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STRATEGIC EXPERIMENTATION

By PATRICK BOLTON AND CHRISTOPHER HARRIS!

This paper extends the classic two-armed bandit problem to a many-agent setting in
which N players each face the same experimentation problem. The main change from the
single-agent problem is that an agent can now learn from the current experimentation of
other agents. Information is therefore a public good, and a free-rider problem in
experimentation naturally arises. More interestingly, the prospect of future experimenta-
tion by others encourages agents to increase current experimentation, in order to bring
forward the time at which the extra information generated by such experimentation
becomes available. The paper provides an analysis of the set of stationary Markov
equilibria in terms of the free-rider effect and the encouragement effect.

KEYWORDS: Multi-agent two-armed bandit, informational public good, free-rider prob-
lem, encouragement effect.

1. INTRODUCTION

THIS PAPER ANALYSES A GAME of strategic experimentation in which individual
players can learn from the experiments of others as well as their own. Given that
experimentation typically entails an opportunity cost, and that information
obtained from an experiment is valuable to all players, individual players
attempt to free ride on the experiments of others. This informational externality
drives a wedge between equilibrium experimentation and socially optimal exper-
imentation. On the other hand, an individual player may be encouraged to
experiment more if, by so doing, she can bring forward the time at which the
information generated by the experimentation of others becomes available. This
encouragement effect mitigates the free-rider effect. The objective of the paper
is to analyze equilibrium experimentation strategies in terms of the free-rider
and the encouragement effects.

The game of strategic experimentation we consider is a many-player
common-value extension of the classic continuous-time two-armed bandit prob-
lem as presented from various points of view in Karatzas (1984), Berry and
Fristedt (1985), and Mandelbaum (1987). In any given period of this game, each
player must divide her time between the “safe” action and the “risky” action.
The underlying payoff of the safe action is known and common to all players.
The underlying payoff of the risky action is unknown but common to all players,
and it can be either higher or lower than that of the safe action. The actual
payoff obtained by a player from an action is the underlying payoff of that
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and especially the co-editor and three anonymous referees for their help, and seminar participants
at Berkeley, Cambridge, Chicago, ECARE, LSE, Minnesota, MIT, Northwestern, Oxford, Paris,
Princeton, Stanford, Toulouse, UCLA, University College London, and Yale for their comments.
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350 P. BOLTON AND C. HARRIS

action plus noise. Once players have chosen how to allocate their time and the
payoffs have been realized, all players observe all choices and all payoffs. They
therefore obtain information about the underlying payoff of the risky action by
observing the payoffs derived from the risky action.

In reality there are many situations in which a group of agents are involved in
a game of strategic experimentation. Obvious examples are natural resource
exploration, research and development, adoption of new technologies or prod-
ucts, identification of new investment opportunities, evaluation of the state of
the economy, or consumer search. In fact, almost any situation of social learning
can be represented as a game of strategic experimentation. Of course, most of
these situations are more complex than our game. They may, for example,
involve other forms of interaction among players besides the informational
externality emphasized here. Also, other players’ actions or payoffs may only be
partially observable. Nevertheless, we believe that it is important to first develop
a good understanding of the simplest form of interaction before proceeding to
the analysis of more complex situations. Just as the single-agent two-armed
bandit problem has become the backbone of single-agent active-learning theo-
ries, we believe that the multi-agent two-armed bandit problem is a natural
benchmark for multi-agent active-learning theories.

The team-learning problem has a particularly simple solution in our setting:
all players choose the risky action if and only if the common posterior probabil-
ity p that the risky action has a higher underlying payoff than the safe action is
above an endogenously determined cutoff c¢,. Given that the opportunity cost
of experimentation is divided by the number of players N, the team cutoff c,, is
decreasing in N. When N tends to infinity, ¢, converges to zero.

In analyzing equilibrium experimentation, we restrict attention to symmetric
equilibria in stationary Markov strategies. We show that there exists a unique
equilibrium which involves two cutoffs ¢, and ¢, where 0 <c, <c¢, <c; <1
The proportion of time that players devote to experimentation is O when p falls
below ¢, rises continuously from 0 to 1 as p rises from ¢; to ¢;, and takes the
value 1 when p exceeds c;. Thus, because of free riding, equilibrium experimen-
tation is less than socially efficient experimentation. As a consequence, the
equilibrium payoff of a representative player is strictly less than the full-infor-
mation payoff. This is even true in the limit as the number of players N tends to
infinity.

We have chosen a continuous-time formulation of the two-armed bandit
problem because of its tractability. The Bellman equation takes a particularly
simple form in our formulation, and it can be used to establish extensive
comparative-statics results for the unique symmetric equilibrium. For example,
we are able to show that the equilibrium payoff is rising in the number of"
players. This result is an illustration of the encouragement effect. It is by no
means obvious, since total experimentation itself is not monotonic in the
number of players.

If one restricts attention to pure strategies, where players must devote any
given period exclusively to one of the two actions available to them, then
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symmetric equilibria do not exist. (We do not analyze asymmetric equilibria
here, but a characterization of the set of stationary Markov equilibria in an
undiscounted version of our model can be found in Bolton and Harris (1996).
See also the original version of the paper, namely Bolton and Harris (1993).)
Thus, to obtain a symmetric equilibrium, one must allow players either to divide
~ their time between the two actions in any given period, or to randomize in some
way. We have chosen to focus on the divisible-time model. We do, however,
discuss both private and public randomization towards the end of the paper. We
argue there that the private-randomization model is isomorphic to the divisible-
time model, and that any symmetric equilibrium where players exploit a public-
randomization device to take turns in experimenting yields the same payoft as
the symmetric private-randomization equilibrium.

To our knowledge only one paper, namely Smith (1991), considers a similar
framework to ours. Smith focuses on limit beliefs and does not attempt to
characterize socially optimal or equilibrium experimentation strategies. A num-
ber of recent papers deal with issues related to ours but in rather different
settings. Some of these papers are discussed in Bolton and Harris (1996).

The paper is organized as follows. Section 2 describes the model. Section 3
derives the dynamics of p. Section 4 derives the Bellman equation for a player’s
best responses to a profile of strategies of the other players. Section 5 gives a
partial characterization of symmetric equilibrium, and uses this characterization
to obtain a detailed picture of a symmetric-equilibrium strategy. Section 6
exploits the encouragement effect to establish the existence and uniqueness of
symmetric equilibrium. Section 7 sets out the comparative statics of the unique
symmetric equilibrium. Section 8 considers the new indivisible-time game that is
obtained from the original time-division game by requiring that players devote
themselves exclusively to one or other action in any given period. It is argued
there that the mixed extension of this indivisible-time game is isomorphic to the
original game. All the results for the original game can therefore be reinter-
preted as results for the mixed extension of the indivisible-time game. Section 9
considers the intuitively natural idea of taking turns to experiment. It is argued
that this possibility is effectively covered by the analysis of mixed-strategy
equilibrium.

