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Polyhedral methods for choice-based conjoint analysis provide a means to adapt choice-based questions
at the individual-respondent level and provide an alternative means to estimate partworths when there

are relatively few questions per respondent, as in a Web-based questionnaire. However, these methods are
deterministic and are susceptible to the propagation of response errors. They also assume, implicitly, a uniform
prior on the partworths. In this paper we provide a probabilistic interpretation of polyhedral methods and
propose improvements that incorporate response error and/or informative priors into individual-level question
selection and estimation.
Monte Carlo simulations suggest that response-error modeling and informative priors improve polyhedral

question-selection methods in the domains where they were previously weak. A field experiment with over
2,200 leading-edge wine consumers in the United States, Australia, and New Zealand suggests that the new
question-selection methods show promise relative to existing methods.
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1. Introduction
Toubia et al. (2003) demonstrated that polyhedral
methods for adaptively selecting questions in met-
ric conjoint analysis could improve accuracy when
partworths are either homogeneous or heterogeneous,
and could do so whether response errors are large or
small. Toubia et al. (THS 2004) extended polyhedral
methods to choice-based questions, but with mixed
success. Polyhedral choice-based questions improved
accuracy when response errors were low, but not
when they were high. Furthermore, although polyhe-
dral methods for metric paired-comparison questions
predict well for empirical data, there have been no
empirical validity tests for choice-based polyhedral
methods despite the growing interest among practi-
tioners for adaptive choice-based methods.
In this paper we propose and test a generalization of

THS that takes response error into account for choice-
based questions and has the potential to improve
accuracy in high response-error domains. We do so
by recasting the polyhedral heuristic into a Bayesian

framework. This framework also includes prior infor-
mation in a natural, conjugate manner. After verify-
ing the methods with simulations, we undertake a
large-scale, multicountry study in which each respon-
dent completes two separate conjoint tasks. This
design enables us to compare question selection with
a within-respondent design that implies greater sta-
tistical power to distinguish methods. We compare
methods on the ability to predict actual choices. We
examine whether the methods lead to different man-
agerial implications by comparing forecasts of will-
ingness to pay as well as the optimal product lines
implied by each method.
This paper is organized as follows. Section 2 briefly

reviews the published choice-based polyhedral meth-
ods and discusses two key limitations. Sections 3 and
4 propose solutions to these limitations. Sections 5
examines the methods with Monte Carlo simulations.
Section 6 describes the methodological results of the
field experiment. Section 7 concludes and offers direc-
tions for future research.
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2. Review and Critique of Polyhedral
Choice-Based Methods

Choice-based polyhedral question selection selects
each choice question to learn as much as possible
about a respondent’s preferences. The conceptual idea
is to recognize that the set of choice questions and
their corresponding answers define a polyhedron,
i.e., a set of “feasible” partworth vectors that per-
fectly fit previous observations. Each choice narrows
the range of feasible partworths making the range
smaller and smaller until it converges toward a sin-
gle partworth vector. The method works well when
the respondent makes no errors, but can be highly
sensitive to errors, particularly in the early choices.
We now provide a brief technical review to estab-
lish both notation and conceptual reasoning for the
generalizations.

Answers to Choice-Based Questions Interpreted as
Constraints on the Partworths
Without loss of generality, we use binary vectors in
the theoretical development to simplify notation and
exposition. Multilevel features are used in both the
simulations and the application. Let xqjf indicate that
the jth alternative in the qth choice set contains the
f th feature, and let �xqj be the binary row vector
describing the jth alternative in the qth choice set.
Define �xqk similarly for the kth profile. Let �u be the
l-dimensional vector of partworths for a given respon-
dent. Let �qj and �qk be error terms such that the
respondent’s utility for profile j in choice set q is �xqj �u
+ �qj . The utility-maximizing respondent will choose
profile j∗ over profile k if and only if 	�xqj∗ − �xqk
�u
+ 	�qj∗ − �qk
 ≥ 0. Each choice among J alternatives
implies J − 1 such inequality constraints, indicating
that the utility of the chosen profile is higher than
that of the other J − 1 alternatives in the choice set.
Let X1�����q� be the matrix of the 	�xqj∗ − �xqk
s for all
J −1 inequality constraints stacked for the first q ques-
tions. Note that the respondent’s q choices are coded
in X1�����q� by the selection of j∗ for each question.
Let �� be the corresponding vector of error differences
and, without loss of generality, scale all partworths to
be nonnegative and normalize the partworths so that
they sum to 100.1 Then, if �e is a vector of 1s and �0 is
a vector of 0s (of length l
, the answers to the choice-
based questions imply the following constraints on
the respondent’s partworths:

	P1
 X1�����q� �u+ ��≥ �0 �u≥ �0 �e′ �u= 100�

1 Nonnegativity assumes that we know a priori which level of the
partworth vector is preferred. This simplifies notation. We address
empirical issues in later sections. The selection of 100 is arbitrary
and implicitly rescales the error vector, ��.

