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ABSTRACT

Polemarchakis, H.H. and Selden, L. lncomplete I'larkets and the observabi I ity
of Ri sk Preference Propert i es .

ln the framework of possibly incomplete asset markets, we derive observable

conditions which are necessary.and sufficient for an agent's demand function to
be compatible with the maximization of some monotone, concave, von Neurnann-

Horgenstern obJective function. 0n the other hand, we denbnstrate that, in

general, as long as markets are incomplete, it is not possible to infer from

the observed asset demand function whether the generating representation of
preferences necessarily satisfies monotonicity, risk aversion, or the expected

util ity hypothesis. Final ly, we suggest extensions of the analysis to multi-
attribute al location problems under uncertainty, and we discuss the impl ications
of the results for prediction and welfare comparisons.
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I. INTRODUCTION

Rational behayior in choice problems under uncertainty. is typical Iy

associated with the existence of a complete preordering which is defined over

some appropriate space of distribution functions, is continuously representable

and satlsfies the follot^ring three properties

(i ) monoton ic i ty.;

(i i) risk aversion;

(ii i) strong independence.

Under. these conditions, roughly speaking, the representation can be expressed

as an expected ut i I i ty f unct ion, with the NH (von Neumann-l'lorgenstern) index

being increasing and concave. tn this paper, we examine conditions under which

each of the above three unobservable preference properties corresponds to ob-

servable restrictions on consumer demand behavior.

ln the standard formulation of the s ingle-period, fini te state asset

allocation problem, an individual is assumed to dlvide his initial income, or

wealth, among m assets (or complex securities) so as to maximize his expected
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at the lnst i tute for l'lathemat ica I Stud ies in the Soc i'a I Sc Iences , Stanford
University. The research of the first author was also supported by the National
Science Foundation Grant SES78-25910 while that of the second author was support-
ed in part by the National Science Foundation Grant S0C77-27391. We gratefully.
acknowledge helpful discussions with Andreu l.las-Colell and t'lichael Rossman and
the very useful suggestions of the referee and Associate Editor.
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denotes the probabilitY of state s

denotes consumption in state s. The index u is monotone,rrs.tate

denttrand concave and asset markets need not be complete, m: n (see

belovr).

and c
s

i ndepen-

Sect i on

Under the supposition that the state probabilities and asset returns

areknownandtheonly9@characteristicoftheagentishisdemand

for the assets x = (x1,...,rr) as a function of prices and income, one can

pose a number of questions:

Question l: \,/hat are necessary and sufficient conditions for x to

be derivable from some representation 0 which sati sfies monotonici ty and ri sk

aversion and which (ordinal ly) is an expected util ity function, 0(c., ,n..1cn)=
n

T[ f _nru (cr) J, T' > o?
s-l

Question 2: Suppose that a given asset demand system x is generated

a representation Q satisfying monotonicity and risk aversion; when can

also be generated by a representation not satisfying these proPerties?

Question 3: Suppose that x is generated by an expected util ity

function; when can x also be generated by a representation which is not

an expected ut i I i ty funct ion?

by

X

Question 4: Assuming that there exists

utility function which generates x, when can it

the class of monotone, risk averse expected uti I

a monotone, risk averse expected

be recovered uniquely from

I ty representations?
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Question I is answered in the next section. *.."rr"ry and sufficient
conditions are derived for at least one of the utility functions generating a

given set of asset demands to be a monotone, concave NH representation. Although

restrictive, these conditions provide, if satisfied, the means for (in principle)
recovering the entire class of generating NM representations. In Section 3, we

show that the answer to both Question 2 and Question 3 is lalmost always,,. Thus

under incomplete asset markets, the hypothesis that a given demand system was

generated by maximizing some non-NH representation (or one which fai ls to satis-
fy monotonicity and risk aversion) can almost never be refuted. The point is
simply that very different rePresentations wil I generally be indistinguishable
at the demand level even assuming complete knowledge of the agent,s demand

function, the state probabilities and the matrix of asset returns. Question 4

is concerned with the issue of recoverabiiity where it is assumed that somehow

one knows that the given demand function is indeed generated by a monotone, risk
averse expected uti I ity rePresentation. This question was analyzed in Dybvig and

Polemarchakis l7I and Green, Lau, and polemarchakis t9l.
Conditions for the existence of a generating utility function in the con-

text of ordinal preferences and complete markets are welI known (Hurwicz and

Uzawa [12])' as are those for uniqueness (Mas-Colell tl4l). The two distinguishing
features of the questions considered in the present paper are the requirement

that the generating preferences possess an additively separable representation
and the possibility that the asset markets may be incomplete. The earlier work

of Houthakker Il I ], deriving observable demand restrictions corresponding to
(ordinally) additive util ity functions is not immediately appl icable since it is
cast in the equivalent of complete marke rr.U



-4-

Section 4 first considers briefly the implications of our results for

the case of joint income and asset return uncertainty and then raises the

analogues of Question l- Question 4 for the standard two-period consumption-

savings and consumption-portfol io decision problems (see Polemarchakis and

Selden [16, 17]).

We conclude the paper with a discussion of some of the implications

of not being able, in incomplete asset markets, to infer from observable demand

behavior whether the generating representation is an expected uti I ity function.

0n the one hand, we consider the implications for the prediction of agent

behavior under different (incomplete) market regimes, and, on the other, for

standard welfare questions. This material represents a fairly comprehensive

statement of the implications of not only the present study but also of a

number of related papers, and thus some readers rnay wish to begin with

Section 5 rather than 2.

ln this Section we

one of the representations

monotone, concave expected

Notat ion and Def in i t ions

2, EX I STENCE

give necessary and sufficient conditions for at least

generating a given asset demand function to be a

uti I ity function.

Consider an individual who must allocate his initial income y > 0

among m >- 2 assets (or complex securities) indexed by the subscript j = 1,...,m.

There are n states of nature indexed by the subscript s = 1r...,n, where, in

general, n exceeds m. The vector of state probabil ities is denoted by

n = (nI,...,rs,...,rn) € u\*, U rhe vector x = (*l ,...,*j,...,rr) €&im
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describes the agentrs asset holdings. (The fact that his holdings of asset

j, X:, can be negative means that short sales are allowed.) The prices of the
J

m complex securities are given by the price vector p = (0r,...,pj,...,p*) €

asset j in state of nature s. The

of nature are summarized in the n x m

which the fol lowing is assumed to hold:

-{n!a.{-+

Let r-. denote the (gross) return of
sJ

payoffs from each asset in each state

return matrix R = (rrj );:l:::::;, for

Assumpt ion [R ]: The retu rn mat r i x sat i sfi es

(i) rr, > 0 for all s = 1,...,n, j = 1,...,fi,
(ii) the column vecto, ,j cannot be written as a linear combination

of {rn}, k = 1,...,j - I,j + 1,...,m for all j = 1,...,m, and

(iii) for any s = 1,...,f,, rrj > 0 for some j = 1,...,n.

