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Abstract. We study the dynamic mechanism design problem of a seller who repeatedly
auctions independent items over a discrete time horizon to buyers who face a cumulative
budget constraint. A driving motivation behind our model is the emergence of real-time
bidding markets for online display advertising in which such budgets are prevalent. We
assume the seller has a strong form of limited commitment: she commits to the rules of the
current auction but cannot commit to those of future auctions. We show that the cele-
brated Myersonian approach that leverages the envelope theorem fails in this setting, and
therefore, characterizing the dynamic optimal mechanism seems intractable. Despite these
challenges, we derive and characterize a near-optimal dynamic mechanism. To do so, we
show that the Myersonian approach is recovered in a corresponding fluid continuous time
model in which the time interval between consecutive items becomes negligible. Then we
leverage this approach to characterize the optimal dynamic direct-revelation mechanism,
highlighting novel incentives at play in settings with buyers’ budget constraints and
seller’s limited commitment. We show through a combination of theoretical and numerical
results that the optimal mechanism arising from the fluid continuous time model approximately
satisfies incentive compatibility for the buyers and is approximately sequentially rational for

the seller in the original discrete time model.
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1. Introduction

Consider the setting of a seller auctioning off a se-
quence of independent and perishable items to het-
erogeneous buyers facing budget constraints that limit
their overall expenditure over a given time horizon.
The presence of budgets couples the auctions buyers
participate in because paying for an item today re-
duces a buyer’s option value of waiting for poten-
tially better future opportunities. Therefore, offering a
sequence of one-shot static optimal auctions is not nec-
essarily optimal, and the question of how tosell insuch a
dynamic environment arises. Thus motivated, in this pa-
per, we study the problem of dynamic mechanism design
in the presence of budget-constrained buyers.

An important assumption when studying dynamic
mechanisms is the extent of commitment power
endowed to the seller. In a prototypical setting of
independent private valuations over time, when the
seller can commit to a dynamic mechanism up front,
she can typically achieve full surplus extraction be-
cause there is no information asymmetry at the time of
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contracting. For example, when budgets are abundant
and do notbind, the seller can run efficient auctions and
extract the entire surplus by charging appropriate par-
ticipation fees at the beginning of the horizon. Similar
ideas can be attempted when budgets are stringent. In
contrast, in this paper we assume the seller has a strong
form of limited commitment: she commits to the rules of
the current auction, but she cannot commit to those of
future auctions. Note that in this case, full surplus ex-
traction is not possible anymore, and if budgets are
abundant, the optimal dynamic mechanism consists of
running a sequence of Myerson optimal static auctions
(Myerson 1981). When budgets are stringent, how-
ever, the structure of an optimal mechanism is un-
known. The presence of budgets together with the
lack of commitment results in a novel and challenging
dynamic mechanism design problem. Our work extends
classic work in mechanism design by incorporating
aggregate budget constraints.

Our model formulation is also motivated by practice,
in particular, by online display advertising. In these
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markets, publishers sell impressions to advertisers us-
ing real-time auctions (see e.g., Muthukrishnan 2009,
Korula et al. 2015). For their part, advertisers exe-
cute marketing campaigns based on a predetermined
budget that extends for a fixed amount of time over
which advertisers participate in a large number of
such auctions. The budget constraints are typically
exogenously imposed, at least in the short run. Finally,
although these markets originated using second-price
auctions, they have typically evolved to become much
less transparent with respect to the auction rules. In
particular, publishers are not always committed to the
rules of the future auctions they will run (Yuan et al.
2013). Sequential auctions are also common in flower,
wine, and art markets (see for example, Ashenfelter
1989, van den Berg 2001). In the context of this type of
sequential auctions it may also be reasonable to expect
that each buyer faces a budget constraint that limits
her overall spending (Pitchik 2009). For example, art
museums have special yearly funds destined for the
acquisition of works of art (Dobrzynski 2012).

We now describe our model and main contribu-
tions in more detail. We consider the problem of a
risk-neutral seller auctioning items arriving sequen-
tially over a given time horizon. The seller has a cost
for each item she sells. Given the time horizons in-
volved in the main applications we have in mind
(weeks to a few months), the seller does not discount
future payoffs. There is a set of risk-neutral buyers,
each one endowed with a positive budget, which
constrains her total expenditure over all the auctions
she participates in. We assume buyers have private
values that are independent across items and buyers.
At every period, buyers learn their current valuations
but are uncertain about their value for future items.

We have purposely designed our model to be the
simplest possible extension of a classic setting to be
able to crisply highlight the specific effect that bud-
gets have on an optimal mechanism. In particular, we
have assumed the standard independent private valu-
ation model. We also assume that budgets and their
evolutions are common knowledge. As we discuss in
Section 1.1, assuming private budgets introduces signif-
icant challenges even in a one-shot static auction. Further,
we will see that even our “simple” dynamic model is
already a very rich model that will present significant
challenges in the analysis while yielding novel insights.

We provide a mechanism design formulation of the
problem in which the seller aims to maximize profits
subject to dynamic Bayesian incentive compatibility,
dynamic Bayesian individual rationality, and bud-
get feasibility. The seller is sequentially rational and
cannot commit not to reoptimize her choice in future
auctions. Further, we naturally restrict attention to
dynamic mechanisms that are Markov with respect to
the state of remaining budgets.

In our setting, payments impact remaining bud-
gets, and the dynamic incentive compatibility constraints
incorporate the option value of future opportunities
via continuation values, which are typically nonlinear
functions of the current state. As a consequence, the
celebrated Myersonian approach of using the envelope
theorem to express expected interim payments as a
linear functional of the allocation fails. Therefore, char-
acterizing the dynamic optimal mechanism for our base
model seems intractable.

Our main contribution lies in overcoming these
challenges. In particular, we derive and characterize
an easily computable near-optimal mechanism for
this class of problems in the sense that the mechanism
approximately satisfies incentive compatibility for
the buyers and is approximately sequentially rational
for the seller. To achieve this, a key building block is
the introduction of a fluid continuous time model
characterized by a set of Hamilton-Jacobi-Bellman
(HJB) equations that can be interpreted as repre-
senting a limit in which the time interval between
consecutive items offered becomes negligible (and
values, payments, and costs are appropriately nor-
malized). Notably, we show that in this regime one
recovers the Myersonian approach. Intuitively, when
the number of items is large, the payment in one
auction is small relative to the budget.' Hence, a first-
order Taylor expansion around the current state is a
good approximation, and the continuation values
become approximately linear. We show that this ap-
proximation is exact in the fluid continuous time model.
In turn, payments can be expressed as a linear functional
of the allocation, recovering the main tool underlying the
Myerson approach to characterize the structure of an
optimal mechanism. The solution is more subtle than the
static mechanism case, though, because it naturally in-
cludes value function derivatives that capture the bud-
gets” future opportunity costs.

The continuous time fluid model yields a concrete
prescription for the original discrete time model. We
develop a numerical approach to test its performance
and show through extensive experiments that the
mechanism is indeed near-optimal. Furthermore, we
establish a theoretical link between the fluid contin-
uous time model and the original discrete time coun-
terpart in the case of one buyer. First, we develop an
approach that leverages state-of-the-art results in partial
differential equations (PDEs) to show that such a sys-
tem admits a solution, and therefore, an optimal fluid
mechanism always exists. Second, we mathematically
prove that this prescription indeed becomes a near-
optimal best response in the discrete time model as
the number of auctions increases.

The fluid model, beyond offering a concrete pre-
scription, also leads to insights on the structure of near-
optimal mechanisms in such dynamic environments.
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In the mechanism, a given object is allocated to the bid-
der with the highest “modified virtual value,” pro-
vided that it is larger than the seller’s cost. A modified
virtual value is equal to the classic virtual value times
an “allocation factor”; these factors capture the dy-
namics introduced by budgets. To illustrate, in the
case of a single buyer, the optimal mechanism is a two-
tier auction that allocates the item whenever the report
is greater than or equal to a threshold value and charges
thebuyer a payment, which is lower than the threshold
value. The threshold and the payment change dy-
namically over time to balance the desire of the seller
to extract the budget with as few items as possible
with the threat of the buyer to not participate.

In summary, to the best of our knowledge, our paper
is the first in the literature that (1) studies a new class
of problems relevant to both theory and practice—
dynamic mechanism design when selling a sequence
of items to buyers who face a cumulative budget
constraint—and (2) shows the potential of a fluid
continuous time model and how it recovers the ability
to use an envelope approach and allows to obtain a
near-optimal prescription in the original discrete model.

The rest of the paper is organized as follows. Sec-
tion 1.1 positions the paper in the literature. Section 2
describes the discrete time stochastic model and solution
concept and formalizes the dynamic mechanism design
problem under limited commitment. Section 3 intro-
duces the fluid continuous time model, and Section 4
provides a sharp characterization of an optimal solution.
Section 5 connects the fluid and discrete models and
establishes through a combination of numerics and
theory the near-optimality of the fluid model pre-
scription in the discrete model. Section 6 concludes
with some final remarks. Owing to space consider-
ations, all proofs are presented in the supplemental
material.

1.1. Related Literature

In this section we discuss the connection of our work
to several streams of literature. First, our paper nat-
urally relates to problems of dynamic mechanism de-
sign. Pavan et al. (2014) and Kakade et al. (2013)
provide necessary and sufficient conditions for op-
timal mechanisms in large classes of environments in
which agents’ information changes over time. How-
ever, our model differs from theirs in two important
dimensions. First, they assume the designer can commit
to a dynamic mechanism up front. Second, in our model
the current state of bidders is determined by payments,
whereas in theirs it is determined by allocations. Lewis
and Yildirim (2002) derive an optimal mechanismin a
setting with learning by doing with two suppliers
when the auctioneer cannot commit to future auctions.
Although it also focuses on the limited commitment case,
in their setting the state is again determined by the

allocation and not by the payments. Under these dy-
namics, an envelope approach can be directly applied in
their stylized discrete time model.

