we begin by premultiplying the first
two expressions in (5) by the vector et = (e;,eg) of units in R which

yields

t t t t t
eaDa¢ + e&DS¢ keaqa eaAu + eBu o .

Using the fact that e;A = e;, by the existence of a riskless asset, gives

) )
Tu'(c)-A()q)=0
s=1 > 3 s=1 °
The second equation in the above system is obtained from (5) by substituting
-ns,u'(cs,) for Moo L R PR

By the positivity of u' on E&+ and the positivity of A every-
where on the Int Qu X Eg+, we can derive from the above system of equations
the expression for the marginal rate of substitution between the riskless

portfolio and the state 1 contingent consumption:
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n
mu'(c,) + ) a,_,m_,u'(c_,)
9 ~ 1 1 & Vil 1s''s s
7 o ] mutte,)
q T u'(c
s=1 ° s=1 ° :

The LHS of this equation is observable from the inverse demand function. To
compute the value of u''(c) , we differentiate both sides of

a1s,ws,u‘(cs,)]

n m n
qIES£1TrSUl (cs)j = (sglqs)[ﬂlu'(c1) + SI={§H‘]

with respect to <, and evaluate at ¢ = ce. The resulting equation is

linear in u''(c) with coefficient

5 e} A SRS

z(c) = (] q)[(m, + T, iBgea) = [y * T a7, 1) ]

s=1 ° L s'=m+l ° Is 1 s'=m+1 ° Is

Since m > 2, z(c) # 0 and hence u''(c) can be recovered without ambiguity.
As was pointed out earlier, the existence of a riskless asset has

enabled us to eliminate A and u and thus the ambiguity involved in their

choice. This is precisely the motivation underlying construction of the ratio

m
a,/ ) g, == it does not involve A and 1 given that some asset is riskless.
s=1
Q.E.D.
Proof of Proposition 5: It suffices to give an example where recov-

erability fails. Let there be four equiprobable states and two complex

securities and assume

R® =[1111] and ef=[0,r,0,7]

1122
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(where T here does not denote probability). Then the expected utility
n n
functions ) m_u(c_) and Jm {u(c ) +ksin (c_)}, where k isa
=1 S S sy B s s’
scalar, generate indistinguishable asset demand functions, and hence constrained

contingent commodity demand functions as well. Observe that the structure

of the random income component prevents reduction of the state space to just

two points, as one might be tempted to do after observing the return matrix, R.

Q.E.D.




Fectnotes

The connection between additive utility functions and additive
preferences is examined in Debreu [4].

All vectors are column vectors. A superscript ''t' denotes the

* |
transpose. Let 2z be some vector and z a component of z. Then
z > 0 means 2’ >0 forevery i, 2>0 means z>0 and z #0

and z >> 0 means z' >0 for every i. Eﬂ ={z € H'|z >0} and
R, =1{ze ®'|z> 0}

For a fairly comprehensive treatment of preferences over the space
of random variables, see Rossman and Selden [20].

We shall use D¢(c) for the vector

39 39 3¢
(E(,CI,...,Cn),...,a—E-S'*(C1,...,CS,..-,Cn),...,wncci,...,cn})

and analogously Dz¢(c) for the matrix of second (partial) derivatives.

On the notion of ''state independent'' preferences, see Malinvaud
(13, p. 285] and Rossman and Selden [20].

See Rossman and Selden [19] on the relation between Hicksian and
Slutsky compensation under uncertainty.

It is important to stress that the regularity conditions relate to the
demand for contingent commodities and not assets. Imposing (iii) on
contingent commodity demands does not, of course, imply that it must
hold as well for complex securities. In the case of incomplete markets,
the requirement (iii) that the marginal propensity to consume for each
contingent commodity be non-zero everywhere represents an additional
implicit restriction on both the asset return structure and preferences.
As can be seen from Eq. (11) in the text, a violation of (iii) causes
6S(qa,y) (which corresponds to Wsu"(cs) in the recovery of the utility

function in the proof of Proposition 1) not to be well-defined. We are
indebted to the referee for his clarifying comments on this point.

For any vector z € Eﬁ‘, diag (z) denotes the corresponding (k % k)
diagonal matrix.
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It should be noted that while the functions (A,u) are not immediately
observable, one can directly verify the existence of Lagrange multipliers
(A\,u) satisfying the required demand restrictions (1)-(3) in Proposition 1
from the observable constrained contingent commodity demand functions.

See, for example, Cass and Stiglitz [2].

Note that this formulation of the agent's problem does not necessarily
presume the existence of a riskless asset.

Given the non-uniqueness of the generating representation in incomplete
markets, an individual agent's observable asset demand behavior (even
assuming complete knowledge of (R,m)) can hardly be viewed as very
"informing''. Moreover, it is unlikely that matters can be improved by
summing over agents. Thus under incomplete markets, aggregate demands
or equilibrium prices transmit little if any information concerning
investor tastes.

As shown in Rossman and Selden [19], Slutsky income compensation (which
seeks to restore the individual to his original optimal allocation) is
" not generally possible for perfectly standard changes in the random re-
turn on assets. We here, of course, are concerned with the alternative
Hicksian notion of compensation (which seeks to restore the individual
to his original optimal level of utility).

More generally, the asset prices p, and p can not be specified
exogenously since they will be affected by thé optimal tax structure
(T*, t*). However given the limited purpose of our example, there
would seem to Be little reason to introduce this additional complexity.

Note that if p =%, B=1/12 and o = %, straightforward computation
results in (T*,t*) equalling (7/12, 5/6) for the NM case of (16)
and (17) and (7/16, 11/16) for the non=NM case of (18) and (19) and in
both cases ¢(T) and ¢(T) are strictly concave over [0,1]. The
reader will also observe that if a =%, then (18) and (19) just happen
to reduce exactly to (16) and (17).
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