The paper is deliberately written in a relatively informal way. The emphasis is
on motivating the formulae that arise in the course of our analysis, and on
explaining the intuition for our results. In particular, lemmas, theorems, and
proofs serve simply to organize the discussion. Such an informal style may cause
concern to some readers. We should therefore like to emphasize that the
discussion of the present paper can be made fully rigorous by building on the
material contained in the books by Jacod and Shiryayev (1988), Karatzas and
Shreve (1988), and Krylov (1980).2

*The preceding draft of this paper, namely Bolton and Harris (1997), includes a mathematical
appendix showing how the results of the present paper can be made rigorous. This draft is available
on request from the authors.
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2. THE TIME-DIVISION GAME

There are N identical infinitely lived risk-neutral players. At each time ¢,
these players simultaneously and independently choose the proportion of the
current period [¢,¢ + dt) to devote to each of the two actions available to them,
namely 0 (the safe action) and 1 (the risky action). If player i chooses to devote
a proportion «; of the current period to the risky action, then she receives the .
total payoff

dnl(t) =1 —a)sdt+ (1 - al-)l/za'dZiO(t)
from the safe action and the total payoff
donl(t) = o, pdt + &}/ %0 dZ} (1)

from the risky action. All players then observe all the proportions chosen and all
the resulting payoffs. More explicitly, all players observe a;, dm’, and dm} for
all 1 <i <N. Here: s is fixed and known; u € {l, 4} is unknown; [ <s < h; and
the dZ{i(t) are independently and normally distributed with mean 0 and
variance dt for 1 <i<N, a,€{0,1} and r<[0,%). Player i’s objective is to
maximize the expectation of the present discounted value of her payoff stream,
namely E[ [ re”"(dm + dm!)(t)], where r> 0 is the discount rate.

Several features of this model are worthy of comment. First, dm(¢) is
composed of the deterministic contribution sdf and the stochastic shock
o dZ{(1). Since the contribution sdr is known, it follows that d7’(¢) conveys no
information about w. Similarly, d7!(¢) is composed of the deterministic contri-
bution udt and the stochastic shock o dZ!(¢). The first contribution ensures
that dm!(¢) conveys some information about u. The second ensures that this
information is noisy.

Secondly, if player i devotes a proportion «; of the current period [z, + dr)
to the risky action, then her total payoff dm’(t) from the safe action is
distributed normally with mean (1 — a;)sdt and variance (1 — @,;)o *dt, and her
total payoff from the risky action is distributed normally with mean «; u dt and
variance «;0 2dt. These means and variances can be compared with the means
and variances obtained when she devotes a proportion «; of the periods
[¢,¢ + dt) in the interval of time [T, T + AT) to the risky action, but devotes each
period exclusively either to the safe action or to the risky action. More explicitly,
suppose that the allocation of player i’s time over the interval [T,T + AT) is
determined by the function x;: [T,T + AT) — {0,1}, and put «a; = -
(1/AT) [T x(t)dt. Then the total payoff from the safe action over the
interval [T, T + AT) is

fT+ ar ) e (O)sdi+ fT+AT(1 —x,(t)adZ? (1),
. T
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which is distributed normally with mean (1 — &,;)s AT and variance (1 — «;)o AT,
and the total payoff from the risky action over the interval [T, T + AT) is

fTMTx,.(t),u dt + f” ATxi(t)a dz! (1),
T T

which is distributed normally with mean a; uAT and variance «;o AT. This
explains the scaling used in the definition of d7’(¢) and d#}(¢).

Thirdly, by restricting players to choosing the actions 0 and 1, we obtain an
indivisible-time version of our model. We shall argue informally in Section 8
below that the original time-division model is isomorphic to the mixed-action
extension of this indivisible-time model.

3. THE FILTERING PROBLEM

We shall be concerned primarily with perfect equilibria in stationary Markov
strategies. Such strategies depend only on the natural state variable for our
problem, namely the players’ common belief p that u is high. In order to
formulate the Bellman equations for equilibrium strategies, then, we need to
determine how p evolves. This is the so-called filtering problem for our game.

Let p(¢) denote the prior belief that w is high at time ¢, suppose that player i
devotes a proportion «; of the period [z, ¢ + dt] to the risky action, let p(¢ + dr)
denote the posterior belief that w is high at time ¢ + dt, and let dp(¢) = p(t + dt)
—p(#) denote the change in beliefs over the period [z,f+dt]. Finally, let
®(p) =(p(1 —p)(h —1)/a))* Then we have the following lemma.

LeMMA 1: Conditional on the information available to players at time t, the
change in beliefs dp(t) is distributed normally with mean 0 and variance
N a)@(p(0) dr.

Note first that beliefs can be expected to follow a martingale. In other words,
the expectation of p(f+ dt) conditional on current information should be p(#).
Or, equivalently, the expectation of dp(#) conditional on current information
should be 0. Lemma 1 confirms that this is indeed the case. Secondly, the better
the information received about wu, the higher the variance of the posterior
should be. In particular, the variance of the posterior should be higher the
larger the total proportion YV e, of time devoted to the risky arm, and the
higher the signal-to-noise ratio (4 —1)/o. Lemma 1 confirms these intuitions
_too. Finally, Lemma 1 makes clear that the posterior is unchanged from the
prior when there is already certainty as to which state of the world obtains, i.e.
whenever p €{0,1}.

PrOOF: As we have pointed out above, players only derive information from
the payoffs dm(¢). These payoffs are observationally equivalent to the signals
dn}(t) = (a)"’udt + dZ}(t), where = p/o.
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Now @ takes the values [=1/0 and i =h/o with probabilities (1 — p) and
p, and the dZ}(¢) are independently and normally distributed with mean 0 and
variance dr. Hence, applying Bayes’ Rule, we obtain

p()F(h)
p(OF(h) + (1 —p()F(D)’

where F()=Qmdt) N ?exp(—(1/2d)TY, (dﬂl(t) (a)V?udt)?) is the
probability of observing the payoff profile d7T1(f) = xN dwl(t) given . Hence

_p=p)(F(R) - F(D)
pE(R) + (1 —p)F(D)

where F() =exp(ZY | ()% d#w! —1/2XY | o, i® dt), and where we have
suppressed dependence on t. Moreover

p(t+dt) =

1
F(p)=1+ Z(a)/z,&d" -3

i=1 i=1

where we have dropped terms of order dr*/* and higher, and where we have
used the fact that (d7!)* =dt and d d7! =0 if i # j, respectively. Hence

p( =) —DEY (@) d7]
1+ TN (e p) di)!

