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Abstract We develop discrete choice models that account for parameter driven preference

dynamics. Choice model parameters may change over time because of shifting market con-

ditions or due to changes in attribute levels over time or because of consumer learning. In this

paper we show how such preference evolution can be modeled using hierarchial Bayesian

state space models of discrete choice. The main feature of our approach is that it allows for

the simultaneous incorporation of multiple sources of preference and choice dynamics. We

show how the state space approach can include state dependence, unobserved heterogene-

ity, and more importantly, temporal variability in preferences using a correlated sequence

of population distributions. The proposed model is very general and nests commonly used

choice models in the literature as special cases.

We use Markov chain monte carlo methods for estimating model parameters and apply our

methodology to a scanner data set containing household brand choices over an eight-year

period. Our analysis indicates that preferences exhibit significant variation over the time-

span of the data and that incorporating time-variation in parameters is crucial for appropriate

inferences regarding the magnitude and evolution of choice elasticities. We also find that

models that ignore time variation in parameters can yield misleading inferences about the

impact of causal variables.
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1. Introduction

Marketers are often interested in understanding how consumer preferences and choices vary

over time. A significant number of studies in the discrete choice literature within marketing

and economics have focused on modeling such dynamics. Previous researchers have used

a variety of approaches to model preference variation. For instance, some researchers have

incorporated dynamics in choice models by allowing alternative-specific utility errors to be

serially correlated over time (Allenby and Lenk, 1995; Geweke et al., 1997). Other researchers

have modeled state dependence arising due to inertia, habit persistence and carryover effects

to capture the linkages between adjacent choice observations (Heckman, 1981; Gaduagni

and Little, 1983; Allenby and Lenk, 1994; Roy et al., 1996; Keane, 1997; Seetharaman,

2003). Others have developed discrete choice models in which preference parameters are

allowed to vary systematically as a function of past marketing actions based on distributed

lag specifications (Mela et al., 1997; Jedidi et al., 1999; Seetharaman, 2003).

In this paper, we contribute to the discrete choice literature by showing how a Bayesian

state space framework (West and Harrison, 1997) can be used to augment the above ap-

proaches by flexibly incorporating parameter-driven preference dynamics in choice models.

In a state space model, the preference parameters are directly allowed to stochastically vary

over calendar time in a structured fashion. This allows the researcher to understand how

parameters vary over the long-term in an economically meaningful way. State space mod-

els induce markov dependence among parameters in successive time periods and thereby

capture the evolution of preferences over time. By allowing the parameters to stochastically

as well as systematically vary over time, the state-space approach captures both observed

and unobserved sources of temporal variation. The unobserved sources represent the impact

of temporally varying random shocks experienced in different time periods. Including such

unobserved sources of parameter variation provides an important advantage over models that

allow parameters to evolve solely as a function of previous marketing actions.

The state space approach, moreover, does not preclude the inclusion of other forms of

dynamics. For instance, state dependence specifications that have been used in the past can

be easily incorporated as part of the state space approach that we outline in this paper. State

dependence models typically use lagged dummy variables or exponentially smoothed loyalty

specifications to capture the impact of previous choices on current utilities and to specify

the linkages between successive choice observations of the same individual. In addition to

capturing state dependence, the state space model incorporates the dynamics occurring at a

different time scale (e.g., weeks, months). Specifically, the model parameters (including state

dependence parameters) can vary over calendar time thus facilitating a clearer understanding

of the macro evolution of tastes and preferences in the market place.

Choice model parameters can differ over calendar time because of a variety of reasons. For

example, market conditions may vary over the long-run, and thus market preferences may

change due to shifting conditions. Changing economic conditions can result in consumers

becoming more or less price and promotion sensitive over time. Specific brands may go out

of favor and others may gain in popularity because of contagion and word of mouth effects.

It is also possible that attribute levels available in the market-place may change over time

because of managerial actions. The behavioral literature on decision-making indicates that

the perceived importance of an attribute depends upon its range. Thus, variations in attribute

ranges can results in changes in coefficients and in the utilities for choice alternatives. Changes

in parameters may also result because of consumer learning (Erdem, 1996) and shaping of

preferences. For example, the literature on the long-term effects of advertising and promotions
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(Jedidi et al., 1999) suggests that in the long-run, increased exposures to price promotions

can make consumers more price sensitive in the market-place.

Understanding how parameters vary over time is critical for optimizing marketing deci-

sions. For instance, an increase in consumers’ price sensitivity over time suggests decreasing

optimal price levels. When preferences vary over time, but the model assumes a constant

set of parameters for the entire time-span of the data, an important source of variability is

left unspecified. It is well understood that ignoring cross-sectional heterogeneity results in

misleading inferences about consumer preferences. In this paper, we show that modeling the

dynamic variation of preferences is also crucial. Ignoring such dynamics can result in mis-

leading inferences regarding the temporal pattern of elasticities. Such erroneous inferences

can translate into sub-optimal marketing over time.

In this paper, we develop and empirically test a general state space, heterogeneous, multi-

nomial probit model (MNP). We show how a variety of MNP models can be obtained as

special cases of our model. Methodologically, our paper contributes to the growing Bayesian

estimation literature on discrete choice models (McCulloch and Rossi, 1994; McCulloch

et al., 2000; McCulloch and Rossi, 2000). We show how different forms of temporal varia-

tion and cross-sectional heterogeneity can be simultaneously incorporated in the multinomial

probit model via a dynamic population distribution. We also show how Bayesian inference

can be conducted for our model and illustrate how a combination of data augmentation

(Albert and Chib, 1993), Gibbs sampling, Metropolis-Hastings and Slice sampling (Neal,

2003) methods can be used for MCMC estimation of the model parameters.

Substantively, we investigate preference evolution using an eight year panel data involving

household purchases of a packaged good category. We also compare our results to those

obtained from several null models. The results show that models that jointly account for both

consumer heterogeneity and temporal dependence statistically outperform models that ignore

any one of these phenomena. In addition, we show how consumer sensitivities to the marketing

variables evolve during the eight year time span. Our results yield interesting patterns of

variation over time in the brand intercepts and marketing-mix parameters. Finally, our results

illustrate how models that ignore dynamics can yield misleading inferences regarding the

evolution of preferences.

The rest of the paper is organized as follows. In the next section, we present the heteroge-

nous state-space choice model. In Section 3, we discuss Bayesian inference for the proposed

model. In Section 4 we describe the application of our model to scanner panel data. We show

how the model can be used to understand the temporal pattern of elasticities and discuss

the managerial implications of the results. Finally, in Section 5 we conclude the paper by

outlining the limitations inherent in our work and offer suggestions for future research.