A related stream of work including Vulcano et al.
(2002), Gallien (2006), Gershkov and Moldovanu
(2014), and Board and Skrzypacz (2015) studies dy-
namic pricing and revenue management problems
using dynamic mechanism design. In these models
the designer sells multiple items over a finite horizon
after which the items perish, introducing the option
value of waiting for better future opportunities for
the seller. In contrast, in our case, an item can only be
used in the current period, and the option value of
waiting arises at the buyer level. Akan et al. (2015)
use a mechanism design approach to characterize a
firm’s optimal screening strategy when consumers
learn their valuations for future consumption over
time. This line of work assumes that the seller has full
commitment power. Deb and Said (2015) study a
model in which consumers arrive over two time pe-
riods, and the firm cannot commit in advance to the
contractual terms it offers in the second period. In
dynamic pricing settings, the impact of the seller’s
inability to commit when facing strategic buyers
who optimally time their purchases has been studied
in Horner and Samuelson (2011) and Dilme and Li
(2019). Limited commitment also plays a critical role
in the Coase conjecture in which a monopolist selling
durable goods competes with future incarnations of
herself (see, e.g., Gul et al. 1986). Our model differs in
that goods sold are independent and perishable in-
stead of durable, and buyers are budget constrained
instead of unit demand.

Skreta (2006, 2015) study revenue-maximizing mech-
anisms in which the seller cannot commit not to pro-
pose a new auction if the object fails to sell in the
current auction. However, different from our work, in
these papers the seller auctions a single object, and
many of the difficulties in the analysis arise because
the revelation principle cannot be applied directly
owing to a “ratchet” effect. In this same line of work,
our paper is more related to that by Liu et al. (2019),
which also leverages a continuous time limit to charac-
terize the optimal mechanism (in their model, the seller’s
commitment power vanishes in this limit). Similar to
them, we do not attempt to formalize the exten-
sive form nor the equilibrium concept in the limit
model because there are unresolved conceptual issues
with these definitions in games for which actions are
updated continuously (see, e.g., Simon and Stinchcombe
1989, Bergin and MacLeod 1993, Al6s-Ferrer and
Ritzberger 2008).

There is a stream of papers that study auction de-
sign when selling a single item with financially con-
strained bidders (see, e.g., Laffont and Robert 1996,
Che and Gale 1998, Maskin 2000, Che and Gale 2000).
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In particular, Pai and Vohra (2014) characterize the
optimal auction for selling one item in the presence
of multiple budget-constrained buyers using linear
programming. The optimal mechanism when values
and budgets are both private is quite complex, involving
several pooling regions in which the highest bidder
may not win outright. Brusco and Lopomo (2008)
study the bidding equilibrium in two-unit simulta-
neous ascending-bid auctions when each bidder has
private information about her willingness to pay
and her budget. On its part, Borgs et al. (2005) and
Bhattacharya et al. (2010) study approximation al-
gorithms for designing revenue-optimal incentive-
compatible mechanisms in multiunit auctions with
budget-constrained bidders. These papers, however,
focus on static one-shot settings, whereas here we focus
on a financial constraint over a number of sequential
auctions. Finally, Benoit and Krishna (2001) consider a
model with two objects with common values in a
complete information setting and study the revenue
performance of different standard auctions.

Another related stream of work pertains to the study
of dynamic interactions of bidders under specific auction
mechanisms using approximate notions of equilibria.
Iyer et al. (2014) study such interactions when bid-
ders learn about their valuations over time. Balseiro
etal. (2015) and Gummadi et al. (2012) study budget-
constrained bidders in repeated second-price auctions.
None of these papers, however, study optimal mecha-
nism design. Finally, other studies, such as Nazerzadeh
etal. (2013), have also considered notions of asymptotic
incentive compatibility.

2. Model
2.1. Seller and Buyers
We consider the problem of a seller who has a num-
ber of perishable items arriving sequentially over a
given time horizon [0, T]. We first analyze a discrete
model in which there are N perishable items arriv-
ing at times 0,20, ..., N6 = T to sell sequentially. This
model is the natural extension of the single-shot auc-
tion to multiperiod auctions with budget-constrained
buyers. To naturally scale the problem with the num-
ber of items, we assume that values, payments, and costs
are scaled by the time period length 6. Given that the
only time points at which decisions are made are dis-
crete, we index time periods backward by n = N, ..., 1.

The seller is risk neutral, does not discount fu-
ture payoffs, and has a strictly positive cost c > 0 for each
item she sells.” At every period of time, the seller runs
an auction to allocate the item and determine pay-
ments among a set of buyers. The seller wishes to
maximize profits from selling the items over the ho-
rizon to the buyers.

There are K risk-neutral buyers, who are budget
constrained and remain in the market for the whole

time horizon. We index the buyers by k=1,...,K.
Buyer k is endowed with a positive budget By, which
constrains her total expenditure over the horizon.
The presence of budget constraints introduces inter-
temporal substitution because buyers should pon-
der the option value of future opportunities in their
decisions. At every period of time, buyers have inde-
pendent private valuations for the item for sale. Spe-
cifically, a buyer’s valuation for the item is drawn
independently (across bidders and time periods) and
at random from a cumulative distribution function
Fi(-) with density fi(-) and domain being an interval in
R,.* We denote Fi(v) =1-F(v). At every period,
buyers learn their current valuations but are uncer-
tain about their values for future items. Throughout
this paper, we make the standard assumption in the
mechanism design literature that for each buyer k,
the virtual valuation function ¢, (v) = v — F(0)/f¢(v) is
increasing in v. Examples of distributions satisfy-
ing this condition are uniform, exponential, truncated
normal, and Weibull, among others. Buyers have a
quasi-linear utility function given by the difference
between the sum of the values of items won minus
the payments made to the seller during the length of
the horizon. We summarize the buyer’s characteris-
tics by a vector (B, Fi(-)).

The number of opportunities N and the cost c are
assumed to be common knowledge. The buyers’ vectors
of characteristics are also assumed to be common
knowledge, and so are the budgets” evolutions.

2.2. Timing of Events

The timing of the events is as follows. Initially, buyers
arrive to the market at the beginning of the time
horizon, and their characteristics, together with the
length of the horizon, are publicly disclosed. Then the
following steps are sequentially repeated as a new
item becomes available for sale. First, buyers learn
their valuations for the current item, and then the
seller offers a mechanism to sell the current item. In
turn, buyers submit a report to the seller. The seller
publicly announces the outcome of the mechanism for
that item and the payments buyers should make to the
seller. Third, the item is transferred to the winner (if
any), payments are made, and budgets are updated.
We refer to the game associated with the sale of an
individual item as the stage game. We assume that
the entire history of auction outcomes is publicly
observed.

2.3. Stage Game

We restrict attention to direct revelation mechanisms,
which we then argue is done without loss of opti-
mality by the revelation principle. At each time period,
the seller chooses a stage mechanism m = (p,z) € Jl,
where we denote by .l the space of stage mechanisms
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(we use boldface for vectors and vector functions).
Buyers are asked to report their valuations, and the
space of reports R, =R, U {L}includes the element L,
which represents the case in which the buyer opts
not to participate in the mechanism. The mechanism
for the stage game is characterized by the pair of
functions (p,z), where p: RX — A is a probability
allocation function from the space of reports to
the probability simplex A 2 {q € RX : 5K g, <1} (and
hence at most one good is allocated), z : RX — RX is
the payment function from the space of reports to the
space of possible payments.” To sum up, given reports
w € RX, the function pi(w) determines the probabil-
ity that the item is assigned to buyer k, whereas the
function z(w) determines the payment buyer k must
make to the seller. We assume that when w, = L
(i.e., buyer k does not participate in the stage mech-
anism), buyer k never gets allocated the item and in
return pays nothing; in this case, pr(w) = z(w) = 0.

Further, we assume that if one buyer does not par-
ticipate in an auction, then transfers are not allowed at
all to any bidder; that is, if wy = L, then z_,(w) =0,
where z_(-) denotes the payments to bidders other
than k. Later we will consider mechanisms that are
incentive compatible and individually rational, hence,
in the optimal path all buyers will participate and bid
their own values truthfully. The previous assumption,
however, limits threats (outside the path being played)
that the seller can impose via payments to/from com-
petitors to incentivize a given buyer to participate.
We believe these threats are unreasonable and unreal-
istic. Our assumption eliminates them in a simple way,
allowing us to focus on our main purpose, which is
the applicability of the fluid formulation.®

2.4. Dynamic Game with Limited Commitment and
Revelation Principle

We assume that the seller is unable to commit to
future proposed mechanisms; she can only commit
to the mechanism in the current period. We impose
sequential rationality to reflect the seller’s inability to
commit. We also restrict attention to Markov strate-
gies with respect to the natural state given by the
vector of remaining budgets x € RX and the number
of items remaining for sale in the horizon n € N. The
restriction to these types of Markov strategies has
been used in related papers because of its behavioral
appeal and its simplicity (see, e.g., Lewis and Yildirim
2002, Pavan et al. 2014).

If we allow for general mechanisms for the seller
and strategies for the buyers and model the dy-
namic relation between the seller and buyers as a dy-
namic game, an optimal mechanism corresponds to
a Markov perfect equilibrium of such a game. By the
revelation principle, the payoffs for the seller in any
Markov perfect equilibrium can be achieved by a

direct revelation mechanism. Hence, the direct rev-
elation optimal mechanism remains optimal among
a larger class of mechanisms.”

2.5. Mechanism Design Problem and
Solution Concept

A Markov strategy for the seller is a dynamic mechanism
that specifies a stage mechanism for every possible
market state (x,n) € ° C RE XN, where the set of
feasible states is ¥° 2 []5,[0, By] x {1,...,N}. We de-
note such a dynamic mechanismas M : #° — ., where
M]x,n] = m € M is the stage mechanism for market
state (x,7). With some abuse of notation, we denote
by Z[x, n] = z the payment function and by P[x, n] = p
the allocation function for market state (x, ). We denote
by M? the set of all dynamic mechanisms.

Given a dynamic mechanism M € M? and an initial
state (x,11) € ¥°, when all buyers report their values
truthfully, budgets evolve according to the stochastic
process {x;}it; with dynamics x,.1 = x; — 6Z[x;, i](v;)
and initial state x, = x, where Z[x;, i](v;) is the vector
of payments in market state (x;, i) and value realiza-
tions v; = (v;x)i_;. We denote by EY,[~] the expecta-
tion with respect to this process and with respect to
present and future buyers’ valuations.

