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Abstract

This paper evaluates the specification errors of several empirical asset pricing models
that have been developed as potential improvements on the CAPM. We use the

methodology of Hansen and Jagannathan (J. Finance 51 (1997) 3), and the test assets
are the 25 Fama-French (J. Financial Econom. 52 (1997) 557) equity portfolios sorted
on size and book-to-market ratio, and the Treasury bill. We allow the parameters of
each model’s pricing kernel to fluctuate with the business cycle. While we cannot reject

correct pricing for Campbell’s (J. Political Econom. 104 (1996) 298) model, stability
tests indicate that the parameters may not be stable. A robustness test also indicates that
none of the models correctly price returns that are scaled by the term premium.r 2001
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1. Introduction

Throughout the 1970s and 1980s, financial economists investigated the
pricing implications of the capital asset pricing model (CAPM) developed by
Sharpe (1964) and Lintner (1965). The well-known prediction of the CAPM is
that the expected excess return on an asset equals the covariance of the return
on the asset with the return on the market portfolio times the market price of
risk. This price is the ratio of the expected excess return on the market portfolio
to the variance of the return on the market portfolio. The expected return
prediction of the CAPM can equivalently be stated as the beta of the asset
times the expected excess return on the market portfolio, where the beta is the
covariance of the asset’s return with the return on the market portfolio divided
by the variance of the market return.
As empirical research began to uncover a number of expected-return

anomalies that the CAPM could not explain, Roll (1977) argued that the model
was not testable. Because investors and firms assessing their costs of capital
want to know the determinants of expected returns, empirical research
continued, but it was necessarily conducted under the recognition that the tests
involve a joint hypothesis on the model and the choice of the market portfolio.
The inability of the CAPM to explain the cross-section of asset returns led to

the development of a number of alternative empirical asset pricing models. The
diversity of these models and the fact that they have been evaluated on a
variety of data sets pose severe difficulties for someone who is trying to
understand if any of these models is a reasonable replacement for the CAPM.
The purpose of this paper is to evaluate and compare a number of these models
on a common data set using an appropriate methodology.
Part of our empirical analysis uses the methodology of Hansen and

Jagannathan (1997), who develop a distance metric we call the HJ-distance.
Hansen and Jagannathan demonstrate how to measure the distance between a
true pricing kernel (stochastic discount factor) that prices all assets, and the
implied pricing kernel proxy of an asset pricing model. The distance between
these two random variables is calculated in the usual way as the square root of
the expected value of the squared difference between the two variables.
HJ-distance can also be interpreted as the normalized maximum pricing error
of the model for portfolios formed from that set of assets. Thus, if the model is
correct, the HJ-distance is zero, and there are no pricing errors. Glasserman
and Jin (1998) provide an alternative way of comparing models of stochastic
discount factors (SDF) by examining the physical probability measures of asset
prices and the implied measures of the SDFs. We test whether HJ-distance
equals zero using the statistical test developed in Jagannathan and Wang
(1996). Because we include a constant in the parameters of the pricing models,
we correctly price the average risk-free rate. In this case, the HJ-distance
divided by the mean of the pricing kernel is the maximum difference between
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the Sharpe ratio predicted by the model and the true Sharpe ratio.
Consequently, estimation of HJ-distance also provides the maximum expected
return error of the model by assuming the investor uses a particular standard
deviation.
The models we examine flow from the development of the literature. Even

before the CAPM anomalies began to accumulate, theorists such as Merton
(1973) noted that the CAPM is a static model, and they developed
intertemporal models in which covariances of returns with state variables
other than the market return could influence expected returns if the
consumption and investment opportunity sets of investors vary over time.
Breeden (1979) developed a Consumption CAPM (CCAPM) by demonstrating
that an asset’s risk premium depends on the covariance of the asset’s return
with aggregate consumption in continuous time dynamic optimization models.
Hansen and Singleton (1982) developed an empirical test of the CCAPM in
discrete time by using the Euler equation of the investor’s dynamic
optimization problem, in which an expected return depends on the covariance
of the return with the marginal utility of consumption.
The empirical failure of the CCAPM and the theoretical appeal of the

Merton logic led Campbell (1993, 1996) to develop a dynamic asset pricing
model in which an expected return depends on the covariances of the return
with the market portfolio and with the innovation in the present discounted
value of future expected market returns. In the Campbell model, anything that
forecasts market returns becomes a risk factor for asset returns.
Jagannathan and Wang (1996) noted that it is possible for the CAPM to

hold as a conditional model of expected returns with conditional betas, but the
unconditional model would be more complicated since betas could vary over
time. They developed an empirical model of this beta-premium sensitivity by
taking a stand on the nature of the predictability of market returns.
Cochrane (1996) responded to the failure of the CCAPM by noting that the

production side of the economy also must satisfy dynamic Euler equations.
This logic led him to develop the implications of a production-based asset
pricing model in which covariances of asset returns with macroeconomic
measures of investment are important risk factors.
Finally, the empirical failure of the CAPM and the theoretical appeal of

multi-factor models led Fama and French (1992, 1993, 1995, 1996) to develop a
three-factor model. It is fair to say that this new model, or some extended
variant of it, is now the workhorse for risk adjustment in academic circles.
Although the estimation of the parameters associated with the measurement

of HJ-distance solves a generalized method of moments (GMM) problem that
minimizes a quadratic form based on the average pricing errors from the basic
assets, it is not the optimal GMM of Hansen (1982). We also report results
from optimal GMM tests of the models, and we generally find similar inference
about the validity of the models as in the HJ-distance problems. Neither of
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these approaches directly minimizes the pricing errors of the basic assets which
is equivalent to using an identity matrix in GMM estimation. While such
estimation is popular and satisfies the eyes’ desire for small errors, inference
about the validity of the models is affected severely by the increase in the
standard errors associated with this approach. Consequently, we do not report
these results.
Because there is considerable evidence that expected returns fluctuate

over time, we want to allow for time-varying prices of risks. We do
this by allowing the parameters of the models to fluctuate with the business
cycle. We measure the business cycle in two ways. One uses the Hodrick
and Prescott (1997) filter applied to either industrial production for
monthly models or real GNP for quarterly models. The second approach
for quarterly models uses the consumption–wealth measure developed
by Lettau and Ludvigson (2001a, b). Also, because Loughran (1997) and
Daniel and Titman (1997) argue that return characteristics are different
in January than outside of January, we use a January dummy variable to
allow the parameters of the models to differ across this month and the other
months.
Both HJ-distance and optimal GMM assume that the parameters of the

model are stable over time. If a model is misspecified because its parameters are
not stable, it may nevertheless pass the test of HJ-distance equals zero, but it
would not predict well out-of-sample. This situation can characterize both
conditional and unconditional models. Ghysels (1998) finds that using
conditioning variables to improve asset pricing models may actually worsen
their performance out-of-sample because of parameter instability. We therefore
follow Ghysels who uses the supLM test developed by Andrews (1993) to
investigate instability in parameters.
The common returns that we require each of the models to price are the

returns on the 25 portfolios constructed by Fama and French (1993) in which
firms are sorted by the market value of their equity (size) and the book-to-
market ratio. We use returns in excess of the Treasury bill return, and we also
require the models to price the Treasury bill return. The sample period is 1952
to 1997 with either monthly or quarterly data.
Because asset pricing involves conditional expectations, any variable that is

in the investors’ information set can be used to condition returns. We use this
insight to provide a robustness check on the models. The one variable that we
use to condition returns is the term spread between the yields on long-term and
short-term government bonds.
The paper is organized as follows. The next section provides a discussion of

the econometric aspects of the paper including the derivations of HJ-distance,
the test that HJ-distance equals zero, and the interpretation of HJ-distance as
the maximum difference between the Sharpe ratio of the model and the true
Sharpe ratio. Section 3 discusses the data and the parameterization of the
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different models. Section 4 contains the empirical results. Section 5 provides
concluding remarks.

2. HJ-distance and conditional asset pricing models

2.1. Model setup

Assume we have n basic assets to be priced. It is well known that in the
absence of arbitrage opportunities there exists a set M of stochastic pricing
kernels m which price every asset correctly. That is,

Etðmtþ1Rj;tþ1Þ ¼ pj ; 8j; t > 0; 8mtþ1AMtþ1; ð1Þ

where mtþ1 is the stochastic pricing kernel at time tþ 1; Mtþ1 is the set of
correct pricing kernels, Rj;tþ1 is the return for portfolio j at time tþ 1; and the
price for return Rj;tþ1 at time t is pj : If Rj;tþ1 is a gross return for a portfolio,
then pj ¼ 1; if Rj;tþ1 is an excess return for a portfolio, then pj ¼ 0: The
conditional expectation in Eq. (1) is based on the information set at t; denoted
Ft: By the law of iterated expectations, the unconditional version of Eq. (1) is

Eðmtþ1Rj;tþ1Þ ¼ pj ; 8j; t > 0; 8mtþ1AMtþ1: ð2Þ

We use Eq. (2) to estimate and test the various asset-pricing models.
As Hansen and Jagannathan (1997) note, an asset pricing model provides a

pricing kernel proxy, ytþ1: If the model is true, ytþ1AMtþ1: We will examine
models in which the pricing proxy is a linear function of a constant and a
vector of variable factors, ftþ1: Define F 0

tþ1 ¼ ½1; f 0tþ1�; and let the vector of
parameters be b0 ¼ ½b0; b01�: Then the pricing proxy is

ytþ1 ¼ b0Ftþ1 ¼ b0 þ b01 ftþ1; ð3Þ

where Ftþ1 is the k� 1 factor vector, and b is the k� 1 coefficient vector.
Nonzero elements of b indicate the importance of a factor as a determinant of
the pricing kernel. For ease of presentation, we drop the time subscript when it
is not necessary for clarity of presentation.
Cochrane (1996) notes that if the model is true, Eq. (2) holds for all n assets

with ytþ1 substituted for mtþ1: Then, if p is the n� 1 vector of pj ’s, the pricing
model has an equivalent representation in terms of multivariate betas and
prices of risks:

EðRÞ ¼ R0pþ b0L; ð4Þ

where R0 ¼ 1=Eð yÞ; b ¼ covð f ; f 0Þ�1 covð f ;R0Þ; and L ¼ �R0 covð f ; f 0Þb1:
In Eq. (4), R0 is the unconditional risk-free rate or the zero-beta rate, the b’s

are the projections of the returns onto the factors, and the L’s are the prices of
beta risks. All of the parameters can be calculated once we know b: To
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determine whether the jth factor significantly influences the expected returns on
a particular set of portfolios, we must assess whether the corresponding Lj is
significantly different from zero. Notice Lj ¼ 0 does not mean b1; j ¼ 0 and vice
versa. Only when covð f ; f 0Þ is diagonal are the two statements equivalent. The
derivations and proofs of these statements can be found in Cochrane (1996).
One must be clear in discussing the prices of factor risks whether it is beta

risk or covariance risk. Campbell (1996), for example, uses the covariance
decomposition of Eq. (2) to write

EðRÞ ¼ R0p� R0 covðm;RÞ: ð5Þ

By substituting the definition of ytþ1 for mtþ1 in Eq. (5), one can write

EðRÞ ¼ R0pþ
Xk
j¼1

qj covð fj ;RÞ; ð6Þ

where the price of the jth covariance risk is qj ¼ �R0b1; j : Since R0 is not very
different from one, we do not report statistics for qj :

2.2. HJ-distance

Hansen and Jagannathan (1997) note that when the asset pricing model is
false, yeM; and there is a strictly positive distance between y and M: Hansen
and Jagannathan define the distance, which we call HJ-distance, as

d ¼ min
mAL2

jjy�mjj; where EðmRÞ ¼ p; ð7Þ

and the measure of distance is the usual norm, jjxjj ¼
ffiffiffiffiffiffiffiffiffiffiffi
Eðx2Þ

p
:1 The problem

defined in Eq. (7) can be rewritten as the following Lagrangian minimization
problem:

d2 ¼ min
mAL2

sup
lARn

fEð y�mÞ2 þ 2l0½EðmRÞ � p�g: ð8Þ

The value of d is the minimum distance from the pricing proxy y to the set of
true pricing kernelsM: Let *m and *l be the solution to Eq. (8). One can think of
y� *m as the minimal adjustment to y to make it a true pricing kernel. Hansen
and Jagannathan (1997) solve Eq. (8) to find

y� *m ¼ *l
0
R; ð9Þ

where

*l ¼ EðRR0Þ�1Eð yR� pÞ: ð10Þ

1Hansen and Jagannathan (1997) also consider a distance measure in which m is required to be

strictly positive. If the problem is solved without the constraint and mtþ1 > 0 for all t; the two
solutions coincide. In their empirical analysis, Hansen and Jagannathan find this additional

restriction does not make a big difference.
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Thus, the HJ-distance is

d ¼ jjy� *mjj ¼ jj*l
0
Rjj ¼ ½*l

0
EðRR0Þ*l�1=2: ð11Þ

Substituting for the value of *l from Eq. (10) gives

d ¼ ½Eð yR� pÞ0EðRR0Þ�1Eð yR� pÞ�1=2: ð12Þ

By solving the conjugate problem to Eq. (8), Hansen and Jagannathan
(1997) also provide an important alternative interpretation to d: It is the
maximum pricing error for the set of portfolios based on the basic asset payoffs
with the norm of the portfolio return equal to one. We follow Campbell
and Cochrane (2000) in interpreting the return errors of the models using this
logic.
Consider the return on a portfolio of the n basic assets, y0R: The true

expected return for this portfolio when priced with *m is found from Eq. (5) to
be