2. The hierarchical state space model

2.1. Multinomial probit

We begin with a multinomial probit specification. Consider a panel of H households choosing

one brand among a set of M + 1 mutually exclusive brands on each purchase occasion. In

many marketing data sets such as those obtained from supermarket scanner panels, choice

information is available over multiple time periods. We use t = 1 to T to index calendar

time (e.g., weeks or months). Let yhj indicate the observed multinomial discrete choice on

the j th observation of household h. If household h contributes nh such observations (i.e.,

j = 1 to nh), the total number of observations in the data are given by N = ∑H
h=1 nh . The

Springer



60 Quant Market Econ (2006) 4: 57–81

discrete choices can be modeled using a random utility framework (McFadden, 1977). Let

u∗
hj = {u∗

hj1, u∗
hj2, . . . , u∗

hj M+1} denote the vector of brand-specific utilities underlying the

choices. Then, yhj = m, if brand m has the highest utility. Consistent with a random utility

formulation, the utility for a brand m can be expressed in terms of a systematic component

composed of brand-specific variables contained in a vector whjm and a stochastic component

representing the impact of unobserved influences.

As is well known, because the observed responses are multinomial, only differences in

utilities are identified from the data. We therefore represent the responses in terms of a

M × 1 vector uhj = {uhj1, . . . , uhj M } which contains differenced utilities with respect to a

base alternative. Specifically, the elements, uhjm = u∗
hjm − u∗

hj M+1 denote differences with

respect to an arbitrary chosen brand, for example, the (M + 1)th brand. The differenced

utility equations can be written as

uhjm = x′
hjmβhj + ehjm, (1)

where, ehjm is an appropriately differenced error term. The vector xhjm contains M brand-

specific dummy variables for the brand intercepts and the differenced brand-specific variables

whjm − whjM+1 for the mth brand. The resulting M equations can be stacked together in

matrix form to yield a system of equations

uhj = Xhjβhj + ehj , (2)

where, uhj is a M × 1 vector of utilities, and Xhj is a M × L matrix appropriately composed

from the vectors xhjm . As noted before, “observed” dynamics can be included by using ex-

planatory variables that capture state dependence (e.g., lagged dummy indicators, loyalty,

etc). These become part of the Xhj matrix in Eq. (2) and are used to specify the linkages be-

tween successive choice observations (i.e., observations j and j + 1) for the same household.

The L × 1 coefficient vector βhj contains the M brand-specific intercepts which represent

the intrinsic preferences for the brands (relative to the (M + 1)th brand) and the response

coefficients for the explanatory variables.

The stochastic components contained in the error vector ehj , represent the combined influ-

ence of myriad factors that are known to the consumer but are unobserved to the researcher.

As the utilities are in differenced form, and because unobserved factors may be common

across brands, we assume that the errors ehj are distributed multivariate normal N (0,Σ),

where, the variance matrix Σ captures the covariation in the errors across the equations. The

differencing of utilities takes care of the locational indeterminacies of the underlying utilities.

Model identification also requires that we fix the scale of the utilities. This can be achieved

by setting one of the variances in Σ to one. We now show how the state space approach can

be incorporated in the above described standard multinomial probit specification.

2.2. Population distribution

When choice data are available for multiple time periods (t = 1, . . . , T ), it is imperative to

explicitly model the evolution of preferences over the time span of the data. To model such

dynamics, we assume that the multinomial probit parametersβhj are drawn from a population

distribution that evolves from one period to another. A temporally changing population

distribution is ideal for capturing the dynamics in population preferences as it enables a

proper accounting of the different sources of variation in choices across the observations.
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To formulate this population distribution, we assume that the coefficient vector βhj can

be decomposed into two parts according to the equation

βhj = μth j
+ bh . (3)

In Eq. (3), the first part μth j
represents the mean of the temporally varying population dis-

tribution. The population mean is indexed by the subscript th j which identifies the calendar

time period pertaining to the j th observation of household h. The subscript th j takes values in

the set {1, 2, . . . , T }. Notice that observations for household h are subscripted with (hj) and

calendar time periods are subscripted with th j . This distinction is necessary to differentiate

between two different time scales and to establish a correspondence between observations

in the data and the associated time periods. Because of the unbalanced nature of the data

across households, not every household is observed to purchase in every time period. Thus,

the j th observation of household h may occur in time period t , i.e., th j = t , whereas, the j th

observation of another household h′ may occur in time period t ′, i.e., th′ j = t ′. Notice that, if

every consumer were to be observed in every time period only once, then the two time scales

would be equivalent. This is, however, not the case in many data sets (such as those obtained

from supermarket scanner panels), and therefore, calendar time offers a useful mechanism

to coalesce such disparate data across different consumers.

The second component ofβhj in Eq. (3), is a household-specific vector bh that contains all

the unobserved influences specific to household h that impact its preferences. Notice that this

component is invariant across time periods and can be used to characterize the cross-sectional

variation in response coefficients across households. As usual, we assume that the random

effects bh are distributed multivariate normal bh ∼ N (0,Ω). The covariance matrix Ω is

assumed to be common across all households and is time-invariant. Note that bh has a zero

mean. This assumption is necessary for identification as the household-specific parameters,

bh , are specified as deviations from the time varying population mean μth j
.

Together, these two components imply that the response parameters at any observation j
for household h are drawn from a temporally varying population distribution

βhj ∼ N
(
μth j

,Ω
)
. (4)

Given T time periods in the data, there are T such population distributions, one associated

with each time period. Until now, our description pertained to a standard hierarchical probit

model, with the exception that we allow the population distribution to differ across time

periods. We now show how these population distributions are related.

2.3. Population dynamics

The T population distributions, together, specify the population dynamics. However, for

capturing the incremental evolution of preferences from one time period to another, we

need to establish a link between population distributions from adjacent time periods. We

do so by assuming that the population mean in any time period is stochastically related

to the population mean in the previous time period. Specifically, we posit a general vector

autoregressive process to characterize the dynamics of the population mean. This implies, that
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the law of motion for the population mean can be written according to the transition equation1:

μt = Φμt−1 + Ztθ + εt , εt ∼ N (0,Ψ), (5)

where, μt is the population mean for an arbitrary time period t , μt−1 is the population mean

vector from the previous time period, and Φ represents the transition matrix. In addition

to modeling the relationship between the population means for successive time periods, the

above VARX(1) specification also captures the systematic impact of variables on the tran-

sition process via the term Ztθ. The matrix Zt contains constants for the intercepts and

explanatory variables that influence the evolution. When Zt is an identity matrix, θ contains

only the intercepts in the vector auto-regression. The transition process is assumed to start

with an initial stateμ0 that is distributed N (η0, C0). Finally, the vector εt contains unobserved

variables that represent temporally varying random shocks experienced in that time period t .
We assume that εt is independent of all utility errors ehj and the cross-sectional heterogeneity

vector bh . The covariance matrix Ψ for the transition errors is of dimension L × L and is

assumed to be constant over time. The different elements of Ψ delineate how different pairs of

elements in μt co-vary. The dynamics in Eq. (5), when combined with our assumptions about

population heterogeneity, in Eq. (4), imply that coefficients for different individuals evolve

in the same manner as the population mean. This assumption may not be realistic in certain

situations, but allows us to parsimoniously structure the dynamics, especially considering

that in our data, not every individual makes a purchase in each time period.