The random variable r = (r1 ,...,rj,...,rr) determines for any vector

of asset holdings x € Rm, random (end-of-period) consumption. We denote by

c f (c1 ,...,csr... r"n) the contingent conrmodity consumption vector and by

C the strictly positive orthant 4-.
It is assumed throughout this paper that the consumer possesses a com-

plete preordering over the space of consumption random variables (or contingent

conrnodity vectors)! which is representable by the twice continuously differ-
entiable ordinal index Q: C + IR. The representation 0 ful ly characterizes

an agent.

I'Je wi I I be concerned with the observable demand restrictions correspond-

ing to three further properties imposed on the agent's preferences (which, for

s impl i ci ty, are stated i n terms of the representat ion O) .
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We say that Preferences are

\t
S-

monotone if 0 is strictlY

D0(c) >> o

Defin i t ion (Debreu [3 , P'

risk averse if O is (strictlY)

the orthogonal comPlement of D0'

0(c', ,"',tn) = T[

where the continuous Nl'l index

is negative definite on

sai'd to be NM fvon Neumann-Definition: An agent's preferences are

lbroenstern) representabl e tf Q sat isf ies

R.

n

In
s=1

u:

Remarks: (l) For a discussion of risk aversion measures in the

absence of the expccted utility hypothesis (but where the state sPace is

finite) and of the use of these measures in analyzing asset demand behavior'

see yaari [23] and Hayshar t15]. (2) tt follows from Arrow [1, P' 127J anC

Stigum [21] that if O is an NM representation' then O wil I be (strictly)

quasiconcave if and only if u is (strictly) concave. (f) Clearly, monotonicity

of 6 a monotonicity of the NM index u'

When an agentts Preferences

fol I owi ng :

are Nl'l rePresentabl e, we shal I assume the

101 ]): Preferences are said to be (strictly)

quas iconcave, (o2O

denoted roO tL) .

,u(cr)J , Tr> o ,

IR is rtgtate.' tndependentt'.4

Assumption [U]t The NH index u satisfies:
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IR and++

ID
#

The matrix of asset returns, R, and

n, will be held fixed. The agent's objective

problem is given bY

O(c1 r...,cs,. ","n)

or, if his preference ordering is

max
X

where the

effect on

s.t. Ptx - Y ,

O(cl ,...''csr...r"n)

For the present, we shall only consider the stronger

Faced with prices p € iR| and income y

x(p,y) € R t by solving the fol lowing maximization

n-
I.nru (rix)

s-l

transform T

the sol ut ion.

= 0(rlx,...,r1",...,.1")

NH representable, bY

=r[rl.,nru(r!x)], Tr>o (2)

representat ion hYPothes i s (2) .

€ R**, the agent c.hooses

prob I em

rtx=c>0s5 s = I,...,n

the vector

funct ion

state probabilities,

hi s asset demand

of

for

(1)

(3)

in (2) has been dropped since, of course, it has no

Constrained Contingent Commodi ty Formulation

While the agentts maximization problem (3) is stated in terms of observa-

ble demands, it will prove not to be the most convenient formulation since the
n-

objective function ,r(xt,.-.,"r) = -l.'nru(rix) 
will, in general' fail to inherit

>-t

therrpreferencettproperties imposed on O. For instance, assuming 0 to be

NH representable impl ies that o is (ordinal ly) additively separable across

contingent conmodities but does not imply that the objective function 0 is
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(ordinal ly) additively separable in the choice variables x., ,. ..,Xm. We next

consider an alternative formulation of the agentrs optimization problem

equivalent to (3), but for which the objective function is 0(c',...,cn) and

thus exhibits the properties of monotonicity, quasiconcavity and (ordinal)

additive separabi I ity. Because of the equivalence between the two formulations,

the contingent conrnodity demand functions derived below wiII possess a simple

relation to the observable demands x(p,y) solving (3) and hence can, without

loss of general ity, also be viewed as being observable.

ln order to ensure that the contingent cornmodity formulation i s, in

fact, equivalent to (3) when asset markets are incomplete (m < n), it is

necessary for us to constrain the agent to buying only particular linear

combinations of the (cr,...,cs,...,cn). Let us begin by noting that since,

under Assumption [R], the asset return matrix R has full column rank, we can

partition it into a pair of submatrices Ro and RU, where Ro is an

matrix of ful I rank and *B is the comp'lementary submatrix (i .e. , Rt

Next define the matrix nt = n.nll which is ((n - m) x m). Let 
"o

denote the corresponding partitions of the state contingent

(cl,...,cs,...,cn); i.e., "t = t"j : c[]. clearly co= Rox

without loss of generality, it is assumed that 
"o = (cI,.

("n - m,...,"n) . lt then fol lows from the invertibll ity of

constraint on the purchase of contingent commodities can be

(mxm)

= r*; : *Er

and 
"B

conrnod i ty vector

and cU= RUx;

,"*) and cU =

Ro that the agentrs

expressed as

^fcB=Acq

The constrai'ned contingent conrnodity problem can thus be def ined as
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fol lows:

we may,

of the

max 0 (c)
c

ot" ='ct ct

(co, cu)

cU-Atco=On
I n u(c ) s.t.t'- s s-

>-l

€Rl* (4)

where go € Rt i, " 
price vector corresponding to the contingent commodity

vector cs. lt is evident that for 9c, = Ptni)-l , the maximization problems

(3) and (4) are equivalent (see Fischer t8l)' observe that the contingent

commodity price vecto. 9o may have negative elements' This does not violate

thetrno arbitrage conditionrrconmon in the literature since, in addition to

the budget constraint, the agent faces the constraint cU - Atco = 0' Further-

more, the choice--implicit in (4)-- of setting qB = 0 is arbitrary but in-

vorves no ross of generarity. The vector x sorves (l) at (p,y) if and only

if (Rox,AtRox) solves (4) at (9o,Y) = (n (ni)-1,y). Thus as suggested above'

with no loss of generality, suppose that the observable characteristics

agent consist of

Although (4) need not, of course, Possess a solution for an arbitrary

-mQo € lK , we next show that there is an open subset of contingent conrnodity

prices such that a solution exists and is well-behaved. Let lnt Qo denote

the interior of the subset % of R.m with the PrcPerty that for q0 € Qo

asolutionto(4)exists,isuniqueandischaracterizedbythefirst.order

conditions
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DoO (c)

DUO (c)

t

(5 )

qc *y
'ct ct

Rl:t are the unique Lagrange multipliers associated with

The demand function c(Qo,y) has as its domain

definition, is well def ined for any (9o,V) € fnt Qo x q*

so long as the set Int \ is not empty.

Lennra 1: The set Int $ # 6.

(The proof is given in the Appendix.)

From now on we work with the demand function c(eo,v) and the first-

order conditions G) for

"Sl utsky Equationstl

(co,Y) 6rntfox E*.