Eðy0RÞ ¼ R0y0p� R0 covð *m; y0RÞ: ð13Þ

Let Eyðy0RÞ denote the expected value of the portfolio return predicted by the
pricing proxy y: When Eð yÞ ¼ Eð *mÞ ¼ ðR0Þ�1; we can write

Eyðy0RÞ ¼ R0y0p� R0 covð y; y0RÞ: ð14Þ

By subtracting Eq. (14) from Eq. (13) and using the Cauchy-Schwartz
inequality, we have

jEðy0RÞ � Eyðy0RÞj ¼ jR0 covð y� *m; y0RÞjpR0sð y� *mÞsðy0RÞ; ð15Þ

where sðxÞ denotes the standard deviation of x: The inequality in Eq. (15) holds
as an equality when the portfolio return is perfectly correlated with y� *m:
Recall from Eq. (9) that *l

0
R ¼ y� *m; and d ¼ sð y� *mÞ when Eð yÞ ¼ Eð *mÞ:

Thus, the portfolio with shares y ¼ *l=d is the maximally mispriced portfolio
with norm equal to one. Substituting these results into Eq. (15) and recognizing
that Eðl0RÞ ¼ 0 gives

jEyðl0RÞj
sðl0RÞ

¼ R0d: ð16Þ

The left-hand side of Eq. (16) is the maximum absolute pricing error per unit of
standard deviation, or the maximum mispriced Sharpe ratio. Campbell and
Cochrane (2000) exploit this idea to evaluate annualized expected return errors
of false models by multiplying R0d by an annualized standard deviation of
20%. We report this type of model return error below.

2.3. Estimation of parameters

Hansen and Jagannathan (1997) note that #b; the estimate of b; can be chosen
to minimize d: To see the relation of this problem to a standard generalized
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method of moments (GMM) problem, define the pricing error vector
g ¼ Eð yR� pÞ; and its sample counterpart

gT ðbÞ ¼
1

T

XT
t¼1

Rtyt � p; ð17Þ

and letWT be a sample estimate of EðRR0Þ�1: Then, by squaring Eq. (12), #b can
be chosen as

#b ¼ arg min d2 ¼ arg min g0T ðbÞWTgT ðbÞ: ð18Þ

While Eq. (18) is a standard GMM problem, it is not the optimal GMM of
Hansen (1982) which uses as the weighting matrix, W *

T ¼ S�1
T ; where ST is a

consistent estimator of S * � ½T varðgT Þ�: Hansen demonstrates that W *
T is

optimal in the sense that the estimated parameters have the smallest asymptotic
covariance.
In general, the optimal weighting matrix assigns big weights to assets with

small variances in their pricing errors, and it assigns small weights to assets
with large variances of their pricing errors. It is obvious thatW *

T changes with
different models. This makes it unsuitable for the task of making comparisons
among competing models. The alternative weighting matrix of Hansen and
Jagannathan (1997) is invariant across competing asset pricing models. Using a
common weighting matrix allows us to have a uniform measure of performance
across models for a common set of portfolios. The only assumption needed is
that the weighting matrix is nonsingular.
Cochrane (1996) argues that EðRR0Þ may be nearly singular in which

case the inversion is problematic, but as we discuss later, we did not encounter
inversion problems. To avoid inversion problems and to keep the weighting
matrix the same across assets, Cochrane uses the identity matrix as a weighting
matrix. This approach is often done in the first-stage estimates of a GMM
problem because estimation of W *

T requires consistent estimates of the
parameters.
By assigning equal weights to all basic assets and ignoring cross products of

pricing errors, Cochrane’s ð1996Þ approach minimizes the sum of squared
pricing errors, which is appealing for two reasons. First, it is equivalent to a
traditional least squares approach often used in finance, and second, it provides
the best graphical representation of predicted returns on the basic assets versus
their average returns.
These desirable attributes must be balanced against the theoretical

appeal of either optimal GMM or the HJ-distance approach. Optimal GMM
provides the most efficient estimates among estimates that use linear
combinations of pricing errors as moments. Working with the smallest
standard errors provides a more powerful way to test the validity of a
particular model. But, because W *

T is model dependent, it makes no sense to
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compare chi-square statistics across models. We prefer the HJ-distance
approach because it is explicitly designed for comparing the pricing errors of
alternative models.
Below we report statistics for both HJ-distance and optimal GMM. We

do not report statistics from first-stage estimates because we found them
relatively uninformative. Most of the models were not rejected just due to large
standard errors, which is economically uninteresting. We also do not find big
differences in inference between the results using the two nonidentity weighting
matrices.
A big advantages of linear factor models is that they can be

solved analytically. To demonstrate the solution, we need to introduce
some additional notation. Let the gradient with respect to the parameters
be

DT ¼
@gT
@b

¼
1

T

XT
t¼1

RtF
0
t : ð19Þ

The analytical solution for #b from the first order condition of Eq. (18) is given
by

#b ¼ ðD0
TWTDT Þ

�1ðD0
TWTpÞ: ð20Þ

From Hansen (1982), the asymptotic variance of #b is

varð #bÞ ¼
1

T
ðD0

TWTDT Þ
�1D0

TWTSTWTDT ðD0
TWTDT Þ

�1: ð21Þ

For optimal GMM, Eq. (21) reduces to

varð #bÞ ¼
1

T
ðD0

TS
�1
T DT Þ

�1: ð22Þ

One purpose of this paper is to determine whether any of our candidate
models of the stochastic discount factor has an HJ-distance equal zero. We
construct our test statistics following Theorem 3 in Jagannathan and Wang
(1996) as in Appendix A.
We also consider additional model diagnostics. The covariance matrix of the

pricing errors for the model is

var½gT ð #bÞ� ¼
1

T
In �DT ðD0

TWTDT Þ
�1D0

TWT

� �
�

ST In �DT ðD0
TWTDT Þ

�1D0
TWT

� �
: ð23Þ

Thus, we can construct a Wald test statistic for the null hypothesis that
gT ð #bÞ ¼ 0 as

g0T ð #bÞ var½gT ð #bÞ�
�1gT ð #bÞ -

d
w2ðn� kÞ: ð24Þ

COLUMBIA BUSINESS SCHOOL 9



Since var½gT ð #bÞ� only has rank n� k; we use its pseudo inverse following
Cochrane (1996). For optimal GMM, this Wald test reduces to the well-known
J-test, with

J ¼ g0T ð #bÞvar½gT ð #bÞ�
�1gT ð #bÞ ¼ TgT ð #bÞW *

T gT ð #bÞ

-
d

w2ðn� kÞ: ð25Þ

From Eq. (10) the covariance matrix of the Lagrange multipliers is

varð*lÞ ¼WT var½gT ð #bÞ�WT : ð26Þ

Since the maximum pricing error d is achieved by y0R with y ¼ *l=d; we can
examine the importance of individual assets to the pricing error by examining
the null hypothesis *lj ¼ 0:
Finally, it is important to distinguish which pricing errors are under

discussion. We defined the pricing errors of the models in Eq. (17). It is the
sample average for the differences in prices when we use y to price R minus the
correct prices which should be zero for an excess return and one for a gross
return. As in other research, we can also define average return errors as

p ¼ %R� EyðRÞ ¼
1

T

XT
t¼1

Rt � R0½pn � covð y;RÞ� ¼ R0gT ð #bÞ: ð27Þ

To avoid confusion, we refer to gT ð #bÞ as model errors and p as the pricing
errors of the basic assets. Since R0 differs slightly across models, the two do not
provide the same information. We look at gT ð #bÞ mainly for details associated
directly with d: We examine p to compare pricing errors for the basic assets
across models.

2.4. Conditional models and stability tests

Examining the unconditional implications of linear factor models has two
inherent problems. One is that only unconditional risk premiums are estimated.
The second is that the models force prices of fundamental risks to be constant
across business cycles. Cochrane (1996), Ferson and Harvey (1999), and others
try to solve these two problems by using macroeconomic variables as
conditioning variables. In Eq. (3), all parameters in b are constant. To allow
them to vary with some element zt in Ft; we write

ytþ1 ¼ b0ðztÞFtþ1

¼ ðb0;1 þ b0;2ztÞ ¼ ½b01;1 þ ðb1;2ztÞ
0�Ftþ1

þ b0;1 þ b0;2zt þ b01;1Ftþ1 þ b
0
1;2ðFtþ1ztÞ: ð28Þ
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The last equal sign demonstrates Cochrane’s point, scaling the prices of factors
is equivalent to scaling the factors.
If prices of risks fluctuate over the business cycle, we can capture this effect

by using variables that are associated with business cycles. There are three
requirements for macroeconomic variables to be legitimate instruments. First,
they must be included in the time t information set. Second, they should
summarize the status of the business cycle. Third, since the number of the
parameters increases geometrically with the number of conditioning variables,
which can make the estimates unreliable, the conditioning variables cannot be
too numerous. We use only one conditioning variable at a time. Because the
previous literature has focused on both monthly and quarterly horizons, we
would like a similar conditioning variable for each horizon.
Daniel and Torous (1995) find that the cyclical element in industrial

production (IP) is predictive for common stock returns. We adopt their use of
IP as one instrument for the monthly models. For quarterly models, we use the
cyclical component of real GNP. Because the cyclical components are not
observable, we derive both series by using the Hodrick–Prescott ð1997Þ filter
applied recursively. We elaborate on the construction of our data in the next
section.
Lettau and Ludvigson (2001a) provide an alternative to these output-based

measures of the business cycle. Lettau and Ludvigson (2001a) demonstrate that
the cyclical element in the log consumption–aggregate wealth ratio (CAY) is
strongly predictive for excess stock returns. This argument is consistent with
the CCAPM. Lettau and Ludvigson (2001b) test the CCAPM and the CAPM
using CAY as a conditioning variable. In their cross-sectional test, condition-
ing with CAY substantially improves the performance of the models. We also
include CAY as a conditioning variable for the quarterly models.
Loughran (1997) and Daniel and Titman (1997) argue that the book-to-

market (B/M) effect in stock returns is largely driven by a January effect, that
is, the B/M effect is not present at other times of the year. The basic assets we
use are the Fama and French 25 portfolios which are constructed precisely to
incorporate the B/M and size effects. We use a January dummy variable (JAN)
to allow prices of risks to differ between January and other months of the year.
Another important issue is the stability of the model’s parameters.

Conditional models are attractive because unconditional models may not
adequately capture time-varying risk premiums. But, this approach is not
costless. If the conditional version is correctly specified and captures the
dynamics in risk premiums, it will outperform the unconditional model.
However, if the model’s implied time-varying risk premiums are inherently
misspecified because we choose the wrong conditioning variable, this false
model may still appear to work well in small samples since it uses additional
degrees of freedom. Ghysels (1998) finds that conditional models are fragile
and may have bigger pricing errors than unconditional models.
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If the model is correctly specified, parameter stability is not a problem. We
use the supLM test of Andrews (1993) to see whether there are structural shifts
in the parameters. The null hypothesis is that there are no structural shifts.
Andrews argues that the supLM test is powerful against the alternative of a
single structural break at an unknown time. He also argues that even if this is
not the most interesting alternative hypothesis, it provides a reasonable test of
parameter stability. The LM statistics are evaluated at 5% increments between
20% and 80% of the sample, and the largest is the supLM statistic. The
distribution for the supLM statistic is presented in Andrews’s Table 1.
To keep the estimation tractable, we use the 26 portfolios as the basic assets

to be priced. We also investigate whether the model is robust to a different set
of assets by adopting Cochrane’s approach of scaling returns. Cochrane (1996)
notes that conditioning information can be used to scale returns as implied by
Eq. (1). These scaled returns can be interpreted as the returns to managed
portfolios. The portfolio manager changes the weight of each portfolio
according to the signal he observes from the conditioning variable. To
illustrate, we multiply both sides of Eq. (1) by any variable xtAFt to get

Etðmtþ1Rj;tþ1Þxt ¼ xtpj ; 8j; t > 0; 8xtAFt: ð29Þ

By the law of iterated expectations, we have

Eðmtþ1Rj;tþ1xtÞ ¼ EðxtpjÞ; 8j; t > 0; 8xtAFt: ð30Þ

Eq. (30) provides the orthogonality conditions for scaled returns. If the model
is robust to changes in the underlying assets, it should price the new assets
correctly. That is, if the model can price nonscaled returns R; under the null
hypothesis that the parameters are not asset-sensitive, the model should price
scaled returns Rx as well. The test statistic is described in Appendix B.