Figure 1 Deterministic Polyhedral Question Selection
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Question Selection
For any given vector ��, the set of vectors �u satisfy-
ing the constraints in (P1) is a mathematical object
called a polyhedron. THS select questions such that
the polyhedron corresponding to ��= �0 never becomes
empty, and effectively assume that ��= �0. Let �1�����q�
be the polyhedron obtained after q questions. The
q+ 1st question imposes new constraints on the part-
worths, giving rise to a new polyhedron �1�����q+1� that
is a subset of the previous polyhedron �1�����q�. For
a linear compensatory utility model, each point in
�1�����q� is consistent with the respondent choosing one
and only one of the alternatives in choice set (q + 1)
(except for a set of points of measure 0 for which the
respondent is indifferent between at least two pro-
files). Hence, the q+ 1st question divides �1�����q� into
J collectively exhaustive (smaller) polyhedra that are
of roughly equal size. The region corresponding to the
respondent’s choice becomes the starting polyhedron
for the next question. See Figure 1 for a choice set
of two alternatives. If there were no response errors,
the sequence of polyhedra would shrink toward the
respondent’s true partworth vector.
Question selection (choice set selection) obeys two

principles: (1) choice balance and (2) postchoice sym-
metry. Choice balance minimizes the expected size
of �1�����q+1� and is implemented by ensuring that a
respondent who uses the working estimate of the
partworths, �̂uq , would be approximately indiffer-
ent between all the alternatives in the choice set.
Choice balance is common in the literature and, for
choice questions, typically increases the efficiency of
the questions (Arora and Huber 2001, Hauser and
Toubia 2005, Huber and Zwerina 1996, Kanninen
2002).2 Postchoice symmetry minimizes the maximum

2 The first-order conditions for logit-based choice-based questions
indicate that the information matrix is maximized for questions
that are close to, but not perfectly, choice balanced. See appendix
to Hauser and Toubia (2005).



Toubia, Hauser, and Garcia: Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis
598 Marketing Science 26(5), pp. 596–610, © 2007 INFORMS

uncertainty on any combination of partworths, and is
implemented by constructing choice sets that divide
the polyhedron �1�����q� perpendicularly to its longest
axes.

Estimation
Because choice questions are chosen such that the
polyhedron �1�����q� never becomes empty, all points
in �1�����q� are consistent with all of the respondent’s
choices. Thus, THS use the analytic center of �1�����q�,
�̂uq , as the working estimate of �u after q questions.

Critique
Choice-based polyhedral question selection and esti-
mation are promising. Empirically, choice balance is
achieved and the polyhedra shrink rapidly (although
there is no published data on the ability to pre-
dict actual choices). Compared to randomly gener-
ated questions, orthogonal designs, and aggregate
customization (Arora and Huber 2001, Huber and
Zwerina 1996), deterministic choice-based polyhedral
questions improve accuracy when response error is
low, but not when response error is high.
The poor performance for high response errors is

likely due to response-error propagation, as illus-
trated in Figure 2. In this example, the respondent’s
true partworth values are as indicated by a star (�).
With no response error, the respondent would choose
Profile 2, corresponding to the lower polyhedron,
and the set of feasible partworths (new polyhedron)
would converge toward the true value. However,
with response errors the respondent might choose
Profile 1, corresponding to the upper polyhedron.
Once such a choice is made, the partworths can never
converge to the true value. The closest estimate would
be on the border, as indicated by the small dia-
mond (�). Moreover, without a formal probabilistic
structure, there is no easy way to incorporate prior

Figure 2 Illustration of Response Error in Deterministic Polyhedral
Question Selection
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information on the likely distribution of partworths.
We next address both response error and prior infor-
mation with a Bayesian interpretation of choice-based
polyhedral methods.

3. Bayesian Interpretation for
Choice-Based Polyhedral Methods

We can interpret the analytic center as a working esti-
mate if we assume a prior distribution on the part-
worth vector �u that is uniformly distributed on the
initial polyhedron, �0 = �u� �u ≥ �0� �e′ �u = 100�. Denote
this distribution as P�0

: defined by P�0
	 �u
= 0 if �u
�0;

P�0
	 �u
 = ��0�−1 if �u ∈ �0. (��0� is the measure of

the set �0.) Denote the data provided by the respon-
dent through the first q choices with D1�����q�. (D1�����q�
is encoded in X1�����q�.) The deterministic algorithm
implicitly assumes a likelihood function of the form:
P	D1�����q� � �u
 = 1 if �u ∈ �1�����q� and P	D1�����q� � �u
 = 0
if �u 
 �1�����q�. Applying Bayes rule, P	 �u � D1�����q�
 ∝
P	D1�����q� � �u
P�0

	 �u
 ∝ P�1�����q�
	 �u
. In other words, the

posterior distribution is the uniform distribution with
support �1�����q�.
Once the method is viewed in a Bayesian frame-

work, the two implicit assumptions of the absence
of response error and uniform priors may easily be
relaxed by generalizing, respectively, the likelihood
function and the prior.

4. Probabilistic Polyhedral Methods
Generalizing the Likelihood Function
In the deterministic algorithm ��= �0, and the respon-
dent chooses the profile with the highest deterministic
utility with probability 1. All posterior distributions
are uniform distributions supported by polyhedra.
We generalize the algorithm by considering distri-
butions supported by mixtures of polyhedra. As the
number of polyhedra in the mixtures grows, we can
approximate any distribution, but we must balance
this capability with the realization that as the number
of polyhedra grows, the computational time grows
exponentially. To balance these effects, we choose a
simple likelihood function that captures the essence
of response error. We use simulations to examine
whether this is a sufficient approximation.
To obtain a structure in which the prior and pos-

terior distributions are conjugate, we assume that
the noise �� is distributed such that the respondent
chooses the profile with the highest deterministic util-
ity with probability, �′, and chooses the J − 1 other
profiles with probability 	1− �′
/	J − 1
. The advan-
tages of this assumption are that it provides a feasi-
ble algorithm and nests the deterministic algorithm
as the special case when �′ = 1. While we believe
this assumption is a reasonable, first-order robust
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assumption, it may not hold exactly in real or syn-
thetic data. To test the robustness of this assump-
tion, we generate data in our simulations that use a
traditional logistic function and, hence, violate this
assumption to some degree.
In general, �′ is unknown and can be assumed