From Eq. (5), we see that upon repeated substitution, the population mean μt can be

written as a weighted sum of the initial state μ0, all the previous exogenous variables in Zt ,

and all the past transition errors εt as follows:

μt = Φtμ0 +
t−1∑
l=0

ΦlZt−lθ +
t−1∑
l=0

Φlεt−l , (6)

where Φ0 = I. Then the expectation of μt is given by

E(μt ) = Φtη0 +
t−1∑
l=0

ΦlZt−lθ, (7)

and its variance can be written as

Var(μt ) = Φt C0(Φt )′ +
t−1∑
l=0

ΦlΨ(Φl )′. (8)

Many different forms of the dynamics can be obtained from Eq. (5) as special cases. We now

describe briefly these special cases.

1 Notice that in this section, we focus on the population distribution. Hence, subscripts pertaining to particular
consumers are not relevant.
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Dynamic random effects

Consider the situation, where Φ = 0, and Zt = I. In this case, we see that

μt = θ + εt . (9)

This yields a dynamic system wherein, the population distribution is assumed to evolve

independently from one time period to another, and the expectation and variance of μt are

constant across time periods. The process assumes zero memory and random shocks are

absorbed within the same period.

Random walk

When Φ = I, and θ is zero, we obtain the random walk model. The transition equation has

the form

μt = μt−1 + εt , (10)

i.e., the new population mean is obtained from the previous mean with the addition of some

white noise. Notice that shocks do not attenuate over time, and from Eq. (8), we see that

V(μt ) = C0 + t�. Thus the model assumes that the variance of the coefficients increases

directly with t . However, the conditional variance V(μt |μt−1) is constant at Ψ. The above

disadvantages are offset by the fact that the random walk model allows for a smooth evolution

of the parameters, has a simple interpretation and yields a parsimonious specification for

capturing the dynamics in the population mean.

Vector autoregression

When Zt = I, we obtain the vector autoregressive model VAR(1) of order one. The influence

of the initial condition fades away if the largest eigenvalue ofΦ is less than unity in magnitude.

In this instance, the transition process can be considered asymptotically stationary (Lutkepohl,

1991, c. 11). Restricted versions of the autoregressive model can be obtained by allowing Φ
to be diagonal. In this case, a coefficient at time t is assumed to be related only to its own

value at time t − 1, and this yields a parsimonious specification with fewer parameters to

estimate.

To summarize, when population dynamics are combined with cross-sectional heterogene-

ity, the resulting general model can be presented as follows

uhj = Xhjβhj + ehj , (11)

βhj = μth j
+ bh, (12)

ehj ∼ N (0,Σ), (13)

bh ∼ N (0,Ω), (14)

μt = Φμt−1 + Ztθ + εt , (15)

εt ∼ N (0,Ψ), (16)
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where, the errors ehj , εt , and bh are assumed to be mutually independent. This results in a

state-space, hierarchical multinomial probit model which is built up from a series of condi-

tional distributions that combine to yield a multi-level specification. At the bottom level of

the hierarchy is the latent regression model conditional on βhj and Σ (see Eq. (11)). The

random utility regression is followed by successively higher levels of priors which incorpo-

rate views about the distributions of μt and bh . The state space form of the model (Priestly,

1980; West and Harrison, 1997) is described by Eqs. (11) and (15). The former equation

represents the “observation” equation of the dynamic system. Given that the utilities are

latent, this is observed only in a data-augmentation sense. The latter equation is called the

state (transition) equation. It describes the markov dependence of the states μt over time

periods.

The hierarchical state space probit model is very general and subsumes several well-

known choice models as special cases. If Φ = 0, Zt = I, Ψ = 0 and Ω = 0, then the probit

coefficients do not vary across households or time periods, and the model reduces to the tra-

ditional static multinomial probit model (Hausman and Wise, 1978). If Ω = 0, and no other

restrictions are employed, then a state space (dynamic) model without consumer heterogene-

ity is obtained. This represents a situation where household heterogeneity is negligible, but

the fixed effect parameters are assumed to be dynamic. This situation is the one most often

considered in the state-space literature, as most applications of the state space model have

time series data on a single cross-section. A static heterogeneous multinomial probit model

without dynamics results if Φ = 0, Zt = I, Ψ = 0, but Ω is unrestricted (McCulloch and

Rossi, 1994) which is the defacto standard in the marketing literature on discrete choice

models.

3. Bayesian inference

The likelihood for the hierarchical state space probit model is exceedingly complex as it

involves multiple integration of a very high dimensionality. The complexity arises from

many different sources. First, the probabilities associated with the multinomial probit require

integrations involving multivariate normal CDF’s. Second, the random effects need to be

integrated out. This requires incorporating the multiple population distributions. Moreover,

this needs to be done, taking into consideration the time series relationships between the

population means. Given these sources of complexity, it is virtually impossible to use classical

methods for estimation.

Bayesian methods, however, lead to considerable simplifications. These occur because of

the possibility of data augmentation in simulation based Bayesian inference. Once utilities

are “known”, the model becomes linear in the preference parameters. Thus, conditional on

the utilities and the random effects, the state parameters (i.e., the population means) can be

obtained based on the Kalman filter (Kalman, 1960). Given the hierarchical nature of the

model, Bayesian methods are a natural alternative as they allow for proper accounting of all

uncertainties in the estimation of the random effects and the state parameters.

We use Markov chain Monte Carlo methods (MCMC) involving a combination of Gibbs

sampling (Gelfand and Smith, 1990), Metropolis-Hastings (Metropolis et al., 1953; Hastings,

1970), slice sampling (Neal, 2003) and data augmentation (Albert and Chib, 1993; Tanner

and Wong, 1987) steps to obtain the requisite sample of parameter draws from the joint

posterior distribution. In using MCMC methods, the choice of appropriate blocking strategies

is important for adequate mixing of the resulting Markov chain. This is specially critical in

sampling the state vectors (population means). If each of the state vectors in {μ1,μ2, . . .μT }
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are simulated from its full conditional distribution one at a time, convergence to the target

distribution could be very slow, especially if the dimension T is large. To circumvent this

problem, we use the forward-filtering backward-sampling algorithm (Fruhwirth-Schnatter,

1994 and Carter and Kohn, 1994) to jointly simulate all the states in one block from the joint

full conditional distribution of the states. To sample the covariance matrix of the utilities,

we follow Barnard et al. (2000) and use a combination of slice sampling and Metropolis-

Hastings steps for obtaining the correlations and the log-standard deviations, respectively.

Slice sampling is particularly suitable for the correlations because one can then easily restrict

the correlations to an interval that respects positive-definiteness of the covariance matrix.

Moreover, it does not require any tuning, thus providing an automatic method for obtaining

the correlations. The mathematical details for the priors and the full conditional distributions

are described in the Appendix.

4. Application

4.1. Data and variables

We use a scanner panel dataset that is collected in a medium sized mid-western market

in the United States. The category can be described as a frequently purchased, house-

hold, non-food good.2 The data contain choices for four brands from eleven stores over

a duration of eight years from 1984 to 1992. The demographics of the panel do not devi-

ate substantially from the national averages. The panelists constitute a static sample where

households did not enter or exit the panel during the period of analysis. We have data on

300 households who made 5781 purchases in total for the four brands over 91 months.