3. Data

Unless otherwise indicated, all data are from the Center for Research in
Security Prices (CRSP). For the monthly models, the sample period in 1952 : 01
to 1997 : 12; for 552 total observations. For the quarterly models, the sample is
from 1953 : 01 to 1997 : 04; for 180 total observations. We begin in 1953 : 01
because CAY is only available after 1953 : 01:

3.1. The portfolio returns

Our basic equity assets are the 25 excess returns on the portfolios sorted by
size and book-to-market ratio that are calculated as in Fama and French
(1993). Excess returns are constructed by subtracting the T-bill rate, and our
twenty-sixth asset is the gross return on the T-bill. The previous literature finds
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that the 25 B=M and size portfolios are very hard to price correctly because
they incorporate both size premiums and value premiums. We require the
models to price these excess equity returns and the risk-free rate, as well.
Portfolios are numbered 11–55, where the first number refers to the size

quintile and the second number refers to the B/M quintile. For example, 11 is
the portfolio of the smallest firms with the lowest B/M, while 55 is the portfolio
with the largest firms and highest B/M. Table 1 provides summary statistics for
the 25 portfolios for the sample period 1952 : 01 to 1997 : 12: It is similar to
Table 2 of Fama and French (1993), which involves a shorter sample period
from 1963 : 01 to 1991 : 12: For our longer sample, most average returns are
larger, except for the low B/M firms. Since the standard errors are smaller, the
t-statistics are larger except for the low B/M firms. Table 1 indicates that there
is considerable difference in the average returns across the 25 portfolios. The
average annualized returns range from 4.3% for the smallest firms with lowest
B/M ratio to 13.6% for the smallest firms with highest B/M ratio. Within a size
quintile, there is a nearly monotonic increase in average returns as B/M
increases. Within the B/M quintiles, the average returns to the smallest firms
are larger than the average returns to the largest firms, except for the lowest

Table 1

Summary statistics for Fama-French 25 portfolios

The data are monthly returns on the Fama-French 25 portfolios from 1952 : 01 to 1997 : 12 in

excess of the one-month T-bill rate. Portfolios are numbered ij with i indexing size increasing from

one to five and j indexing book-to-market ratio increasing from one to five.

Portfolios BM1 BM2 BM3 BM4 BM5

Panel A: Means

SIZE1 0.36 0.77 0.83 1.03 1.13

SIZE2 0.49 0.78 0.96 1.00 1.15

SIZE3 0.59 0.76 0.80 0.97 1.04

SIZE4 0.60 0.60 0.82 0.87 1.02

SIZE5 0.57 0.63 0.68 0.67 0.85

Panel B: Standard errors

SIZE1 7.17 6.25 5.56 5.26 5.53

SIZE2 6.49 5.62 5.11 4.85 5.39

SIZE3 5.94 5.04 4.66 4.50 5.14

SIZE4 5.32 4.80 4.61 4.52 5.22

SIZE5 4.54 4.39 4.09 4.24 4.91

Panel C: T-statistics

SIZE1 1.18 2.91 3.52 4.58 4.82

SIZE2 1.76 3.25 4.41 4.85 5.03

SIZE3 2.33 3.55 4.05 5.04 4.76

SIZE4 2.64 2.93 4.17 4.50 4.60

SIZE5 2.97 3.36 3.89 3.74 4.07
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B/M quintile, but there is not monotonicity in average returns across size
quintiles.
As demonstrated in Section 2, the weighting matrix for the calculation of

HJ-distance depends only on the assets and is the same for different models.
The weighting matrix is not the same when we use conditioning information to
scale returns. Hence, we have four weighting matrices: monthly and quarterly
nonscaled returns, and monthly and quarterly scaled returns. Because our main
results are derived from monthly and quarterly nonscaled returns, we focus
primarily on these two cases. Eq. (18) demonstrates that the weighting matrix is
the estimate of the inverse of the second moment matrix of returns, which must
be nonsingular. The condition numbers of the two matrices of sample second
moments are 13; 548 and 7; 851 for monthly and quarterly returns, respectively.
For monthly scaled returns, the condition number is 10; 264; for quarterly
scaled returns, the condition number is 5; 238: This indicates that inversion of
the matrices should be well behaved.
Cochrane (1996) notes that one can transform the weighting matrix using

eigenvalue decomposition such that WT ¼ GQG0 where G is an orthonormal
matrix with the eigenvectors ofWT on its columns, and Q is a diagonal matrix
of eigenvalues. Then, the HJ-distance problem in Eq. (12) can be rewritten as

d ¼ ½Eð yR� pnÞ
0GQG0Eð yR� pnÞ�1=2: ð31Þ

The elements of the jth column in G can be interpreted as weights that are
assigned to the basic assets to form a portfolio associated with the jth
eigenvalue in Q: If there are a few large eigenvalues of WT with eigenvectors
that place large weights on only a few portfolios, the GMM problem may be
choosing parameters that are associated only with a few portfolios. Because
WT does not change across models, it is fair to ask the competing models to
price the same portfolios. But, we do want the structure of the weighting matrix
to be reasonable.
Fig. 1 presents the portfolio weights associated with the two largest

eigenvalues of the monthly and quarterly weighting matrices. The weights
are standardized to sum to one. For monthly returns, Fig. 1 demonstrates that
no particular portfolio receives more than twice the weight of the next smallest.
Four portfolios, 14, 15, 41, and 42, receive substantial weights, but several
other portfolios also receive nontrivial weights. Given that there are other
eigenvalues that are also quantitatively important, we conclude that the
weighting matrices for the HJ-distance provide a fair challenge to the asset
pricing models.

3.2. Conditioning variables

We use five variables to capture movements in the prices of risks over the
business cycle. For the monthly models, the cyclical part of the natural
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logarithm of the industrial production index is one conditioning variable. The
industrial production index is from the Citibase monthly data set. The series is
available from January 1947 to April 1999. We use the Hodrick–Prescott
ð1997Þ filter on the first five years to initialize the cyclical series. The smoothing
parameter is set to be 6; 400: Consequently, the first element of our cycle is
1951 : 12:We then use the procedure recursively on all available data to find the
subsequent elements for the cyclical series. This method guarantees that each
element is in the time t information set. Panel A of Fig. 2 displays the cyclical
element of log industrial production index, IP.

Fig. 1. Standardized eigenvectors of two largest eigenvalues of the weighting matrix WT ¼
½ð1=TÞ

P
RR0��1: The data are monthly and quarterly excess returns of the Fama-French 25

portfolios and the return on the T-bill. Monthly data are from 1952 : 01 to 1997 : 12: Quarterly data
are from 1953 : 01 to 1997 : 04: The portfolio numbers on the x-axis are numbered ij with i indexing
size increasing from one to five and j indexing book-to-market ratio increasing from one to five.

The vector va(1) and va(2) are the eigenvectors corresponding to the two largest eigenvalues ofWT :
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Fig. 2. Time series of three conditioning variables. Cycle (IP) is the cyclical element in monthly

Hodrick–Prescott ð1997Þ filtered industrial production. Cycle (GNP) is the cyclical element in
quarterly Hodrick–Prescott ð1997Þ filtered GNP. Cycle (CAY) is the aggregate consumption-wealth
ratio, derived in Lettau and Ludvigson (2001a). Monthly data for IP are from 1952 : 01 to 1997 : 12:
Quarterly data for GNP are from 1952 : 01 to 1997 : 04; and quarterly data for CAY are from

1953 : 01 to 1997:04.
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As mentioned above, in monthly models we also scale the factors with a
January dummy, JAN, that takes the value one for each January and is zero
otherwise. For quarterly models, JAN takes the value one for the first quarter
and is zero otherwise.
For the quarterly models, we also scale the factors with the cyclical

component of real GNP. The data are also from the Citibase quarterly data set
(beginning in 1946 : 01). We use the recursive Hodrick–Prescott ð1997Þ filter
with the smoothing parameter equal to 1,600. Because GNP is not announced
until the following quarter, we lag GNP once to make sure it is in the time t
information set. Alternatively, Lettau and Ludvigson (2001a) develop another
conditioning variable, the consumption-wealth ratio, CAY.2 The CAY series is
lagged one period to be a legitimate instrumental variable. Panels B and C of
Fig. 2 present the cyclical component of GNP and CAY. The cyclical
components of GNP and CAY are not particularly highly correlated. The
contemporaneous correlation is �0:0441; and the cross correlations indicate
that CAY leads GNP by three to four quarters, as theory predicts consumption
should lead income.
Table 2 provides some information on the predictive power of the three

conditioning variables except JAN. We use the conditioning variables to
estimate the next period return on the value-weighted market return. All of the
three conditioning variables have significant predictive power. The explained
part of returns is small, as anticipated. With monthly data the R2 for IP is 1%,
and with quarterly data it is 3% for GNP, and 11% for CAY.
We only use one series as the conditioning variables for scaled returns. It is

the term premium, calculated as the difference between the 30-year government
bond yield and the one-year government bond yield. The data are from CRSP,
which provides a monthly index. We construct the quarterly series by using the
end-of-quarter observations.

3.3. The asset pricing models

We evaluate eight asset-pricing models. The simplest model incorporates
only a constant in the model stochastic discount factor (SDF), and it is called
the Null model. The Null model is used as a benchmark. With only a constant
factor present, the distance between y and *m is d ¼ minmAMstdðmÞ: Thus, we

2The data are obtained from Ludvigson’s website: http://www.ny.frb.org/rmaghome/economist/

ludvigson.html. CAY is calculated as CAYt ¼ ct � wat � ð1� wÞyt; where ct is consumption, at is
asset wealth, yt is labor income, and w is the weight of asset wealth in total wealth. w is estimated by

OLS using all observations. Because of the cointegration relationship between ct; at and yt; the
sample estimate ð #wÞ for w is said to be superconsistent. Lettau and Ludvigson ð1999Þ argue that #w

can therefore be treated as if it is the true parameter. Thus dCAYCAYt; as a function of #w; can be treated
as if it is in time t information even though #w is estimated using all observations, and when usingdCAYCAYt in estimation there is no need to adjust the standard errors for the sampling variability in #w:
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can interpret the HJ-distance as the standard deviation for the least volatile
element in M: In the conditional case, the Null model has two factors, the
constant and the conditional cycle. The conditional Null model determines
whether the movement in the cycle is an important pricing factor.
The second model is the CAPM. The model SDF has two factors, a

constant, and the excess return on the market portfolio. We use the return on
the value-weighted CRSP index in excess of the one month risk free return,
RVW; as a proxy for the excess return on the market. For the quarterly model,
we compound the monthly market returns to produce quarterly returns, and
we subtract the return on the three-month interest rate. In the conditional
model of the SDF, there are four factors: the constant, the cycle, RVW and
RVW � cycle:
The third model is a linearized CCAPM. The original CCAPM is nonlinear

and requires a particular form for the utility function. Rather than develop
nonlinear models of marginal utility, we simple use consumption growth, Dc; as
the factor. We use the growth rate in real nondurables consumption from
Citibase.3 The unconditional model of the SDF has two factors, the constant
and Dc: The conditional model has four factors: the constant, the cycle, Dc; and
Dc � cycle:

Table 2

Predictive power of conditioning variables used to scale factors

The estimated OLS regression is RVWðtÞ ¼ b0 þ b1 cycleðt� 1Þ þ eðtÞ: RVW is the value-weighted

return from CRSP. For the monthly regression, the sample period is 1952 : 01 to 1997 : 12: For the
quarterly regression, the sample period is 1953 : 01 to 1997 : 04: The series IP and GNP are the
Hodrick–Prescott ð1997Þ filtered cyclical components of industrial production and real GNP,
respectively. The series CAY is the consumption–wealth ratio calculated by Lettau and Ludvigson

(2001a).