to vary across respondents and, potentially, across
choice sets within a respondent (e.g., �′ may be
higher or lower if the profiles in the choice set are
closer in utility). We might include priors for �′

and do a full Bayesian updating such that P	 �u� �′
i� �

D1�����q�� xi1�xi2� � � � � xiJ �
 ∝ �
∏

i P 	Di � �u��′
i
P 	�′

i � �u�
xi1�xi2� � � � � xiJ 
�P	 �u
.
To avoid complexity, for a first test of the algo-

rithm, we model �′ as homogeneous and constant.
Fortunately, sensitivity analyses suggest that predic-
tive ability is not sensitive to the choice of �′ within
a wide range that is consistent with the �′s estimated
for our simulations and empirical test. See Appen-
dices A1 and A2 for details on estimation and sensi-
tivity. We leave to future research the investigation of
alternative ways to specify and estimate �′. For our
empirical tests, we use pretest data to select a point
estimate of �′. Pretest selection follows the tradition
of aggregate customization (Arora and Huber 2001,
Huber and Zwerina 1996).

Generalizing the Prior Distribution
We nest THS’s implicit prior distribution within a
mixture of uniform distributions supported by poly-
hedra:

∑M
m=1�mP�m

	 �u
 where M is any positive inte-
ger, �1� � � � ��M� is a set of positive weights such that∑M

m=1�m = 1, and �1� � � � ��M� is a set of polyhedra.
In this paper we apply and test two special cases

of nonuniform priors. The first special case approx-
imates traditional normal priors. Figure 3 illustrates
the approximation conceptually. (In one dimension,
a polyhedron is a line segment.) The uniform distribu-
tions are indicated with solid lines; the approximation
with a dotted line. Appendix A3 provides a proce-
dure for choosing weights for the polyhedra provid-
ing support for the distribution.
The second special case, denoted “population pri-

ors,” selects a mixture of polyhedra such that the
median of the prior importance of each feature is
equal to the median (across respondents) of its impor-
tance. The polyhedra are defined by inequalities
implied by the median importances of the features.
If F is the number of features, this prior uses a mix-
ture of 2F polyhedra.3 Details on the definitions of
the polyhedra and the computation of the weights are
given in Appendix 4.

3 The importance can be defined as the difference between the
maximum and minimum partworths for a feature or the aver-
age absolute magnitudes of the partworths. Importances have both
conceptual and computational advantages relative to imposing
median constraints on the partworths directly.

Figure 3 Approximating a Normal Prior with a Mixture of Polyhedra

Conjugate Posterior Distributions
An important feature of our generalization is that the
class of likelihood functions and the class of priors
presented above are conjugate; that is, the posterior
distributions remain within the set of mixtures of uni-
form distributions supported by polyhedra.
In order to show this result, we begin with a prior

distribution, P�0
	 �u
, supported by a (single) polyhe-

dron, �0. Let �1 = �u� X1 �u≥ �0� �u≥ �0� �e′ �u= 100� be the
polyhedron defined by the answer to the first ques-
tion and D1 be the data provided by this question.
Let �0 −�1 be the set in which all points in �1 are
removed from �0. Applying Bayes rule:

p	 �u �D1
 ∝ p	D1 � �u
P�0
	 �u


=



�′��0�−1 if �u ∈�1(
1−�′

J − 1
)
��0�−1 if �u ∈�0−�1�

(1)

The posterior is proportional to a piecewise-constant
function that takes the values of zero at all points out-
side �0, �′��0�−1 at all points in �1, and 		1−�′
/
	J − 1

��0�−1 at all points in �0 −�1. Hence, there
exists a scalar, � ∈ �0�1�, such that:

p	 �u �D1
 = �P�1
	 �u
+ 	1−�
P�0

	 �u


=


���1�−1+ 	1−�
��0�−1 if �u ∈�1

	1−�
��0�−1 if �u ∈�0−�1�
(2)

where P�1
	 �u
 is the uniform distribution with sup-

port �1. Equation (2) demonstrates that the posterior
is a mixture of two uniform distributions supported
by polyhedra. The scalar � is implicitly defined by
equating Equations (1) and (2):

���1�−1+ 	1−�
��0�−1
	1−�
��0�−1

= �′	J − 1

1−�′

⇔ ���0�/��1�+ 	1−�


	1−�

= �′	J − 1


1−�′ �
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The computation of � requires knowledge of
��0�/��1�, which is the ratio of the measure of �0
to the measure of �1. For the choice-based polyhe-
dral algorithm, we seek choice balance such that �0 is
divided into J collectively exhaustive equal-measure
subpolyhedra; thus, the ratio ��0�/��1� is close to its
average J . Hence, �� 	J�′ − 1
/	J − 1
.
Let us next consider prior distributions that are

defined by any mixture of uniform distributions sup-
ported by polyhedra,

∑M
m=1�mP�m

	 �u
. Defining �1 as
above and following the same argument, the posterior
after the new choice question is proportional to:

P	D1 � �u

[ M∑
m=1

�mP�m
	 �u


]

=
M∑

m=1
�m	P	D1 � �u
P�m

	 �u



=
M∑

m=1
�m	�mP�m∩�1

	 �u
+ 	1−�m
P�m∩�0
	 �u

�

which is also a mixture of uniform distributions sup-
ported by polyhedra.
Finally, we generalize to q questions. Let Sq be the

set of all subsets of 1�2� � � � � q�. For a subset s

of Sq , let �s = �u� Xs �u ≥ �0� �u ≥ �0� �e′ �u = 100� be the
polyhedron consistent with the choice questions con-
tained in s (recall that Xs encodes the constraints
implied by the answers to the questions in s). Let
ws = ��s�	1 − �
q−�s� for all nonempty �s , where �s�
denotes the number of elements in subset s and �=
	J�′ − 1
/	J − 1
. The posterior after q questions is a
mixture of uniform distributions supported by the
polyhedra �s ∩�m�s∈S�m∈1�����M�. We approximate the
weights as follows:4