The households’ mean interpurchase time for the product category is about 12 weeks. In

addition, no brand entries or exits occurred over the duration of the data. Consequently,

product introduction factors and product life-cycle issues are not likely to impact our anal-

ysis. The mean number of observations per household is 19 with a standard deviation of

14 whereas, the mean number of observations per month is 63 with a standard deviation of

14.3

In addition to household purchase data, information on price and price promotion of the

four brands are available in the data set. The price represents the regular (non-promoted)

price, whereas, the price promotion variable reflects the monetary discount offered by a

brand during a promotion. Figure 1 shows how market shares, prices, and promotions for the

four brands varied over the time span of the data. The figure shows that, except for short-term

fluctuations, the market shares for the brands are stable over the long-run. In contrast, the

brand prices and promotions show an increasing trend over time with the promotion increase

occurring mostly after month eighty. Across brands and time periods, the average price is

$0.05 per ounce of the product, the average promotion frequency is 25%, and the average

discount is 17% of the regular price.

2 We cannot reveal the product category and the brand names because of confidentiality agreement with the
data provider.
3 The high mean interpurchase time resulted in a very low number of observations per week. We therefore
analyze our data at the monthly level to ensure that we have sufficient number of observations per period for
reliably estimating the time varying parameters.
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Fig. 1 Time variation in Brand Shares, Prices and Promotions for the four brands over the span of the data.
Brand 1 (solid line), Brand 2 (dotted line), Brand 3 (small-dash line) and Brand 4 (long-dash line) models.
The price and promotion variables are represented in $/ounce

4.2. Model specifications

We estimate the general, state-space, heterogeneous probit model (Cprobit; see Eqs. (11)–

(16)) and three null models using this data set. The null models were selected to understand

the effects of parameter time variation and cross-sectional household heterogeneity separately

and in tandem. The first null model (Sprobit) is a simple probit model which does not account

for either unobserved heterogeneity or time-varying parameters. This forms the base model

from which the effects of adding heterogeneity and time-varying parameters can be assessed.

In the second null model (Hprobit), we add unobserved sources of heterogeneity to the Sprobit

model, but do not allow the population mean to vary over time. Thus, Hprobit is the standard
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hierarchical probit model that is routinely used in the marketing literature. In the third null

model (Tprobit), we add time-varying effects to Sprobit as specified in Eq. (5), but do not

include unobserved sources of customer heterogeneity. This yields a (non-heterogeneous)

state-space probit model, which assumes that the parameters of the utility function vary over

time.

To examine which of the dynamic structures govern the motion of the preference pa-

rameters, we estimate three additional special cases of Cprobit. The first (Cprobit-RE) is a

heterogeneous, dynamic random-effects model where Φ = 0, and Zt = I (see Eq. (9)). The

second (Cprobit-RW) is a heterogeneous, random walk model (see Eq. (10)). The last model

(Cprobit-Diag) is the same as Cprobit but with Φ constrained to be diagonal.

In each of the seven models, we use five regressors to specify the systematic component

of the utilities for the brands: the two marketing variables: PRICE and PROM, which are the

regular price and promotional discount respectively, both measured in cents per ounce, and the

three dummy variables to capture the intrinsic preferences of each brand relative to the base

alternative. We chose the fourth brand to be the base alternative. Given that we are using a data

set with 300 households observed over 91 months, the unknown utilities and parameters for

the models are the following: {{uhj }} (5781 × 3), {μt } (91 × 5), {bh} (300 × 5), Ψ (5 × 5),

Ω (5 × 5), Σ (3 × 3), Φ (5 × 5) and θ (5 × 1). Recall that the first variance in Σ, σ11, is

fixed to 1 for identification purpose. Depending upon what is included in a model, some of

the above mentioned unknowns may not be present as part of its specification. For instance,

μt and Ψ are not part of the Sprobit and Hprobit models.

4.3. Results

In this section, we present the results from the different models. We also discuss how consumer

preferences vary over time and across households in our dataset. As explained in Section

3, we used Markov chain monte carlo (MCMC) methods for estimating the seven models.

For each model, we ran sampling chains for 150,000 iterations. In each case, convergence

was assessed by monitoring the time-series of the draws. The results reported in the paper

are based on 100,000 draws retained after discarding the initial 50,000 draws as burn-in

iterations. We now report the model comparison results.

4.3.1. Model comparisons

Model comparisons within the Bayesian approach are traditionally done using the Bayes

factors (Kass and Raftery, 1995). Bayes factors account for model fit, but also automatically

penalize for model complexity. The Bayes factor for comparing two models can be written in

terms of the ratio of the observed marginal densities for the models. A simulation consistent

estimate for the marginal densities can be obtained using the MCMC draws that are generated

for parameter inference. We used these draws to generate an importance sampling estimate

of the log-marginal likelihood (Newton and Raftery, 1994) for each of the seven models.

Table 1 reports these log-marginal likelihoods.

A comparison of the values in Table 1 sheds light on the need for capturing both unobserved

heterogeneity and dynamics. The Cprobit-RW model, which includes both unobserved het-

erogeneity and time-varying effects (specified as a random walk) has the highest log-marginal

likelihood. The largest improvement in log-marginal likelihoods occur when unobserved het-

erogeneity is added. For instance, Hprobit provides a vast improvement over models that do

not include heterogeneity. Improvements due to the addition of dynamics are also significant

when one compares the value for Cprobit-RW with that for the Hprobit model. However,
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Table 1 Model comparisons
Log-marginal

Probit model Label likelihood

Simple Sprobit −7314.27

Heterogeneous Hprobit −4839.31

Dynamic Tprobit −6634.63

Full Model Cprobit −4560.39

Full with Diagonal � Cprobit-Diag −4606.84

Full–Random Effects Cprobit-RE −4612.84

Full–Random Walk Cprobit-RW −4528.91

the variability across consumers appears to be larger than that across time periods. Although

the random walk is selected to be the best dynamics structure, the log-marginal likelihood

value of Cprobit-RW is relatively close to that of the full model (Cprobit) and does not differ

much from those of the others dynamics forms. Thus the data appear to offer a strong signal

about the importance of accounting of dynamics but a weaker signal as to the form of the

dynamics.

4.3.2. Parameter estimates

We now discuss the results from the selected Cprobit-RW model. As is usual for Bayesian

inference, we summarize the posterior distributions of the parameters by reporting their pos-

terior means and posterior standard deviations. Figure 2 shows the time evolution of the state

vectors μt . It is clear from this figure that there are significant dynamics in preferences. The

population mean for the price coefficient decreased in value over time passing approximately

from −0.05 to −0.18. This clearly indicates that consumers are becoming increasingly price

sensitive over the time span of our data. This suggests that while a regular price of one brand

may be acceptable to consumers on a given choice occasion, the same regular price may

seem too high on later occasions. From an economic theory perspective, this result suggests

that optimal prices should be decreasing over time. In addition to the increased competition

between brands, one possible explanation for this increased price sensitivity over time may

be consumers’ frequent exposure to price promotions which may lower their reference prices

(e.g., Kalyanaraman and Winer, 1995). This result is consistent with those obtained by Jedidi

et al. (1999) who used a distributed-lag specification to model consumers’s sensitivities.