Constant Cycle R2

Panel A: Monthly cycle ¼ IP

b 0.01 �0.13 0.01

seðbÞ 0.00 0.06

Panel B: Quarterly cycle ¼ GNP

b 0.01 �0.77 0.03

se(b) 0.01 0.34

Panel C: Quarterly cycle ¼ CAY

b 0.00 2.52 0.11

se(b) 0.01 0.56

3Martin Lettau and Sidney Ludvigson suggested that the sum of nondurables and services might

be a better proxy for consumption. The results with this specification are very similar to our results

using only nondurables, except they are a little noisier.
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The fourth model is the conditional CAPM developed by Jagannathan and
Wang (1996) (hereafter the JW model). The JW model is derived from the
assumption that the CAPM holds as a conditional model and that the return
on the market is predictable with the default premium, RPREM; which is the
difference between the yield on baa and aaa corporate bonds from the Board of
Governors of the Federal Reserve. The JW model’s unconditional form
involves two betas. One is the original market beta. The other beta
incorporates variation in the market beta, which Jagannathan and Wang call
beta-premium sensitivity. Beta-premium sensitivity is captured by variation in
the default premium. RPREM measures the instability of the market beta over
the business cycle. Jagannathan and Wang also argue that the value-weighted
index is an inadequate proxy for the market return. They include labor income
growth, RLBR; as an additional factor reflecting a return to human capital.
Jagannathan and Wang measure labor income growth as RLBR;t ¼ ðLt�1 þ
Lt�2Þ=ðLt�2 þ Lt�3Þ; where L is labor income per capita calculated as the
difference between personal income and dividend income per capita. The data
are obtained from Citibase. Jagannathan and Wang use a two-month average
to ‘‘minimize the influence of measurement errors.’’ There are consequently
four factors in the JW model, a constant, RVW; RLBR; and RPREM:We construct
the data as described in Jagannathan and Wang for monthly models. For the
quarterly model, RLBR is calculated as the quarterly growth rate in labor
income, and RPREM is constructed by selecting the third observation in each
quarter. Although the JW model is already an unconditional version of a
conditional model, we also estimate our conditional version which implies a
total of eight factors in the model SDF.
The fifth model is a linear version of Campbell’s (1996) log-linear asset

pricing model (described in the tables as CAMP). Campbell (1996) develops an
intertemporal asset pricing model that allows for changes in investment
opportunities. Factors are determined by their ability to predict the return on
the market. As in Jagannathan and Wang (1996), Campbell (1996) argues that
labor income is an important additional factor to fully reflect investor’s wealth.
However, the labor income factor, LBR, is constructed as the monthly growth
rate in real labor income (from Citibase). The other three factors are the
following: the dividend yield on RVW; DIV; the relative bill rate, RTB,
calculated as the difference between the one-month T-bill rate and its one-year
backward moving average; and the yield spread between long and short-term
government bonds TRM, the difference in yields on the 30-year government
bond and on the one-year government bond. In total, there are six factors in
the SDF for this model: the constant, RVW; LBR, DIV, RTB, and TRM. In
Campbell (1996), the pricing proxy is actually defined as y ¼ expð�F 0bÞ and
there are constraints across the parameters. Here we simply put the six factors
into a linear SDF model, y ¼ F 0b: For the conditional models, we have twelve
factors in total.
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The sixth model is a linearized version of Cochrane’s (1996) production
based asset pricing model (described in the tables as COCH). Cochrane argues
that returns should be well priced by the investment return, which is a
complicated function of the investment-capital ratio and several parameters.
But, Cochrane finds that the investment growth rate performs equally well, and
we adopt the investment growth rate model instead of the investment return
model. The factors are the growth rate on real nonresidential investment,
GNR, and the growth rate on real residential investment, GR. Both original
series are from Citibase. The model has three factors in the unconditional
model, a constant, GNR, and GR. The conditional Cochrane model has six
factors. The data are from Citibase. Since we only have quarterly data for real
investment, we do not compute a monthly model in this case.
The above six models are all based on explicit economic theories. We also

consider two empirical asset pricing models. They are called empirical because
their key pricing factors are derived from the data. The seventh model is the
Fama-French ð1993Þ three-factor model (hereafter the FF3 model). The first
factor is the excess return on the market portfolio, RVW; as calculated above. To
mimic the risk factors in returns related to size and B/M ratio, Fama and French
(1993) first sort all stocks into two size portfolios, small and big, they also sort all
stocks into three B/M portfolios, high, medium, and low. Factor SMB (small
minus big) is constructed as the difference in returns on small and big, thus it
captures risk related to size. Factor HML (high minus low) is constructed as the
difference in returns on high and low, thus it captures risk related to the B/M
ratio. The unconditional model of the SDF has four factors: a constant, RVW;
SMB, and HML. We construct quarterly factors by compounding the monthly
factors. There are eight factors in the conditional model.
The eighth model is the Fama-French ð1993Þ five-factor model in which they

add a termstructure factor and a default-premium factor to their three-factor
model (hereafter the FF5 model). The term structure factor, TERM, is the
difference between the yield on a thirty-year bond and the yield on the one-
month bill. Default risk is the difference between the yields on baa and aaa
corporate bonds (RPREM as in JW). We construct quarterly data by
compounding the monthly RVW; SMB and HML, and we use the third
observation of each quarter for TERM and RPREM: The conditional model has
twelve factors.

4. Empirical results

4.1. Basic model diagnostics

The basic model diagnostics are presented in the seven panels of Table 3. The
estimates of HJ-distance are labeled HJ-distðdÞ: The p-values of the test d ¼ 0;
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Table 3

Summary of models using nonscaled returns (26 assets)

The data are returns on the Fama-French 25 portfolios in excess of the T-bill rate and the return on

the T-bill. Monthly data are from 1952 : 01 to 1997 : 12; quarterly data are from 1953 : 01 to

1997 : 04: Cycle (IP) is the cyclical element in the industrial production index; cycle (GNP) is the
cyclical element in real GNP; CAY is from Lettau and Ludvigson (2001a). JAN is a dummy

variable with value one for January (monthly models) or first quarter (quarterly models) and zero

otherwise. HJ-dist(d) is Hansen-Jagannathan distance. p-value for the test d ¼ 0 calculated under
the null d ¼ 0 is pðd ¼ 0Þ: Max. Error is the maximum annual pricing error for a portfolio with

annual standard error of 20% under the assumption EðmÞ ¼ Eð yÞ: The standard error for HJ-
distance under the alternative hypothesis da0 is seðdÞ: The p-value of the optimal GMM test is

pðJÞ: The p-value of the Wald test that all conditional elements of b� are zero is p-Waldðb�Þ: The
value of the supLM statistics is supLM. An asterisk indicates the model fails the supLM test at the

5% significance level. Number of parameters is No. of para.

MODEL NULL CAPM CCAPM JW CAMP FF3 FF5

Panel A: Monthly models with nonscaled factors

HJ-distðdÞ 0.420 0.390 0.429 0.386 0.296 0.323 0.316

pðd ¼ 0Þ 0.000 0.000 0.000 0.000 0.347 0.000 0.001

Max. Error 8.4% 7.8% 8.6% 7.8% 5.9% 6.5% 6.4%

seðdÞ 0.051 0.050 0.063 0.052 0.065 0.052 0.055

pðJÞ 0.000 0.000 0.000 0.000 0.194 0.001 0.005

supLM 216.500n 3.548 4.234 38.290n 193.976n 9.971 58.889n

No. of para 1 2 2 4 6 4 6

Panel B: Monthly models with scaled factors by cycle (IP)

HJ-distðdÞ 0.410 0.352 0.389 0.314 0.256 0.302 0.273

pðd ¼ 0Þ 0.000 0.026 0.041 0.057 0.580 0.010 0.143

Max. Error 8.2% 7.1% 7.8% 6.3% 5.1% 6.1% 5.5%

seðdÞ 0.054 0.064 0.084 0.050 0.079 0.062 0.062

pðJÞ 0.000 0.269 0.002 0.062 0.534 0.027 0.218

p-Waldðb�Þ 0.006 0.003 0.021 0.016 0.486 0.329 0.398

supLM 10.028 15.963n 9.831 28.254n 73.909n 16.646 40.204n

No. of para 2 4 4 8 12 8 12

Panel C: Monthly models with scaled factors by JAN

HJ-dist(d) 0.396 0.366 0.367 0.274 0.284 0.287 0.268

pðd ¼ 0Þ 0.000 0.000 0.057 0.650 0.126 0.101 0.335

Max. Error 8.0% 7.3% 7.4% 5.5% 5.7% 5.8% 5.4%

seðdÞ 0.060 0.067 0.089 0.086 0.064 0.049 0.067

pðJÞ 0.000 0.000 0.022 0.809 0.065 0.025 0.098

p-Waldðb�) 0.000 0.165 0.026 0.018 0.962 0.238 0.594

supLM 5.692 6.244 10.345 52.663n 180.979n 13.470 39.225n

No. of para 2 4 4 8 12 8 12

MODEL NULL CAPM CCAPM JW CAMP COCH FF3 FF5

Panel D: Quarterly models with nonscaled factors

HJ-dist(d) 0.649 0.621 0.619 0.578 0.550 0.626 0.537 0.516

pðd ¼ 0Þ 0.000 0.000 0.001 0.037 0.016 0.000 0.001 0.018

Max. Error 13.2% 12.6% 12.6% 11.8% 11.2% 12.7% 10.9% 10.5%

seðdÞ 0.103 0.097 0.108 0.125 0.107 0.113 0.116 0.105
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as calculated in Appendix A under the null hypothesis that the true distance is
zero, are labeled pðd ¼ 0Þ: The maximum annualized expected return error
from a portfolio of the basic assets based on Eq. (16) is labeled Max. Error.
The maximum pricing error is the product of the HJ-distance and the average
risk-free rate times an assumed standard deviation of 20%. The standard errors
for the estimates of HJ-distance are labeled seðdÞ and are calculated under the
alternative hypothesis that the true distance is not equal to zero as in Eq. ð45Þ
of Hansen and Jagannathan (1997). These standard errors allow an assessment
of the precision with which d is estimated, and they can thus be used to infer an
approximate standard error for the pricing errors in row three by multiplying
by the average risk free return and the assumed standard deviation of 20%.

Table 3 (continued)

MODEL NULL CAPM CCAPM JW CAMP COCH FF3 FF5

pðJÞ 0.001 0.001 0.005 0.083 0.050 0.000 0.010 0.125

supLM 55.023n 3.671 10.071 31.078n 55.957n 10.026 8.746 52.170n

No. of para 1 2 2 4 6 3 4 6

Panel E: Quarterly models with scaled factors by cycle (Lag GNP)

HJ-distðdÞ 0.642 0.600 0.613 0.543 0.504 0.559 0.452 0.429

pðd ¼ 0Þ 0.000 0.001 0.000 0.088 0.147 0.108 0.488 0.362

Max. Error 13.1% 12.2% 12.5% 11.1% 10.3% 11.4% 9.2% 8.7%

seðdÞ 0.099 0.082 0.106 0.111 0.104 0.129 0.108 0.099

pðJÞ 0.000 0.011 0.001 0.056 0.101 0.086 0.423 0.254

p-Waldðb�Þ 0.219 0.051 0.799 0.013 0.575 0.008 0.111 0.242

supLM 10.837 11.076 11.578 37.006n 44.640n 9.848 11.285 34.071n

No. of para 2 4 4 8 12 6 8 12

Panel F: Quarterly models with scaled factors by CAY

HJ-distðdÞ 0.634 0.613 0.608 0.544 0.515 0.623 0.528 0.498

pðd ¼ 0Þ 0.000 0.000 0.000 0.269 0.099 0.000 0.001 0.011

Max. Error 12.9% 12.5% 12.4% 11.1% 10.5% 12.7% 10.8% 10.1%

seðdÞ 0.099 0.110 0.105 0.154 0.125 0.114 0.105 0.090

pðJÞ 0.001 0.000 0.001 0.428 0.097 0.001 0.003 0.032

p-Waldðb�) 0.012 0.542 0.253 0.404 0.834 0.609 0.931 0.930

supLM 14.028n 14.310 7.170 39.171n 40.373n 16.757 20.149 30.937n

No. of para 2 4 4 8 12 6 8 12

Panel G: Quarterly models with scaled factors by JAN

HJ-dist(d) 0.590 0.564 0.582 0.391 0.379 0.510 0.509 0.394

pðd ¼ 0Þ 0.001 0.001 0.000 0.997 0.975 0.429 0.005 0.870

Max. Error 12.0% 11.5% 11.9% 8.0% 7.7% 10.4% 10.4% 8.0%

seðdÞ 0.135 0.127 0.131 0.239 0.195 0.133 0.129 0.149

pðJÞ 0.011 0.003 0.010 0.997 0.984 0.600 0.004 0.910

p-Waldðb�) 0.000 0.000 0.006 0.206 0.435 0.001 0.676 0.500

supLM 8.586 9.181 9.133 32.223n 28.311 11.794 20.144 52.123n

No. of para 2 4 4 8 12 6 8 12
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The p-values of the J-statistics from optimal GMM estimates of the models are
labeled pðJÞ: The p-values of the Wald tests that the parameters of the scaled
factors are all zero are labeled p-Wald(b* Þ: The values of the supLM tests are
labeled supLM, and an asterisk indicates that the test statistic exceeds the 0.05
critical value taken from Table 1 of Andrews (1993). The number of estimated
parameters is labeled No. of para.
In finite samples, interpretation of the HJ-distance estimates and their

associated maximum pricing errors is hampered by the fact that zero is on the
boundary of the parameter space. Even if the null hypothesis is true, in finite
samples the estimated HJ-distance will be positive. Of course, if the p-values of
the test statistics are well behaved, false rejections of the null hypothesis only
occur the correct percentage of the time.
The Monte Carlo experiments conducted by Ahn and Gadarowski (1999)