Pq	 �u
=
M∑

m=1

∑
s∈Sq

�mwsP�s∩�m
	 �u
� (3)

We denote question selection and estimation based
on this posterior distribution as “polyhedral with
error-modeling and informative priors.” We also con-
sider the following special cases in the simulations
and field experiment:
• “polyhedral without error-modeling and with

uniform priors” (as in THS): �= 1, prior: P�0
	 �u
, pos-

terior: Pq	 �u
= P�1�����q�
	 �u
;

• “polyhedral with error-modeling and with uni-
form priors:” � < 1, prior: P�0

	 �u
, posterior: Pq	 �u
 =∑
s∈Sq wsP�s

	 �u
;
• “polyhedral without error modeling and with

informative prior:” �= 1, prior: ∑M
m=1�mP�m

	 �u
, pos-
terior: Pq	 �u
=

∑M
m=1�mP�1�����q�∩�m

	 �u
.

4 We set �mws to zero if �s ∩�m =� and normalize the weights to
sum to one.

Selecting Questions and Estimating Partworths
with Mixtures of Distributions
In the deterministic algorithm, THS select questions
based on the analytic center and longest axes of
a single polyhedron. This is a well-defined prob-
lem. For the probabilistic algorithm we must work
with Pq	 �u
, which is a mixture of uniform distribu-
tions supported by polyhedra. To implement choice
balance and postchoice symmetry, we must compute
the analytic center and longest axes of polyhedral
mixtures. Fortunately, the analytic center may simply
be replaced with the appropriate mixture of the ana-
lytic centers of the polyhedra in the mixture. How-
ever, computing the longest axes poses a conceptual
and technical challenge.

Longest Axes of a Mixture of Polyhedra
The longest axis of a mixture of polyhedra should
summarize the directions of the longest axes of the
polyhedra in the mixture and do so according to the
weights of the mixture. Let �vsm be the longest axis of
the polyhedron �s ∩�m (see Equation (3)), and �mws

be the corresponding weight. We seek the vector �v∗

that maximizes the weighted norm of the projections
of �vsm on �v∗. Thus, the longest axis is the solution to
the following mathematical program:

	OPT1
 �v∗
q = argmax

�v

M∑
m=1

∑
s∈Sq

�mws	�vT
sm �v
2�

Fortunately, OPT1 has a known solution. Define V
as the matrix obtained by stacking the transposed
longest axes, �vT

sm. Define ) as the diagonal matrix
with elements equal to the weights {�mws}. We rewrite
OPT1 in matrix form as follows:

M∑
m=1

∑
s∈Sq

�mws	�vT
sm �v
2 = �v′V ′)V �v�

OPT1 is now a standard optimization problem that is
analogous to factor analysis: �v∗

q is the eigenvector
associated with the largest eigenvalue of V ′)V . The
matrix is symmetric and positive definite; hence, its
eigenvalues are all real and nonnegative. The second-
longest axis is associated with the second eigenvalue,
etc. Because the axes are eigenvectors, they are guar-
anteed to be orthogonal.

Practical Implementation
While mixtures of polyhedra can approximate almost
any distribution, there are practical considerations.
Not only do the population priors grow exponentially
with the number of features (2F ), but the number of
subsets Sq in Equation (3) grows exponentially with
the number of questions (2q). For small q and small F ,
computation can be done quickly. Choice-based ques-
tions can be selected in less than a second, such that



Toubia, Hauser, and Garcia: Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis
Marketing Science 26(5), pp. 596–610, © 2007 INFORMS 601

respondents do not notice any delay. However, for
large q or large F the delay can exceed a second (e.g.,
216 = 65�536).
We take three steps to reduce computation time.

First, the set of polyhedra in the posterior mixture
after q questions, P�s∩�m

�m=1�����M* s∈Sq , is a subset of
the polyhedra in the posterior mixture after q + 1
questions, P�s∩�m

�m=1�����M* s∈Sq+1 (this follows from the
fact that Sq ⊂ Sq+1
. By saving, rather than recomput-
ing, the longest axes and analytic center, we reduce
computation time substantially. Second, one of the
time-consuming steps in polyhedral methods is find-
ing a feasible point in �s ∩�m. If a point is feasible
in �1�2�����q� ∩ �m, then it is feasible for all �s ∩ �m,
s ∈ Sq . By reusing feasible points, we also reduce com-
putational time substantially. Third, as the number
of questions grows large, we sort the weights �mws

in decreasing order and apply the algorithm to sub-
sets corresponding to the largest weights, doing so
until a preset time limit is reached. In our empirical
work, that time limit is one second. In simulation, we
use 10 seconds. Exploratory work suggests that these
time limits provide excellent performance. However,
all empirical and simulation results reported in this
paper can be considered conservative and might
improve slightly with faster computers and more effi-
cient codes/programming/compilers.

5. Monte Carlo Simulations
Modeling response error and informative priors
promises to enhance the accuracy of choice-based
polyhedral question selection. However, both exten-
sions increase complexity and could result in over-
fitting the data. To evaluate performance, we turn
to complementary testing tools, both synthetic and
empirical data. We use Monte Carlo simulations to
study the potential of the methods by investigating
the range of performance in a variety of relevant
domains. With synthetic data we know the “truth”
and can compare estimates to that benchmark. We use
the field experiments to test practical implementation
in a realistic setting. We do not know the true values
of the partworths, and so must use predictive ability
as a surrogate.