Figure 2 shows that the promotion sensitivity is more or less stable over time.4 Similarly,

the brand-specific intercepts appear to fluctuate in a non-systematic way over the eight-year

period. The positive (negative) sign of brand j’s intercept ( j = 1, 2, 3) indicates that on

average households have a higher (lower) base utility for brand j than for the reference brand

(brand four). The changes of intercepts over time reflect residual fluctuations in brand share

differences over time after controlling for the effects of price and promotion variables. As

brand intercepts are measures of base choice probabilities, this result suggests that the four

brands have been successful at maintaining their market share positions over the long run

4 We cannot explain the dip in promotion sensitivity around period 50 based on the data we have. Specifically,
we do not have any information that suggests that a structural change occurred during the data period, for
example, there were no radical changes in scanner technology. In addition, Figure 1 does not indicate any
drastic changes in the pricing and promotions policies.
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Fig. 2 Evolution of brand intercepts and marketing variable sensitivities over time (91 months) in the Bayesian
state-space, heterogeneous multinomial probit model (Cprobit-RW). Posterior means (solid lines) and one-
standard deviation posterior intervals (dashed lines).

and any gains in share are only short-lived (DeKimpe and Hanssens, 1995). See also Figure

1. Overall, the results in figure 2 suggest that while market shares and promotion sensitivity

are more or less stable in the long run, consumers have become more price sensitive.

Table 2 focuses on characterizing the magnitude of unobserved heterogeneity and

dynamics. The top panel reports the posterior means and the corresponding posterior standard

deviations for the elements of Ψ. Recall that Ψ represents the uncertainty in the time-varying

random shocks that influence the transition equation. Most of the diagonal elements of Ψ are

small in magnitude but large relative to their corresponding posterior standard deviations,

suggesting that the unobserved effects capture important sources of variation in the popula-

tion means over time. Most of the covariance elements are not “significantly” different from

zero. This suggests that the population means vary more or less independently over time.
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Table 2 Cross-sectional and time-varying heterogeneity

Intercept 1 Intercept 2 Intercept 3 Price Promotion

Ψ
Intercept 1 0.04 0.03 0.02 0.002 −0.004

(0.02) (0.01) (0.01) (0.004) (0.006)

Intercept 2 0.04 0.01 0.002 −0.003

(0.01) (0.01) (0.003) (0.006)

Intercept 3 0.02 0.0004 −0.004

(0.01) (0.003) (0.005)

Price 0.002 0.0002

(0.001) (0.001)

Promotion 0.006

(0.003)

Ω

Intercept 1 1.75 0.22 −0.15 0.04 0.03

(0.24) (0.15) (0.29) (0.03) (0.05)

Intercept 2 0.29 0.22 0.006 −0.02

(0.09) (0.14) (0.01) (0.02)

Intercept 3 1.38 −0.009 0.008

(0.58) (0.03) (0.05)

Price 0.005 0.001

(0.003) (0.004)

Promotion 0.01

(0.006)

1Posterior mean and standard deviations (in parenthesis) of Ψ and Ω

The bottom panel of Table 2 shows the posterior means and the corresponding posterior

standard deviations for the elements in Ω. Recall that Ω is the common covariance matrix for

the population distributions. It characterizes the magnitude of the unobserved cross-sectional

heterogeneity. The pattern of the covariance results are the same as in Ψ. Comparing the

top and bottom panels of Table 2, it is clear that the variance associated with consumer

heterogeneity is greater than that associated with dynamics. In fact, all the diagonal elements

of Ω are larger than those of Ψ. This result is consistent with the model selection results

in Table 1. Figure 3 shows the histograms of the posterior means for the household-specific

parameters bh . Recall that all of these coefficients are centered at zero and therefore are

deviations from the time varying population mean μt .

Finally, the correlation coefficients, R = {{ri j }}, between the utilities of brand i and j
(i, j = 1, 2, 3, i �= j) are all positive with posterior means (r12 = 0.436, r13 = 0.278, r23 =
0.618). The positive correlation among the utility errors reflects the fact that the errors are all

differenced with respect to the base alternative. The free standard deviations within Σ have

posterior means σ2 = 0.474 and σ3 = 0.763.

4.4. Elasticities

Assessing the effects of changes in marketing policies (e.g, price and promotion) on brand

shares has significant implications for retailers and manufacturers. For example, differences
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Fig. 3 Histograms of the posterior means of the household-specific parameters bh in the Bayesian state-space,
heterogeneous multinomial probit (Cprobit-RW) model

in price elasticities over time suggest different dynamic pricing policies across brands. We

conducted some market simulations to evaluate these effects. Specifically, we computed the

price and promotion elasticities of brand shares. In these simulations, we first calculated the

predicted choice probabilities in the absence of any changes in marketing policies. These

predicted choice probabilities give the base choice probabilities against which the effects of

changes in marketing policies can be evaluated.

We used the MCMC draws of the parameters and our data to compute the choice prob-

abilities for each brand for each household and each purchase occasion. We computed the

base choice probabilities for the selected Cprobit-RW and each of the three null models

(Sprobit, Hprobit, and Tprobit) to compare the price and promotion elasticities across these
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models. Contrasting the difference among the elasticities from the different models allows

us to understand the effects of ignoring the brand choice dynamics, expressed in terms of

time-varying parameters, on the market responses.

To assess the impact of a regular price change by a brand, we increased the price of the

target brand by 1% while holding the other variables constant. The probabilities of choosing

the brands were recomputed using the manipulated price for all purchases. This produces

new choice probabilities for the different brands at each purchase occasion and for each

household. The percent change in choice probabilities divided by the percent change in price

is taken as the regular price elasticity. The promotion elasticities were computed similarly.

To estimate the aggregate elasticity for a given brand, we took the average of all elasticities

for that brand across all observations. To compute the temporal elasticities, we took the

average of the elasticities across all observations within each month.

4.4.1. Aggregate price elasticities

Table 3 reports the aggregate regular price elasticities. The entries in the table represent the

direct and cross elasticities from the selected Cprobit-RW model and the three null models.

All direct price elasticities have the expected negative sign and all cross-price elasticities are

positive as these brands are essentially substitutes. Across brands, the average price elasticity

from Cprobit-RW is −1.22 which suggests that consumers are quite sensitive to price. The

average cross-price elasticity is 0.485 which suggests that brands are vulnerable to switching

in this category.

Brand 1’s own-price choice elasticity from Cprobit-RW is −0.63. Therefore, a 1% increase

of brand 1’s price results in a 0.63% decrease in Brand 1’s share. This same price increase

leads to a 0.60, 0.44, and 0.50% increase in the share of Brand 2, 3, and 4, respectively.

Brand 1, the market leader, has the lowest price elasticity and Brand 2 has the highest price

elasticity, suggesting that these brands are the least and most vulnerable, respectively, to

brand switching.

Table 3 reveals important differences in the magnitudes of the own and cross price elas-

ticities across the four models. Specifically, the simple probit model (Sprobit) which ignores

both preference dynamics and consumer unobserved heterogeneity has uniformly lower mag-

nitude elasticities when compared to Cprobit-RW. In fact, the average (across brands) own

price elasticities from the Cprobit-RW model (−1.22) is larger in magnitude than that from

the Sprobit model (−0.95). The pattern of bias created from ignoring either consumer hetero-

geneity or preference dynamics is not as systematic. For Brand 3, all the direct and cross-price

elasticities from Cprobit-RW are all larger in magnitude than those from Hprobit and Tprobit.