indicate that the expected value of the HJ-distance calculated under the null
hypothesis that a three-factor model is true can be quite large and depends on
the number of assets and the number of time periods. From Table 1 of Ahn and
Gadarowski (1999) with 25 returns, we find average HJ-distances of 0.393 for
160 observations, 0.260 for 330 observations, and 0.174 for 700 observations.
Hence, by extrapolating to our monthly sample of 552 observations, we should
not be surprised to see an HJ-distance equal to 0.21, even though a three-factor
model is true. This corresponds to an annualized maximum pricing error of
4.2%. Similarly, for a quarterly sample of 180 observations, we should not be
surprised to see an HJ-distance equal to 0.38 with a maximum pricing error of
7.7%, even though the model is true.
Ahn and Gadarowski (1999) also investigate the empirical size of the test

that HJ-distance equals zero. For 25 assets they find that 5.5% of their
experiments exceed the 1% critical value with 160 observations, 2.5% are
greater with 330 observations, and 1.5% are greater with 700 observations.
Thus, for our sample sizes, the monthly model appears to be close to having the
correct size of the test if a three-factor model is true, while the rejection rates
for the quarterly model appear to be too high.
Panels A–C of Table 3 summarize the results for the monthly models. The

first row of Panel A in Table 3 indicates that the Null model, the CAPM, the
CCAPM, the JW model, and the FF3 model all have HJ-distances that are
larger than or equal to 0.32. The p-values of the tests that these distances are
zero are all less than 0.0001. The maximum annualized pricing errors from
these models are between 6.5% and 8.6%. The standard errors of the HJ-
distances in row four are all about 0.05. Hence, the standard errors of the
maximum pricing errors are all about 1%. Generally, we find little
disagreement between the Wald tests based on HJ-distance or on optimal
GMM of whether the pricing errors on the 26 original portfolios are jointly
zero. Consequently, we only report the J-tests from optimal GMM, and in
Panel A of Table 3 we find five out of the seven models are rejected at the 0.001
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marginal level of significance or smaller. Campbell’s model achieves the
smallest HJ-distance, and the p-value of the test d ¼ 0 indicates we cannot
reject correct pricing. Thus, the model captures the size and B/M effects and
also prices the risk-free rate. It is notable that the same model also passes the J-
test. Unfortunately, Campbell’s model does not have stable parameters as it
fails the supLM test severely.
The HJ-distance of the FF5 model is smaller than that of the FF3 model, but

it is still around 0.30. If we subtract the small sample bias in the statistic of
0.21, discussed above, we can conclude that the bias-adjusted HJ-distance is
around 0.11 and the maximum annualized pricing error is around 2.2%. As
one might suspect, the chief difference between the FF3 model and the FF5
model comes from the fact that the T-bill rate is hard for the FF3 model to
price because it only includes equity pricing factors. To evaluate this
conjecture, we did a test which only used gross returns on the 25 size and B/
M portfolios. There were only small differences between the FF3 model and the
FF5 model in that test, and we could reject correct pricing for both models at
the 5% marginal level of significance.
Panel B of Table 3 reports the results when the factors of the model SDF’s

are scaled by cycle(IP). We find the magnitudes of HJ-distances and the
corresponding maximum pricing errors all shrink significantly by approxi-
mately 10%, except for the Null model. The p-values for the test of HJ-distance
equal zero are now between 1% and 5%. We test whether the conditioning
information is statistically significant with a Wald test on the joint hypothesis
that the parameters for all scaled factors equal zero. For the CAPM, the
CCAPM and the JW model, the p-values are smaller than 0.023, which means
the scaling variable IP significantly captures time-varying behavior of risks.
Using cycle(IP) reduces HJ-distance for all models, and Campbell’s model
achieves the smallest distance, although there is no significance to the
parameters associated with scaling. None of the models pass both the test of
HJ-distance equal zero and the supLM test. It is notable that the CAPM with
scaled factors marginally passes both the test of HJ-distance equal zero and the
optimal GMM test. Again, all results from minimizing HJ-distance are similar
to what we find from the optimal GMM approach.
The fact that scaled factor models have smaller HJ-distances than nonscaled

factor models comes from two sources. First, the conditioning information
reduces the pricing errors by allowing the prices of risks to vary with the
business cycle. Second, by doubling the number of parameters, a scaled factor
model uses additional degrees of freedom in the minimization problem and is
better able to fit the data. This better fit may be spurious, though, as small-
sample biases may worsen. The next section examines the details of individual
models.
According to Loughran (1997), the January effect explains a substantial part

of the B/M effect. When we allow only for a January dummy variable in
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addition to the constant term of the SDF’s, there are very few changes
compared to the results in Panel A of Table 3. These results are not reported to
save space. Panel C of Table 3 reports results with all factors scaled by JAN.
This effectively separates the January observations from the non-January
observations by allowing different factor risk prices in January. For the Null
model, the Wald statistic for the test that the JAN parameter equals zero is
0.0001, which demonstrates the importance of a January effect. Allowing for a
January conditioning variable improves the point estimates of HJ-distance for
all the models. Nevertheless, p-values of the J statistics indicated that the
CAPM, the CCAPM, and the FF3 models are still rejected at the 0.05 level of
significance. The most dramatic improvement is in the JW model which now
passes all of the tests except the stability test. The Wald test on the importance
of the scaled factors indicates their joint significance. There is a slight
improvement in the performance of the FF3 model although the joint test of
the significance of the scaled factors has a p-value of 0.15. The FF5 model and
Campbell’s model already do reasonably well with nonscaled factors. Scaling
all the factors in these models with a January dummy does not appear to add
any important factors since the p-values of the Wald tests are both quite large.
The previous literature typically reports either monthly or quarterly models.

Some models, such as Cochrane’s (1996) model, can only be applied to
quarterly data because of data constraints. In this section we investigate the
performance of the models with quarterly data. Several issues arise. First, time
aggregation may worsen the fit between the factors and the models by
smoothing the factors.4 Second, market imperfections that cause short-term
deviations from the models may be lessened because the returns are cumulated.
Third, as noted above, the small-sample performance of any model deteriorates
with a smaller number of observations. The first and third effects suggest the
performance of the models with quarterly data deteriorates, while the second
factor allows for improvement.
Panel D provides the summary results for the eight quarterly models, the

seven previously investigated plus Cochrane’s (1996) model. Although the
point estimates of the HJ-distances are much larger for the quarterly models
than the monthly models, recall from our discussion of Ahn and Gadarowski
(1999) that values like 0.38 are to be expected in these sample sizes even if a
three-factor model is true. Nevertheless, the quarterly HJ-distances generally
exceed the average of the Ahn and Gadarowski figures by more than the
monthly estimates exceed the corresponding average from the Monte Carlo
experiments. For example, the monthly FF3 models has an HJ-distance of
0.323 and the Monte Carlo average is approximately 0.21 for a difference of

4This logic leads Cochrane (1996) to time average monthly returns in constructing quarterly

returns. While we construct the quarterly returns from the compound monthly returns as Rtþ1 þ
Rtþ2 þ Rtþ3; Cochrane (1996) uses 13Rtþ1 þ

2
3Rtþ2 þ Rtþ3 þ

2
3Rtþ4 þ

1
3Rtþ5:
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0.113. At the quarterly sampling interval we find a difference of 0:537� 0:38 ¼
0:157: Using this bias-adjusted value to calculate the maximum pricing error
for the FF3 model leads to a value of 3.2% rather than the 10.9% reported in
Panel D.
While the p-values of the tests that HJ-distance equals zero are all less that

0.037, recall also that in this sample size the asymptotic p-values probably
understate the probability of a Type I error as Ahn and Gadarowski (1999)
find that 15.7% of their empirical experiments exceed the 5% asymptotic
critical value in samples of 160 observations. Hence, it seems reasonable to
conclude that the evidence against the JW model, the FF5 model, and
Campbell’s model is not particularly strong. Unfortunately these three models
all fail the parameter stability test.
In Panel E, we scale all factors by the lagged cyclical component of GNP.

Including this conditioning information reduces the magnitudes of HJ-distance
and the associated maximum pricing errors by 5–10%. Two models, the FF3
model and Cochrane’s, now pass the test of HJ-distance equal zero and the
supLM test, although Cochrane’s model has a considerably larger d: Once
again the HJ-distance tests are consistent with the results from optimal GMM.
The tests that all parameters for scaled factors equal zero indicate scaling with
GNP does not significantly improve the performance of the models. One
should keep in mind, though, this is a joint test which may overshadow the
significance individual parameters.
An alternative quarterly scaling variable is the consumption-wealth ratio,

CAY, from Lettau and Ludvigson (2001a). They find that scaling with CAY
greatly improves the performance of the CCAPM in pricing the excess returns
on the 25 Fama-French portfolios over a sample period 1963–1997 when the
returns are equally weighted. However, evaluating the model with the HJ-
distance metric for our sample of 1953 to 1998 indicates that scaling with CAY
does not produce a noticeable improvement for the CCAPM. The scaled model
fails both the test of HJ-distance equal zero and the optimal GMM test. None
of the models scaled by CAY passes both the test of HJ-distance equal zero and
the supLM test. The Wald test of the importance of the scaling parameters also
does not indicate strong statistical significance of CAY.
Panel G provides results when all the factors are scaled by JAN. For the

quarterly models, JAN takes the value one for the first quarter of each year and
the value zero otherwise. The first thing to note is scaling all factors with JAN
reduces the magnitude of the HJ-distance for all models. The JW model,
Campbell’s model, and the FF5 model all have p-values for the test of HJ-
distance equal zero above 80%. The annualized pricing errors for these three
models also are now less than or equal to 8%, which is in the range of correct
pricing given the bias discussed above. Surprisingly, the FF3 model does not
pass the HJ-distance test and the J test. This is because the scaled factor model
is still unable to price the small growth firms. Cochrane’s model passes both the
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test of HJ-distance equal zero and the supLM test. More details for this model
are provided in the section on successful models.

4.2. Model errors for nonscaled factor models

Additional information on the performance of the models is available by
examining the model errors and the Lagrange multipliers which are the
components of d: To check whether conditioning information improves the
performance of a model, we first need to understand the performance of the
original nonscaled factor model. The average model errors from HJ-distance
estimates with a two standard error band are presented in Fig. 3. Since monthly
unconditional model errors share very similar patterns with the quarterly
model errors, we only present monthly model errors (gT ) as defined in Eq. (17).
For Cochrane’s model, we report quarterly model errors.5

In Panel A of Fig. 3, the model errors for the Null model range from �0:01%
for the T-bill to 1.15% per month for portfolio 25. Remember that the first
number of a portfolio indexes the size quintile with increasing numbers
indicating increases in size and that the second number of a portfolio indexes
the book-to-market ratio with increasing numbers indicating increases in B/M.
The B/M effect is very evident in Fig. 3 as in each size quintile, higher B/M
portfolios have larger average pricing errors. As we increase across size
quintiles, there is less dispersion in the pricing errors but no particularly
pronounced decrease in average pricing errors. The model under-estimates the
returns on all portfolios except the T-bill rate.
Panel B of Fig. 3 demonstrates that the CAPM correctly prices the largest

size portfolios, but it tends to under-estimate returns on high B/M portfolios
and to over-estimate returns on low B/M portfolios. The model errors range
from �0:50% per month for portfolio 11 to 0.45% per month for portfolio 15.
The CCAPM is presented in Panel C of Fig. 3. It has a pattern very similar

to the Null model, which is consistent with the correlation of 0.93 between the
adjustment, y� *m ¼ *l

0
R; to the Null model and the adjustment to the

CCAPM to make it a correct SDF. High B/M firms are more severely
underpriced by the CCAPM than by the CAPM.
The JW model is presented in Panel D of Fig. 3. It has a very similar pattern

to the CAPM except the over-estimation for low B/M portfolios is slightly
smaller. This is not surprising in light of the correlation of 0.99 between the
adjustments to the CAPM and to the JW model.
Panel E of Fig. 3 reports the pattern for Campbell’s pricing errors. The

model considerably attenuates the B/M effect. The average errors range from

5We also examined model errors from minimizing the equal-weighted sum of squared pricing

errors, that is using an identity matrix as the weigthing matrix. The patterns of errors across the

various models are quite similar to the errors in Fig. 3 and are consequently not reported.
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�0:28% to 0.30%. Part of the ability of the model to pass the test of HJ-
distance equal zero arises from its increased standard errors relative to the
CAPM. Although d can be compared across models, the p-values of the tests
are not comparable because they are based on the eigenvalues of A in
Appendix A which depend on the pricing factors, the variance of pricing errors,
and the number of parameters.
Panel F presents the pricing errors in Cochrane’s quarterly model which

shares the same magnitude and pattern as the quarterly CAPM, which is not
presented. There is a distinct B/M effect as in the monthly CAPM. The
correlation between the adjustment to Cochrane’s model to make it a correct
pricing model and the adjustment to the quarterly CAPM is 0.97.
The FF3 model is presented in Panel G. The presence of the two factors

SMB and HML in addition to the market return considerably dampens the
B/M effect present in Panel B. Now there is no particular pattern for the model
errors. They are scattered around the zero axis. The FF3 model overpredicts
the average returns for both the smallest firms and the largest firms, but
especially the small growth stocks (smallest firms with low B/M ratios). The
FF5 model in Panel H has a similar pattern to the FF3 model, except it reduces
the pricing errors slightly. The correlation of the adjustments to the two models
is 0.98.
All models share one common characteristic, they do not misprice the T-bill

rate. Model errors for the T-bill rate are always around zero.