N
=p(1_p)(fz—l")( v (ai)l/zdﬁil)(l— Y ()"l p) dr} )

i=1 i=1

N N
=p(1 -p)h —i)( Y (o) ?di) — ¥ amlp) dt)
i=1

i=1

N
=p(1—p)h-D Y (a)"?dZ},

i=1
where m(p) = (1 — p)I + ph, where we have neglected terms of order dr*/? and
higher, where we have noted once again that (d#)* =drt and that d7 d} =0
if i # ], and where dZ; = d#} — a;m(p) dt, respectively. Finally, the expectatlon
of dZ] conditional on the information available to the players at time ¢ is 0, and
dz} le dr if i=j and dZ! dZ! =0 if i #]. That is, the profile Z' = ><,N_IZ1
follows a standard N- dlmensmnal Wiener process relative to the players’ infor-
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mation. Hence dp has mean 0 and variance (p(1 —p)(h —D)*(ZY | ;) dt. Re-
calling that / =[//0 and h = h /o, we obtain the required conclusion. Q.E.D.

4. BEST RESPONSES

In this section we analyze a player’s best response to a profile of Markov
strategies of the other players.

DEFINITION 2: A Markou strategy for player i is a mapping &: [0,1] —[0,1].°

In what follows we shall refer to Markov strategies simply as strategies
wherever this will not lead to any misunderstanding.

Let m(p) = (1 — p)l + ph be the expectation of the flow payoff from the risky
arm when u is believed to be 4 with probability p. Then we have the following
characterization of a player’s value function.

LEMMA 3: Suppose that the players j # i employ the strategies &;. Then player i’s
value function u;: [0,11 = [, h] is the unique solution of the Bellman equation

(1) u,(p) = m[ax ] ((1 —a;)s+ am(p)
a;€[0,1

1 ui(p)
+7(a,.+ zg,.(m)qs(p)T)

j#i
for all p €[0,1]. In particular, u,(0) =s and u, (1) =h.*

In a discrete-time setting, the Bellman equation states that the current payoff
is equal to the maximum over the control variable of the expectation of the
current flow payoff plus the expectation of the discounted value of the continua-
tion payoff. In the present, continuous-time, setting: u,(p) is the current payoff;
a; is the control variable; (1 — a;)s + o;m(p) is the expectation of the current
flow payoff; 1/r is the discount factor; and (o; + X, &(p)@(p)ui(p)/2) is
the expectation of the rate of change of the continuation payoff. The Bellman
equation therefore states that the current payoff is the maximum over the
control variable of the expectation of the current flow payoff plus the discounted
value of the rate of change of the continuation payoff.

*More precisely, a Markov strategy for player i is an equivalence class of Lebesgue measurable
mappings &;: [0,1] - [0, 1].

*The solution of the Bellman equation is located in ([0, 1]) N7 ([0, 1]). Here: #((0,1]) is the
space of continuous functions from [0,1] to R: %>!([0,1]) is the Sobolev space of generalized
functions from [0, 1] to R which, together with their first and second generalized derivatives, lie in
ZH[0,1]); and Z'([0, 1]) is the space of equivalence classes of Lebesgue measurable functions from
[0,1] to R. Equation (1) is required to hold almost everywhere.
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PROOF: Suppose that the current belief is p €[0,1], that player i devotes a
proportion «; €[0,1] of the current period to the risky action, and that her
continuation payoffs are given by c;: [0,1] = [/, h]. Then her current flow payoff
will be r(dm? + dm}), and her continuation payoff will be e " #c,(p + dp). Now
E[ n]=m(p). Hence the expectation of player i’s current flow payoff is

2) r((1 = a)s + a;m(p)) dr.

Moreover Eldp] =0 and E[(dp)*]=(a; + £, ., (p)®(p) dt. Hence, neglecting
terms of order dt*/? and higher, we have e "% =1 —rdt and ¢,(p + dp) = c,(p)
+ ci(p)dp + 3¢/(p)dp)*. Hence the expectation of player i’s continuation pay-
off is

1
3) (1—rdt)(c,-(p)+ —2—c’,-’(p)(ai+ Z«_fj(p))(lf'(p)dt).

J#Fi

Adding (2) and (3), and dropping terms of order d¢*/? and higher, we obtain the
expectation of her current payoff, namely

H(a;,p,c;,é-)=c(p)+rdt|(1—a)s+ a;m(p)

1 "(p)
+—(a,.+ Zg,(p))cp(p)i —ci(p)).
p 2

J*Fi

Finally, her value function u; is, as usual, the unique bounded solution of the
Bellman equation

u,(p)= max H(e;,p,c;, & ;) forall pel[0,1].
]

a;€[0,1
It is easy to see that this equation reduces to (1). In particular, «,(0) =s and
u;(1) = h since @(0) = @(1) = 0. Q.E.D.

The Bellman equation also tells us how to choose the optimal policy &;.

LEMMA 4: The strategy §; is a best response 1o the strategy profile §_;= X, ;&
if

4) &(p) € argmax | (1 — a;)s + a;m(p)

a;€(0,1]

1 u;(p)
+—r—(a,-+ Z‘fj(p))@(p)—z—

Jj#i

for all p €[0,1]. In particular, £(0) =0 and &(1) =17

*Relation (4) is required to hold almost everywhere.
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In other words, &; is a best response iff

1 ui(p)
=0 it —®(p) b
r 2

<s—m(p)

1 Y
&(p)S €10,1] if;@(p)g%=s—m(}7)
1 iy
=1 if—d)(p)ul(p) >s—m(p)
r 2

Notice that: 1/r is the discount factor; ®@(p) is the amount of information
revealed by any given experiment; and «!(p)/2 is the shadow value of informa-
tion. We may therefore interpret (1/r)®(p)u//(p)/2) as the shadow value of
experimentation. Also, s — m( p) is the opportunity cost of experimentation. The
Bellman equation therefore tells us that we should maximize experimentation if
the shadow value of experimentation exceeds its opportunity cost, and minimize
experimentation otherwise.

ProoF: The strategy & is a best response for player i iff it maximizes the
expectation of her overall payoff when her continuation payoffs are given by her
value function u,, i.e. iff §(p) € argmax,, o 1 H(e;, p,u;, ;) for all p €[0,1].
In particular, £(0) =0 and &(1) = 1 since CD(O% =P1)=0. Q.E.D.