We denote the total seller’s profit from an initial
state (x,n) until the end of the horizon, when all
buyers report truthfully by

n K
0 > > (Zilxi, i1(vi) — cPi[x;, 1](vy))

i=1 k=1

mM™M(x,n) = ]Eyn

EM [Z;‘ 5(M[x; z‘])],

where the expectation is taken with respect to the
evolution of budgets when buyers bid truthfully
and the dynamic mechanism M is implemented, and
n: M — R is the expected seller’s profit functional
for a one-stage mechanism under truthful reporting.
That is, when the seller selects a stage mechanism
m € .l and all buyers report their value truthfully, the
seller’s profit per period is given by n(m) = X | E, -
[zk(v) — cpr(v)], where the expectation is taken with
respect to the buyers random values v. Therefore, the
second equation follows from the fact that values
are independent between themselves and indepen-
dent of the mechanism for the stage. Similarly, we
denote the total utility of buyer k from an initial state
(x,n) when all buyers report truthfully by

UM(x,m) = EM, [6 S (0Pl 1(v3) - Zilxo i1(9)
i=1

4

_ EM[ S b1 (M, 1)
i=1
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where we denote by 1 : M — R the expected buyer’s
utility functional. That is, when the seller selects a
stage mechanism m € .l, the expected utility per
period for buyer k when all buyers report their values
truthfully is given by ux(m) = Ey[oxpi(v) — zc(v)].

2.6. Backward Induction Characterization

Using the principle of optimality of dynamic program-
ming, we provide sufficient conditions that characterize
a direct revelation dynamic optimal mechanism M* € M°.
To simplify notation, we will drop the dependence on
the optimal dynamic mechanism M*, and with some
abuse of notation, we denote by Tl(x,n) =TIT™ (x, n)
the expected cumulative profit-to-go of the seller
from state (x,n) € ¥° under the optimal mechanism
M* when all buyers report their values truthfully.
Similarly, we denote by Ui(x,n) = UM (x,n) the ex-
pected cumulative utility-to-go for buyer k.

For all states (x,n), the optimal stage mechanism
M*[x, n] should be budget feasible and dynamic incen-
tive compatible (DIC). Budget feasibility requires that
budget constraints are satisfied for every buyer and
every report. DIC requires that buyers are better off
participating in the mechanism and reporting their
true values in the current stage given the continua-
tion values for future opportunities (and assuming
that all buyers report truthfully onward). More for-
mally, the optimal stage mechanism should satisfy, for
all (x,n) € ¥,

M’([x,n] € arg max om(m) + Ey|TI(x — 0z(v),n — 1)
me./

(1a)
Vk,weRK,  (1b)

v € argmax Oug(m, v, w)
L

s.t. Ozp(w) < xy,

+Ey_ |Uk(x — 6z(w, v_g),n — 1)| Vv, k,
(1)

where E, , [-] denotes the expectation with respect to
the values of buyers different from k, and with some
abuse of notation, we define the interim buyer util-
ity as

ue(m, v, w) = By, [opr(w, v_i) — zi(w, v_i)].

The objective gives the profit-to-go of the seller under
the mechanism, constraint (1b) imposes budget feasi-
bility, and constraint (1c) imposes dynamic incentive
compatibility. The DIC constraint implies that the
mechanism is individually rational in the sense that
every buyer has a (weak) incentive to participate
in each auction because reporting her value truth-
fully dominates reporting L. Additionally, by the
one-stage-deviation principle for sequential ratio-
nality (Hendon et al. 1996), DIC implies that bidding

truthfully in every item is a buyer’s best response
over all dynamic bidding strategies when all other
buyers report truthfully.

Additionally, the seller’s optimal value function
satisfies the following recursive equation:

I(x,n) = (M’ [x, n])
+ EV[H(X — 6Z'[x, n](v), 1 — 1)] @)

with boundary conditions Il(x, 0) = 0 for all budgets
x € R and T1(0,n) =0 for all n> 1. Similarly, the
buyers’ value function under the optimal dynamic
mechanism satisfies the equation

Ui (x,n) = dup(M[x, 1))
+ Ev[uk(x —sZn v, -1 3

We assume that buyers are excluded after they run
out of budget. In turn, the boundary conditions are
given by Ui(x,0) = 0, for all x € R, and U(x,n) =0,
for all n > 1, and x € RX with x; = 0.

2.7. Envelope Condition in Dynamic Setting

In the static mechanism design problem, the celebrated
optimal auction result of Myerson (1981) exploits the
fact that expected interim payments can be expressed
in closed form as a linear functional of the allocation;
in particular, this follows from the envelope theorem
applied to the incentive compatibility constraints. As
a result, in that setting, one may eliminate pay-
ments from the problem, and the objective becomes a
linear functional over the allocation, which can be
easily solved by optimizing point-wise over values.
Milgrom (2004) provides an extensive discussion of
the centrality of envelope theorems in mechanism
design for characterizing incentive compatibility, de-
riving revenue equivalences and ultimately character-
izing optimal mechanisms. Pavan et al. (2014) also
emphasize how an envelope condition plays a crucial
role in their analysis of dynamic mechanisms with
commitment.

2.7.1. Envelope Condition When the Payments Impact
the State. We next explain how this approach fails in
the present setting and highlight where it does so.
With some abuse of notation, we denote by U(v, w)
the interim utility-to-go of buyer k in state (x,n)
when she has observed a value of v, reports w to the
seller, the stage mechanism is m € ., all other buyers
report truthfully, and the dynamic mechanism M~
is used thereafter under truthful reporting. The latter
satisfies the following equation:

ﬁk(v, w) =Ey [60 pr(w, v_g) — 0zK(w, v_yi)

+ Up(x — 0z(w,v_y),n—1)|,
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where the argument of the value function on the right-
hand side denotes the budget evolution. The DIC con-
ditions imply that for the given state the stage mecha-
nism m € Jl should satisfy ljlk(v, V) = MaXypso ak(v, w).
Using the envelope theorem, we obtain

dUy(v,v)
“do = 0K, , [Pk(U/ V—k)],

and integrating, one obtains

mmw:mmm+§fﬁumWWMm.

Using our definition of the utility-to-go, we get that
the envelope condition corresponding to the DIC
constraint is given by

Ev ([ opi(0,v-1) = 24(0,v-1)
+64UAX—6duv%Ln—1ﬂ

= By | = 20(0,v-0) + 5 Ug(x = 62(0,v-),n = 1)

+ /Ov By, [pe(v, v_p)]dv. (4)

Note that in a static mechanism design problem, there
are no continuation values, and the envelope condition
can be used to derive a linear equation of interim ex-
pected payments on allocations. As mentioned pre-
viously, Myerson (1981) uses this equation to write the
optimal mechanism design problem as a linear pro-
gram on allocations only.

However, in the present case, the continuation
value Ui(x, n) is typically nonlinear in the budget x,
and hence one cannot solve for the payments as in the
static mechanism design problem, and the Myerson
approach fails. In turn, it seems intractable to derive
the form that an optimal mechanism would take (or
any insights on it) and how such a mechanism could
be implemented.

3. A Tractable Fluid Model
3.1. Toward a Tractable Formulation
As seen earlier, the key difficulty stems from the fact
that the payments affect the state, and the continuation
values may be nonlinear. We next provide a heuristic
argument showing that this issue disappears in a cor-
responding fluid continuous time model. In particular,
the Myerson approach based on the envelope condi-
tion can be applied again in such a setting. This will
motivate the formal introduction of such a model in
Sections 3.2 and 3.3. We will then leverage this fluid
approach to characterize the structure of an optimal
mechanism.

If continuation values were linear, then one could
again solve for the payments as a linear functional of

the allocation and as a result characterize the dynamic
optimal mechanism. Although continuation values are
nonlinear in general, intuitively, when the number of
items is large and the gains of trade per auction are small
relative to the budget (0 is small), then the payment in
one auction is small relative to the budget, and the
continuation values are approximately linear in the
region of achievable states from the current state. We
next provide a heuristic derivation of the envelope
condition in this case. Performing a first-order ex-
pansion of the discrete model buyer’s value function
around the current state for buyer k, we obtain

U(x —oz(w),n—1) ~ Up(x,n — 1) = VUp(x,n — 1)
-0z(w).

Applying this approximation to the envelope con-
dition (4) and canceling terms, we get that

Ev,k [Upk(vr V—k) - Zk(U, V—k) - quk(xr n-— 1) : Z(U/ V—k)]
~ Evik[—Zk(O, V—k) - quk(x/ n-— 1) : Z(O, V—k)]

+ /(;v ]Ev_k [pk(v, vk)]dv. (5)

Comparing the latter with the corresponding enve-
lope condition in the discrete model (4), we see how
the central difficulty disappears when the number of
items is large: in Equation (5), the resulting equation
is linear in the payments z(-), and now one can solve a
system of linear equations to obtain the payments as a
function of allocations and replace it in the seller’s
objective. With this heuristic argument, one recovers
the ability to use the main tool underlying the Myerson
approach to characterize the structure of an optimal
mechanism. One should note that in the present setting,
however, the system obtained is more complex than in
the one-shot mechanism design case because terms as-
sociated with the gradients of the value function are
present. This is to be expected, though; these terms
capture the dynamics of the problem, in particular, the
budgets” future opportunity costs.

We next introduce a fluid model in which an infinite
number of infinitesimal items are available to sell. In
such a formulation, the approximation in Equation (5)
becomes exact. We will show how to leverage the
fluid model to derive a near-optimal mechanism for
the original problem (1).

3.2. Fluid Model

In this section, we consider a continuous time model
in which bidders spend an infinitesimal amount of
their budgets in each auction. Here we have a fluid
of items arriving sequentially, and budgets are de-
pleted deterministically. We refer to this as a continuous
time fluid mechanism design problem. Heuristically,
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the fluid model can be interpreted as the limit of the
discrete model as 6 | 0 (in which the number of items
scales as T/6). Budgets are not scaled because values,
payments, and costs were assumed to scale with the
time period length 0.