4.3. Interesting models

Since we have 21 monthly models and 32 quarterly models, we cannot
display all the parameter estimates, but we report results for ‘‘interesting
models’’. We define ‘‘interesting’’ as a model that at least marginally passes the
test of HJ-distance equal zero at the 1% marginal level of significance. We also
require that the scaling parameters for an interesting scaled factor model are
jointly significant at the 5% level. Because inference about the validity of the
models based on the test of HJ-distance equal zero is always similar to
inference based on the J test from optimal GMM, passing the J test is
implicitly also a criterion. In total we have 12 models satisfying both

——————————————————————————————————————————"
Fig. 3. Model errors for monthly models with nonscaled factors. The data are monthly and

quarterly excess returns of the Fama-French 25 portfolios over the T-bill rate and the return on the

T-bill. Monthly data are from 1952 : 01 to 1997 : 12: Quarterly data are from 1953 : 01 to 1997:04.
The portfolio numbers on the x-axis are numbered ij with i indexing size increasing from one to five

and j indexing book-to-market ratio increasing from one to five. The diamonds are the model

errors, as defined in Eq. (17), and the numbers are in monthly (quarterly from Cochranes’s model)

percent. The two other lines provide a two standard error band.
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Fig. 3. (continued)
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conditions. In addition we provide information on the monthly FF3 model
with nonscaled factors for comparison. This section first discusses monthly
models, then quarterly models.
Table 4 reports parameter estimates from minimizing the HJ-distance

measure for the interesting models. Each panel has two parts. The first part
presents estimates for b as in Eq. (3). If b1 for one factor is significantly
different from zero, then that factor is an important determinant of the pricing
kernel. The second part of each panel presents estimates for the prices of risks,
L; as in Eq. (4). It provides information on whether the factor risk prices
significantly influence the expected returns.
The first model is the monthly CAPM with factors scaled by IP. The model

marginally passes the test of HJ-distance equal zero with a p-value of 0.026.
Both RVW and IP are significant determinants of the correct pricing kernel,
while the interaction between the two variables is not significant. Thus, the
business cycle influence specified by IP is an important element missing from
the CAPM. The same two factors have significant prices of risks with positive
signs. Thus, a positive covariance with the market or the state of the business
cycle increases the required rate of return. The fact that IP helps to explain the
B/M and size effects may arise as in the framework of Jagannathan and Wang
(1996) because IP could be a proxy for beta-premium sensitivity. The fact that
RVW � IP is not important indicates that allowing the price of market risk to
change across the business cycle is not an important determinant of the cross
section of returns. Panel A of Fig. 4 reports the model’s pricing errors, with its
nonscaled counterpart. Most of the improvement in pricing from adding IP
and RVW � IP to the CAPM occurs for low B/M portfolios, and the biggest
improvement is for the smallest growth firms. As size increases, the
improvement becomes smaller. However, the scaled factor model does not
eliminate either the B/M or size effects. The monthly CAPM with factors scaled
by IP also does not pass the supLM test at the 5% level indicating that the
estimates may be unstable.
The second monthly model is the CCAPM with factors scaled by

IP. Parameter estimates are reported in Panel B of Table 4. The test of
HJ-distance equal zero is passed with a p-value of 0.041. The parameters
associated with Dc; IP and Dc � IP are all statistically significant elements of the
pricing kernel. The estimates for factor risk prices indicate that both Dc and IP
significantly influence the expected returns on the underlying 26 portfolios
with economically sensible signs. Returns that covary positively with
either consumption growth or the business cycle have higher required rates
of return.
The monthly CCAPM with factors scaled by JAN also satisfies both

conditions for being ‘‘interesting’’ with a p-value for the test of HJ-distance
equal zero of 0.057. The parameter estimates are provided in Panel C of Table 4.
Only the interaction between Dc and JAN is statistically significant for both the
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pricing kernel and prices of risk. While this result literally implies that the
consumption growth rate is important only in January, an alternative
interpretation is that the return characteristics of the underlying 26 portfolios
are most evident in January. The pricing errors for the two scaled factor
versions of the CCAPM together with the nonscaled factor benchmark are
given in Panel B of Fig. 4. When the factors are scaled by IP, the improvements
mostly involve a reduction of the errors for the high B/M portfolios by
0.1–0.2% per month which flattens the pricing errors relative to the nonscaled
CCAPM. When the factors are scaled by JAN, both the size effect and the
B/M effect are smaller and the line connecting the pricing errors is somewhat
flatter.
Panel D of Table 4 reports the parameter estimates for the monthly JW

model with factors scaled by IP. The p-value for the test of HJ-distance equal
zero is 0.057. The significant determinants of the pricing kernel are RVW and
RLBR � IP: The same two factor risk prices along with that of RPREM � IP
significantly affect risk premiums. Panel E of Table 4 presents the parameter
estimates for the monthly JW model with factors scaled by JAN. The p-value
of the test of HJ-distance equal zero is 0.650. From the parameter estimates,
both RLBR and RLBR � JAN are significant determinants of the model’s pricing
kernel. The parameters indicate that the factor risk price of the labor income
growth rate is different in January (�0:28þ 0:13 ¼ �0:15Þ than outside of
January ð�0:28Þ: The pricing errors of these two models together with the
nonscaled JW benchmark model are presented in Panel C of Fig. 4. When
the factors are scaled by IP, the pricing errors are smaller for both small firms
and high B/M firms. Thus IP helps dampen both the size effect and the B/M
effect. When the factors are scaled by JAN, the pricing errors are even smaller,
as in the CCAPM above. However, neither of the models passes the supLM
test.
Campbell’s model with nonscaled factors is reported in Panel F of Table 4.

The model passes the test of HJ-distance equal zero with a p-value 0.347. Both
the dividend yield, DIV, and the term premium, TRM, are statistically
significant determinants of the pricing kernel. The second part of Panel F
indicates that three variables, RVW; DIV, and TRM, have statistically
significant prices of risks. Neither labor income nor the relative bill rate is
important in either the pricing kernel or the prices of risks. Panel D of Fig. 4

——————————————————————————————————————————"
Fig. 4. Pricing errors for interesting models. The data are monthly and quarterly excess returns of

the Fama-French 25 portfolios over the T-bill rate and the return on the T-bill. Monthly data are

from 1952 : 01 to 1997 : 12: Quarterly data are from 1953 : 01 to 1997 : 04: The portfolio numbers on
the x-axis are numbered ij with i indexing size increasing from one to five and j indexing book-to-

market ratio increasing from one to five. Pricing errors are defined in Eq. (27), and the numbers are

in monthly (quarterly) percent.
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Fig. 4. (continued)

COLUMBIA BUSINESS SCHOOL 34



Fig. 4. (continued)

COLUMBIA BUSINESS SCHOOL 35



Table 4

Parameters estimates of interesting models

The data are returns on the Fama-French 25 portfolios in excess of the T-bill rate and the return on

the T-bill. Monthly data are from 1952 : 01 to 1997 : 12; quarterly data are from 1953 : 01 to

1997 : 04: The estimated parameters, #b; are the factor prices defined in Eq. (3). The estimated
parameters, #L; are the beta risk prices defined in Eq. (4). The standard errors for the parameter
estimates are provided in the rows labeled se.

Panel A: Monthly CAPM with scaled factors by IP

Constant RVW IP RVW*IP

Parameters of the pricing kernel
#b 1.03 �0.04 �0.34 0.02

se 0.05 0.02 0.12 0.03

Factor risk prices
#L 0.66 2.16 0.58

se 0.27 0.74 2.75

Panel B: Monthly CCAPM with scaled factors by IP

Constant Dc IP Dc*IP

Parameters of the pricing kernel
#b 1.14 �0.75 �0.28 0.22

se. 0.10 0.36 0.11 0.12

Factor risk prices
#L 0.43 1.38 �0.49
se 0.21 0.65 0.55

Panel C: Monthly CCAPM with scaled factors by JAN

Constant Dc JAN Dc*JAN

Parameters of the pricing kernel
#b 1.05 �0.12 0.58 �3.93
se 0.06 0.37 0.90 1.62

Factor risk prices
#L 0.26 0.02 0.20

se 0.22 0.06 0.08

Panel D: Monthly JW’s model with scaled factors by IP

Constant RVW RPREM RLBR IP RVW*IP RPREM*IP RLBR *IP

Parameters of the pricing kernel
#b 1.38 �0.04 �0.66 0.68 0.38 0.00 �0.40 �0.40
se 0.68 0.02 0.64 0.71 0.38 0.03 0.31 0.22

Factor risk prices
#L 0.65 0.05 �0.05 1.01 0.80 1.72 1.09

se 0.28 0.12 0.13 0.98 2.68 1.02 0.41

COLUMBIA BUSINESS SCHOOL 36



Table 4 (continued)

Panel E: Monthly JW’s model with scaled factors by JAN

Constant RVW RPREM RLBR JAN RVW*JAN RPREM *JAN RLBR *JAN

Parameters of the pricing kernel
#b �0.68 0.02 0.53 2.54 4.33 �0.45 0.35 �8.36
se 0.90 0.05 0.78 1.13 3.34 0.40 3.65 3.26

Factor risk prices
#L 0.59 �0.14 �0.28 0.07 0.70 0.07 0.13

se 0.34 0.15 0.18 0.05 0.62 0.07 0.06

Panel F: Monthly Campbell’s model with nonscaled factors

Constant RVW LBR DIV RTB TRM

Parameters of the pricing kernel
#b �1.07 0.01 0.10 0.67 0.90 �0.72
se 1.30 0.03 0.41 0.34 4.33 0.28

Factor risk prices
#L 0.66 0.02 �0.69 �0.05 1.11

se 0.31 0.27 0.33 0.04 0.35

Panel G: Monthly FF3 with nonscaled factors

Constant RVW SMB HML

Parameters of the pricing kernel
#b 1.07 �0.05 �0.01 �0.10
se 0.02 0.01 0.02 0.02

Factor risk prices
#L 0.65 0.14 0.39

se 0.21 0.12 0.10

Panel H: Monthly FF3 with scaled factors by JAN

Constant RVW SMB HML JAN RVW*JAN SMB*JAN HML*JAN

Parameters of the pricing kernel
#b 1.07 �0.08 0.12 �0.06 1.38 0.21 �0.98 0.15

se 0.05 0.03 0.06 0.05 1.22 0.26 0.43 0.42

Factor risk prices
#L 0.63 0.16 0.39 0.01 �0.07 0.74 0.19

se 0.27 0.21 0.16 0.06 0.47 0.32 0.23

Panel I: Quarterly JW’s model with nonscaled factors

Constant RVW RPREM RLBR

Parameters of the pricing kernel
#b �0.35 0.00 �0.20 1.01

se 0.85 0.02 0.64 0.48

Factor risk prices
#L 1.29 �0.02 �0.74
se 0.84 0.12 0.33
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Table 4 (continued)

Panel J: Quarterly Campbell’s model with nonscaled factors

Constant RVW LBR DIV RTB TRM

Parameters of the pricing kernel
#b 0.22 0.00 0.10 0.28 �0.20 �0.56
se 1.00 0.02 0.16 0.27 2.64 0.22

Factor risk prices
#L 1.52 �0.13 �0.28 �0.03 0.85

se 0.79 0.37 0.24 0.02 0.34

Panel K: Quarterly Cochrane’s model with scaled factors by lag GNP

Constant NRINV RINV GNP NRINV*GNP RINV*GNP

Parameters of the pricing kernel
#b 0.92 �0.01 �0.16 0.12 �0.04 �0.09
se 0.27 0.16 0.07 0.22 0.07 0.04

Factor risk prices
#L 0.33 1.76 0.03 0.86 5.33

se 0.85 1.31 0.58 1.21 3.24

Panel L: Quarterly Cochrane’s model with scaled factors by JAN

Constant NRINV RINV JAN NRINV*JAN RINV*JAN

Parameters of the pricing kernel
#b 1.41 �0.24 0.09 �1.44 0.90 �0.19
se 0.21 0.17 0.07 0.53 0.37 0.15