-aol-AU=0

4Ll.t= 0

-ot"o*cB-0

where ). € R++, U €

the constraints in (4).

% * IR ** and thus, bY

Since we know from standard demand theory that utility function properties

such as (ordinal) additive separability correspond to restrictions on the

Slutsky matrix, we next derive the appropriaterrSlutsky equations" for our

constrained contingent commodity problem. Total ly differentiating the system

of equations (f) vields:
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-ct'cl

0

0

fi1'" (".l )

.A dc
ct

d"B

dL

(6)

t-c'o

ofuo (") =

1I*..1ut' (.r*t )

o2uuO (.) =

Define the matrix

from the assumed

invertible. The

on the LHS of equation

negative defi ni teness of

demand function is thus

'tru' ,"r,]

n

I *.u (c.) ,
s=l

Ldo'c[

0

,rtdo - duct '0

o?eo

-At

where by the additive separabi I ity of 0, 0(c) =

oSgO and oilO van i sh and

'nnu" (cn)

(5) to be B. Then it fol lows

the matrix o2O that B is

conti nuous ly di fferentiable,

both crosS terms

and
(z)
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as are the functions ), and U. Sett i ng

[s

l,;

H
equat ions (5 ) and (8)

=lSog

-).rrt +
o

-),wt +
ct

soB

sBB

t-vB

t
-!r/B

imply the

0

-vB

e

d

fol lowing:

c =v :ya s

=B'

0,

-wB

dt
(8)

Dc9co

D l,=
o'd

-u"t: D0, 0,

dct
0

(g)

D u=
o,o

Dl,=-e
Y

; Dru--d

teco

where ooo"o and Drco denote, respectively, the matrix of partial deri-

vatives of the form ac, (el,...,gr,y)/0q. s, i € {1,...,m} and the vector

of marginal propensities to consume of the form acr(e1 ,...,Qr,i/dv. The

first expression in (9) clearly resembles the standard Slutsky eguation.
The following notation wirr be used to denote "compensatedr derivativesV

oto"o - lS* = oooto * (orco) cj ; (ro)
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ct
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o
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o
'c!
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(orr) cj

(Dyu) c;

The Exi stence Pr"opos i t ion

ln order to prove our basic existence result, we shall require the

demand functions for contingent conrnodities to satisfy two sets of conditions.

The first of these, referred to as regularity conditions, can be defined as

fol I ows :

Regularity Conditions: A function c(qa,y) = (co(eo,V)

is said to be a regular constrained contingent corrnodity demand

and only if the following are satisfied everywhere on Int Qo x

(i) co(9o,y) is positive and continuously differentiable,
(i i1 ejco(eo,v) = y and Atco(Q,r,y) = cu(Qo,y) and

(iii) Drcr(eo,v) * o s = 1,...,n.

ln the presence of complete markets, where m = n, the matrix A vanishes

and regularity fol lows from the monotonicity and concavity of u. The marginal

Propensity to consume for each contingent cormodity r^ould then be strictly
positive. ln the case of incomplete rnarkets, requirements (t) and (ii) are both

straightforward and relatively innocuous whi le (i i i) [s more substant iu".U
Next we define a consi'stencyrequirement to be satisfied by the contingent

corrnodity demand function and by the Lagrange multipl iers tr(qo,y) and u(eo,v)

which are associated with the constraints in (4). These conditions will be seen

, cU (eo,v) )

funct ion i f

IR
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in the proof of Proposition 1 to correspond to the stationarity of the agentrs

uti I ity function over contingent conrnodities'

Consistency Conditions: The continuously differentiable functions (I'U)

onlnt%x
to satisfy

R.1+ with images in IR and R' n-m , respect ively, wi I I

the consistency requirement for a given regular demand

if and only if the following conditions are satisfied everY-

Int fu x \*: whenever ", 
(9o,y) = c, 

' 
(ej,Y') ,

c (qs,Y)

def i ned

be said

funct i on

where on

_ 
(r'qr, + al,u')

trs' if s,s'. € {1 ,...,m}

H,
1T

s

xs,
Tst if srst € {m + 1,...,D}

rows of the matrix A.

{1,...rm} , sr € {m + 1,...,n}
l.l- r

-: if strfrs'

where "t. "t, ares- s'

We next define the function

/ro 
^o 

- 
"to u)

l'Y's sY e-1 il
I DcI r'

6, (eo,v) = 1
tl-D u
l# s=m+1,"',n 't vs

where as long as l. and U are continuously differentiable and

(r r )

(rq, + alu)=

the contingent
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commodity demand function is regular, the {61,...,6r,.'.. ,6n} are wel I defined

and continuous on Int Qo x q*. The function 6, wil I be seen to correspond

in the recovery of the utility function in Proposition 1 to n.u"(cr). Finally,

we shal I use the notationV

Ao - diag (6t ,... ,6r) ; AB = diag (6, * :,... ,6n)

Proposition 1: Let c(qcr,y) be a constrained contingent conrnodity

demand function which satisfies the regularity condition. Suppose that the

matrix of asset returns satisfies Assumption tR]. Then c(qo,y) is generated

by an NH representation satisfying rnonotonicity and risk aversion if and only

if there exist t,ao functions (Iru),ahich satisfy the consi'stency requirement

and the following three conditions hold everywtrere on Int ! x %*t

(1) tr(qo,y) is continuously

U(eo,v) is continuously

(component-wi se) ,

(2) (i) (t/l)aoo*o"o * oo(Dy

(i i) (1/r)a3At(o6oco)A +

(l) E, . 0, s = 1,... ,n.

(The proof is given in the Appendix.)

di fferentiable and strictly positive,

differentiahle and strictly negative

"o)t - (tur)notou=r,

(t/r) (o5ou)A - o, and

Remark: The conditions (l)-G) are the dernand analogues to the prefer-

ence Properties'of npnotoni'city, [ordinal) additive separatiil i'ty. and concavity,

respectively, and the consistency condition corresponds to stationarity. Condition
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is, when A vanishes

Houthakker [11] demand
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in the case of complete markets (m = n), precisely

restrictions for addi tive separabi I ity'

@tlf
are satisfied then

ple) integration of

the necessary and sufficient conditions in Proposition 1

{6, (co,v)} wi I I be observable and wi I I permit (in princi-

the full set of generating NH rePresentations'9/

3. NoN-uNlquENESS

Having derived necessary and sufficient conditions for at least one of

the possibly multiple uti I ity functions generating an asset demand function'

x(pry) -- or equivalently, a constrained contingent commodity demand function'

c(eoV) -- to be a monotone, concave (risk averse) NM representation, we next

consider two uniqueness questions. First' suPpose that a given demand system

is generated, under incomplete markets, by a representation 0 satisfying

monotonicity and risk aversion, then when can the demands also be generated

by a representation not satisfying these properties? The second question

addressed below is when can a given demand function generated by an expected

utility function also be generated by a representation which is not an expected

utility function.