5. SYMMETRIC EQUILIBRIA: CHARACTERIZATION

In this section we obtain a partial characterization of symmetric equilibrium.
This characterization will be used in the present section to derive properties of
equilibrium strategies from properties of the associated equilibrium value func-
tions. It will be helpful to begin with an analysis of the team problem.

5.1. The Team Problem

In the team problem, the social planner chooses the profile a= X!_ o, €
[0,1]V at each moment in time in such a way as to maximize the average payoff
of the players. Arguing as in Section 4, we arrive at the following formulation for
the Bellman equation for the team problem.

LEMMA 5: The value function u ,.: [0,1] = [I, h] for the N-player team problem is
the unique solution of the Bellman equation

1 N
Q) u, = max (——((N— Y e

i=1
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where we have suppressed the dependence of u ., m, and ® on p. Moreover the
strategy profile € = XN & is an optimal policy for the team problem iff

1 N u//
s+ m +—(Zai)<15—*),
Fli=1

1 N
(6) ée argmax(;v—((N— Y a 5

acl0,11V i=1

N
Zai
i=1

where we have suppressed the dependence of &, m, u,, and ® on p.°

Equation (5) can be solved explicitly for u . Let { = \/1 + (Sro- 2/N(h — 1)2) ,

let z(p)=p~ D2 —p)&*D/2 Jet ¢, =(Z—Ds—D/({—D(s—D+({+
D(h —s)), let

s for pe[0,c,]

u*(P): m(p)+f—_z-(’zcl—(fjﬂz(p) forpE(C*,l]

and let

XN 0 for pel0,c,]

£xp) xN .1 for pe(cy,1]
Then obviously u, =s on [0,c,], and it is easy to check by explicit calculation
that u, =m + 1 /r)N®O, /2) on (c,,1]. That is, u, is the payoff function
associated with the policy &,. Moreover (1/r)®W, /2)=0<(s—m)/N on
[0,c.]and A1 /P®Wy, /2) =(u,, —m)/N>(s—m)/N on (c,,1]. That is, &, is
optimal when continuation payoffs are given by u . Overall, then, u, solves (5)
and £, satisfies (6).

We see from this explicit solution that optimal experimentation in the team
problem takes a particularly simple form: all players choose the safe action
when p €[0,c,.); and all players choose the risky action when p € (¢, 1].

5.2. Best Responses

First we establish some properties of player i’s value function when she plays
a best response. Let u( p) = max{s, m(p)} denote the myopic payoff, let u(p) =
(1 — p)s + ph denote the full-information payoff, and let b denote the break-even
point at which m =s.

LEMMA 6: Suppose that player i plays a best response to the strategy profile
&= X;.;§. Let u; denote her value function. Then u <u; <u and u} >0 on
[0, 1].

SFor a more precise interpretation of equation (5) and relation (6), see footnotes 4 and 5 above.
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PrOOF: Note first that one feasible strategy for player i is to choose the safe
action when p €][0,b] and to choose the risky action when p <(b,1]. This
strategy yields the flow payoff u. Denote the overall payoff to which it gives rise
by 4. Then clearly u; > &i. Moreover i > u by Jensen’s inequality. Hence u; > u
as required.

Secondly, any strategy that can be played when there is incomplete informa-
tion can also be played when there is complete information. Hence u; must be
less than or equal to the full-information payoff .

Thirdly, the Bellman equation (14) holds iff

1 uf 1 u
ui2m+7(1+ Zgl)@? and ui2s+7(25j)@?

j#i J#i

with at least one e(juality. If the first inequality holds as an equality, then we
have

lq)u’i’ u,—m 0
b = ——>0.
ro 2 1+Zj*,~§j

Similarly, if the second inequality holds as an equality and ;. ; § > 0, then

1 u!  u,—s

Foo2 L&

> 0.

Finally, if the second inequality holds as an equality and ¥;, ; §; = 0, then u; =s.
Since u; > s on [0,1], u; attains a minimum in this case. Hence u/ > 0. Overall,
then, v} > 0 on [0, 1]. Q.E.D.

Next, using the fact that u} > 0—i.e. the shadow value of information is
nonnegative—we can show that player i’s payoff is nondecreasing in the total
experimentation of the other players.

LEMMA 7: Let §_ ;= X, ;& and £ i = X, iéj be strategy profiles of the other
players, and let u; and ii; be the value functions of player i when she plays best
responses to &_; and £, respectively, let E=Y;.&§ and EA",»=ZJ-$I-4,%, and
suppose that 5; > ;. Then u; > i,.

PrOOF: The value function u; solves the Bellman equation

1 !
u; = max ((1 —a)s+aom+ —(a;+ 5 )@—').
a,€0,1] r 2
Hence

1 4
u; > max (1—a,~)s+a,~m+—(a,~+:.)d§— .
a;€[0,1] r
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Comparing this inequality with the Bellman equation,
. (—a) 2ol

U; = max —a)stam+ —|o;+ 5 )P

i aiE[O,l] i i r ( i i ) 2

for i1,, we see that u; > i;. Q.E.D.

Finally, it turns out that there is a particularly simple way of choosing a best
response for player i. We present this result here since it provides significant
insight into the nature of the strategic interaction among the players. We do not
prove it since its proof is similar to that of Theorem 9, and since it will not be
used below.

THEOREM 8: Suppose that a strategy profile §_; = X, ;& is given. Let u; denote
the value function of player i when she plays a best response to ¢_;, let 5, =%, &,
and let

Lli -8

Vo d
B, = — .
i =i

s—m

be the private incentive to experiment. Then the strategy

0 ifB;<0andp<b
§=11 if B;>00rp=b
is a best response of &_;. Q.E.D.

Combining Lemma 7 and Theorem 8, we see that increasing &; has two
effects: it leads directly to a reduction in B; via the dependence of B; on Z;
and it leads to an increase in u;, and thereby indirectly to an increase in 3; via
the dependence of B; on u;. The first effect is the free-rider effect. The second
effect is the encouragement effect.

The free-rider effect is easy to explain: extra current experimentation by the
other players provides player i with information at no cost, and this information
is used as a substitute for information that she would otherwise have had to
supply for herself at the opportunity cost s —m. As for the encouragement
effect: extra future experimentation by the other players encourages player i to
increase her current experimentation in order to bring forward the time at
which the extra information generated by the other players becomes available.