This result does not hold true, however, for Brands 1, 2, and 4. As Cprobit-RW has the greatest

support from the data (based on the marginal log likelihood), the outcome that the elasticities

are different across models, suggests that failure to account for both preference dynamics

and consumer heterogeneity is likely to result in misleading inferences about the magnitude

of the direct and cross price elasticities.

4.4.2. Temporal price elasticities

Figure 4 contrasts the time-varying price elasticities for the four brands obtained from the four

models. Each panel in Figure 4 represents the temporal variation of the own-price elasticities

from the four models for a given brand. The temporally varying price elasticities are computed

by averaging the price elasticities computed from the observations pertaining to that month.
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Table 3 Aggregate direct and
cross price elasticities Elasticity Sprobit Hprobit Tprobit Cprobit-RW

1 → 1 −0.34 −0.29 −0.56 −0.63

1 → 2 0.35 0.36 0.52 0.60

1 → 3 0.21 0.18 0.25 0.44

1 → 4 0.39 0.22 0.81 0.50

2 → 1 0.11 0.12 0.15 0.23

2 → 2 −1.48 −1.56 −1.14 −1.63

2 → 3 0.35 0.85 0.16 0.59

2 → 4 0.67 0.85 0.58 0.69

3 → 1 0.08 0.08 0.10 0.23

3 → 2 0.46 0.66 0.22 0.69

3 → 3 −0.76 −1.25 −0.56 −1.27

3 → 4 0.18 0.32 0.13 0.44

4 → 1 0.12 0.08 0.27 0.21

4 → 2 0.67 0.84 0.67 0.83

4 → 3 0.14 0.33 0.11 0.37

4 → 4 −1.21 −1.22 −1.42 −1.34

Ex: Row 1 → 2 gives the
cross-price elasticity of 1’s price
on 2’s share.

For the Cprobit-RW model, we can see that the temporal price elasticities mimic the pattern

observed in the price coefficient in Figure 2. For each brand, we see that the temporal price

elasticities for Tprobit and Cprobit-RW exhibit considerable decrease over the span of the

data. In contrast, for the models that ignore temporal variation in preferences, these elasticities

remain fairly constant over time with some short-term fluctuations. This difference in pattern

is mostly explained by the variation of the price parameters in the state-space models.

Note that the own price elasticity or cross price elasticity is generally a function of the

price parameter, the price level, and the probability of choice. Thus variability in price elas-

ticities can be attributed to changes in the price coefficients and changes in price levels.

Since the price coefficient is invariant over time in Sprobit and Hprobit, most of the price

elasticity fluctuations are therefore due to changes in the price levels. In contrast, the price

elasticity fluctuations in Tprobit and Cprobit are due to changes in both the price levels

and the price coefficients. Thus, the static multinomial probit model (Sprobit) and the hi-

erarchical multinomial probit model (Hprobit), which are standard models of choice in the

literature have limited flexibility in capturing the evolution of choice behavior. Including

cross-sectional heterogeneity, while important, does not appear sufficient in modeling the

variation in preferences and choices. The elasticity results suggest that incorporating pref-

erence dynamics is important for adequately assessing the market response to marketing

actions.

4.4.3. Aggregate promotion elasticities

In Table 4 we present aggregate, own and cross promotion elasticities for the four models.

All direct promotion elasticities have the expected positive sign, whereas the cross promotion
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Fig. 4 Temporal direct (own) price elasticities of brand shares for Sprobit (solid line), Hprobit (dashed line),
Tprobit (dotted line) and Cprobit-RW (dashed-dotted line) models

elasticities are all negative. The signs of the own and cross promotion elasticities are consistent

with the fact that the different brands within the category are all substitutes. A comparison of

the magnitudes of the direct and cross promotion elasticities across the models reveals that

all four models generate essentially the same promotion elasticities. Most notable are the

differences between the promotion elasticities from the Cprobit-RW model and those from

the Hprobit model. This similarity across models can be understood within the context of the

pattern observed in Figure 2. There, we saw that the promotion parameter did not exhibit any

appreciable dynamics in the population. The lack of dynamics in the population mean for

the promotion parameter essentially implies that the four models are similar in their ability

to handle promotion effects.
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Fig. 5 Temporal direct (own) promotion elasticities of brand shares for Sprobit (solid line), Hprobit(dashed
line), Tprobit (dotted line) and Cprobit-RW (dashed-dotted line) models

Brand 2’s direct promotion elasticity from the Cprobit-RW model is 0.12 (see Table 4).

Therefore, a 1% increase in Brand 2’s promotion results in a 0.12% increase in Brand 2’s

share. The same promotion increase leads to a 0.02%, 0.04%, and 0.05% decrease in the

share of Brands 1, 3, and 4, respectively. Among all brands, Brand 1 (Brand 2) appears to be

the least (most) sensitive to promotion changes, but differences across brands are minimal.

Across brands, the average promotion elasticity from the Cprobit-RW model is 0.0825 and the

average cross promotion elasticity is 0.04. Comparing the promotion and price elasticities

from the general model, we find that, on average, the magnitude of aggregate promotion

elasticities is much smaller relative to that of regular price elasticities. This significantly
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Table 4 Aggregate direct and
cross price elasticities Elasticity Sprobit Hprobit Tprobit Cprobit-RW

1 → 1 0.03 0.02 0.03 0.04

1 → 2 −0.03 −0.04 −0.04 −0.06

1 → 3 −0.02 −0.03 −0.02 −0.06

1 → 4 −0.03 −0.03 −0.06 −0.06

2 → 1 −0.01 −0.01 −0.01 −0.02

2 → 2 0.08 0.12 0.06 0.12

2 → 3 −0.03 −0.08 −0.01 −0.04

2 → 4 −0.06 −0.08 −0.04 −0.05

3 → 1 −0.01 −0.01 −0.01 −0.01

3 → 2 −0.03 −0.04 −0.01 −0.03

3 → 3 0.03 0.08 0.02 0.08

3 → 4 −0.01 −0.02 −0.01 −0.03

4 → 1 −0.01 −0.01 −0.02 −0.02

4 → 2 −0.06 −0.07 −0.04 −0.06

4 → 3 −0.01 −0.04 −0.01 −0.03

4 → 4 0.06 0.08 0.06 0.09

Ex: Row 1 → 2 gives the cross
elasticity of 1’s promotion on 2’s
share.

higher response to price compared to promotion suggests that, in this product category,

pricing policy has a higher impact on consumers’ buying process than short-term promotion

policy.

4.4.4. Temporal promotion elasticities

Figure 5 displays the estimated temporal own promotion elasticities obtained from the four

different models. From the figure, we can see how the promotion elasticities implied by

the four models are spread out over time. The own promotion elasticities for all brands are

positive with an upward trend. The temporal pattern of promotion elasticities is similar across

models. This similarity is consistent with the results for the aggregate elasticities in Table 4.