As we shall show next, when asset markets are incomplete, unique

recoverabiIity is too much to hope for. Thus asset denrand functions cannot

be used to verify whether the properties of monotonicity, risk aversion and

strong independence are satisfied by the agentrs rePresentation'

Proposition 2: Assume the return matrix satisfies IR] and m < n' Let
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0 be a twice continuously differentiable, strictly monotone and risk averse

representation. Then there exists a pair of twice continuously differentiable

functions 0'i and Q*/r, such that 0*

to be risk averse (.quasiconcave) and yet

function as 0.

(The proof is given in the Appendix.)

Proposition 3: Assume the

fa i I s to be monotone and 0** fa i I s

both generate the same asset demand

asset returns

representat i on

sat i sfi es Assumpt ion

where the NH index[R] and m ( n. Let

satisfies Assumption

u" (c, )

matr ix

be an

tha t

of

NMO (cl ,. . . ,"n)

tUl. Suppose

is bounded away from zero on bounded subsets of IR# (rz)

(13)

system exhibiting

have been generated

Then there exists a twice continuously differentiable strictly monotone,

strictly quasiconcave oEjective function O which is not Nl'l and yet generates

the same asset demand function as 0.

(The proof is given in the Appendix.)

TTie condition (tZ1 invoked in order to establish the non-

uniqueness of the representation is really quite mild (and, in fact, could be

relaxed somewhat). lt should, for instance, he noted that ClZl is satisfied

by the frequently employed expected utility function

nlt
0(c) =-l-*";" , -1 (s(co

sEl

One implication of our results is that a given asset demand

portfol io separationl9/ and corresponding to (13) might wel I
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by a non-N},l representation, perhaps very different from the class of power

function-based Nl'l representations'

Remark: Propositions 2 and 3 demonstrate that, as long as markets

are incomplete, full knowledge of the agent's asset demand function is not

sufficient to ensure th.at his preferences satisfy monotonicity, risk aversion

or the expected utility hypothesis. The question can then be raised whether

any additional information--short of "completing the marketrr--can suffice

to guarantee that any of these Properties hold. Since, however, the only

assumption concerning market structure employed in the argument for Propo-

sitions 2 and 3 is the existence of a single non-zero vector in the kernel

of R, it follows that t'completion of the marketrtis, in some sense, necessary

to guarantee monotonicity, risk aversion or the expected util ity hypothesis.

(Also see Section 5 below.)

ln proposition 1, r,re derived necessary and suff icient conditions for

the existence of some NH representation satisfying [U] to generate the demand

function for assets whose return structure satisfies tR]. Takin'3 for granted

that a generating NH objective function does indeed exist, it is then natural

to ask whether it need bu $g-gil_!!. generating representation and whether

it is recoverable, ln earlier papers, uniqueness and recoverability have been

attained under alternative additional restrictions on the NH index u or on

the return matrix R. Namely, either it is assumed that u is analytic on

E lcreen, Lau and Polernarchakis [9]l , or that sone li'near combination of

the availahle assets is riskless (OyOvig and Polemarchakis t7]t. Furthermore,

examples are known where uniqueness fails in the absence of a riskless asset
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(see Dybvig and Polenrarchakis ti]). We want now to show how the existence

argument in Proposition I can be used to yield uniqueness and recoverability

in the presence of a riskless asset.

Proposition 4 (oyUvig and Polemarchakis [7]): Assume there exists

an NH representation satisfying [U] which generates a given asset demand

function. Let the matrix of asset returns satisfy [R] and suppose sorne

linear cornbination of the assets is riskless. Then the generating NH utility
function is unique and recoverable.

(The proof is given in the Appendix.)

The intuition behind unique recoverability in the presence of a risk-

less asset is straightforward: Whenever state contingent consumption is con-

stant across states ", = i for all

implied by the existenie of an NH index

specification of the functions l(qo,y)

determ i ned unambiguous ly.

The unique recoverabi I ity result based on the analyticity of u can

not be innnediately derived in the present context. One would, first of alI,
have to extend the analysis to allow for a zero level of consumption and,

furthermore, rely on higher derivati.ves of the demand function at the origin.
Presumably, knowledge of all the derivatives of the demand function at the

origin, cqnbined with the analyticity of l, and u impl ied by the analyti-
city of u, el iminates any degrees of f reedcrn involved in the specif ication

of L and U.

the cons i stency requ i rernent

u prevents any digression in the

and u(eo,v) and, thus, u"(i) is
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4. EXTENS I ONS

The analysis so far has been carried out in the simple framework of a

single time period and a single preference attribute' ln this section we

discuss, scrnewhat informal ly, several possible extensions.

Let us begin by assuming that the al location problern is the same as

before except for the fact if,at now the agent faces uncertainty not only

concerning the returns of the various assets but concerning his incorne as

well. (fnis income uncertainty will not be resolved until after the asset

allocation decision is made.) That is, his income is given by the vector

(y,e) where y > 0 is regeived at the beginning of the period and es:0'

S - lr...rn, iS the end-of-period inccrne received under State of nature s'

The contingent connrodity consumption vector corresponding to the asset hold-

ings x is then given by c I Rx + e and the budget constraint by Pt* = y

-- the agent is required to be solvent in each state ,.u

ln order to derive the observable demand restrictions corresponding to

various preference proPerties, we shall, as in the previous sections, transform

the portfol io problem into an equivalent constrained contingent connrodity

problem. partitioning R into a full rank submatrix Ro and the conpletnentary

submatrix RU, and setting nt = RBRJI "nd " = -Atro * rB, we see that

cU=Atco+a '

where (eo,e') and (corc') are the corresponding partitions of the vectors

e and c, resPectively. Thus, the linear dependence between "o and "B 
has

been transformed into an affine relationship. This change leaves the first-

order conditions substantially unaltered and, as the reader may verify,
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propositions 1,2 and 3 remain valid with only very minor modifications

required. F{owever, the uniqueness result, ProPosi tion 4, no longer holds:

proposition 5: Assume there exists an NH representation satisfying

[U] which generates a given asset demand function. Let the matrix of asset

returns satisfy IR]. Then in the presence of income uncertainty, the exiStence

of a riskless asset is not sufficient to guarantee the uniqueness and re-

coverability of the generating NH utility function.

(The proof is given in the Appendix.)

Alternatively, we could imagine an agent who must allocate his initial

wealth, y, between Current conSumption "1 and m assets indexed by

j ' 1 e... srn. His future (second-period) contingent consumption would then

be given by

tzs=rsx+es s - 1e...eFr

where r is the vector of asset returns in state s and
s

uncerta in per iod-two i nconre.

denotes hi s

One could raise ln this two-period setting a numEer of questions

analogous to those considered for the one-period case:

(t) What are necessary and sufficient conditions for the demand

function (c'x) to be compatible with the rnaximization of

some fipnotone, concave, Nl'l representation?