An illustrative example may help to get a better grasp of the encouragement
effect. Suppose that N =2, that player 2 initially undertakes no experimenta-
tion, and that player 1 optimizes. Let ¢, denote the experimentation cutoff for
the 1-player team problem. Then player 1 will experiment if p > ¢, will not
experiment if p <c,,, and is indifferent between experimenting and not experi-
menting when p=c,,. Suppose now that player 2 decides to experiment
whenever p >b. Then player 1 has a strict incentive to experiment when
p = c,. Indeed, if she does not experiment, then the belief p will not move, and
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she will never benefit from the information that experimentation by player 2
could provide. By the same token, if she does experiment now, and if the
outcome of her experiment is favorable, then player 2 may be induced to join in
the experimentation.

In summary, then, current experimentation by one player is a strategic
substitute for current experimentation by another, but future experimentation
by one player is a strategic complement for current experimentation by another.
In particular, our game is not a supermodular game. Indeed, even in a two-player
game, increasing the level of experimentation of one player in all states may
lead the other player to increase experimentation in some states, and to
decrease experimentation in other states.

5.3. A Characterization of Symmetric Equilibrium

We turn now to the characterization of equilibrium experimentation. Since
the case N =1 has already been treated in Section 5.1, we confine ourselves to
the case N > 2.

THEOREM 9: Let &; be a strategy, let u, be a player’s value function of player
when she plays a best response to the strategy profile X ;&;, and let

u N
8 T

s—m
be the collective incentive to experiment. Then &, is a symmetric equilibrium iff

D ‘o Nﬁ*l if B. <N —1andp<b
=N

1 if B;>N—-1lorp=b

PrROOF: In view of Lemmas 3 and 4, &; is a symmetric equilibrium iff

1 u//
(8) & e argmax((l—ai)s+aim+ —(ai+(N—1)§T)(I>—T),
a;€00,1] F 2
where u; is the unique solution of the equation

1"

1 u
9 U, = max ((l—ai)s+aim+——(ai+(N—1)§T)(I)—i).
a;e00,1] r 2

Suppose that &, is a symmetric equilibrium. If p <b, then there are three
possibilities. First, if (1/r)®(u}/2) <s—m then & =0 from (8). Hence u, =s
from (9), and B; =(u;—s)/(s —m)=0. Secondly, if (1/r)®(u}/2)=s—m,
then

up=1—=&)s+é&m+ (& +(N=1DE)(s—m)

=s+(N-1&(s—m)
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from (9). Hence

S=Noilsom) N

Thirdly, if (1/r)®}/2)>s—m, then & =1 from (8) and wu,=m +
(1/r)N@(u’; /2). Hence

1 (uf—s)z B+

1 '
s 7N¢1?—(s—m)
BT_s—m_ s—m >Nl

On the other hand, if p>b, then s —m <0 and u} > 0 with at least one strict
inequality. Indeed: s —m <0 for all p > b; s —m <0 forall p>b; u’ >0 for all
p by Lemma 6; and u%(b) >0 since if u}(b)=0 then we would also have
u(b) = u(b) by (9), and Lemma 6 would then imply that u. had an upward kink
at b. Hence &, =1 from (8). In all cases, then, &, satisfies (7).

Suppose now that ¢ satisfies (7), where u; is the unique solution of (9). If
p <b then there are three possibilities. First, if (1,/7)®(u}/2) <s—m, then
u, =s+(1/r)N—1DE&Pu/2) from (9). Hence

B o N
S

-1

1§¢)u’; @u’;
—min{ T—2 1) - [ L2 g

§—m §s—m

Hence & = 0. Secondly, if (1,/r)®(u; /2) =s —m, then &, automatically satisfies
(8). Thirdly, if (1/r)@}/2)>s—m, then wu,=m+1/r)1+(N—1E)
@(uff /2) from (9). Hence
1 u’
_ —(1+(N—1)§)¢7——(s—m)
wi=s iy
B; = = > (N —1¢,.

s—m s—m
But & =min{ B; /(N — 1),1}. It follows that & = 1. On the other hand, if p > b,
then s —m <0, and Lemma 6 implies that u% >0 with at least one strict
inequality. In all cases, then, £, satisfies (8). Q.E.D.

5.4. Properties of Equilibrium

By combining Lemma 6 and Theorem 9, we can build up a detailed picture of
symmetric equilibrium. Once again, we confine ourselves to the case N > 2.

We begin with a lemma. Recall that u, denotes the value function of the
N-player team problem, and let u,; denote the value function of the 1-player
team problem.
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LEMMA 10: Let u; be the value function of a symmetric equilibrium. Then
Uy <up<u, onl0,1].

Proor: The inequality u; >u,, follows at once from Lemma 7. As for the
inequality u, <u,, note that the average payoff in equilibrium is u,, and that
the maximum achievable average payoff is u .. Q.E.D.

Let c,, denote the experimentation cutoff for the one-player team problem
as before. Then, combining Lemmas 6 and 10, we see that there is a unique
cutoff ¢; €[c,,c,,]1<(0,b) such that B, =0 on [0, c,]; that B, increases strictly
from 0 to +o as p increases from ¢, to b; and that B; is convex on [0, b). In
particular, there is a unique cutoff ¢, €(c;,b) such that B, =N-—1 at ..
Theorem 9 then implies that equilibrium experimentation ¢, is 0 for p €[0,¢.],
increases strictly from 0 to 1 as p increases from ¢, to ¢, and is 1 for
p >[c;,1]. Moreover &, is convex on [0,c.].

It follows at once from this characterization of equilibrium that the indivisi-
ble-time version of our model possesses no symmetric equilibrium: all symmetric
equilibria involve a nontrivial division of time between the two actions for all
p (¢, ).

It is also interesting to compare equilibrium experimentation with experimen-
tation in the N-player team problem. We have already noted that ¢, <c; <c;.
It follows that total equilibrium experimentation NB, /(N — 1) falls short of the
socially optimal level N for p €[c,,c;). This shortfall is attributable to the
free-rider effect.

Finally, it can be shown that if p lies initially in the interval (c;,1), then
strategic experimentation will go on indefinitely. Indeed, £ converges quadrati-
cally to zero as p approaches c;, and this implies that the rate of acquisition of
information is too slow for p actually to reach c;. Similarly, & converges
quadratically to zero as p approaches 1, so the rate of acquisition of information
is too slow for p actually to reach 1 either. On the other hand, since p follows a
bounded martingale, it must converge; and since the rate of information
acquisition is bounded away from zero on compact subsets of (c,,1), it can only
converge to ¢. or 1.

6. SYMMETRIC EQUILIBRIA: EXISTENCE AND UNIQUENESS

In this section we exploit the encouragement effect to establish the existence
of symmetric equilibrium. More precisely, we know from Lemma 7 that:

¢ a player’s payoff from her best response is increasing in the total experi-
mentation of the other players.