Experimental Design for the Monte Carlo
Simulations
We use a 2×2×6×4 design for the Monte Carlo simu-
lations. We simulate the respondents with a 2×2 sub-
design that is becoming standard—allowing for two
levels of response accuracy and two levels of respon-
dent heterogeneity (Arora and Huber 2001, Evge-
niou et al. 2005, Toubia et al. 2004). The Arora-Huber
design, as modified by THS, uses four features at four
levels each to ensure complete aggregate customiza-
tion and orthogonal designs. Partworths are drawn

from normal distributions with means, �̄u, and vari-
ances, +2

,. The four levels of each partworth have
means [−,̄�−,̄/3� ,̄/3� ,̄]. Higher values of ,̄ imply
higher response accuracy. Higher values of +2

, imply
greater heterogeneity. We used the standard values
of ,̄ = 1 for the “low-accuracy” case and ,̄ = 3 for
the “high-accuracy” case with +2

, = ,̄ for “low hetero-
geneity” and +2

, = 3,̄ for “high heterogeneity.”
For each respondent we simulate six question-

selection methods:
• random
• orthogonal
• aggregate customization (Huber and Zwerina

1996, Arora and Huber 2001)
• deterministic polyhedral (as in THS)
• probabilistic polyhedral with error modeling and

uniform priors
• probabilistic polyhedral with error modeling

and informative prior (prior approximates a normal
distribution—see §3 and Appendix A3 for details).
The six question-selection methods are crossed with

four estimation methods:
• hierarchical Bayes (HB) with normal priors
• deterministic analytic-center estimation (AC)
• analytic-center estimation with error modeling

and uniform prior (ACe)
• analytic-center estimation with error modeling

and informative prior (ACe+i) (prior approximates a
normal distribution).

Simulated Environment
Aggregate customization uses relabeling and swap-
ping to improve utility balance in choice-based ques-
tions and requires an estimate of the population
partworth means. Polyhedral question selection with
error modeling requires an estimate of �′. This esti-
mate is derived from the same population estimates
(see Appendix A1 for details). Following Arora and
Huber (2001), we assume perfect pretest informa-
tion. This should not affect the relative comparison of
aggregate customization and probabilistic polyhedral
question selection. Naturally, no such assumption is
made in the empirical tests. Likewise, to investigate
the impact of informative priors (relative to no pri-
ors), we use a rough approximation (four polyhedra)
to the true prior distribution.5 All simulation results
are interpreted in light of these assumptions.
We seek to afford the estimation benchmark meth-

ods the strongest possible performance. Evgeniou

5 We use normal priors rather than population priors on feature
importances, because the latter would require that we deviate from
the standard simulation design, thus reducing our ability to com-
pare our results to previously published papers. Population priors
only lead to differences when the average importances vary among
the four simulated features. This does not happen in the standard
simulation design, but is likely in our empirical test.
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Table 1 Monte Carlo Simulation Results

RMSE
Magnitude
(accuracy) Heterogeneity Question selection method HB1 AC ACe ACe+i

Low High Random 0�669 0�932 0�808 0�728
Orthogonal 0�644 0�902 0�705 0�658
Aggregate customization 0�610 0�916 0�733 0�670
Deterministic polyhedral 0�599 0�778 0�648∗ 0�614
Probabilistic polyhedral w/ error 0�586∗ 0�759∗ 0�645∗ 0�601∗

modeling and uniform priors
Probabilistic polyhedral w/ error 0�584∗ 0�767∗ 0�645∗ 0�598∗

modeling and informative priors

Low Low Random 0�645 0�963 0�824 0�653
Orthogonal 0�604∗ 0�913 0�714∗ 0�606
Aggregate customization 0�597∗ 0�983 0�786 0�627
Deterministic polyhedral 0�630 0�877 0�708∗ 0�607
Probabilistic polyhedral w/ error 0�612 0�837∗ 0�713∗ 0�603∗

modeling and uniform priors
Probabilistic polyhedral w/ error 0�595∗ 0�845∗ 0�707∗ 0�596∗

modeling and informative priors

High High Random 0�583 0�887 0�850 0�662
Orthogonal 0�562 0�939 0�729 0�586
Aggregate customization 0�514 1�026 0�785 0�613
Deterministic polyhedral 0�497 0�680 0�613∗ 0�528
Probabilistic polyhedral w/ error 0�487 0�665 0�620∗ 0�521

modeling and uniform priors
Probabilistic polyhedral w/ error 0�448∗ 0�633∗ 0�611∗ 0�476∗

modeling and informative priors

High Low Random 0�489 0�903 0�861 0�580
Orthogonal 0�450 0�959 0�746 0�474
Aggregate customization 0�404 1�057 0�815 0�499
Deterministic polyhedral 0�441 0�702 0�623∗ 0�468
Probabilistic polyhedral w/ error 0�438 0�677∗ 0�633∗ 0�480

modeling and uniform priors
Probabilistic polyhedral w/ error 0�392∗ 0�671∗ 0�648 0�422∗

modeling and informative priors

Notes. RMSE, lower is better.
∗Best, or not significantly different from best, at p≤ 0�05 within magnitude× heterogeneity× estimation condition.
1HB= hierarchical Bayes estimation, AC= deterministic analytic-center estimation, ACe= analytic-center estimation with error modeling

and uniform priors, ACe+i= analytic-center estimation with error modeling and informative priors.

et al. (2005) demonstrate that HB performs better if for
each respondent we use rejection sampling (Allenby
et al. 1995) to constrain the HB estimates so that the
partworth of the lowest level of each feature is also
the smallest partworth for that feature.6 We adopt this
procedure for HB in both the simulation and the field
experiments.
Because polyhedral methods are designed for short

Web-based questionnaires, we test designs of eight
questions, choosing randomly for orthogonal and
aggregate customization as in THS. For comparison
to previously published simulations we report root
mean squared error (RMSE) after normalizing the true
and the estimated partworths so that their absolute
values sum to the number of parameters and so that
their values sum to zero for each feature. This enables

6 Constraints in estimation are used in other areas of marketing as
well (see, for example, Ailawadi et al. 2005).

us to interpret the RMSEs as a percentage of the mean
(absolute) partworths. The simulations in Table 1 are
based on now-standard 10 sets of 100 respondents.
This is not a computational constraint; the field tests
are based on larger samples.