Wenow consider the problem of a seller who has items
arriving continuously at unit rate to sell sequentially to K
possible budget-constrained buyers. The seller re-
ceives the items one at a time, and the sequence of
events is assumed to be identical to the one in the
discrete time setting. We consider a continuous time
formulation over a finite time horizon of length T. Time
is indexed backward by f € [0, T]. The seller wishes to
maximize revenues from the sequential sale of items
over the horizon to the buyers. We denote the budget
of buyer k in the fluid model by B;.

It is worth noting that we do not aim to formally de-
fine the extensive form game nor the equilibrium concept
because these concepts remain generally elusive in
games for which actions are updated continuously, as
in our continuous time model (see, e.g., Bergin and
MacLeod 1993, Alés-Ferrer and Ritzberger 2008). In
our model, even defining the extensive form game
remains elusive because to do so, the ordinary dif-
ferential equation that describes the budgets’ state
evolution must admit a unique solution for every
allowable strategy profile. This is hard to guarantee
except if strong assumptions over the set of allowed
mechanisms and budget evolutions are imposed,
such as Lipschitz continuity, which are not clear to
hold a priori (see, e.g., Basar and Olsder 1999).

Instead, we take as a starting point the HJB equa-
tions of the continuous time fluid model that we
informally derive. We will define a dynamic optimal
mechanism as a solution arising from these equations.
Such a solution can be thought of as a prescription
to be used in the discrete time model. In fact, we
will show in Section 5 that this prescription be-
comes near optimal and near DIC in the discrete
time model as the number of periods increases.®

3.3. Our Solution Concept: System of
HJB Equations

As before, a Markov strategy for the seller is a dynamic
mechanism that specifies a stage mechanism for every
possible market state (x,t) € ¥ = [[X [0, By] X R;. We
denote such a dynamic mechanism as M : ¥ — .,
where M[x,t] =m € Jl is the stage mechanism for
market state (x,f). We denote by M the set of all dy-
namic mechanisms. In the fluid model, the evolution
of budgets is dictated by a system of ordinary differ-
ential equations (ODEs) instead of a discrete time sto-
chastic process. Given a dynamic mechanism M € M
and an initial state (x,f) € &, the budgets x: [0,t] —
RX evolve deterministically according to the system

of ODEs X(s) = ex(M[X(s),s]) with initial condition
X(t) = x. In the latter, we denote by ¢ : M — R the
expected buyer’s expenditure rate functional under
truthful reporting; that is, e;(m) = Ey[z¢(V)].

Motivated by the argument developed in Section 2.7,
we define a direct revelation dynamic optimal mechanism
for the continuous time fluid model as the solution of
a system of coupled H]B equations. We provide an in-
formal derivation of the HJB equations in Appendix B
of the supplemental material. Let IT: ¥ — R be the
cumulative profit-to-go of the seller from state (x, t) €
& under the optimal mechanism M* when all buyers
report their values truthfully. Similarly, let Ui(x,t) :
¥ — R be the expected cumulative utility-to-go for
buyer k.

Suppose that the value functions I1(x, t) and Ux(x, t)
are differentiable everywhere. For all states (x, f), the
optimal stage mechanism M[x, ] should be budget
feasible and DIC. More formally, the optimal stage
mechanism should satisfy for all (x,t) € & (these are
the conditions analogous to (1a)-(1c) in the original
discrete time formulation)

M'[x,t] € arg max 7(m) — V,I1(x, t) - e(m) (6a)
me.
Yw e R if x; =0,

(6b)

v € arg max ug(m,v,w) — Vi Ui(x, t)
weR

s.t. zx(w) =0,

‘Ey_ [z(w,v_k)] Yo,k
(6¢)

where the objective (6a) imposes sequential ratio-
nality for the seller through the corresponding HJB
equation, constraint (6b) imposes budget feasibility,
and constraint (6¢) imposes dynamic incentive com-
patibility through the corresponding HJB equations.

Finally, the seller’s value function should satisfy
the PDE (which is the fluid continuous time coun-
terpart of Equation (2); see Appendix B of the sup-
plemental material)

%("f t) = n(M*[x, t]) — ViI1(x, t) - e(M*[x, t]),  (7)

with boundary conditions I1(x,0) = 0 for all budgets
x € RX and T1(0,t) =0 for all ¢>0. Similarly, the
buyers’ value function satisfies the PDE (which is
the fluid continuous time counterpart of Equation (3);
see Appendix B of the supplemental material)

0,

ot (X, t) = Mk(M*[X, t]) - quk(xr t) ' e(M*[X/ t])r (8)

with Uy(x,0) = 0 for all budgets x € RK and Uy(x,t) =
0 for all t > 0 and x € RX with x; = 0.



Balseiro, Besbes, and Weintraub: Dynamic Mechanism Design with Budgets

Operations Research, 2019, vol. 67, no. 3, pp. 711-730, © 2019 INFORMS

719

4. Solution of HJB Equations and

Economic Insights

In this section, we first characterize the solution of the
system of coupled H]B equations and via its structure
provide economic insights regarding the dynamic op-
timal mechanism in the continuous time fluid model.
Then we provide further insights using numerical ex-
periments in the case of multiple buyers and additional
analytical results in the case of a single-buyer.

4.1. Characterization of HIB Equations Solution
First, we characterize the solution of the coupled HJB
equations under the assumption that the value functions
are well behaved.

Definition 1. The value functions I1,U: ¥ — RX are
said to be well behaved if for every state (x, f) with >0
(i) they are differentiable for the buyers with positive
budget at the state X ={k=1,...,K: x>0}, (ii) the
Jacobian matrix DUy, satisfies that I+ DUJy, is a non-
singular matrix, and (iii) (1 — V,IT}s;)(I + DUJ)™" > 0.

We later present numerical evidence that these
conditions are typically satisfied in instances of in-
terest. We have the following result.

Theorem 1 (HJB Equations Solution Structure). Let 1 =
(1= V,I1ly:)(X + DUly)'. Additionally, suppose that the
wlue functions T, U:¥ — R are well behaved and

satisfy

0 B +
3 = | (naxtroo =)’} "
5% =E, [1 {nkqbk(vk) > max {c, lrén]{a\i T]i(P,-(Uz‘)}}
Fi(vy)
ek for k € %, (9b)

and Ui(x,t) = 0 for k ¢ I, with boundary conditions as
before. Let M*[x, t] = (P*[x, t], Z*[x, t]) be given by

Pix H(v) = Hoe > ye(v)},  k=1,... K,

Zix, )(v) = > aPi[x, t1(v)yi(v-i), k=1,...,K
iel

where we denote by yi(v_x) = inf {v (kP (V) > maxeyk -
1n:p,(vi), Nkp,(v) > c} the smallest value for the kth buyer
that wins against reports v_y from the competitors, and
A = (ay) = (I+ DUy "

Then the functions T1,U, together with dynamic mech-
anism M, satisfy HJB equations (6)—(8).

All proofs are available in the supplemental mate-
rial. We briefly describe the main steps of the proof of
Theorem 1. In this result, we leverage the continuous

time fluid formulation to adapt the Myerson approach
(Myerson 1981), which involves solving for payments
as a linear functional of the allocation and then refor-
mulating the seller’s optimization problem. In partic-
ular, building on the intuition outlined in Section 2.7, we
show that in the fluid model the envelope condition
yields an equation on payments and allocations that
is linear in the former (see Equation (C-10) in the sup-
plemental material). Using this expression to replace the
seller’s objective function results in an objective that,
for given value functions’ derivatives, only depends
linearly on the allocation and the payment of the
lowest type (see Equation (C-12) in the supplemental
material). This objective function can then be opti-
mized point-wise to characterize the optimal allocation
rule. In turn, we first show that when the value func-
tions satisfy the conditions in the statement, the mech-
anism in the statement is optimal at any given state;
that is, it is an optimal solution of problem (6). We
then show that evaluating HJB Equations (7) and (8) at
this optimal mechanism yields Equations (9a) and (9b)
in the statement. Thus, the value functions and mecha-
nism in the statement satisfy HJB Equations (6)—(8).
To highlight in a simpler setting the economic in-
sights, it is helpful to specialize the preceding result
to the case of a single buyer, in which case we obtain
a sharper characterization in quasi-closed form. In
addition, we later mathematically prove that in the
case of a single buyer, the value functions are indeed
well behaved. In the following, we denote by y* =
max(y, 0) the positive part of a number y € R.

Corollary 1 (HJB Equations Solution Structure for Single
Buyer). Suppose that there is a single buyer. Let n(x,t) =
(1 = TT(x, 1))/ (1 + Uy (x, t)). Suppose that there exists value
functions IT,U:R, x[0,T] = R that are well behaved
(differentiable and satisfying 0 < TT(x,t) < 1, Uy(x,t) >0
for x>0 and t>0) and satisfy

IIi(x, t) = B[ (n(x, Hp(v) — o) *],

Us(x, 1) = Eo[1{n(x, H(v) > c}F(v)/f(v)],

for all x>0 and t >0 with boundary conditions T1(x,0) =
U(x,0) = 0 for all x >0 and T1(0,) = U(0,t) = 0 for all
t > 0. Let M*[x,t] = (P*[x, t], Z*[x, t]) be given by
Plx, t](v) = 1{o > r(x, )},
r(x, t)
1+ Uy(x, 1)

(10a)

(10b)

Z'[x, t](v) = o> r(x, b},
where the threshold value is given by r(x,t) = ¢!
(c/n(x, t)). Then the functions I1, U, together with dynamic
mechanism M*, satisfy H|B equations (6)—(8).

First, we discuss the single-buyer result. Note that when

the budget is appropriately large, the derivatives of the
value functions with respect to the budget are zero, and
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n(x,t) = 1. Thus, the auctions are effectively decou-
pled, and the dynamic optimal mechanism imple-
ments the static Myerson optimal auction with
reserve ¢~ (c) for every item. Now, when the budget
is stringent, dynamics play an important role in the
optimal mechanism, as characterized by the corol-
lary. The optimal mechanism is a two-tier auction that
allocates the item whenever the report is greater than
or equal to a threshold value of r = ¢~ (c/n(x, t)), where
n(x,t) = (1 = T(x, ))/(1 + Ux(x, ) isan allocation factor,
and charges the buyer a payment of r(x, £)/(1 + Uy(x, t))
whenever the item is allocated. Notably, the buyer’s
payment is lower than the threshold value in the
optimal dynamic mechanism. Additionally, note that
both the threshold and payment are state dependent.