Moreover Theorem 9 tells us that:

¢ in a symmetric equilibrium, experimentation is increasing in the payoff.

We may therefore construct an increasing mapping in the space of value
functions. Applying Tarski’s fixed-point theorem to this mapping, we obtain the
existence of a minimal and a maximal fixed point. A simple comparison of these
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fixed points then shows that they actually coincide. In other words, equilibrium
is unique.

THEOREM 11: There exists a unique symmetric equilibrium.

PROOF: Let % denote the set of Lipschitz continuous functions u: [0, 1] — [/, k]
such that 0 <u’' <h — [ almost everywhere on [0, 1], and let 2” denote the set of
Borel measurable functions Z: [0,1] — [0, N — 1]. Here % might be thought of
as the space of value functions, and 2 might be thought of as the space
of total-experimentation schedules. For all u € %, let ¢,(u) €2 be defined by
the formula

fulp)—s
W (p) = { M s —m(p)
N-1 if p>b

N—l} if p<b

>

and for all 5 €2, let ¢,(5) € Z be the value function of a player who plays a

best response when the total experimentation of the other players is Z. Finally,
let Y=oty

Theorem 9 implies that u; is the value function of a symmetric equilibrium iff
u; is a fixed point of . In order to establish existence and uniqueness, then, we
need only show that ¢ possesses a unique fixed point. It is obvious that ¢, is
nondecreasing, and it follows from Lemma 7 that ¢, is nondecreasing. It
therefore follows from Tarski’s fixed-point theorem that ¢ possesses minimal
and maximal fixed points u, and u;.

Theorem 9 also implies that if u, is the value function of a symmetric
equilibrium, then there is a unique cutoff ¢; € (0, b) such that

s on [0, ¢;]
U, = 1 “
F
where
B if B, <N—1land p<b
& ={ N—1 T P
1 if B, >N—lorp=b

and B; = (u; —s)/(s —m). It follows that

y 0 on [0, ¢, ]

1 uf
(10) —p— =
r

u—m
2 max{s —m,

N

} on (¢, 1]
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Now let Au =ug —u,, where u,; and ug are the minimal and maximal fixed
points of ¢. Then (10) implies that

1 (Auw)
o2
0 on [0, ¢4]
Uug—m
_ max{s—m, N } on (¢g, ¢, ]
Uug—m Uug—m
max{s—m, N }—max{s—m, N } on (¢,,1]

It follows that (Au)' >0 on [0,1]. On the other hand, Au >0 and Au(0+ )=
Au(1—) = 0. We conclude that Au =0 on [0, 1]. Q.E.D.

One possible intuition for the uniqueness result is as follows. As in the proof,
let u, and ug be the value functions of the minimal and maximal symmetric
equilibria respectively. Then ug > u,. The encouragement effect therefore im-
plies that experimentation will be higher in the maximal equilibrium. On the
other hand, the opportunity cost of experimentation in any given state is the
same in both equilibria. Hence, if experimentation is to be higher in the
maximal equilibrium then the shadow value of information must also be higher.
That is, we must have (u§/2) > (1;/2). Combining these two inequalities we see
that ug —u, is a nonnegative convex function on [0, 1] that vanishes at both 0
and 1. That is, ug —u, = 0.

7. SYMMETRIC EQUILIBRIA: COMPARATIVE STATICS

In this section we examine the comparative statics of the unique symmetric
equilibrium with respect to the discount factor p=1/r and the number of
players N.

7.1. Comparative Statics of Equilibrium Payoffs

Let u; denote the value function of the unique symmetric equilibrium, and
recall that u and u denote the myopic payoff and the full-information payoff
respectively. Then:

THEOREM 12: u, is nondecreasing in both p and N. Moreover: (i) u; — u as
p—0; (i) uy = as p— o; (iii) u(p) is bounded away from u(p) as N — « for
all p € (0,1).

Notice that the complete-information payoff is not obtained even in the limit
as N — «. This underlines the strength of the free-rider effect in our model. It
should also be contrasted with the fact that the experimentation cutoff ¢, for
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the symmetric equilibrium converges to 0 as N — . (This is established in the
proof of the theorem.) In other words, although complete learning is ap-
proached in the limit as N — oo, this learning is still too slow in social terms for
the complete-information payoff to be obtained.

PrOOF: The monotonicity of u, in p and N is an easy corollary of the
existence construction. In the case of p, ¢, is independent of p. Moreover, if
u=y,(5;p), it = ,(5; p), and p= p, then

"

u= max ((1 —a))s +am+pla; + E)d)—)
a;€100,1] 2

"

> max ((1 —a)s+am+ pla + 5)@—).
a;€(0,1] 2

Comparing this with the Bellman equation

i = max ((1 —a)s+am+pla; + E)@u—)
a;€00,1] 2

for 4, we see that u > 4. Hence i, is nondecreasing in p. Similarly, in the case

of N, ¢,(&; N) is nondecreasing in N, and ¢, is independent of N.

The limit results involving p can be deduced from the corresponding results
for the team problem. Let u,(:; p, N) denote the value function for the
N-player team problem with discount factor p. Then wu,(;p,1) <u; <
u,(;p,N). Moreover u,(;p,1)>u and u,(;p, N)<u. Since u.(;p, N)
converges uniformly to u as p— 0, and u,(-; p,1) converges uniformly to % as
p — %, u; too converges uniformly to u as p— 0 and to & as p — .

As for the limit result involving N, let

.{ 1 wu,—s

min

&= N—-1s—m
1 if p>b

,1} if p<b

Then u, satisfies

"

4D = (1= £)s+&m+ pNED

Moreover u. is nondecreasing in N and u <u, <. Now p®(u}/2)=0 on
[0, ¢;]. Moreover (11) implies that

wp (=) —s) + & (uy —m) { uT—m}

PP~ = NE, =maxys —m, —

on (c;, 1]. In particular, p@(u; /2) is uniformly bounded as N — . Hence there
exists a function u, such that: u, converges uniformly to u, as N — oo
u<u,<u; u, is twice differentiable; and p®(u/2) is bounded. Also, if
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¢; =max{plu.(p)=s} and ¢, = max{plu,(p)=s}, then ¢, is nonincreasing in
N and ¢, converges to ¢, as N — . It follows that u, and c, together solve
the equation

Uy=s on [0,c,]
pGD? =max{s —m,0} on(c,,1)

Finally, it can be verified that this equation has the unique solution

max{s —m(q),0} dg

=" Gp.a)—
Uu\p _j;) p,q p¢(q) ,

¢y =0

where G(p, q) =p(1 —q)if p <q and G(p,q) =1 —p)q if p>q. Since u, <u,
on[0,1}and u, <% on (0,1), we have u, < on (0,1) as required. Q.E.D.