Results and Interpretation of
Synthetic Data Experiments

Question Selection. Taking response errors into
account and using informative priors appears to have
the potential to improve question selection. At least
one of the two modifications in polyhedral question
selection is best or tied for best in all 16 accuracy×
heterogeneity× estimation experimental cells. Proba-
bilistic polyhedral question selection with error mod-
eling and uniform priors is at least as good as the
deterministic algorithm in every cell and significantly
better in 9 of the 16 cells. Probabilistic polyhedral
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question selection with error modeling and informa-
tive priors is at least as good as the deterministic
algorithm in 15 of the 16 cells and significantly bet-
ter in 12 of the 16 cells. The field experiment will test
whether such improvements are sustained in practical
implementations.

Estimation. Taking response errors into account
and using informative priors also appear to have the
potential to improve polyhedral estimation. At least
one of the two improvements is better than deter-
ministic analytic-center estimation in all accuracy ×
heterogeneity experimental cells. Informative priors
appear to provide the greater improvement. How-
ever, the hierarchical Bayes estimates (HB) are still
significantly better in three of the four accuracy ×
heterogeneity cells. The only exception is the low-
accuracy, low-heterogeneity cell in which ACe+i is
statistically tied with HB. These results are consistent
with the simulations of Evgeniou et al. (2005).
In summary, our simulations suggest that incorpo-

rating response error and/or informative priors into
polyhedral question selection is likely to enhance ac-
curacy in empirical applications. Analytic-center es-
timation is also improved, but hierarchical Bayes is
likely to remain the best estimation method in most
application domains for choice-based questions.

6. Empirical Application and Test
Managerial Context
Traditional cork closures have dominated the wine
industry for hundreds of years, but each year 5%–15%
of all bottled wine is tainted due to poor-quality
closures. Cork closures result in brand-name erosion
and millions of dollars in lost revenue when con-
sumers attribute the poor quality to the winery rather
than the closure. As an alternative to cork closures,
the wine industry developed Stelvins, a screw-cap/
twist-off closure for mid-to-high-priced wines.
Stelvins eliminate cork taint and other malodorous
flavors, eliminate wine oxidation that leads to rapid
aging, and minimize loss of fruit flavors due to air
leakage. Stelvins provide “consistent, reliable, aging
characteristics, showing the wine’s development as
the winemaker intended (Courtney 2001).”
Although Stelvins have been available for almost

50 years, and in Australia and New Zealand sales
of premium wines with Stelvins now outnumber the
sales of premium wines with corks, Stelvins are rarely
used in the United States. To explore strategies for
a U.S. introduction of Stelvins, a Napa Valley-based
closure manufacturer and cooperating U.S. wineries
asked us to determine preferences of leading-edge
wine customers in the United States, New Zealand,
and Australia.

Experimental Design
In exchange for gathering these data, the sponsors
agreed to set up the application as an experimental
design. Each respondent completed two sequential,
rotated, choice-based conjoint analysis tasks separated
by a series of “memory-cleansing” questions. The ad-
vantage of this experimental design is the increased
power due to methodological comparisons within
respondents.
We recruited 2,255 leading-edge wine consumers

from the United States, Australia, and New Zealand
(late 2004). Respondents were subscribers to wine-
related e-newsletters (WineX and WineBrats in the
United States, Vine Cellars in Australia and New
Zealand) and could be expected to be knowledge-
able about fine wines. They were likely to be leading-
edge consumers. As a check, 80% of the respondents
scored 15 or higher on a 21-point involvement scale
(Lockshin et al. 2001). We obtained 245 respondents
from a first U.S. panel, 958 from a second U.S. panel,
667 from Australia, and 385 from New Zealand. As
is typical in managerial applications, we did not have
total control over the assignment of respondents to
treatments, although there was no reason to believe
that there were any systematic biases within any of
the countries.
Managerially, the sponsors were interested in the

trade-offs that the consumers would make between
wine closures and other features of wine. The conjoint
design included five features at four levels each:
• closure type: traditional cork, synthetic cork,

Metacork™,7 Stelvin (screw cap);
• type of wine: dry white, aromatic white, dry red,

blush red;
• origin: Australia/New Zealand, France, Sonoma/

Napa, Chile/Argentina;
• vintner: small boutique, midsize regionally

known winery, large nationally recognized winery,
international conglomerate winery;
• price range:8 four levels in the respondents’ cur-

rency (e.g., Australian dollars).
The features in the conjoint design were intro-

duced to respondents through self-explicated impor-
tance questions.9 Figure 4a shows the closure types