To better understand the intuition underlying the
two-tier structure, consider the case of a stringent
budget, for which, if the seller would implement the
static Myerson optimal auction for every item, the
buyer would run out of budget before the end of
the horizon. In this case, the seller could implement
the Myerson auction until the buyer would deplete
her budget. One can show that the seller would have
an incentive to unilaterally deviate from such a mech-
anism. In particular, the seller has an incentive to in-
crease the reserve price so as to deplete the budget of
the buyer by using as few items as possible. However,
if the payment when the item is allocated is too high,
the buyer can always decide, for example, to wait and
not participate until the seller applies the Myerson
auction close to the end of the horizon (given the seller’s
lack of commitment power). The seller, however, does
not have an incentive to wait to implement Myerson
later and would prefer to trade early.'” The optimal
dynamic mechanism in Corollary 1 aims to balance
the desire of the seller to extract the budget with as
few items as possible with the threat of the buyer to
not participate. In particular, the two-tier mechanism
exposes the buyer to all items, but the buyer only
acquires those that are very valuable for her (above
the threshold value). The payment is smaller than the
threshold, so the buyer has an incentive to report
truthfully.

We note that the mechanism in Corollary 1 can also
be implemented via a second-price auction with dy-
namically adjusted reserve (or, alternatively, a dynamic
posted price mechanism). Here the seller sets the posted
pricetor(x,t)/(1 + U,(x, t)), and, in turn, the buyer will
shade bids to v/(1 + Uy(x,t)), where v is her value.
Thus, the buyer wins the item when her value satisfies
v>r(x,t) and pays the posted price r(x, t)/(1 + U(x, 1))
in the case of winning, which results in the same al-
location and payment as before.

Theorem 1 provides a generalization for multiple
buyers. Similar to the earlier discussion, when budgets
are ample for all bidders and do not play a role, the

derivatives of the value functions are zero and 1, = 1 for
every buyer k. In this case, as expected, the Myerson
optimal auction is implemented for every item. In
general, when budgets might be stringent, under the
optimal mechanism, a given object is allocated to the
bidder with the highest modified virtual value nyp,(vy),
when the latter is larger than the seller’s cost c. The
allocation factors ny capture the dynamics introduced
by budgets. Our numerical experiments suggest that
typically buyers with lower budgets are assigned
lower allocation factors, leading their bids to be
ranked relatively lower. This prevents a buyer with a
low budget from winning too often and depleting her
budget before the end of the horizon, thus main-
taining competition throughout the horizon.

In terms of payments, when no value is above the
buyer-specific threshold value ¢;'(c/n), the item is
not allocated, and no transfers are made. When buyer
k is the winner, she pays auyr(v_x), where y(v_y) is
the minimum report that wins against reports v_j
from the competitors. The payment factors ay are
typically less than or equal to one and nondecreasing
with time. A similar intuition as that discussed for the
single-buyer case applies: they provide a discount
to the buyers to incentivize them to report truthfully
and participate in early auctions. Additionally, every
losing buyer i # k pays a fraction of the winner pay-
ment given by a;yk(v_r). These cross terms capture
the externality on losing buyers’ utilities associated
with the winning buyer’s budget decreasing after
paying for the item. For example, the optimal mechanism
takes advantage of the fact that a losing buyer might
be better off when the winning buyer’s budget de-
creases and charges this losing buyer a payment pro-
portional to the winner’s payment (a;. > 0). Conversely,
when a losing buyer is worse off when the winning
buyer’s budget decreases, the mechanism needs to
provide monetary incentives for this losing buyer to
bid truthfully and participate in the auction (a; <0).
We will later show via numerical experiments that for
multiple bidders, both cases can arise. More broadly,
in the next subsection we provide further results
about the structure of the optimal mechanism. First,
we provide an existence result for the case of a
single buyer.

4.1.1. Existence of a Solution. We now show that
Equation (10), which characterizes the fluid optimal
dynamic mechanism, admits a solution in the case of a
single buyer. We introduce the following assumption.

Assumption 1. The following hold:

i. The distribution of values has compact support [0, 7],
where D> c.

ii. The distribution of values has a continuously dif-
ferentiable density f(v) such that f(v) >0 for all v € [0,7].
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iii. The inverse virtual valuation Y(y) = ¢~ (y) is twice
differentiable with Lipschitz derivatives. The derivative
satisfies ¢’ (y) >0 for all y > 0.

iv. The inverse virtual valuation satisfies ¢’(y)(1+

V') + - Y)Y (y)>0 forall y > 0.

The first two assumptions are technical and are im-
posed to simplify the analysis. The third assumption
imposes that the inverse virtual valuation function is
twice continuously differentiable and strictly increasing.
Assuming that the inverse virtual valuation is increasing
is equivalent to the typical assumption in the mechanism
design literature that the virtual valuation is increas-
ing. The fourth assumption controls the curvature of
the inverse virtual valuation function. This condition is
a common assumption in the literature on PDEs that
we use to prove the next existence theorem (see Evans,
2010, p. 626). A sufficient condition for this assumption
to hold is that the inverse virtual valuation function is
concave. These assumptions are not very restrictive and
are satisfied by distributions such as uniform, truncated
exponential, truncated normal, truncated Pareto, and
truncated Weibull, among others.

The next result shows that an optimal mechanism
always exists in the case of a single buyer.

Theorem 2 (Existence). Suppose that Assumption 1 holds
Then, the system of coupled PDEs in the statement of
Corollary 1 admits a well-behaved solution. In particular, the
solution satisfies 0 < T1,(x,t) <1 and U(x,t) > 0 for all
x>0 and t>0 and the HJB equations (6)—(8).

It is important to note that the existence of solutions
(let alone characterization of such solutions) of nonlinear
systems of PDEs is notably hard to show in general (see,
e.g., Evans 2010). Theorem 2 shows that the system of
coupled HJB Equations (6)—(8) admits a solution by
transforming the system of PDEs into a hyperbolic
system of conservation laws and exploiting the theory
of rarefaction waves. The proof is constructive and
provides an efficient procedure to determine the solution
by solving a system of ODEs. The extension of existence
to multiple buyers seems at this stage to be beyond the
state of the art in the analysis of systems of PDEs. As in
the case of a single buyer, with multiple buyers, the
PDEs can also be transformed to a hyperbolic system of
conservation laws, but little is known about leveraging
this for existence because the state is multidimensional
(Bressan and Shen 2004). However, in our numerical
experiments with multiple buyers, the computational
procedure we used always found a solution to the
system of PDEs, which is reassuring.

4.2. Further Economic Insights and

Numerical Experiments
In this section, we provide further economic insights
derived from the solution of the HJB equations. We
start with the case of a single buyer for which we are

able to provide analytical results. Then we provide
numerical results for the general case.

4.2.1. Single-Buyer Problem. With some abuse of ter-
minology, we refer to the equilibrium path to the ac-
tual evolution under the direct revelation dynamic
optimal mechanism. We study the behavior of the
direct revelation dynamic optimal mechanism along
the equilibrium path. Let y(x, t) £ TT(x, t) and u(x, t) =
U.(x,t) be the seller’s and buyer’s marginal pay-
off for an additional unit of buyer’s budget, respec-
tively. We refer to these quantities as the shadow
prices. The expenditure rate at state (x,t) under the
optimal mechanism is given by e(x, t) = E,[Z*[x, t](v)] =

r(x,t)
1+u(x,t)

path evolves according to

E(r(x,1)), and the budget along the equilibrium

r(x, )/ (1 + p(x, H)E(r(x, 1), (11)

with the initial conditions X(T) = B. Lemma C.3 in the
supplemental material shows that this ODE always
admits a unique solution. In addition, in Appendix C.3
of the supplemental material we show that the seller’s
shadow price y(t) £ y(X(t), t), thebuyer’s shadow price
() = p(x(t), 1), the threshold value r(f) = r(x(t), t), and
the payment (t)/(1 + u(t)) along the equilibrium path
are nondecreasing in t; that is, they are nonincreasing
as time progresses toward the end of the horizon
(recall that t represents time to go). Further, we show
that the threshold value and payment along the
equilibrium path satisfy r(t) > 11%) > (c); that is, the
threshold value and the payment are never lower than
the Myerson optimal reserve price 1(c) throughout the
time horizon.

Figure 1(a) illustrates a typical equilibrium path when
budget is abundant, whereas Figure 1(b) illustrates a
typical equilibrium path when budget is stringent. We
observe that when the budget is stringent, the threshold
value and payments are dynamic over the time horizon
and that the gap between the two can be substantial. The
seller cannot charge too high a payment to ensure that
the buyer is willing to participate in the auctions from
the start of the horizon.

4.2.1.1. Budget Depletion on the Equilibrium Path. The
following result shows that there are two distinct re-
gimes for the optimal mechanism. When the initial
budget-to-time ratio is above a certain threshold, the
optimal dynamic mechanism is equivalent to a re-
peated application of the static Myerson optimal
auction without budget constraints. When the initial
budget-to-time ratio is below the same threshold, the
shadow prices (t) and y(f) are strictly positive until
some time #y >0, and from then on the seller imple-
ments the Myerson auction.
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Figure 1. (Color online) Equilibrium Paths Under the Fluid Optimal Mechanism M* in the Case of a Single Buyer
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Notes. Values are U0, 1], the seller’s cost is ¢ = 0.25, and the horizon length is T = 10. In the left figures, the initial budget is abundant (B/T > py),
and the seller offers the static optimal auction with reserve price ¢(c). In the right figures, the initial budget is stringent (B/T < py), and the seller
offers a dynamic two-tier auction until time fy, and the static optimal auction with reserve price 1(c) from then on.