7.2. Interpretation of the Comparative Statics of Payoffs

Further insight into the source of the monotonicity results can be obtained by
considering the equation of variations for the value function of the symmetric
equilibrium. Indeed, the total information available in the symmetric equilib-
rium to a player due to experimentation by the other players is

Iy

{m ifBTe[O,N—l]andp<b}
=

N-1 ifB>N—-lorp=b

by Theorem 9, where B; = (u; —s)/(s —m). Hence the value function of this
equilibrium must satisty the Bellman equation

"

u
u,= max ((l—ai)s+aim+p(a[+5ﬁ)¢%).
a;€[0,1]

Hence, applying the envelope theorem, we obtain

(12) Ju; ( ~)¢ Ju,\"
— =f+ +E)=|—1 .,
ap [+ (¢ ) p

where

“ 08, uf

= A
1 = + = — 4+ p—DP—
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and

_ 1
1A

ouy
—— if B,€[0,N—1]and p <b
m dp

s —
0 if B;>N—lorp=b

hS)

Here f is the state shadow price of an extra unit of patience, and equation (12)
states that the shadow value of an extra unit of patience is the expected present
discounted value of the state shadow price.

Examining (13), we see that there are two components to the state shadow
price of patience. These two components correspond to the two effects on a
player’s payoff of an increase in p:

(i) The direct effect on her objective of the increase in p.

(ii) The indirect effect on her objective of the change induced in the behavior
of the other players by the change in p.

The first effect is positive: she now values the future more relative to the
present, and so she values the opportunity to experiment more. The second
effect is a strategic effect: the rise in p leads to an increase in experimentation
by the other players when B; €[0, N — 1] and p <b, and this further raises her
payoff. The effect on her objective of the change induced in her own behavior by
the change in p is of course zero by the envelope theorem. Notice the positive
feedback implicit in the second effect. This is yet another manifestation of the
encouragement effect.

A similar analysis applies to the case of N. Increasing N has no direct effect
on a player’s objective. However, it does raise experimentation by the other
players through an encouragement effect when B, €[0, N—1] and p <b, and
through an increase in the total number of players experimenting when S, >
N —1 or p>b. It also lowers per capita experimentation by the other players
through a free-rider effect when B, €[0, N — 1] and p < b, but this decrease is
exactly offset by the increase in the number of players.

7.3. Comparative Statics of Experimentation

The comparative statics in p of the equilibrium payoffs translate directly into
comparative statics in p of the equilibrium mixed strategy & via the formula

¢ - FBT if B, <N-1and p<b
L= -

1 if . >N—1lorp>=b

The same is not true of the comparative statics in N. Indeed, increases in N
involve both the free-rider effect—in that 1/(N — 1) is strictly decreasing in
N—and the encouragement effect—in that u, is nondecreasing in N.

Perhaps the easiest way to see that the influence of the free-rider effect on &,
can outweigh that of the encouragement effect is to calculate the limit £, of &
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as p— 1. We know from Theorem 12 that u, - u as p — 1. Hence

1 _ -
¢ WB if B<N-—1land p<b
# -

>

1 if B>N—1lorp>b

where B= (% —5)/(s —m). Hence &, is strictly decreasing in N for p € (0,¢,),
where

NG
T -+ (N-Dh-D"

Indeed, even total experimentation N§, is strictly decreasing in N for p in this
range.

In other words, neither individual nor total experimentation is in general
monotonic in N. This underlines the subtlety of the comparative statics in N of
the equilibrium payoff u,.

8. MIXED STRATEGIES

As we have already pointed out in Section 2 above, an indivisible-time model
can be obtained from our model by restricting players to the actions 0 and 1. In
this section we argue that the best-response correspondences for the mixed
extension of the indivisible-time model are isomorphic to the best-response
correspondences for the original time-division model. In particular, the analysis
of equilibrium given in Sections 5, 6, and 7 above applies equally well to the
mixed extension. One need only reinterpret the proportion of time that player i
devotes to the risky action as the probability with which player i chooses that
action.

Since our game is played in continuous time, consideration of mixed strategies
raises a variant of the old question of how to formulate a continuum of
independent and identically distributed random variables in a tractable way.’
Our variant of this question is more complicated than the usual one since it is
necessary to take account of the interplay between the dynamics of our game on
the one hand and the choice of mixed actions by the players on the other. More

It is straightforward to construct a probability space on which a continuum of independent and
identically distributed random variables is defined. For example, for all 1 €{0,1], let £, be the unit
interval [0,1] endowed with the usual Euclidean topology; let 2= X, <o ;42;; let & be the Borel
o-algebra generated by the product topology on {2; and let u be the unique probability measure on
{2, the finite dimensional distributions of which are products of uniform distributions. Then the
projections proj,: £2— (2, are all random variables on the probability space (2,7, u), and they are
independently and uniformly distributed. The difficulty consists in deriving results about such
random variables. For example, one would like to be able to show that the strong law of large
numbers holds in the sense that [ proj,(w)dt = for a set of w having u-measure 1. It is not clear,
however, how to set about establishing this, since the probability that the function ¢ — proj(w) is
Lebesgue measurable is zero. See Anderson (1991) for one approach to this problem.
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explicitly, the choice of mixed actions by the players depends on the past
evolution of the state, and the evolution of the state depends on the choice of
actions by the players.

The ideal response to this question would be to formulate the required
continuum of independent and identically distributed random variables appro-
priately, and then to derive the generalization of the Bellman equation of player
i from this formulation. Such an approach is beyond the scope of this paper. We
therefore confine ourselves to a heuristic derivation of the generalization of the
Bellman equation of player i.

8.1. The Bellman Equation of Player i

We begin with a definition. Let A({0,1}) denote the set of probability
distributions on {0, 1}.

DErFINITION 13: A mixed Markouv strategy for player i is a Borel measurable
mapping &: [0,1] = A{0, 1}).

In what follows we shall refer to mixed Markov strategies simply as mixed
strategies wherever this will not lead to any misunderstanding.

Next, we emphasize that, in deriving the Bellman equation of player i, we
shall take it that the order of events in any given period is as follows:

(i) at the outset of the period, players share a common belief p;

(ii) the players choose actions a; € {0, 1}, the choices being made simultane-
ously and independently;

(iii) the payoffs dm, are realized, where dm, =sdt+ odZ) if a,=0 and
dm,=pdt+odz! if a;,=1;

(iv) the players observe the action profile @ = X a; and the payoff profile
dm= XN dm;

(v) a new belief p +dp is generated.