Factor risk prices
#L �0.63 �1.38 0.15 �1.25 �0.03
se 0.75 1.44 0.08 0.59 0.61

Panel M: Quarterly FF5 with nonscaled factors

Constant RVW SMB HML TERM RPREM

Parameters of the pricing kernel
#b 1.23 �0.05 0.00 �0.06 �0.21 1.25

se 0.52 0.02 0.02 0.02 0.11 0.78

Factor risk prices
#L 1.51 0.58 1.12 0.23 �0.06
se 0.79 0.42 0.41 0.51 0.10
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reports the model’s pricing errors along with the errors from the FF3 model as
a comparison. No size effect is apparent and Campbell’s model prices the small
growth firms better than the FF3 model. While a B/M effect is present in the
pricing errors of Campbell’s model, its magnitude is not large. Overall, the
pricing errors for Campbell’s model are not bigger than those of the FF3
model, while the latter model is constructed to price the size effect and B/M
effect. However, Campbell’s model fails the supLM test. Thus, the parameter
estimates may be unstable and should be used cautiously.
The last monthly models we report are FF3 with nonscaled factors and FF3

with factors scaled by JAN. FF3 is reported because it is so widely used, and
we want to examine how it prices the size and B/M effects, which it is
constructed to do. It does not pass the test of HJ-distance equal zero.
Parameter estimates for FF3 are presented in Panel G of Table 4. It is
somewhat surprising that only RVW and HML are important for the pricing
kernel, and they are also significantly priced risk factors. Panel E of Fig. 4
provides the pricing errors for FF3. The problem portfolios are the lowest B/M
with smallest and second smallest sizes, which are overpriced by the model.
Thus, the factor SMB cannot adequately capture the size effect in the
portfolios, and SMB is not significantly priced in the unconditional version
when risk prices are held constant.
The monthly FF3 with factors scaled by JAN is reported in Panel H of

Table 4. It passes the test of HJ-distance equal zero with a p-value of 0.101.
From the parameter estimates, RVW; SMB and SMB � JAN are important
factors for the pricing kernel. For the prices of risks, RVW; HML and SMB �
JAN are significant. This is consistent with the view that the size effect is
primarily a January effect as the prices of risks for RVW and HML are
essentially the same across the models without and with scaling by the January
dummy. As mentioned in the previous section, if the B/M effect occurred
mainly in January, and HML explained the B/M effect, HML would not be
priced outside January. Thus, the results tell us either there is still a significant
B/M effect outside of January or there are some other risks which can be priced
by HML. We also examine the pricing errors to see whether scaling by JAN
really improves on the performance of the FF3 model in an interesting way. In
the Panel E of Fig. 4, we find that scaling the FF3 factors with JAN actually
reduces the pricing errors by 0.2% for the smallest growth stocks. Since the
FF3 model already captures the B/M effect reasonably well, JAN does not
improve this dimension. Both models pass the supLM test.
The first quarterly model is the JW model. It marginally passes the test of

HJ-distance equal zero with a p-value 0.037. The parameter estimates are
presented in Panel I of Table 4. Only RLBR is statistically significant in the
pricing kernel. For the prices of factor risks, RLBR is also significant with a
positive sign. In addition, the price of market risk is marginally significant, but
RPREM is not priced in contrast to Jagannathan and Wang (1996). The pricing
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errors of the JW model are reported in Panel F of Fig. 4 together with the
quarterly FF3 model with nonscaled factors as a benchmark. Both the size
effect and the B/M effect are evident in the JW pricing errors, which range from
0.5% to 2% per quarter. These pricing errors are quite large compared to those
of the FF3 model. Thus, the quarterly JW model passes the HJ-distance test
not because it has small pricing errors but because it has larger standard errors.
Hence, our quarterly version of the JW model with nonscaled factors is not an
economically interesting model. It also fails the supLM test indicating that the
parameter estimates may be unstable.
The second quarterly model is Campbell’s model with nonscaled factors. The

test of HJ-distance equal zero has a p-value 0.016. Panel J of Table 4 provides
the parameter estimates, and as in the monthly models, the term premium is
important in the pricing kernel. Both market risk and term premium risk are
priced factors for the risk premiums. The pricing errors are reported in Panel G
of Fig. 4 together with the benchmark FF3. The pattern of the errors is very
similar to the monthly errors in Panel D. Campbell’s model improves on the
smallest growth portfolio, but it has an evident B/M effect. It also fails the
supLM test.
The third quarterly model is Cochrane’s model with factors scaled by the

cyclical element in lag GNP. The parameter estimates are given in Panel K of
Table 4. For the pricing kernel, both RINV and RINV �GNP are important,
and both have marginally significant prices of risks. This is consistent with
Cochrane (1996) who demonstrates the importance of residential investment.
The HJ-distance measure drops from 0.626 for Cochrane’s nonscaled factor
model to 0.559 for its scaled factor model. In all of the models discussed above,
the scaled-factor models perform better than nonscaled models in the sense of
HJ-distance, and we confirm that the scaling factors are economically
interesting by looking at the pricing errors and parameter estimates. However,
for Cochrane’s model, the improvement in HJ-distance does not actually come
from the improvements on pricing errors. This can be seen in Panel H of Fig. 4.
The pricing errors of the nonscaled model show a distinct pattern of size and
B/M effects. The scaled factor model shifts most of the pricing error upward by
0.5–1%. There is improvement only for the first portfolio. The smaller HJ-
distance for the scaled factor model arises because the additional free
parameters make it easier for the scaled-factor model to solve the minimization
problem with the particular weighting matrix. This is significant statistically,
but it is not interesting economically.
Panel L of Table 4 reports the quarterly Cochrane model with factors scaled

by JAN. Both JAN and NRINV � JAN are important for the pricing kernel,
and the same two factors also have significant prices of risks. By looking at
Panel H of Fig. 4, we find after controlling for the January effect, the pricing
errors are shifted downward by 1–1.5%, which is a big improvement for value
firms. The B/M effect is mitigated but still present. Thus we conclude that the
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improvement in HJ-distance arises from an improvement of pricing errors.
Both Cochrane’s scaled factor models are stable, and they both pass the
supLM test.
The quarterly FF5 model with nonscaled factors is provided in Panel M of

Table 4. It passes the test of HJ-distance equal zero with p-value 0.018. From
the parameter estimates, we find that RVW and HML are determinants of the
pricing kernel, as in the FF3 model, but the two macro factors, TERM and
RPREM are also significant determinants of the pricing kernel. The two macro
factors do not have significant prices of risks. The pricing errors from FF5 in
Panel I of Fig. 4 are almost the same as those in FF3. There are only small
improvements on the smallest growth portfolios. Unfortunately, the two
additional macro factors bring instability into the model as it fails the supLM
test.
There is one last issue to note. All of the models do well in pricing the

gross return of the T-bill. This implies that although the minimization
problem does not put a particularly large weight on the T-bill return, it does
not ignore it either. Others, such as Lettau and Ludvigson (2001b) and
Jagannathan and Wang (1996), only include stock portfolios and have big
estimates for the zero-beta rate. We estimate the zero-beta rate for each
model. For monthly models, the rate is around 0.4% per month; for quarterly
models, it is around 1.8% per quarter. We believe these estimates are more
reasonable.

4.4. Values of the multipliers

We noted above that the solution for the HJ-distance from the Null model
provides the least volatile element of the set of true stochastic discount factors,
M: From Eq. (9) we know that *m ¼ y� *l

0
R; and Eq. (10) provides the

estimated values of the Lagrange multipliers. The standard errors of the
Lagrange multipliers are found from Eq. (24). These values for the Null model
are presented in Table 5 for the monthly and quarterly data.
The Lagrange multipliers can be interpreted as portfolio weights on the

basic assets. They are the product of the HJ-distance weighting matrix and the
vector of average pricing errors from the model. As both the weights and
the errors differ across assets and because there is correlation across the
elements of the multipliers, the interpretation of the individual significance of
the multipliers is best done with caution. Nevertheless, for monthly data, we
find that portfolios 11,14,42, and 53 as well as the risk free return have
statistically significant multipliers when the individual coefficients are evaluated
at the 5% critical level. For quarterly data, these same portfolios plus
portfolios 41 and 54 are also important. The importance of these portfolios is
consistent with the observation that within each size quintile, there is at least
one large spread position in which one of the Lagrange multipliers is a large
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positive number and another one close by is a large negative number. For the
small firms, the portfolio positions indicate being long high B/M firms and
short low B/M firms. Summing within a size quintile reveals that one would be
primarily long the second and short the fourth size quintiles. Because the
spread positions are probably associated with a single source of risk, it appears
that there are essentially four sources of significant equity risk in these 25
portfolios.

Table 5

l for monthly and quarterly null models

The data are returns on the Fama-French 25 portfolios in excess of the T-bill rate and the return on

the T-bill. Monthly data are from 1952 : 01 to 1997 : 12; quarterly data are from 1953 : 01 to

1997 : 04: Portfolios are numbered ij with i indexing size increasing from 1 to 5 and j indexing book-
to-market ratio increasing from 1 to 5. The Lagrangian Multipliers, l’s, are defined in Eq. (10) and
their standard errors, se(l), are defined in Eq. (26). An asterisk indicates the parameter is significant
at the 5% level.

Monthly Quarterly

Portfolio l se(l) l se(l)

11 �6.35n 1.73 �5.42n 1.72

12 �3.83 2.41 �3.60 2.32

13 �1.75 3.27 �3.32 3.52

14 8.76n 4.24 10.02n 4.69

15 3.72 3.71 �2.45 4.24

21 �3.66 2.65 �3.93 2.69

22 �0.09 3.15 5.02 3.32

23 6.94 3.73 5.59 3.48

24 3.40 3.75 5.28 3.83

25 2.56 3.27 4.56 3.43

31 �2.75 3.17 �3.53 3.22

32 0.02 3.67 0.17 4.05

33 �3.72 3.87 �7.36 4.36

34 5.85 3.82 4.79 4.35

35 �0.29 2.71 1.92 2.58

41 6.92 3.62 9.90n 4.03

42 �10.59n 3.95 �11.97n 4.18

43 0.09 3.66 0.91 3.98

44 �0.67 3.10 �4.63 3.64

45 0.36 2.33 2.33 2.57

51 1.78 2.43 0.28 2.39

52 �0.25 3.11 1.21 3.15

53 5.65n 2.70 5.48n 2.77

54 �4.22 2.64 �6.21n 2.85

55 �0.30 1.67 �0.16 1.72

Rf �0.18n 0.02 �0.42n 0.06

COLUMBIA BUSINESS SCHOOL 42



4.5. Combining the factors of two models

An alternative way to compare models is to include the factors of several
models simultaneously into the model of the pricing kernel and perform an
exclusion test asking whether the second set of factors is necessary in the
presence of the first. This section performs a limited comparison because the
large dimensionality of the factors and scaled factor makes such a comparison
impossible.
In the analysis above, both the Campbell model and the Fama-French

three-factor model are reasonably successful. By including the two additional
FF3 factors, SMB and HML, in the pricing kernel of the Campbell model,
one can test whether they are significant additional determinants of the
pricing kernel. The results of this analysis are presented in Panel A of
Table 6. Notice that none of the individual coefficients is significant at the 0.05
level of significance, in strong contrast to the results of the individual models.
This is an indication of multicollinearity. Correlation across the factors also
makes the exclusion tests inconclusive. The p-value of the Wald test that the
parameters associated with SMB and HML are zero is 0.135 indicating that
these factors are unnecessary once the Campbell factors are present, but the
comparable test that the FF3 model does not need the four additional factors
of Campbell’s model has a p-value of 0.215. Thus, since the factors of the
respective models are significant when included individually, we can conclude
that the same basic information is captured in different ways by the two
models.
To avoid problems with multicollinearity, Campbell (1996) orthogonalizes

the factors and scales them to have the same variance as the market return. The
first factor is the market return, the second is the part of labor income that is
not explained by the market return, the third is the part of the dividend yield
that is not explained by the market return and labor income, and so on. When
we place the two Fama-French factors after the five Campbell factors, we ask
whether the parts of SMB and HML that cannot be explained by the Campbell
factors are significant determinants of the pricing kernel. The results are
presented in Panel B of Table 6.
The coefficients on RVW; DIV, TRM, and HML are all more than 1.5 times

their standard errors. In particular, even though HML is placed last in the
ordering of variables, its p-value remains 0.069. Thus, HML appears to add
some independent information to the pricing kernel over and above that
provided by the Campbell factors.
Panels C and D of Table 6 report the results of a hybrid model that uses

these four elements with orthogonalized factors. The hybrid model has the
smallest HJ-distance, 0.285, of any of the estimated models, and the tests
indicate no evidence against the model, except for the stability test which again
indicates potential problems with the model.
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The intuition of the Campbell model is that any variable that predicts the
market return in a multivariate setting is a potential factor that affects the
cross-section of asset prices. To determine whether HML arises as a risk factor
within this restricted context we estimated a vector autoregression of the four
factors. The results indicate that HML is not an important determinant of the

Table 6

Combining factors of Campbell’s model and the Fama-French three-factor model

The data are returns on the Fama-French 25 portfolios in excess of the T-bill rate and the return on

the T-bill. Monthly data are from 1952 : 01 to 1997 : 12; quarterly data are from 1953 : 01 to

1997 : 04: The factors are collected from Campbell’s model and FF3. We use Cholesky

decomposition to orthogonalize factors in Panels B and C. The parameter estimates, #b; are factor
prices defined in Eq. (3). The standard errors for #b are provided in the row of se. The p-value for the

test #b ¼ 0 is pð #b ¼ 0Þ: HJ-dist(d) is Hansen-Jagannathan distance. p-value for the test d ¼ 0
calculated under the null d ¼ 0 is pðd ¼ 0Þ: Max. Error is the maximum annual pricing error for a
portfolio with annual standard error of 20% under the assumption EðmÞ ¼ Eð yÞ: The standard
error for HJ-distance under the alternative hypothesis da0 is se(d ). The p-value of the optimal
GMM test is pðJÞ: The value of supLM statistics is supLM. An asterisk indicates the model fails the

supLM test at the 5% significance level. No. of para is the number of parameters.