Proposition 1. Let po = (¢(c) + ci(c))E(y(c)) be the
threshold budget-to-time ratio, and let ty = sup{t € [0, T] :
u(t) = y(t) = 0} be the first time that the shadow prices are
zero. Then the following holds

1. If B/T > po, then ty = T. .

2. If B/T <py, then ty > T(BP/—OT)E for some a € (0,1)

independent of the initial state. In addition,

3. The budget never depletes before the end of the ho-
rizon; that is, X(t) >0 for all t > 0.

4. The ratio of budget to time remaining along the
equilibrium path p(t) = X(t)/t is decreasing in t, that is,
is increasing as time progresses toward the end of the
horizon.

The result highlights several interesting properties
of the optimal dynamic mechanism that we explain
next. A key feature of the dynamic optimal mecha-
nism is that the buyer gets exposed to all items; to
achieve this, the budget must never be depleted (part 3
of the proposition), and therefore, the Myerson op-
timal static auction is always implemented toward
the end. The latter is reflected in part 2 of the prop-
osition, which shows that multipliers become zero in
the interval [ty 0]. Furthermore, consistent with the
previous properties, the buyer becomes less budget

constrained over time (part 4). An interesting feature
is that the budget never gets depleted. We would like
to emphasize that this is not a consequence of the
assumed differentiability of the value functions in the
fluid model. In numerical experiments in the discrete
time model (without differentiability assumptions im-
posed), we find that budgets are not depleted at the end
of the horizon under the optimal mechanism either.

To understand better the intuition behind these
results, consider a single buyer with budget-to-time
ratio eg = P(c)F(Y(c)). In this case, if the Myerson
auction is applied throughout the horizon (and the
buyer bids truthfully in every auction), the budget
would be depleted exactly at the end of the horizon.
This would be the seller’s optimal selling strategy
if she would run second-price auctions and could
commit to the reserve price over the entire horizon.
However, in our setting with limited commitment,
this strategy cannot be sustained, as suggested by part 1
of the proposition because py>ep. One can actually
verify that this mechanism does not satisfy the DIC
constraint because the buyer has incentives to shade
his bids and underspend, so in the future he is less
budget constrained and his future utility improves. In
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fact, with a higher budget-to-time ratio, owing to the
seller’s lack of commitment power, the seller will offer
lower prices and lower reserve thresholds. The seller is
only able to offer the Myerson optimal static auction
when the buyer is “sufficiently” budget unconstrained.

Finally, it is interesting to observe that in the case
¢ = 0 “waiting” and then implementing, the Myerson
auction is an optimal dynamic mechanism."" When
c =0, the seller is only concerned with extracting
the buyer’s budget without any consideration for
the number of items sold to her. Implementing the
Myerson auction for a fraction of the horizon achieves
this goal. It is interesting to observe that the casec = 0
is degenerate in that there are multiple optimal mech-
anisms. For example, implementing the static Myerson
auction until the budget depletes and then offering the
items for free to the buyer (which yields much higher
utility to the buyer) is also optimal.

4.2.2. Multiple Buyers. In this section, we solve the
HJB equations for multiple buyers numerically via
finite differences and study the equilibrium paths for
different initials budgets.

4.2.2.1. Setting. We consider the case with K = 2 buyers
with values distributed as UJ[0,1], the seller’s cost

is ¢ = 0.5, and the horizon length is T = 10. We solve
the HJB equations in the domain [0, B]?> x [0, T],
where B =2.5. We discretize budgets by setting a
uniform grid with 25 points and discretize time by
setting a uniform grid with 1,000 points. We observe
that the value functions are well behaved at every
point of the grid, in the sense that the matrix I + DU
is nonsingular and the allocation factors satisfy n > 0.

4.2.2.2. Equilibrium Paths and Allocations. Figure 2
shows the equilibrium path of budgets when initial
budgets are identical for the buyers and equal to
By = B, = 2. Here the equilibrium is symmetric: both
buyers are offered the same mechanism at each point
in time, and budgets deplete at the same rate. The item
is allocated to the buyer with the highest value whenever
that value is higher than the dynamic threshold ¢~ (c/n).
As in the case of one buyer, when initial budgets are
stringent, the optimal mechanism uses an allocation
factor 1 <1 to prevent buyers from depleting budgets
before the end of the horizon and then switches to the
Myerson auction closer to the end. In our numerical
simulations, we find that, as in the case of one buyer,
budgets are never totally depleted. Similarly, the
marginal utility of an additional unit of a buyer’s
budget ‘;%f is nonnegative and decreasing, because

Figure 2. (Color online) Equilibrium Paths Under the Fluid Optimal Mechanism M in the Case of Two Buyers with Symmetric
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budgets become relatively less stringent with time.
Interestingly, the marginal utility of an additional
unit of a competitor’s budget ‘%k is initially positive
when the budget-to-time ratio is small, later negative
as the budget-to-time ratio increases, and finally zero.
We discuss these effects later in this section.

Figure 3 shows the equilibrium path of budgets
when buyer 1 (the low buyer) has an initial lower
budget of By = 1.5 and buyer 2 (the high buyer) has an
initial higher budget of B, = 2.5. Here the low buyer
is assigned a lower allocation factor than the high
buyer, that is, 1 < 15, leading to the high buyer’s bids
being ranked higher. This prevents the low buyer
from winning too often and depleting her budget
before the end of the horizon, thus maintaining
competition throughout the horizon. As expected,
the marginal utility of an additional unit of a buyer’s

budget % is larger for the low buyer because she is

more budget constrained. Interestingly, the marginal
utility of an additional unit of a competitor’s budget
ot
ox;
high buyer, which implies that the low buyer is better
off when her competitor has an even larger budget
and that the high buyer is better off when her com-
petitor has an even smaller budget. We discuss this
effect at the end of this subsection.

is positive for the low buyer and negative for the

4.2.2.3. Payments. In terms of payments, recall that
when buyer k is the winner, she pays ayx(v;), where
yi(vr) = ¢ (max(ni,(v:),¢)/ne) is the minimum re-
port that wins against reports v; from her competitor.
Additionally, the loser i pays a fraction of the win-
ner payment given by a;y(v;), where the off-diagonal
payment factors ay are typically small compared with
the diagonal terms a. In the symmetric case, we have
that yx(v;) = max(v;, ¢%(c/n)), and thus, the winner’s
payments have a second-price auction structure
modulo the payment factors A = (4;;). As in the two-
tier mechanism in the case of one buyer, the diagonal
payment factors ay are less than or equal to one and
nondecreasing with time. These provide a discount
to the buyers to incentivize them to report truthfully
and participate in early auctions when budgets are
stringent.

When buyers have different initial budgets, we
observe that the low-budget buyer is given a deeper
discount, that is, 411 <a;. Additionally, for the low-
budget buyer the off-diagonal payment factor is
negative ajp <0, whereas for the high-budget buyer
the off-diagonal payment factor is positive a1 >0

(even though both factors are close to zero). Because
o
o
competitor has a larger budget, and thus the seller

>0, the low-budget buyer is better off when her

Figure 3. (Color online) Equilibrium Paths Under the Fluid Optimal Mechanism M" in the Case of Two Buyers with
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rewards the low buyer when the high buyer wins the
1tem and depletes her budget. Conversely, because

%L <0, the high buyer is better off when her com-
petltor has alower budget, and thus the seller charges
the high buyer when the low buyer wins the item and
depletes her budget.

To understand why the low buyer is better off when
her competitor has a larger budget, we first observe that
when a competitor has a larger budget, there are two
effects. First, because the low buyer becomes “weaker,”
her allocation factor in the optimal mechanism increases
to even out the competition. As a consequence, the low
buyer’s effective threshold goes down, and in iso-
lation, she would win more often and pay less when
she wins. Second, because the competitor has more
budget to spend, the competitor’s allocation factor
increases as well, and through this effect, the low
buyer wins less often and pays more when she wins.
The overall effect is a combination of these two, and
the net effect on flow utility depends on which of these
effects dominates. As we saw earlier in our numerical
results, the first effect is stronger when the compet-
itor has a relatively larger budget, and in this case, it
dominates the second.

5. Near Optimality in the Discrete Model

In this section, we aim to connect the optimal mecha-
nism in the fluid continuous time model to the original
discrete problem we initially laid out in Equation (1).
In particular, in Section 5.1, we first define the notions
of approximate incentive compatibility for the buyers
and approximate sequential rationality for the seller.
In Section 5.2, we develop a numerical framework to
show that the prescription obtained from the con-
tinuous time fluid model is approximately incentive
compatible and approximately sequentially rational
in the discrete time model. Finally, in Section 5.3, we
establish theoretically such results for the case of a
single buyer.

When attempting to establish the connection above,
we note that the optimal mechanism M* from Theorem 1,
however, is not guaranteed to be budget feasible for
every sample path of the discrete model. Thus mo-
tivated, we introduce the adjusted mechanism M[x, t] =
(P[x, t], Z[x, t]) given by

Pilx, t](v) = H{oe > ye(vi)},

Zk [X, i’](V) = min { Z aklyl(v—l)P [X t](V)}

k=1,...,K,

ieJt
k=1,...,K,

for all v € RX, where we denote by yx(v_¢) = inf {v:
kP, () > maxieg\k 1:P,(v;), kP, (v) >c}  the smallest
value for the kth buyer who wins against reports
v_y from the competitors, and A = (ay;) = (I + DUJy,) .

Addmonally, if vy =1 for some buyer k, then
Pelx, t](v) =0, Ze[x, t](v) =0, k=1,...,K. Note that
the modified mechanism coincides with M* when-
ever the budgets of buyers are not too small. The
mechanism for the discrete stochastic model is given
by setting M{x, i] = M[x, t;], where t; = 6i.

5.1. Approximate Incentive Compatibility and
Sequential Rationality

A stage mechanism m € .l is e ~-incentive compatible
for the buyers at state (x,1) € ¥° with respect to dy-
namic mechanism M € M? if at state (x, ) any buyers’
incentive to misreport after learning her value is
at most 6€'C when the seller offers the stage mecha-
nism m at the current state, and the seller offers
dynamic mechanism M and the buyer reports
truthfully onward. We formalize this concept next.
In the following definition, UM(-) denotes the ex-
pected utility of buyer k under dynamic mechanism
M and truthful reporting in the discrete stochas-
tic model.