(2) Can monoton ic i ty, r isk avers ion and the (trno-per iod) expected

utility hypothesis be guaranteed in the absence of complete

ma rkets?
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(f) Finally, the analysis of Sections 2 and J.could be extended to

the rnore general "Ordinal Certainty Equivalenttr preference

se,tting considered in Polemarchakis and Selden [16, 177.

5. PREDICTION AND WELFARE

Our analysls leads to the general conclusion that as long as asset

markets are incomplete one is almost never able to infer from observable

demand behavior the "truertrepresentation of preferences over contingent

commodities. ln particular, questions such as whether the agent is charac-

terized by monotonicity and risk aversion or whether he satisfies the von

Neumann-Horgenstern expected utility axioms simply can not be answered

conclusively. Since asset markets are indeed incomplete, this issue of

non-observability raises a number of vexing problems of considerable prac-

t ical importance.

Non-uniqueness of the generating representatiqt precludes, above

al l, the general possfbi l ity of forecasting the agentrs behayi'or outside

a glven market regi'rne. ln the case of complete rnarRets, we Rnow from

l'las-Colel I [14] that, under mild regularity conditions, the preferences

generating a given dernand function are unique and recoverahle. But, of

course, i'n this case there is no real issue of prediction: one can readily

determine from the agentts "complete markets'r demand function what his

demand for assets will be under any alternative incomplete maroket regime.

The desirabil ity of predicti:on ari'ses only in the frameuorR of inconplete

marRets; but that i s prectsely when i't is not poss i bl e. One has no way

of telling which of the multiple representations generating the giyen asset
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demands is the unique "true" representation in the sen3e of generating the

ttcomplete markets" demand function. And it is only with this 'rtruerr utility

function that one can predict accurately the agentrs behavior under differ-

ent market regimes. 0bservations under several different (incomplete

market) regimes wi ll generally be of no help in identifying the 'rtruet' re-

presentation--although some inferences may bie possible. l'1ore general ly, it

remalns an open question to determine the class of preference properties

which on the one hand can be verified in an incomplete market setting, and

on th.e other hand do have predictive content concerning th-e aEentts resPonse

to a I ternat i ve cho ;6s s61s.l-al

ln addition to raising serious ohstacles to predicting individual

behavior, the existence of incomplete markets also poses serious problems

for standard welfare analysis. Knowledge of an agentrs indifference map

can serve to determine the compensation necessary for his "welfarerrto be

unaffected by a change in the opportunities avai lable to him. l't is in

this context, that Has-Colel I ts Il4j recoverabil ity resul t for complete

markets is of interest. Suppose alternatively that markets are not complete

and that an agent is confronted with an alteration in the random return

on one of the assets in which he has a non-zero investment. One interesting

example of such a case would be that of a stockholder facing a change in

the siochastic production plan of a firm. To determine how--if at all

possi6l"JJ/--1he agent is to be compensated for the change so that he does

not suffer a welfare loss requires knowledge of ttis representation of pre-

ferences over contingent commodities. Again, however, if the orrly infor:nation

available, as is likely to be the case, is the agentrs asset demand func-



-2\-

tion under incomplete markets, the r,true,t representation

compensation can not be unambiguously determined. lt is

to determine the individual welfare conclusions that can

and hence the correct

an open question

be inferred from

incomplete mark,et data.

ln a related vein, one can ask how the Grossman-Hart [lO] firm
decislon criterion for evaluating production plans under incomplete markets

is to be implemented. Thelr criterion is based on a weighted sum of ex ante

stockholder marginal rates of substitution between present and future

contingent consumption (cf., Diamond [5] ana DrEze t6]). ln general, it
wil I not be possible to infer an individual stockholderrs "truet' preferences

from complete knowledge of his asset demand function (even assuming that (Rrn)

is given). The alternative tack of simply asking stockholders to supply their
marglnal rates of substitution, of course, raises many of the standard

probl ems assoc iated wi th the rrrevel at ion of preferences.'

Finally, our analysis raises a number of questions concerning the

aggregation of preferences and social welfare. tn addition to the individual

observability problems discussed above, we are now faced with the problems

associated with aggregating individual utility functions under uncertainty.

ln the case of complete markets, even if agents haye homothetic Nl,l preferences

and constant income shares and thus ordinal aggregation is indeed possible, the

aggregator need not be [ordinally) NH representable fcf., polemarchakis and

selden tl6]). suppose, however, that individual and aggregate demand

observations are limited to a set of assets which do not span. Then it
may be the case that even though the I'truer' (i.e., complete markets) aggre-
gator either does not exist or exists but is not NH, the aggregate demand
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for existing assets happens to be compatible with the'maximization of

expected uti l ity function. lf now this "falser' "ggregator 
is used for

social welfare judgements, the results can be erroneous.

We conclude this section with a simple example cast in the context of

an optimal tax problem. lt i I Iustrates the diff iculties raised for welfare

judgements by the inability to distinguish between NM and non-NH preferences

on the basis of asset demand functions. We note, however, that these diffi-
culties persist even when one assumes away, as we do in the example, the pro-

blem of the existence of an aggregator.

Example. Consider the simple setting of one agent (or equivalently,

a group of identical agents), three equiprobable states of nature (n, = 3,

s = 1 ,2,3) and two complex securities (j = t rZ) with return matrix

/t o\ft- (: L)

Assume that the agentrs

jective function

3"*
o(c',cr,"3) ,i,f * ,^.!.*r.i ,

where k > 0 and 0 < s, < 1. Observe

function which is generated by the true

duced by the NM obje-ctive function

fr(",, ,"r,"r) = i+-Js=l )

true preferences are representable by the non-NM ob-

furthermore that

non-NH objective

the same

funct i on

(14)

asset demand

. is also pro-

That, for the existing assets and return structure, the functions O and O

generate exactly the same dernands at all prices (R' p) and income levels
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follows innrediately by observing that .3 = ^1131 
+ xr?r, = A given (t41 

'

and hence, effectively Q reduce. ao 6 Suppose now that the government

needs to raise a revenue B and as a consequence taxes the individual. The

instrurnents at the governmentts disposal are a proportional tax t on capi-

tal gains (where the constant rate t, which applies only to gains, is the same

for the two assets) and a lr.rmp-sum ilincqne maintenance'r transfer T which is

paid to the taxpayer in state 3. The objective of the government is to

choose (t,t1 so as to maximize the individualrs 0tility for a.fter-tax

(and transfer) consurnption subject to raising an exggteg- tax revenue net

of the income transfer T equal to the required quantity B. lt must be

stressed that, of course, this is only one of the possible formulations of

the optimal tax problem under uncertainty, but it suffices to illustrate the

difficulties which can arise in welfare judgements due to the non-uniqueness

of preferences generating asset demands. lt is assuned that the agent chooses

his portfolio with full knowledge of the tax-incorne transfer structure and the

exogeneously given prices for the securities, p, 
"na er.W To simpl ify the

argument, we assume that the agentrs income equals 1 and thaa pl = p2.= p. lt

follows that the budget constraint of the agent can be written as

"1 
+ xU- 1/p,

and it is clear that the optimal asset holdings are given by *l = xZ= 1/2p

and hence

"1

"z

"3

=*1

=*z
- I.