From Figure 5, we observe that the promotion elasticities increased in the later portion of the

data. This variation in elasticities mimics the variation in the promotion spending displayed

in Figure 1 where we see that all four brands increased their promotion spending in the last

10 months. The increase in elasticity reflects this increased level of spending in the data, and

not any significant differences in the promotion parameter over time.

5. Conclusion

Understanding choice and preference dynamics is a major issue in the choice modeling

literature. Variation in preferences and choices can occur due to changes in marketing

variables, changes in response coefficients, and changes in serially correlated error terms.

Previous models focused mostly on the changes in the values of independent variables and

on the serial correlation of the error terms. In this paper, we modeled preference variation

through explicit modeling of changes over time in the model parameters. We considered

various forms of parameter dynamics that are special cases of our general model. These
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include a random walk process, dynamic random effects, and a diagonal transition matrix.

We developed a hierarchical Bayesian state-space model to allow for dynamically-linked

population distributions and an estimation approach that simultaneously allows for time-

varying parameters and cross-sectional heterogeneity across households. We showed that the

proposed model is very general and nests traditional models such as the static multinomial

probit and the hierarchical multinomial probit model.

We estimated seven competing models using over eight years of scanner panel data for 300

households for a consumer packaged good. Model comparison results pointed to a heteroge-

nous, state-space model with a random walk process. Thus, in addition to being heterogeneous

across consumers, the model parameters do indeed vary over time. In particular, we found

that consumers became more and more price sensitive over the time span of the data as

revealed by the increasing magnitude of price elasticities over time. This result may be due

to consumers’s frequent exposure to price promotions which can lower their reference price.

Our results also show that null models (static and heterogeneous) that do not fully capture

the dynamics of choice behavior (variability due to changes in coefficients) can distort the

magnitude and the pattern of price elasticities over time. The positive performance of our

model and the fact that most marketing datasets involve observations over many time peri-

ods lead us to believe that the state space approach can be gainfully employed in routinely

analyzing longitudinal data in marketing.

Future research can extend our model in many different ways. In this paper, we assumed

a state-space, VARX(1) process for the parameter dynamics. Our model cannot therefore

capture non-linear changes (e.g., step functions, parabolic functions) that might occur in

certain contexts. A possible extension then would be to model parameter dynamics with

different stochastic structures (dynamic simultaneous equations, VAR(p) models with p >

1). The last model is of particular interest as it allows one to model directly the dependence

among the coefficients across multiple time periods. While we focused on VARX(1) process,

it is important to note that the state space approach is very flexible as it can incorporate

other more general forms of dynamics. Instead of a state space approach, a hidden markov or

change-point framework could be adopted as an alternative to accommodate discrete changes

and structural shifts in the parameters. A comparison of these alternative would be interesting

to gauge their ability to model preference evolution.

In modeling the dynamics, we allowed the population mean to vary over time, thus gen-

erating a dynamic sequence of population distributions. This approach can be extended to

allow the population variance to be dynamic, again using a state-space framework. In our

model, as only the population mean is allowed to evolve, the coefficients of every household

are forced to follow the same pattern over time, which may not be realistic in some situa-

tions. Finally, various marketing phenomena are missing in our research. The present model

can be extended to incorporate incidence, quantity and timing decisions (Chintagunta,1993;

Pauwels et al., 2002) of the households. In addition, our approach can be used in models that

capture the endogeneity of marketing variables (Yang et al., 2003). Here, dynamics can be

incorporated both in the demand and supply side specifications. We leave these extensions

to future research.

Appendix: Priors and full conditional distributions

In this Appendix, we describe the priors and full conditional distributions for the parameters

associated with the model described in Eqs. (11) to (16). We begin with a description of the

priors.
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The priors for the utilities, time-varying parameters and the individual-specific random

effects are directly available from the model specification. For the other parameters, we

specify independent and diffuse (but proper) priors. The prior for the precision matrix, Ψ−1,

is Wishart, W [ρ1, (ρ1R1)−1], where ρ1 ≥ L is the “degree of freedom” parameter for the

Wishart and R1 is a L × L scale matrix. Given our parameterization of the Wishart, R1 is

the expected prior conditional variance of the time-varying parameters, μt ’s. Similarly, the

prior for the precision matrix Ω−1 is W [ρ2, (ρ2R2)−1], where ρ2 ≥ L and R2 is a L × L
scale matrix. We set ρ1 = ρ2 = L + 1 and R1 = R2 = diag(0.01, 0.01, 0.01, 0.002, 0.004).

The dynamics are initialized by assuming that the prior for initial population mean μ0 is

multivariate normal N (μ0, C0). We set μ = 0 and C0 = 100I to obtain a diffuse prior. The

prior for θ is assumed to be multivariate normal N(dθ , Dθ ), where dθ = 0 and Dθ = 100I.

Let δ = vec(Φ) be the vector of all the elements in Φ. We assume a normal prior N (dδ, Dδ),

for δ, where Dδ is a diagonal matrix with its diagonal elements set to 5. The elements in dδ

corresponding to the off-diagonal elements in Φ are set to zero and those corresponding to

the diagonal elements in Φ are set at one.

The variance-covariance matrix Σ is constrained as one of its variance elements is fixed at

one. Many different approaches have been proposed in the literature for specifying priors for

Σ. For example, McCulloch and Rossi (1994) specified priors on the unidentified covariance

matrix. More recently, McCulloch et al. (2000) and Nobile (2000) describe how to directly

specify priors on the identified elements of the covariance matrix. Here, we follow Barnard

et al. (2000) in setting the prior in terms of the standard deviations and correlations in Σ.

The covariance matrix Σ can be decomposed into a correlation matrix, R and a vector s,

of standard deviations, i.e., Σ = diag(s) × R × diag(s), where s = (
√

σ11, . . . ,
√

σJ J )′. Let

ω contain the logarithms of the elements in s. We assume a multivariate normal distribution

N (0, I) for the non-redundant elements of R, such that it is constrained to the subspace of the

M ∗ (M − 1)/2 dimensional cube [−1, 1]M(M−1)/2 that yields a positive definite correlation

matrix. Finally, we assume that the log-standard deviations in ω come from independent

standard normal priors.

We now focus on the full conditional distributions for the unknowns in the model.

1. The full conditional distribution for the household-specific random effects, bh , h =
1, . . . , H can be obtained from standard Bayesian arguments involving conjugate

distributions. The full conditional is multivariate normal, N (b∗
h, Vbh), where b∗

h =
Vbh(

∑nh
j=1 X′

hjΣ
−1ũhj ) and V−1

bh = ∑nh
j=1 X′

hjΣ
−1Xhj + Ω−1 and ũhj = uhj − Xhjμth j

is

a vector of adjusted utilities.

2. To obtain the vector of states {μ0,μ1, . . . ,μT }, we use the forward-filtering, backward-

sampling algorithm. Alternative methods include one at a time sampling procedures, such

as those outlined in Tsay and McCulloch (1994). The forward-filtering, backward sampling

algorithm consists of two steps. In a forward step, the moments of the updated distribution

of each state is computed using a Kalman filter approach. In the backward step, each

parameter is sampled from its conditional distribution conditioned on the preceding draw.

We begin by defining the model in terms of the time periods t = 1 to T .