IC

Definition 2. Stage mechanism m € .l is €'C-incentive

compatible at state (x, 1) € ¥° with respect to dynamic
mechanism M € M if

dug(m, v, w) + Ev_k[u};‘(x —oz(w,v_g),n — 1)]

< dup(m,v,v) + ]Evfk[l,l}(v[(x —0z(v,v_),n — 1)] + 6€'C,

for every value v € R, report w € R, and buyer k.

Now we provide our definition of approximate
seller sequential rationality (this is related to the
concept of contemporaneous perfect e-equilibria of
Mailath et al. 2005). In the following definition, TTM(:)
denotes the expected profit of the seller under dy-
namic mechanism M and truthful reporting in the
discrete stochastic model.

Definition 3. A dynamic mechanism M € M is said to
be (¢5R, €/“)—sequentially rational for the seller at state
(x,n) € ¥° if

S57t(m) + EV[HM(X — 52(v), 1 — 1)] < 51(M[x, 1))

+ ]EV[HM(X — 6Z[x, n](v),n — 1)] + 66K,

for every stage mechanism m € .l such that

1. the mechanism is budget feasible;

2. the mechanism is €'C-incentive compatible for
buyers at state (x,n) € ¥° with respect to dynamic
mechanism M;

3. payments are bounded by 0 < z(v) < 7.

In particular, when a dynamic mechanism is

€'C-incentive compatible and (5%, €'C)—sequentially
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rational with appropriately small values for €/ and
R, we will say that the mechanism is near optimal.

The previous definitions consider sellers” and buyers’
incentives to deviate in one period. However, if these
incentives are shown to be small, by the one-stage-
deviation principle for finite-horizon games, these
results can be shown to imply that their incentive
to deviate to a dynamic strategy spanning multiple
periods is also small.

5.2. Numerical Framework to Evaluate
Near Optimality

In this section, we describe our approach to numer-
ically validate approximate sequential rationality and
approximate incentive compatibility of the fluid dy-
namic mechanism [that solves the HJB Equations (7)
and (8)] with multiple buyers in the discrete time
model when the time interval between successive auc-
tions 6 is small.

First, we select a set of representative instances
with multiple buyers. For each instance, we follow
these steps:

Step 1. Solve the system of PDEs in Equation (9) via
finite differences to obtain the fluid mechanism. Check
that the value functions are well behaved.

Step 2. Implement the prescribed adjusted fluid

mechanism M[x, t] provided by the solution of the
system of PDEs in the discrete time model, and
evaluate its performance both for buyers and the
seller using Monte Carlo simulation.

Step 3. Compute, in the discrete time model and
for every point in a fine grid of the state space, the
maximum utility buyers can obtain by a single-stage
unilateral deviation from truthful reporting.

Step 4. Compute, in the discrete time model and for
every pointin a fine grid of the state space, the maximum
profit the seller can obtain by a single-stage deviation
from the optimal fluid mechanism to a different budget-
feasible and approximately IC mechanism.

A detailed description of these steps above and the
approach we take is presented in Appendix A of the
supplemental material. We next describe the results.

Our evaluation test bed is one where the values of buyers
are uniformly distributed in [0,1] and the time hori-
zonis T = 10."* We initially vary the number of buyers
K = {1,2}, the opportunity cost ¢ = {0.25,0.5,0.75},
and the number of items N = {10,102, 10%}. (Recall that
0 = T/N.) The maximum initial budget is set to B = 2.5.
We discretize the budgets by setting a uniform grid
with 50 points. For Step 1, we discretize time by
setting a uniform grid with 10* points. For Step 2, value
functions were calculated using Monte Carlo simu-
lation with 300 sample paths; the resulting mean
standard errors are small in all cases. For Step 4, we
convert the single-stage optimization problem of the

seller to a linear program by allowing for random-
ized mechanisms over a grid of possible payments. We
discretize the possible payments by setting a uniform
grid over the support of values [0, 7] with 50 and 40
when the number of buyers is one and two, respectively.
When testing for approximate incentive compatibility
and sequential rationality in the discrete time model, we
coarsen the grid as the number of buyers increases for
computational tractability. For three buyers and more,
the computational complexity associated with the dis-
crete case explodes. Recall that this is in stark contrast
to the prescription stemming from the continuous time
fluid model that is very simple to obtain numerically (it
only requires solving numerically a system of PDEs).
For three buyers, the discrete time model can only be
handled with significantly coarser grids. Results testing
for approximate incentive compatibility and sequential
rationality in the discrete time model with such grids
for three buyers are presented in Appendix A.5 of the
supplemental material. In this case, despite the dis-
cretization error, the optimality gap associated with
the fluid prescription is still small.

We evaluate the fluid-based mechanism in the dis-
crete model in the sense of approximate incentive com-
patibility and approximate sequential rationality. First,
as a preliminary check, we confirm that in all our in-
stances the performance of the adjusted dynamic fluid
mechanism in the discrete model approaches the pre-
dicted performance in the fluid model when 6 shrinks
to zero. We next present a summary of our main nu-
merical results regarding near optimality.

5.2.1. Approximate Incentive Compatibility. We denote
the IC error at state (x, 1) as follows:

Ew(x,n) = 1max max max {Hk(v, w) — Uy(o, v)} ,
0 & v weR,

where, with some abuse of notation, l:Ik(v, w) denotes
the interim utility-to-go of buyer i under dynamic
mechanism M when she reports w and her value is v
in period 7 and all competitors report truthfully. Note
that we divide by 6 because flow utility scales with 6.
The top half of Table 1 reports the utility a buyer can
gain from misreporting her value in the first period
of the horizon, averaged over all possible initial
budgets in the grid, for ¢ = 0.5 (results for other costs
are similar and not reported). The results show that
the optimal fluid mechanism is €/“-incentive compat-
ible in the discrete time model, where €' approaches
zero as the number of auctions N becomes large (or
the length between periods 6 becomes small).

5.2.2. Approximate Sequential Rationality. We com-
pare the seller’s profit when all buyers report truth-
fully under our mechanism, denoted by HM(x, n),
with the profit the seller could obtain from a one-shot
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Table 1. Approximate Incentive Compatibility (Step 3) and
Approximate Sequential Rationality (Step 4)

K
N 1 2
Approximate incentive compatibility (Step 3)
10 0.094901 0.145863
102 0.024100 0.041523
10° 0.000328 0.000442
Approximate sequential rationality (Step 4)
10 0.069487 0.141417
102 0.018171 0.032844
10° 0.003747 0.009116

Notes. Top half of table reports the maximum incentive compatible
error E.(x, N) across buyers, averaged over all budgets x, evaluated
at the first period (Step 3). The bottom half reports the difference
(IT*(x, N) — IT™(x, N))/6 averaged over all budgets x, evaluated at the
first period (Step 4).

deviation denoted by IT*(x, n). Here IT*(x, n) is the profit
obtained from offering an optimal approximately
incentive-compatible and budget-feasible mechanism
for the current period and then offering mechanism
M in the following periods. In IT*(x, 1), we allow for
mechanisms that are E. (X, n)-incentive compatible to
guarantee that the candidate stage mechanism M([x, 7]
is feasible for the seller’s problem. The bottom half of
Table 1 reports the profit the seller can gain from offering
an optimal mechanism in the first time period and then
offering our mechanism in the following time periods.
The results show that the optimal fluid mechanism
is (e°R, €/°)—sequentially rational in the discrete time
model, where €® approaches zero as the number of
auctions N becomes large.

Overall, the analysis is reassuring in showing that
the optimal fluid mechanism is near optimal in the
discrete model. Hence, the continuous time fluid model
can provide a basis to construct an easily computable
mechanism for an otherwise seemingly intractable
problem. In the next section, we also provide a theo-
retical foundation for this claim.

5.3. Provable Near Optimality for Single-Buyer Case
In this section, we aim to provide analytical sup-
port for the fluid model by proving that the optimal
fluid dynamic mechanism is approximately incen-
tive compatible for a single buyer and approximately
sequentially rational for the seller in the discrete
stochastic model when 6 | 0. Note that for the single-
buyer case, the mechanism Mix, 1] = (P[x, t], Z[x, t])
takes the simplified form

Plx, t](v) = {o>r(x, 1)},
r(x, t)
+ pu(x, t)

Our first result shows that the mechanism M is
O(6?)-incentive compatible for the buyer in the

Z[x,t](v) = min {x }1{1} >7r(x, t)}.

discrete stochastic model."* We prove the result under
the assumption that the initial budget is not too small
(in an appropriately defined sense). To this end, we
define x(s; x, t) as thebudget remaining at times € [0, ]
in the fluid model when the initial state is (x,t) € ¥
and ¥° ={(x,t) € ¥ :x(0;y,t)>060 Vy € [x — 67,x]} as
the initial states of the fluid model for which the budget
remaining at time zero is greater then or equal to 67 even
if the initial budget is reduced by an amount of at
most 6.'* When the initial state lies in the set #?, the
mechanism along the equilibrium path is guaranteed

to coincide with M*because 7 +( e A) 7 < 0,and the budget
decreases monotonically under the fluid mechanism.

Theorem 3 (Approximate Buyer Incentive Compatibility).
Suppose that the state (x,n) € $° satisfies (x,t,) € F°. Then
stage mechanism M[x, n] is O(5"/?)-incentive compatible for
the buyer at state (x, n) with respect to dynamic mechanism M.

There are two main challenges associated with
showing this result. The first challenge stems from the
fact that the prescribed dynamic mechanism (adapted
from the fluid continuous time model) is a closed-loop
mechanism designed to stay on the equilibrium path of
the fluid model. In the discrete model, the presence of
stochastic fluctuations will take the state off the fluid
equilibrium path, and the discrete model path may
slowly diverge from the original continuous time
equilibrium path. A first key part of the proof revolves
around establishing that these paths stay appropri-
ately close; this is done by combining concentration
inequality—type arguments with dynamical system
analysis arguments.

Although the preceding point guarantees that the
mechanism offered in the discrete model is “close” to
the one offered along the equilibrium path of the fluid
model, it does not necessarily imply that the mechanism
is approximately DIC. The second key part of the proof
establishes that dynamic incentives in both the dis-
crete and fluid models are approximately “aligned” by
guaranteeing that the utility per period and the mar-
ginal utility of an additional unit of budget in both
systems are close. The first condition follows directly
from the fact that the realized mechanisms in both
systems are close. For the second condition, we need to
show that the marginal utility of an additional unit of
budget for the buyer in the discrete model under dy-
namic mechanism M is close to the marginal utility of
budget for thebuyer in the fluid model u(x, t) = U (x, f).
In particular, we show the following.