Factors Constant RVW LBR DIV RTB TRM SMB HML

Panel A: Factors prices for the combined model ( factors are not orthogonalized )

#b �0.31 �0.02 �0.11 0.43 0.70 �0.38 �0.02 �0.06
se 1.03 0.02 0.33 0.27 3.33 0.26 0.02 0.03

pð #b ¼ 0Þ 0.76 0.35 0.74 0.11 0.83 0.14 0.37 0.07

Panel B: Factors prices for the combined model ( factors are orthogonalized )

#b �0.31 �0.05 �0.03 0.11 0.07 �0.10 �0.01 �0.03
se 1.03 0.01 0.07 0.06 0.07 0.06 0.01 0.02

pð #b ¼ 0Þ 0.76 0.00 0.61 0.09 0.27 0.12 0.46 0.07

Factors Constant RVW DIV TRM HML

Panel C: Factors prices for the hybrid model ( factors are orthogonalized )

#b 0.02 �0.05 0.09 �0.14 �0.03
se 0.95 0.01 0.06 0.06 0.02

pð #b ¼ 0Þ 0.99 0.00 0.12 0.02 0.11

HJ-dist(d) pðd ¼ 0Þ Max. error se(d) pðJÞ SupLM No. of para

Panel D: Summary statistics for the hybrid model

0.285 0.235 5.7% 0.058 0.144 192.736 5
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other three variables because the smallest p-value associated with the
coefficients on HML in any of the three equations was 0.336. The HML
equation also indicated that none of the other three variables is a significant
determinant of HML, although there is evidence of own serial correlation.
Thus, if HML is a risk factor, its importance must be traced to the
more general economic state variables of Merton (1973) rather than the
restrictions arising in Campbell’s model. Some support for this position is
provided by Liew and Vassalou (2000) and Vassalou (2000) who argue that
SMB and HML are risk factors that arise because of their ability to predict
future GDP.

4.6. Robustness

In all of the above results, we obtain parameter estimates and conduct tests
using nonscaled returns. To examine whether these models are robust, we
change the underlying assets from nonscaled returns to scaled returns, and we
investigate whether the parameter estimates obtained from nonscaled return
models (the first stage estimates) can price the scaled returns. We scale returns
with the term premium, the difference in yields between a 30-year government
bond and a one-year government bond. If a model is able to price the basic
assets (nonscaled returns), and it is specified correctly, it should be able to price
the scaled returns, which can be thought of as a set of managed portfolios in
which the manager invests different amount depending on the realization of the
term premium.
Table 7 provides the information on these experiments. We use the estimates

obtained from the first stage by optimal GMM, to calculate the test of the HJ-
distance equal zero for the scaled returns and the J-statistic for optimal GMM
for the new orthogonality conditions, as in Eq. (30). These p-values are denoted
p1 and p2: We also use the first-stage estimates of HJ-distance to calculate
second-stage HJ-distance tests, and the p-value is denoted p3: None of the
monthly models successfully prices the new assets.

5. Conclusion

This paper evaluates a number of asset pricing models proposed in light of
the anomalies uncovered in testing the CAPM. The models are compared on a
common set of returns: 25 size and book-to-market portfolios constructed as in
Fama and French (1993) for a sample period from 1952 to 1997. Average
excess returns across these portfolios are as low as 0.36% per month and
as high as 1.13% per month. Within a size quintile, higher book-to-
market portfolios have higher average returns. Within all but the lowest
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Table 7

Robustness test for nonscaled returns models

The tests are based on returns on the Fama-French 25 portfolios in excess of the T-bill rate and the

return on the T-bill, conditioned on the term premium, the difference in yields between a 30-year

government bond and a one-year bond. Monthly data are from 1952 : 01 to 1997 : 12; quarterly
data are from 1953 : 01 to 1997 : 04: The p-values are: p1; test of HJ-distance ¼ 0 using parameter
estimates from optimal GMM for corresponding nonscaled return models; p2; test of optimal
GMM over-identification using parameter estimates from optimal GMM for corresponding

nonscaled return models; p3; test of HJ-distance ¼ 0 using parameter estimates from minimizing

HJ-distance for corresponding nonscaled return models.

NULL CAPM CCAPM JW CAMP FF3 FF5

Panel A: Monthly scaled returns by TERM with nonscaled factors

p1 0 0 0 0 0 0 0

p2 0 0 0 0 0 0.001 0.003

p3 0 0 0 0 0 0 0

Panel B: Monthly scaled returns by TERM with scaled factors by IP

p1 0 0 0 0.002 0 0 0

p2 0 0.004 0 0.004 0 0.017 0

p3 0 0 0 0 0 0 0

Panel C: Monthly scaled returns by TERM with scaled factors by JAN

p1 0 0 0.001 0 0 0 0

p2 0 0.001 0.036 0.002 0 0.007 0.086

p3 0 0 0.075 0.004 0 0.001 0.001

NULL CAPM CCAPM JW CAMP COCH FF3 FF5

Panel D: Quarterly scaled returns by TERM with nonscaled factors

p1 0 0 0.014 0.002 0 0 0.002 0.003

p2 0.003 0.005 0.012 0.006 0 0 0.040 0.049

p3 0 0 0.006 0.001 0 0 0.001 0.002

Panel E: Quarterly scaled returns by TERM with scaled factors by lag GNP

p1 0 0.002 0.010 0.001 0 0 0.039 0.018

p2 0.001 0.017 0.015 0.008 0 0.001 0.361 0.495

p3 0 0.002 0.004 0 0 0 0.069 0.016

Panel F: Quarterly scaled returns by TERM with scaled factors by CAY

p1 0 0.001 0 0.005 0 0 0.001 0.001

p2 0.001 0.006 0.002 0.012 0 0.001 0.053 0.110

p3 0 0 0 0.003 0 0 0.002 0.006

Panel G: Quarterly scaled returns by TERM with scaled factors by JAN

p1 0 0.002 0.001 0.020 0 0.064 0 0.006

p2 0.015 0.020 0.011 0.103 0.017 0.236 0.032 0.216

p3 0.001 0.002 0 0.016 0 0.039 0.001 0.004
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book-to-market quintiles, average returns are generally decreasing in size. The
unconditional CAPM cannot explain these returns.
We consider only linearized versions of the models, and we evaluate the

models with both nonscaled factors and scaled factors, where the scaling
reflects either business-cycle movements or a January dummy. The models are
compared using the methodology of Hansen and Jagannathan (1997) who
recognize that the estimated distance between a model’s pricing kernel and the
true pricing kernel also is an estimate of the maximal mispricing of a portfolio
of the assets. We also evaluate the models using the optimal GMM test of
Hansen (1982). In general, we find little disagreement between the two tests.
Finally, we evaluate the temporal stability of the parameters using the supLM
test of Andrews (1993).
For monthly models with nonscaled factors, Campbell’s (1996) model is the

only model that passes the test of HJ-distance equals zero, and its estimated
HJ-distance is also smaller than that of the Fama-French ð1993Þ three-factor
model. Only three of the five factors in the model appear to be important: the
return on the market portfolio, the dividend yield, and the term premium. The
HML factor of the Fama-French model also has independent information over
and above that provided by these three factors. Unfortunately, the Campbell
model fails to pass the stability test. While the simulation study of Ahn and
Gadarowski (1999) provides some support that the small-sample distributions
of the HJ-distance test are reliable for our sample size, no comparable study of
the small-sample distributions of the stability test has been conducted. Thus,
additional study of the Campbell model is desirable. In particular, we evaluate
only the linearized version of the model.
Scaling the risk factors of the models with the cyclical element in industrial

production as measured by the Hodrick–Prescott ð1997Þ filter improves the
performance of several of the models. The CAPM, CCAPM, and Jagannathan
and Wang (1996) models all have significant coefficients on the scaled factors.
There is also evidence that pricing in January is significantly different than
pricing outside of January. For example, when the three factors of the Fama-
French ð1993Þ model are entered without scaling, only the market return and
the HML portfolio are significant risk factors. When the factors are also scaled
with a January dummy, the market return and the HML portfolio retain their
significance and the SMB portfolio is significant in January. This latter model
also passes the stability test.
With quarterly data, none of the models with nonscaled factors passes the

test of HJ-distance equal to zero. Nevertheless, the simulation results of Ahn
and Gadarowski (1999) suggest that these results should be interpreted with
care as the sizes of the tests appear to deteriorate in this sample size. Neither
scaling with the cyclical component of GNP, as measured by the Hodrick–
Prescott ð1997Þ filter, nor scaling with the consumption-wealth series of Lettau
and Ludvigson (2001a) has much of an influence on the results.
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Additionally, none of the models, either monthly or quarterly appears to be
robust in the following sense. When we estimate the parameters of the models
using the basic returns and ask the models to price the set of assets constructed
by scaling returns with the term premium, all of the models fail.
There are several directions in which this study could be extended. First, we

construct our estimates as if there are no transactions costs or short-sale
constraints in asset markets. Hanna and Ready (1999) find that transaction
costs reduce but do not eliminate the CAPM anomalies. Luttmer (1996) notes
that small transaction costs and short-sale constraints can have large
implications for the variability of implied stochastic discount factors. Recall
that Fig. 1 indicates that the HJ-distance methodology requires the models to
price large short-sale positions. Future research should be directed to
determine how transaction costs and short-sale constraints affect the estimates
of HJ-distance. Liquidity and market impact of trading individual assets may
also be important. Brennan et al. (1998) find that average returns on individual
equities are affected by trading volume, which is consistent with differences in
liquidity premiums across assets. Understanding how liquidity is priced and the
role it plays in portfolio returns is an open issue. The presence of these market
frictions implies that it may be difficult if not impossible to realize the returns
that certain trading strategies imply. It is only truly available returns that
require adjustment for risk.

Appendix A. Distribution of HJ-distance

The distribution of d is not standard under the assumption that the true d
equals zero. Jagannathan and Wang (1996) demonstrate that the distribution
of Td2 involves a weighted sum of n� kw2ð1Þ statistics, where n is the number
of assets and k is the number of estimated parameters. The weights are the
n� k nonzero eigenvalues of

A ¼ S
1=2
T W

1=2
T

0½In �W
1=2
T DT ðD0

TWTDT Þ
�1D0

TW
1=2
T

0�W1=2
T S

1=2
T

0; ðA:1Þ

where S
1=2
T and W

1=2
T are the upper-triangular matrices from the Cholesky

decompositions of ST and WT ; and In is the n-dimensional identity matrix. It
can be demonstrated that A has exactly n� k nonzero eigenvalues, which are
positive and are denoted by y1;y; yn�k: Then, the asymptotic sampling
distribution of the HJ-distance is

Td2-
d Xn�k

j¼1

yjvj as T-N; ðA:2Þ

where v1;y; vn�k are independent w2ð1Þ random variables. We simulate the
statistics 10,000 times to determine the p-value for the estimated HJ-distance.
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Appendix B. Robustness check with scaled returns

We first calculate parameter estimates from optimal GMM using the 26
returns as

#b ¼ arg min gT ðR; bÞ
0W * gT ðR; bÞ: ðB:1Þ

Then, under the null that #b is the true parameter, the set of scaled returns Rx
should be correctly priced with #b: We calculate the new J statistics as

J ¼ gT ðRx; #bÞ
0var½gT ðRx; #bÞ�

�1gT ðRx; #bÞ; ðB:2Þ

where

gT ðRx; #bÞ ¼
1

T

XT�1
t¼1

½ðRtþ1xtÞð #b
0
Ftþ1Þ � pxt�: ðB:3Þ

The J-statistic is distributed as a w2ðnÞ under the null. The degrees of freedom
are n because we have n orthogonality conditions, and we do not estimate any
additional parameters. The same argument applies to HJ-distance. With the
new orthogonality conditions for scaled returns, we need to calculate the new
d and the distribution of Td2: Since the first stage estimates by optimal GMM
are not very different from those obtained from HJ-distance estimation, we
choose to use the estimates from optimal GMM to calculate new HJ-distances
for the new scaled assets.
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