ũt = Xtμt + et , et ∼ N (0,Σt ), Σt = Σ ⊗ Int

μt = θ + Φμt−1 + εt , εt ∼ N (0,Ψ),

where nt is the number of observations in period t , ũt is the nt × M vector of adjusted

utilities stacked observation by observation and obtained after subtracting the systematic

Springer



Quant Market Econ (2006) 4: 57–81 79

component involving the random effects from the utilities and Xt is obtained by vertically

stacking the Xhj matrices for all observations belonging to time-period t .
In the forward step, the moments of each state are computed recursively as follows:

Let the posterior at time t − 1 be p(μt−1|Dt−1) ∼ N (mt−1, Ct−1), where Dt−1 is the

information set at time-period t − 1 and includes the other unknowns and the utilities upto

time period t − 1. The prior for μt can be written as p(μt |Dt−1) ∼ N (γt , 	t ), where, γt =
θ + Φmt−1 for t > 1, γ1 = θ + Φη0, and 	t = ΦCt−1Φ′ + Ψ. After the data for period

t are observed, conditional on the utilities for the observations in period t , the posterior at

time t can be written as p(μt |Dt−1, ũt ) ∼ N (mt , Ct ) where C−1
t = 	−1

t + X′
tΣ

−1
t Xt and

μt = Ct [	
−1
t γt + X′

tΣt ũt ]. These posterior moments can be computed and stored in the

forward step of the algorithm.

Let μ̃ = {μ0,μ1, . . . ,μT } and let the parameters that are not in μ̃ be written as α̃. Then

we can write p(μ̃|DT , α̃) = p(μT | DT , α̃)p(μT −1 |μT , DT −1, α̃) . . . p(μ0 |μ1, D0, α̃).

This depends upon the identity p(μT −k | μT −k+1, DT , α̃) = p(μT −k |μT −k+1, DT −k, α̃).

Therefore, μ̃ can be sampled using the following steps

1. Sample μT from (μT |DT , α̃) ∼ N (mT , CT )

2. for t = T − 1, . . . , 0, sample μt from p(μt |μt+1, Dt , α̃) = N (qt , Qt ).

In the second step, we use Q−1
t = C−1

t + Φ′Ψ−1Φ and qt = Qt [C−1
t mt + Φ′Ψ−1(μt+1 −

θ)], and for the initial state we have p(μ0|μ1, D0, α̃) = N (q0, Q0) where, Q−1
0 = C−1

0 +
Φ′Ψ−1Φ and q0 = Q0[C−1

0 η0 + Φ′Ψ−1(μ1 − θ)].

3. The full conditional distribution for Ψ−1 is Wishart and is obtained by combining the

normal likelihood for the time-varying parameters with the Wishart prior distribution for

Ψ−1. Given the conjugacy of the Wishart with the normal likelihood, the posterior is

given by W (ρ1 + T, [
∑T

t=1(μt − Φμt−1 − θ)(μt − Φμt−1 − θ)′ + ρ1R1]−1), where T
is the number of periods.

4. The full conditional for θ is a normal N (θ̂, Vθ ). Let μ̃t = μt − Φμt−1, then Vθ = D−1
θ +

TΨ−1, and θ̂ = Vθ [D−1
θ dθ + ∑T

t=1 Ψ−1μ̃t ].

5. The full conditional for δ is a normal N (δ̂, Vδ). Let μ̃tδ = μt − θ, and let Wt be a

L × (L × L) matrix generated from using μt−1 on each row, such that μ̃tδ = Wtδ +
εt forms a SUR system. Then, Vδ = D−1

δ + ∑T
t=1 W′

tΨ
−1Wt , and δ̂ = Vδ[D−1

δ dδ +∑T
t=1 W′

tΨ
−1μ̃t,δ].

4. The full conditional distribution for Ω−1 is obtained in the same manner as for Ψ−1 by

combining the normal likelihood for the household-specific parameters with the prior

distribution for Ω−1. It is given by W
(
ρ2 + H, [

∑H
h=1 bhb′

h + ρ2R2]−1
)

where H is the

number of households.

5. The full conditional distribution for each free element in the vector of log standard de-

viations ω of the utility errors can only be written up-to a normalizing constant (recall

that the first term in ω is fixed to 0 (i.e., σ1 = 1) for identification purpose). Given our

assumption of an independent normal prior for each free element, we use a Metropolis -

Hastings step to simulate independently each free element in ω. A univariate normal pro-

posal density can be used to generate candidates for this procedure. If ω
(m−1)
i is the current

value of i th component of ω, then a candidate value is generated using a random walk

chain ωc
i = ω

(m−1)
i + N (0, τ ), where τ is a tuning constant that controls the acceptance

rate. The proposed candidate ωc
i is accepted as the new value ω

(m)
i with probability,

min

{
L
(
ωc

i

∣∣{{uhj }}, {μt }, {bh}, R,ω−i
)

p
(
ωc

i

)
L
(
ω

(m−1)
i

∣∣{{uhj }}, {μt }, {bh}, R,ω−i
)

p
(
ω

(m−1)
i

) , 1

}
. (17)
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In the above acceptance probability expression, L(ωc
i | {{uhj }}, {μt }, {bh}, R,ω−i ) is

the likelihood of observing the latent utilities, evaluated at the candidate value ωc
i and

the quantity p(ωc
i ) represents the prior univariate normal density evaluated at ωc

i . If the

candidate is rejected, then ω
(m)
i = ω

(m−1)
i .

6. Many different approaches can be used to sample the correlation matrix R. Here, we use

slice sampling (Neal, 2003) to sample each non-redundant correlation in R, separately.

The full conditional for an arbitrary correlation r is proportional to the function f (r ) =
L(r )p(r ), where L(r ) is the likelihood of the utilities evaluated at the value r and p(r ) is

the prior density. In slice sampling, the current value rc (i.e, the value from the previous

iteration of the MCMC sampler) is replaced with a value rm using the following steps

– Draw a value z uniformly from (0, f (rc)) and define a region (called the Slice) M =
{r : z < f (r )} containing rc.

– Generate an interval around rc that ensures that R is positive definite. We use the

computations outlined in Barnard et al. (2000) to derive this interval.

– Draw a new value rm from the part of the slice m within the interval. In this step, we

use the shrinkage procedure outlined in Neal (2003) to successively shrink the interval.

The shrinkage procedure results in an efficient approach for generating the new value.

7. The full conditional distribution associated with the identified set of utilities uhj in the

proposed model is a M-variate normal distribution N (Xhjβhj ,Σ) truncated over a multidi-

mensional cone (see McCulloch and Rossi (1994) for the case of the traditional multinomial

probit model). If the chosen brand is brand m, yhjm = 1, then uhjm > max(uh, j,−m, 0); If

yhjm = 0, then uhjm < max(uh, j,−m, 0), where uh, j,−m is a (M − 1) dimensional vector of

all the components of uhj excluding uhjm .

Sampling these identified set of utilities uhj can be done observation by observation in a

data augmentation step as in Albert and Chib (1993) and McCulloch and Rossi (1994) by

sampling each component of uhj in a mini-Gibbs sampling step. The truncated multivariate

normal draw for uhj can be pieced together from the truncated conditional univariate

normal draws of each component of uhj .
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