- (r

- (t

p)*t t

p)rzt

- (r

- (t

[1

[1

p)t7/2p

o)tJ/zp
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The expected taxes ra i sed by the government are then by

e(r - p)lt + 3(t - p)*zt - *r = *[L: -elt -

given

']

rang iEquating this to the revenue requirement B and rear

Now on the

ceeding in

other hand based

the same fashion

'].

il lu

and

s t rates

n'on-NH

. = ffi(3g + r).

Using this expression

timal tax problem to

function. Now were his preferences to

then he would seek to maximizb

6(r)==l*,*-38-',]*.f

which has as its solution

T* = Ll /3p) _B,

and using (15) ,

,*=ffi2p8+|l-

to el iminate t

one of choosing

on the agentrs true

yields in the limit

ng yields the condition

(15)

frorn 
"1 

and c2, we can reduce the op-

T so as to maxloi ze the agent rs ut i I ity

be representable by the NH function e,

(16)

(17)

non-NH representation 0, pro-

as k gets large

,*=t'$.ul+-']

t*= 3pB +

The example

cases of NM

15/

(18)

(1 9)

that optimal taxes can indeed be quite

preferences even when the two differentdifferent for the
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utility functions are indistinguishable at the level of asset demands. As a

result, the government is unable to identify the true preference structure

and hence will not know which tax policy to follow. 0f course under certain tax

structures, it can be the case that no! only do 0 and 0 yield the same asset

dernands but they also result in the same optimal tax rates. Then as long as

R does not change, it will not matter whether O or e is the true utility

function. But what if the governTlent expects the return matrix R to change

to R'? Based on R', 0 and O will no longer, in general, yield the same

asset demand functions and no longer determine the same tax rates. once again,

the government will be in the position of not knowing which tax policy to

fol low.
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Append i x

Proof of Lemma l: Since al I we

not empty, it will sufflce for us to do

subsets of contingent conrnodity vectors:

show i s that Int Q; i s

regard to the fol lowing

€ R.T}

* 
"g € Rlm

the f trst-order cond it lons

want to

so wi th

co - d"f {co €

c& = a"r {co €

co = d"f {"o

Assumpt ion I R], Ctk i s a

€ C&, then by def i n i t ion

n mlc - R x'cl 0
where x

rtBy

c
o

*g*

into

R mlc = R x'ct o,

(co,cu) € iR

for sore x € RL] , and

n 
I c., € cd and cU = Atco)

non-ennpty, open cone in RL. Furthernore,

of the matrix At we have that

c^ = Atc = R^R-lc = R^R-IR x =F A Fa C gO s

Consequently, for any

(5) yields a unique

o € C&, substitution

Existence fol lows from the concavity of u (and hence the quasiconcavlty

of 0), wtrile uniqueness follows from the differentiahiltty of u. Further-

more' the assuned strict concavity of the NH index u ' impl les that if
co I cj, qo # qi where qo and q; support "o and cj, respectively.

Next, observe that from the f irstrcrder conditions (5) and the fact

that ur > 0 everywhere on R*, H-€ R::t . To see rfiat I g R.*, begin

by premultiplying the first equation in (5) Ey cj, wn.r'. co € C$:

rctD o - clu'l
-1=33------E.-.yc

Y

suffices for us to show that (for y = 1)

o=ctDocr ct'

To see that Int fu is

(qo,x,u) € *m*l+[n-m) which suppor"ts c = (co,cu) e c*.

-ctol.-
ct '0

not empty,

.tA,
ct

it
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€ C* is a continuously differentiable functionthe price q., suPPorting c

eo(co) deflned on the oPen

order cond lt ions aga i n , qu

fol lows that

to6
ccil

rD 6

cone C& and that lOqol * O.

' C.jooo * "jnouo)-1[ooo 
+ ADuol

Us ing the fi rst-

from which it

"jnouo) 
-2tE"lo

nouoltcjoS*r *

oo + cjnouolCofuo

"jnofruont 
* (Doo

no2uuon 
cJ

Aoso) tJ]

{

m - 1,

0. Let

Dco (c

l'bw, loqol I o iff there exist m linearly

such that (oqo) z. { 0, i - 1,...,m. To see

observe that for z € [Do0 + nDgO]L, z # O,

froo the assumed strict concavity of u. Since dim 1D,"0 + ADB0]

it remains onty to find one ) fCDo0 + ADBO1L such that (oqo)l

; = tDfu * eofiuOetl-l[ooo + ADg01, where the inverse exists by the strict

concavity of u. Furthermore, [DoO + no'O]ti * O from the iregative def in-

iteness of tDSoO + noU2UOetJ and the fact that [DoO + ADBO]'].qo 10,

since 0 /Qo, ), > 0. Finally, since

(Dqo) z z -("jo,,o + 
"jnouo)-2[Da0 

+ ADgoJ[Ooo + ADBo) t

. (o3.,o + aofiuon)-l(Doo + Aouoll ,

zt(Dqo)z = t"looo * "jnouo)'2.'go?ooo 
+ noluoet3r. o

we have that (Oqo)z * Q. q.E. D.

First, we dennnstrate necessity. From the

independent vectors {2.' ,...,tr}
that this is indeed the case,

Proof of Proposition l:
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f irst-order conditions (5), it fol lows that Us = -?rso,(cs), s € {m + 1,...,o},
mn

and | = (llil[-!r".tru' (cs) - 
r=l*r".rr]. 

consequently, x, . 0 and tr > 0,
i

and both functions are continuously differentiable. That the consistency con-

ditlon is satisfied follows irnrnediately from the first-order conditions for a

maximum and the stationarity of the NH index u. To see why conditions (2.i)

and (2.ii) must hold, observe that BB-l = r implies the following:

(DLo)(saa) + qou; + Awt = r ,

(Deso)(sss) -*l=t ,

(oloO)vo*eo"+Ad-o ,

tofiuOtvu-d=o ,

vU = Atvo ,

-*B-r'-Atwo

Sgo = tlg = ottoo ,

sgg = AtsooR

Furthermore, as was noted in the text following equation (8), e = -Dr).,

d=-Du.v -[' -yF' 'o Jy"o, Soo = u/x')Oto"o and "j = - U/^\otou. Final ly, since

uo and uB contain no zero elernents under the regularity conditions, the

above equations together with (11) imply that Ao = O3o0 and AU = OfrU6 and

thus 6, = nru"(cr) < o (condition (l)). Direct substitution yields the

expressions referred to as conditions (Z.i) and (2. i i).
To prove suff iciency, w€ give a constructive argunent. Given c(qory),
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l(qcr,y) and u(eo,v), we def ine e = -Drl, d = -Drlr, fo = Or"o, S* = (1/l)Ot*"o

and *l = -(l/f)otou. we can also define Sag, Seo, Sgg, rg and *g as was

done above. By the regularity of the demand function, Dy", = v, I 0, s = 1,...,D

and hence A-. and AB can be defined as in (11). Finally, we can set G = AUwU.g

Nor.r all of the entries in the matrix B-1 as wel I as the following matrix have

been defined:

-A-qcr0Ag

B*=
0

t
'o

-At

ag r

0

0

0

!,/e want to show that B* = (a-l;-t = B by construction. To check that the

diagonal elements of BtkB-l are all equal to unity ob-serve thaa AoSoo * Qou

Ahr; = r from condition (z.i) in the proposition while agtgg - *l = r from

condition (z.ii). That ojuo = 1 follows frqn the fact that ej"o(eo,y) =

Finally, the definition of *B- implies that nl*o: *B = I. Proceeding in

same fashion, one can readi ly show that atl of the off diagonal elements are

t+
o

v.

the

equal to zero.

Consider next the family of functions i6r(eo,V)f s.= 1,...,n and

(eo,v) € Int q x R*i. Cornposing these functions with the inverse denrand.

relation yields the family {6r(co)ls = 1,...,n and co € cd} where as in

the proof of Lernma 1, we def ine C$ = {"o €-lRll.o = Ro*, X € BT*}. But

it then follows fronr the consistency condition and the definition of 6,(co,v)

(in terms of the functions I and u) that 6r(co) is a well defined
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continuous function of cs, s = 1r...,n. lntegratin€ twice,

fami 1y of twice continuously ciifferentiable f unctions u, (cr)

u'j (c. ) = 6, (c, ) and the obj ect ive f unct i on def i ned on C* =

and cU = Atco] uy

. o(cr, ..,cn, = 
r!'ur(cr)

generates the observed demand function. To complete the proof, it remains

to be shown an"an u, ("r)/.n, = ur,("s ,)/rr, for al I c- = c_,, and hence
n t s'

0(ct,...'cn, = 
.1' 

nru("r), where 0 < n < 1 and t. n, = t. But this
s=1

fol lows frorn the cons i stency requ i rement . a,. E. D.

Proof of Proposition 2: Let x(p,y) be the asset demand function
generated by the twice continuously differentiable, strictly monotone

(oo >> o) and strictry quasiconcave (o2o is negative definite on too]L)
representat ion 0. Def i ne

o*(c) = d.f o(c) + nEt" ,

where n is a scalar and E lies in the kernel of the return matrix R

and is non-zero (as long as m ( n, there exists at least one E e nf
different frorn zero, such that Etn = o). By an appropriate choice of
rlr 0* will fail to have an everywhere positive gradient. 0n the other
hand, the induced objective function for assets 0*(Rx) = o(Rx) + nttRx

= O(Rx) since for any choice of asset holdings, x ( Ufl, the resulting
contingent conmodity vector, c = Rx, satisfies Etc = o. Thus, the demand

function generated by the new representation $;k, denoted x*(p,y) is
identical to x(p,y) which was generated by Q(c).

we obtain a

such that

{ (ccr,cU) lco e c5
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Concerning quasiconcavity, or risk aversion, an analogous argument

appl ies. Let

0** (c) = 0 (c) * t t"l ["t (ttt)"]

where E is again a non-zero vector in the kernel of R while n is a

positive twice continuously differentiable function. Then

Do*:t = oo * hn (c) [ct (EEt)"] + n (c) t"t (gqt) l

D2q,t* - D2o * h'n (c) [ct (EEt)c] + 2Dn (") ["t (tgt) ] * n (c) tEEtl .

Consequently, by appropriate choice of the

to be negat ive serni -def i n i te on [06** 3L

time, 0**(Rx) = 6(Rx) + n(Rx)gxtn(€Et)nxl

the same asset demand function as does 0.

generated by the NH representat ion 0 (ct , . . .

(12), As before, since m ( n, we can find

-Land hence E-c = 0 whenever c = Rxr dny

Proof of Proposition 3: Let x(p,y) be the asset demand function

function n(c), D26;t* will fail
everywhere on 4-. At the same

= 0 (Rx) , and hence O** generates

q. E. D.

= 
,!,nru(rlx) ' satisfYins

R n, 
E * o, such that gtR = o,

R m. Let n(a) be a twice

whi le

'"n )

E€

x€
continuously differentiable function def ined on %, such that n(cl) = n'(e) =

n"(s) = 0 for a € [g, i], where 0 < a < & are fixed constants; that is,

the function n(o) vanishes outside a non-degenerate canpact intervat [g,J].
Consider now the objective function 6t"r,...,cn) = O0(c) + n(llcll )[Etc]k
rrhere llcll is the Euclidean norm 0 > 0 and k is an integer >_ 3. First

observe that even though 6t"l is not (ordinal ly) additively separable--and

hence not NH--it does generate the asset demand function *(p,y) for the
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existing assets. Second, the following argument shows that for 0 large,
  
0(c) inherits the strict monotonicity (00(c) 11 0) and strict concavity

a(ot0(") negative def inite) of 0(c) on tr' L it is clearly twice con-

tinuously differentiable. since for llcll /[g,i], o6(.) - D0(c) and

026(") =D2i(c),weonlyneedtoconsider c e i=1"6 nllttctt €[g,A]].
But i i, bounded from above. Since the functions a$lacs , az1tA"!

s € {1,...,h} are continuous and since 00/3c, > 0 while azon.?. o and

both are bounded away from 0 on a, there exist constants y > 0 and 6 < o

such that 30/Ec, > y and a2OZa"r2 . O s € {l ,...,n} everywhere on ;.
Then choosing 0 large guarantees that the first and second derivatives of Q

willdominatethoseof n(llcll )[Et"]k, andhence o wiilsatisfy o6rro
tand DtO .< 0 on C, and hence on g1 L. Q. E .D.

Proof of Proposition 4: lt suffices to demonstrate that c(qa,y)

determines u"(.) /ut (.) everywhere on tr {+. The existence of a riskless

asset is central to the argument. We want therefore, first, to derive

the equivalent for the constrained contingent cornnodity problem of the

existence of the riskless asset in the corresponding conrplex security

probl em. The cont i ngent cornnrod i ty vector, c , and the vector of comp I ex

security holdingsr X, are related by the relation c = Rx. Furthermore,

given the decomposition of the contingent connrodity vector c = (co,c')

and the return matrix * = [Rcr, *g] defined before, co = Rox and

cU = RUx. Since a rlskless asset exists, and since'R has full column

rank, there exists a unique vlk such that Rx* = e--the unit vector in
F. n. But this impl ies that

are the unit vectors in F,m

eo = Rox* and eU = RUx*, where u., and 
"B

and R n-m, respectively. But then, *o = RJI e
d'
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-1eU = RURlleo and, since Rt = RBRJ1, eU = Ateo, or ..[ = "je. For any

i t O choose (q-s,i) such that c(e-o,i) = Ee where "t = t"j,"f) = (t,...,1).