Proposition 2. For all states (x,n),(y,n) € ¥° with 0 <
x—y < ovand (x,t,) € &0, the buyer’s expected utility under
dynamic mechanism M and truthful reporting in the discrete
model satisfies

UM(x, ) — UM (y, n) = ulx, £,)(x — y)| = O(6°?).
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Itis important to highlight that althoughitis typical
to show results on how well value functions are ap-
proximated by those in an appropriate fluid model, it
is much more challenging to establish a tight con-
nection between the finite differences of the value
functions and the derivative of the value function in
the fluid model. To illustrate this point, usually, one
can approximate the value functions up to order 6'/?
invoking concentration inequalities. However, such
control does not allow approximation of the finite
differences with any satisfactory accuracy. Instead,
we need to directly estimate finite differences by
studying the joint evolution of two stochastic tra-
jectories in the discrete model with close initial state.
This is the core of the challenge to establish Proposition 2.
This result and the techniques used to establish it
might be of interest beyond the current application.

This result, together with the fact that utilities per
period are close (because trajectories are close), allows
us to translate the dynamic incentive compatibility
condition of the fluid model given in Equation (6c¢) to
its discrete counterpart given in Definition 2. Thus, if
the derivatives of the buyer’s value function are close
to the corresponding finite differences (in the discrete
model), reporting truthfully at any point in time is
indeed approximately DIC.

Wearenow ina position to state our main result on
the characterization of M. The following result shows
that at every stage (x,n) € ¥° the seller’s incentive to
deviate from M|[x, 1] to any other stage mechanism is
small. We allow the seller to deviate to stage mechanisms
that are O(6'/?)-incentive compatible to include the
proposed mechanism M as a feasible deviation.

Theorem 4 (Approximate Seller Sequential Rationality).
Suppose that the state (x, n) € F° satisfies (x, t,) € F°. Then
dynamic mechanism M is (O(6'3), 0(6'/2))-sequentially
rational for the seller at state (x,n).

We prove the result in four steps. One of the challenges
is similar to that of Theorem 3 in that the prescribed
mechanism is a closed loop and is designed to stay on
the equilibrium path of the fluid model. The proof of
Theorem 3 shows that the fluid equilibrium path and
the discrete model path stay appropriately close, and
thus, the realized mechanisms in both systems are close.

Second, we note that as soon as one allows for ap-
proximate DIC (as opposed to DIC), one expands the
set of mechanisms one could consider. In turn, we es-
tablish that any mechanism satisfying O(6'/?)-incentive
compatibility is O(6'/?)-feasible for the one-shot fluid
mechanism design problem in Equation (6). Here we
use Proposition 2 again to show that for the buyer, the
marginal utility of an additional unit of budget under
mechanism M in the discrete model is close to Uy(x, t),
that is, the marginal utility of budget in the fluid
model. Third, we prove the following general result

for one-stage mechanism design: relaxing incentive
compatibility and individual rationality constraints
by € increases the seller’s profit by O(e** + €). This
result drives the difference in convergence rates between
the buyer’s approximate incentive compatibility and the
seller’s approximate individual rationality.

Finally, we conclude in a similar fashion as in the
last step in the proof of the approximate incentive
compatibility result. Here we leverage that the fluid
mechanism is optimal in the HJB Equation (6) to show
that the expected seller profit from deviating to stage
mechanism m € Jl is close to HM(x n), the expected
seller profit under M and truthful reporting in the
discrete model. To prove this result, we first show a
parallel result to Proposition 2: the marginal profit of
an additional unit of budget under mechanism M in
the discrete model is close to y(x, t) = IT(x, t), that is,
the marginal profit of budget in the fluid model.

Proposition 3. For all states (x,n),(y,n) € F with 0 <
x—y < 6vand (x,t,) € G0, the seller’s expected profit under
dynamic mechanism M and truthful reporting in the discrete
model satisfies
IT™(x, 1) = T1(y, 1) =y (x, £a) (x = )| = O(?).

Remark 1. As a corollary of this result, one has that
UM(x n), the expected buyer utility under M and
truthful reporting in the discrete model, converges to
Ul(x, t,), the buyer value function in the fluid model, as
6 | 0. This result follows because stochastic and fluid
paths are close, together with the fact that the expected
utility per period is Lipschitz continuous close to the
fluid path. Additionally, one has that MM(x, n), the
expected seller profit under M and truthful reporting
in the discrete model, converges to I1(x, t,), the seller
value function in the fluid model.

Remark 2. We note that the current proofs for the
case of a single buyer heavily leverage the structural
properties of the dynamic optimal mechanism given in
Section 4.1.1. As a result, extending these approxima-
tion results to multiple buyers seems challenging
because it is not clear whether such results can be
established given the multidimensional nature of the
problem. We suspect, however, that similar argu-
ments would still go through if these properties are
assumed true.

6. Conclusions

In this paper we studied dynamic mechanism design
when selling a sequence of items with limited com-
mitment to buyers who face a cumulative budget
constraint. We showed that an envelope approach can
be applied in a corresponding fluid continuous time
model in such settings. We then used this approach
to characterize the dynamic optimal mechanism,
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highlighting novel incentive issues at play. We also
provide justification for using the prescription of the
fluid model in the original discrete time model.

We believe there are several interesting directions
for future research. First, extending the approxima-
tion result of Section 5.3 to multiple buyers would
provide an even stronger justification for the fluid
model. We conjecture this involves significant tech-
nical challenges though. Second, the model we in-
troduced was the simplest possible extension of a
classic setting so that we could highlight the effect of
budgets on optimal mechanism design. There are
several interesting extensions of our model that may
be worth considering in the future, such as incorporat-
ing valuations with a common component, assuming
that budgets are buyers’ private information, consid-
ering nonstationary value distributions, and studying
models in which campaigns do not simultaneously
start and end at the same time. Similarly, to simplify
the formulation and focus on the link with the fluid
model, we anchored the model on one particular alter-
native to deal with buyers’ nonparticipation decisions.
Understanding alternative formulations with a richer
class of dynamic mechanisms that may be contingent
on the subset of participant bidders in each auction
is also an interesting avenue.

Finally, we consider mechanisms under a strong
form of limited commitment: the seller commits to the
rules of the current auction, but she cannot commit to
those of future auctions. On the other extreme, with
full commitment and the ability to charge partici-
pation fees upfront, the seller can sometimes achieve
full surplus extraction. In between there is a spectrum
representing different levels of the seller’'s commit-
ment power. It would be enlightening to explore the
auction design problem under different practical
constraints and how these relate to various levels of
commitment.
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Endnotes

"We note that this regime is particularly pertinent for display ad-
vertising in which an advertiser spends a tiny fraction of her budget
in each auction.

2When 6 is small, the scaling is simply meant to highlight that each
auction can only consume a small fraction of the budget. Note that
the total number of items is equal to T/6. Hence, as 6 decreases, the
number of items increases, and by imposing the scaling above, the
total value gathered by buyers over the time horizon, as well as their
total expenditure, remains bounded.

®For example, in online advertising, opportunity costs are common
because publishers sell their inventory across multiple channels. We
also comment on the case ¢ = 0 in later sections.

*In the context of online advertising, this could be motivated by the
fact that within a time frame, the order of visits of unique users to a
website is random.

®We restrict attention to deterministic payments. We note that this
restriction is without loss of optimality in the fluid model that we
introduce in Section 3 because there budgets are depleted de-
terministically according to the expected payments.

®We also considered other alternatives to discipline seller’s off-the-
equilibrium-path behavior, such as imposing stronger forms of in-
dividual rationality or a formulation in which mechanisms are
conditioned on the subset of participant bidders. However, these
involve significant additional complexities that would obfuscate the
analysis of the fluid model.

"Technically, to apply the revelation principle, one needs to formalize
the extensive form game between the seller and the buyers. One
alternative is to formulate this game as a sequence of stage games in
which in each stage the buyers first learn their values, then the seller
chooses a mechanism in J{, and finally, the buyers play their actions.
For the solution concept to be well defined, we need to restrict the
seller’s mechanisms to guarantee that the continuation bidding game
between buyers always admits a pure equilibrium, even off the
equilibrium path. We also note that the argument presented by Bester
and Strausz (2001) regarding the inapplicability of the standard
revelation principle in settings with limited commitment does not
apply in our setting because private information is not persistent.

8We note that because the fluid model represents a limit in which
bidders spend an infinitesimal amount of their budgets in each
auction, budgets will not bind within each period whenever they are
positive. Therefore, the features of the optimal mechanism in a one-
shot auction with budgets, as in Pai and Vohra (2014), do not appear
in our analysis.

®Given a matrix A € RK*K and a subset % C {1, ..., K}, we denote by
Al € RPN the submatrix restricted to indices in .

'%Tn particular, one can show that the mechanism consisting of waiting
until the time that implementing the Myerson auction would deplete
the budget exactly at the end of the horizon cannot be fluid optimal.

" Recall that we assumed ¢ >0 to derive the dynamic optimal mecha-
nism of Corollary 1.

2We also run instances with other valuation distributions, for ex-
ample, truncated exponential, and obtained similar results that we
omit for brevity.

Bwe say f(0) is big O of g(6) or f(6) = O(g(0)) if and only if there exists
C>0 and a real number 6y such that |f(5)| < C|g(6)| for all 0 < 6 < 6.
“The set #° can be readily characterized by noting that ¥(0;x,t) =
fo(x, £)(po — ep), where we define fy(x, t), following Proposition 1, as
the first time that the shadow prices are zero in the fluid model when
the starting state is (x,t) € ¥. Although a closed-form expression for
to(x, ) is not available in general, we can obtain a subset of #° by using
the lower bound for #(x, ) provided in Proposition 1. Additionally, the
previous bound implies that #° converges to the set of positive states
{(x,t)eF:x>0,t>0}as 6 — 0.
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