7 A MetaCork™ “combines an integrated corkscrew, a drip-resistant
pour feature, and a reseal cap.” (www.metacork.com, viewed 2006)
8 Based on pretests, respondents felt they could best evaluate the
choices among wines if price was specified as a range. This is suffi-
cient for relative methodological comparisons and the study of the
impact of consumer preferences for Stelvin closures.
9 These answers allowed us to identify the lowest level of each
feature. This information was used in adaptive question selection
and by all the estimation methods, including HB (see previous sec-
tion). The self-explicated information was used in adaptive ques-
tion selection and in estimation in order to avoid endogeneity
and/or violations of the likelihood principle (Liu et al. 2006).
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Figure 4 Example Screenshots from the Wine-Closure Preference Study

(a) Wine closures (b) Another feature (winery type)

(c) Choice-based questions (d) Validation choice questions

Wine Purchasing Choices Wine Purchasing Choices

Choose a Prize
to possibly winChoose a

Wine for Everyday Drinking at Home
with Family or Close Friends

Next Next
0 25 50 75 100 0 25 50 75 100

0 25 50 75 100

0 25 50 75 100

All else being equal, I prefer to buy wines with the following
closure types: (If you are unfamiliar with a closure type, click on
the photo to link to an explanation or demonstration of the closure)

All else being equal, I prefer to buy wines from the
following type of wineries:

Traditional Cork

Small boutique wineries with limited production
(for example, less than 5000 cases annually)

Mid-sized regionally known wineries
(for example, less than 100,000 cases annual production)

Large nationally recognized wineries
(for example, less than 1 million cases annual production)

International conglomerate wineries
(for example, over 1 million cases annually)

Synthetic Cork

From the choices presented here, please select your most preferred choice.
Question 1 of 12 for this section

Screwcap (also called Stelvins)

Strongly
Disagree

Strongly
Agree

Neutral

Strongly
Disagree

Strongly
Agree

Neutral

Strongly
Disagree

Strongly
Agree

Neutral

Strongly
Disagree

Strongly
Agree

Neutral

Strongly
Disagree

Strongly
Agree

Neutral

Strongly
Disagree

Strongly
Agree

Neutral

Strongly
Disagree

Strongly
Agree

Neutral

Strongly
Disagree

Strongly
Agree

Neutral

Metacork
TM

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7
1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Features
Choice A Choice B Choice C Choice D

Features Choice A Choice B Choice C

Wine
Type

Closure
Type

Region

Price
Range

Type
of

Winery

Aromatic White Aromatic White Aromatic White

Australia/NZ Australia/NZ

Aromatic White

Sonoma/Napa
California USA

Traditional Cork

Small Boutique Small Boutique Small Boutique Mid-Sized
regionally known

Small Boutique Small Boutique

Traditional Cork Traditional CorkMetacork

Metacork Metacork

S. America (Chile,
Argentina)

$AU15.00-$19.99 $AU15.00-$19.99 $AU15.00-$19.99 $AU15.00-$19.99

Wine
Type

Closure
Type

Region

Price
Range

Type
of

Winery

Wine
Type

Closure
Type

Region

Price
Range

Type
of

Winery

Aromatic White Blush Red

Aromatic White

Aromatic White

Australia/NZ Sonoma/Napa
California USA

Sonoma/Napa
California USA

Synthetic Cork

Mid-Sized
regionally known

Large nationally
recognized

Internationally
recognized

Internationally
recognized

Traditional Cork

Traditional Cork

Traditional Cork

S. America (Chile,
Argentina)

S. America (Chile,
Argentina)

$AU20.00-$29.99

$AU20.00-$29.99 $AU15.00-$19.99 $AU15.00-$19.99

$AU20.00-$29.99 $AU30.00+

We will enter you into a drawing in which we will select a winner to receive a wine
club package worth $100 of wine. Please select your preferences for the following
wine selection should you be chosen as the winner.

As there might be limited supplies of the different available wines, please rank
your preferences for the following selections from first to sixth (where a first choice
indicates your highest preference and a sixth choice is your lowest preferences).

Second Fourth Fifth

Features Choice D Choice E Choice F
Sixth Third First

Dry RedDry Red

France

and Figure 4b another feature (vintners). Respondents
were then asked two sets of 12 choice-based ques-
tions as illustrated by Figure 4c. The first 10 questions
of each set were designed by a different method (the
order was rotated). The last two questions were ran-
domly selected holdouts. Finally, after additional filler

tasks, respondents were entered into a lottery with a 1
in 200 chance of winning a case of wine worth $100.
Respondents were asked to rank six cases of wine and
were told that they would receive their first choice if
it was available. Otherwise, they would receive their
second choice, etc. All bottles within a case were the
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same (for example, if the wine costs $20, they received
five bottles).10 The six wine profiles were randomly
chosen from a 16-profile orthogonal design. This last
task, designed with a different look and feel from the
conjoint tasks (Figure 4d), serves as a validation.
We note that this study is the first empirical test

of the predictive ability of choice-based polyhedral
methods. Toubia et al. (2003) report on metric paired
comparisons for laptop computer bags, and THS
report on convergence and choice balance for an exec-
utive education study.