Since the demand function is observable, so is the inverse demand function

ao(c) on the range of the demand function and, in particular on C* (as de-

fined in the proof of Lenuna 1). Fronr the existence of a riskless asset and the

first-order conditi.ons, (5), we can derive the following systern of equations:

nm

,f',n'u' 
("s) = 

^(rfror'

n
nru'(cr) + _, _l.."lr,rr,u'(cs,) = lql

s'tm+l

ln order to derive these two equations, we begin by prernultiplying the f i rst

two expressions in (5) by the vector 
"t - t"j,"[) of units in Et which

yields

t-e'Dd+co'

Using the fact that

{ou*

"tA =c

- rejeo - 
"jnu 

* 
"[u

fe' by the existence of a riskless asset, gives

mn

.f ,n"' 
(cs) - r( I.er) = o

s-l

The second equation in the above systsn is obtained frorn (5) by substituting

-Trrrut(cs,) for Ur, st = m 'i 1r,..,o.

By the positivity of ur on IR and the

where on the Int fo x \*, we can dcrive f rqn the

the expression for the marginal rate of substitution

portfolio and the state 1 contingent consumption:

positivity of ), every-

above systern of equations

between the riskless



of 
=

m
trI q.

s=l

-37-

n
nru'(cr) + . I -a1r,fi,ru's'qn+l

The LHS of this equation is

cqnpute the value of u"(E)

nm
e.1[ f.nru'(cr)J = ( I.qr)[tru'(c,)

s= I s=l

with respect to "1 and evaluate at c = ce.

I inear in u"(E) with coeff icient

n

I. n.u , (cs )
s=l

observable from the inverse demand function. To

r w€ differentiate both sides of

n
+ i.."lr,fir,u'(cs,)J

s '-lltsF I

The resulting equation is

z(E) = ,.l.'or)[(nr * 
r,j*,ns,a1.,)2 

- (nr * 
r,=l*,nr,"fr,)]s=l

Since n Z 2, =(E) I o and hence u"(E) can be recovered without ambiguity.

As was pointed out earlier, the existence of a riskless asset has

enabled us to eliminate I and U and thus the anbiguity involved in their

choice. This is precisely the motivation underlying construction of the ratio
m

01/r!ro, it does not involve I and U given that sonre asset is riskless.

Q.E.D.

Proof of Proposition 5: lt suffices to give an example where recov-

erability fails. Let there be foul equiprobable states and two cornplex

securities and assume

l; ;,1
Rt- and et = [0rn,0,n]
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(where n here does not denote probability). Then thd expected utility
nn

functions l-n.u(c") and [_nr{u(cr) + k sin (c.)}, where k is a

s=t s > 
s=1

scalar, generate indistinguishable asset demand functions, and hence constrained

contingent cormodity demand functions as well. Observe that the structure

of the random income component prevents reduction of the state space to just

two points, as one might be tempted to do after observing the return matrix, R-

Q.E.D.



-39-

Fcctnotes

v
4/

1/

2/

5/

U

u

The connection between additive utility functions and additive
preferences is examined in Debreu [4].
All vectors are column vectors. A superscript rtlrt denotes the

transpbse. Let z be some vector and zi a component of z. Then

z:O means ,i:O forevery i, z>0 means z:O and z#0
and z>)0 means =iro forevery i. 4={=e rfllz2oi and

{ = 1. a ufl= >> o}.

For a fairly comprehensive treatment of preferences over the space
of random variables, see Rossrnan and Selden [20].

l'/e shal I use DO(c) for the vector

,#1 ",,...,cn),...,{,.,,...,cs,...,"n),...,#("r,...,cn))
and analogously O2O(c) for the matrix of second (partial) derivatlves.

0n the notion of I'state independentrr preferences, see Malinvaud
[13, p. 2853 and Rossrnan and Selden [20].
See Rossman and Selden [19] on the relation between Hicksian and
Sl utsky compensation under uncertainty.

lt is important to stress that the regularity conditions relate to the
demand for contingent cormodities and not assets. lmposing (iii) on
contingent conrnodity demands does not, of course, imply that it must
hold as well for complex securities. tn the case of incomplete markets,
the requirement (iii) that the marginal propensity to consume for each
contingent conrnodity be non-zero everywhere represents an additional
impl icit restriction on both the asset return structure and preferences.
As can be seen frorn Eq. (tt) in the text, a violation of (iii) causes
6r(co,v) (which corresponds to nru"(cr) .in the recovery oi tho util ity
functlon in the proof of Proposition i). not to be wel l-def ined. l/e are
indebted to the referee for his clarifying comments on this point.

v For any vector z € Rk
diagonal matrix.

, diag (z) denotes the correspond[ng (k x k)
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It should be noted that while the functions (f ,p) are not inrmediately
observable, one can directly verify the existence of Lagrange multipl iers
(l,U) satisfying rhe required demand restrictioils (1)-(3) in Proposition l
from the observable constrained contingent commodity demand functions.

See, for example, Cass and Stigl itz [2].
Note that this formulation of the agentrs problem does not necessarily
presume the existence of a riskless asset.

Given the non-uniqueness of the generating representation in incomplete
markets, an individual agentts observable asset demand behavior (even
assuming complete knowledge of (n,n')) can hardly be viewed as very
rrinformingtt. Moreover, it is unlikely that matters can be improved by
summing over agents. Thus under incomplete markets, aggregate demands
or equil ibrium prices transmit I ittle if any information concerning
investor tastes.

As shown in Rossman and Selden [19], Slutsky income compensation (which
seeks to restore the individual to hiil-FTEThal optimal al location) is

'not generally possible for perfectly standard changes in the random re-
turn on assets. fle here, of course, are concerned with the alternative
Hicksian notion of compensation (which seeks to restore the individual
to Fi-riginal optimal level of utility).

More generally, the asset prices Pr and Pc can not be specified
exogenously since they will be affetted by th6 optimal tax structure
(T't, t*). However given the limited purpose of our exarnple, there
would seem to be little reason to introduce this additional complexity.

Note that if p - *, B = 1/12 and o = *, straightforward computation
resul ts i n (1*, t;t) equa I I i ng (l ttz, 5/6) for the NH case of (1 6)
and (17) and (lttg, 11/16) for the non-Nl'l case of (t8) and (19) and in
both cases O(T) and 0(fl are strictly concave over [O,t]. The
reader will also observe that if o = +, then (18) and (19) just happen
to reduce exactly to (16) and (17).
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