This order of events corresponds closely to the order of events which obtains
in any given period of a discrete-time stochastic game. Indeed, the difference
between our continuous-time stochastic differential game and a discrete-time
stochastic game consists not in the way a period of the game is played, but
rather in the relationship among periods. In a discrete-time stochastic game,
each period has a well defined subsequent period, and it is therefore possible to
determine the evolution of such a game beginning with the initial period and
moving inductively from period to period. By contrast, in our continuous-time
stochastic differential game, no period has a well defined subsequent period, and
it is therefore necessary to exploit the differential structure of the game to
determine the evolution of the game from a knowledge of the way a period of
the game is played.

Suppose accordingly that the players j # i employ the mixed strategies &, that
the current belief is p € [0, 1], that player i chooses mixed action «; € A({0, 1}),
and that her continuation payoffs are given by c;: [0,1] = R. Then, arguing as in
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the proof of Lemma 3, we see that the expectation of her current payoff
conditional on the realization a = X jN= 1a; of the current action profile would be
expected to be

c,(p)+rdt|(1—a;)s +am(p)

1 c/(p)
+ 7((1,-!- Zaj)@(p)T —c;(p)

J#i

The unconditional expectation of her current payoff would then be

Hay, €1, pre) =ci(p) +rdt| (1 — a,({1))s + a,({(1)m( p)

1 ci(p)
LGNS (1) | o) —c,(p)),
j#i
where ¢_; = X, ;§&; and her value function u; when the other players use the

mixed-strategy profile ¢_;, would be the unique solution of the Bellman equa-
tion

(14) u,(p)= max H(e;, & (p),p,c;) forall pel0,1].
;€ A0, 1))

Finally, arguing as in the proof of Lemma 4, the mixed strategy ¢ would be a
best response to the mixed-strategy profile ¢, = X, ¢ iff

(15) &(p) e argmax ((1 —o,({1}))s + a,({1Dm(p)
a;e A00,1)

| '(p)
e wtn + T gnip| e

JjEi

for all p [0,1].

It is easy to see that equations (14) and (15) are isomorphic to equations (1)
and (4). One need only identify the probabilities «;({1}) and §j({1}| p) with which
players choose the risky action in (14) and (15) with the proportions of time «;
and &(p) which they devote to the risky action in (1) and (4).

9. PUBLIC RANDOMIZATION

In this section we analyze the public-randomization extension of the indivisi-
ble-time version of the model. This extension is motivated by the idea that one
way of capturing the intuitively natural experimentation pattern of taking turns



372 P. BOLTON AND C. HARRIS

is to introduce a public-randomization device, and to have players coordinate
their experimentation on the basis of the realization of this device in such a way
that exactly one player experiments at any given time and each player experi-
ments with equal probability. For example, two players might toss a coin, with
player 1 experimenting if the coin comes up heads and player 2 experimenting if
the coin comes up tails. Or again, six players might roll a die, with player i
experimenting if and only if the die shows i.

In this extension, the order of events in any given period is as follows:

(i) at the outset of the period, players share a common belief p;

(ii) a referee chooses a pure-action profile g € {0, 1}" according to a distribu-
tion vy € A0, 1}V);

(iii) the players observe g;

(iv) the players choose actions a; € {0,1}, the choices being made simultane-
ously and independently;

(v) the payoffs dm; are realized, where dm,=sdt+ odZ] if a,=0 and
dm = pdi+odZ! if a;,=1,

(vi) the players observe the action profile @ = X ,a; and the payoff profile
dm=xN dn;

(vii) a new belief p +dp is generated.

A mixed joint strategy I': [0,1] — A({0,1}") is a public-randomization equi-
librium of our game if and only if it is incentive compatible for the players to
carry out the actions g, recommended by the referee. It is a symmetric public-
randomization equilibrium if and only if it is unchanged by any permutation of
the players.

By exploiting the additive separability of the players’ payoffs in the stage game
in the action profile a, it can be shown that I" is a public-randomization
equilibrium if and only if the marginals & of I' over the action sets of the
individual players constitute a mixed-strategy equilibrium of the original game.
Moreover the value functions of the players in the public-randomization equilib-
rium I' coincide with their value functions in the mixed-strategy equilibrium
E= %N &. In particular, our characterization of symmetric mixed-strategy
equilibria leads directly to a characterization of symmetric public-randomization
equilibria. Cf. Harris (1993).

For example, there is a symmetric public-randomization equilibrium in which:
with probability 1 — &, players all play safe; and with probability & players all
experiment. The difference between the two equilibria is that in the mixed-
strategy equilibrium the experiments are independent, whereas in the public-
randomization equilibrium the experiments are perfectly correlated.

Or again, there is a symmetric public-randomization equilibrium in which:
with probability max{1 —2¢£,,0} both players play safe; with probability

1
& — 3 max{2¢, — 1,0}
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player 1 alone experiments; with probability
1
& — 3 max{2¢, — 1,0}

player 2 alone experiments; and with probability max{2&, — 1,0} both players
experiment. In particular, there is a cutoff cg € (¢;, ¢;) such that: for p € (¢, cy),
at most one player experiments at any given time; and for p € (¢, ¢;), at least
one player experiments at any given time. This time the difference between the
two equilibria is that in the mixed-strategy equilibrium the experiments are
independent, whereas in the public-randomization equilibrium the experiments
are as negatively correlated as the incentive-compatibility constraints allow.

The negative correlation between the actions of the two players in the second
example captures something of the flavor of taking turns. Taking turns as such is
not, however, incentive compatible.

10. CONCLUSION

In this paper we have analyzed team and equilibrium experimentation in a
many-player common-value two-armed bandit problem in terms of the free-rider
effect and the encouragement effect. The model which we used for this purpose
has at least three limitations. First, there are only two possible states of the
world: the underlying payoff from the risky action is either high or low.
Secondly, there is no distinction made between players’ signals and payoffs.
Thirdly, players choose between only two actions. Fourthly, one of the actions is
safe. The first, second, and fourth of these limitations can be removed com-
pletely: there can be any (finite) number of states of the world; the choice of the
risky action can generate a whole vector of signals, which may or may not
include the payoff; and players can be allowed to choose between two risky
actions, provided that the two actions differ in the quantity but not in the
pattern of information that they produce. See Bolton and Harris (1996).

Allowing for many arms, all yielding the same pattern of information, raises
one new issue: what is the best incentive-compatible pattern of experimenta-
tion? Continuing to restrict attention to two arms, but allowing the pattern of
information generated by one arm to differ from the pattern of information
generated by the other, raises another: what is the best way of exploiting the
different patterns of information generated by the two arms? We hope to
address these issues in future work.
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