Comparisons of Question-Selection Methods:
Experimental Design
We tested the following four question-selection
methods:11

• orthogonal design;
• aggregate customization;
• deterministic polyhedral (THS);
• polyhedral with error modeling and uniform pri-

ors (“probabilistic polyhedral”).
We chose the four methods carefully both to test the

new probabilistic polyhedral method and to explore
two fundamental characteristics. (1) Adaptation: Both
deterministic and probabilistic polyhedral methods
adapt questions within the respondent; aggregate cus-
tomization and orthogonal designs do not. (2) Pretest
information: aggregate customization and probabilis-
tic polyhedral methods require pretest information
to set “tuning” parameters; orthogonal designs and
deterministic polyhedral methods do not. The pretest
information was obtained from an HB analysis of
66 respondents who answered questions based on
an orthogonal design. In order not to confound
these two characteristics, we tested these methods
in two pairs: orthogonal versus deterministic polyhe-
dral, and aggregate customization versus probabilistic
polyhedral.12 We did not test random question selec-
tion because prior research suggests that aggregate

10 Due to legal issues regarding alcohol as a prize, Australian
respondents were not eligible to win real cases of wine. For these
respondents the choice was hypothetical. Providing a reward with
a fixed monetary value mitigates any wealth effect that might be
present if we had endowed each respondent with money and given
them the option of choosing among differently priced wines. The
task remains incentive compatible as long as consumer utility is
approximately linear in the number of bottles of wine over the
range of the options available.
11 The orthogonal and aggregate customization designs were the
most D-efficient sets of 10 questions from a 16-question orthog-
onal design and from the corresponding aggregate customization
design, respectively.
12 Due to a programming error, 227 and 204 respondents from the
Australian panel were assigned, respectively, to orthogonal ver-
sus aggregate customization and to deterministic polyhedral versus
probabilistic polyhedral. Orthogonal versus aggregate customiza-
tion revealed no difference. Probabilistic polyhedral performed bet-
ter than deterministic polyhedral, although the sample size was

customization and orthogonal design are stronger
benchmarks. We leave tests of informative priors in
question selection to future research. We test informa-
tive priors for estimation (see below).

Comparisons of Estimation Methods
Each of the estimation methods is compatible with all
of the question-selection methods enabling us to make
comparisons within respondent. The methods we
tested were:13

• hierarchical Bayes estimation (HB);
• deterministic analytic-center estimation (AC);
• analytic-center estimation without error model-

ing and with informative population priors (ACi);
• analytic-center estimation with error modeling

and with uniform priors (ACe).
Because partworth values might vary by panel and

treatment (and some methods shrink estimates to the
mean or median), we apply all methods within panel
and treatment.
We begin with estimation and then move to our

primary focus: question selection. Table 2 summarizes
the comparisons of estimation methods for the valida-
tion task by reporting the correlation (averaged across
respondents and question selection methods) between
the predicted and observed rankings of the six wines
in the validation task.14

We compared estimation methods statistically with
a repeated-measures ANOVA, with performance as
the dependent variable, two between-subject factors,
panel (four levels) and question-selection comparison
treatment (two levels); and two within-subject factors,
estimation method (four levels) and a factor captur-
ing whether the question selection is adaptive (two
levels). We used contrast analysis to compare estima-
tion methods. As predicted by the simulations, HB
performs significantly better than the other estimation
methods (p < 0�01).15

insufficient to reach significance. Details are available from the
authors.
13 As is appropriate for an empirical test, we use our second form
of informative priors in which the prior distributions are chosen to
match the population medians. This method uses a mixture of 2F

polyhedra in the prior, where F = 5 is the number of features. Even
with the computational efficiencies discussed earlier, it is not yet
practical to apply both error modeling and population priors on our
large data set. The former is exponential in the number of questions
and the latter in the number of features. We leave development
of faster heuristics to future research, noting that empirical results
are thus conservative. If error modeling and population priors are
separately promising, we might infer that their combination is also
promising.
14 Measuring performance by the proportion of respondents for
whom the first choice in the validation task was correctly predicted
or using holdout hit rate yields similar qualitative implications.
15 The panel was significant at the 0.01 level and treatment was
nonsignificant (p= 0�42). Adaptation is discussed below.
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Table 2 Comparing Estimation Methods—Correlation with Choice

Australian panel New Zealand panel First U.S. panel Second U.S. panel Average
Experimental cell (n= 667) (n= 385) (n= 245) (n= 958) (n= 2�255)

Hierarchical Bayes (HB) 0�512 0�421 0�408 0�337 0�411
Analytic center w/o error modeling 0�453 0�426 0�365 0�243 0�350
and w/ uniform prior (AC)

Analytic center w/ error modeling 0�465 0�420 0�353 0�279 0�366
and w/ uniform priors (ACe)

Analytic center w/o error modeling 0�475 0�434 0�389 0�245 0�361
and w/ informative priors (ACi)

Although the focus of this paper is on prob-
abilistic polyhedral question selection, probabilistic
analytic-center estimation is a byproduct of proba-
bilistic question selection, and probabilistic analytic-
center estimation improves predictions relative to
deterministic analytic-center estimation. Including
population priors (ACi) significantly improves perfor-
mance (p < 0�01) compared to deterministic analytic-
center estimation (AC). Including error modeling
(ACe) improves performance as well, albeit not sig-
nificantly (p= 0�30). (ACe is never significantly worse
than AC, and is significantly better on the second U.S.
panel.) The two improvements do not perform signif-
icantly differently (p= 0�18).
Empirical Comparison of Question-Selection
Methods
Table 3 reports the average performance of the dif-
ferent question-selection methods (averaged across
respondents and estimation methods). Due to cir-
cumstances beyond our control, all U.S. respondents
were assigned to the “probabilistic polyhedral versus
aggregate customization” condition. Notice that the
average predictive ability varies between panels, with
predictive ability significantly lower in the U.S. pan-
els than in the Australian or New Zealand panels.
While tempting, we cannot attribute these differences
to across-country variation. Our panels were chosen
from opt-in organizations of leading-edge wine users.
These organizations might vary on other characteris-
tics besides country of origin. Nonetheless, a future
investigation of across-country differences in response
quality would be interesting.
We examine significance with a repeated mea-

sures ANOVA on each experimental cell, with one
between-subject factor, panel (four levels); and two
within-subject factors, estimation method (four levels)
and question-selection method (two levels).16 Deter-
ministic polyhedral question selection predicts sig-
nificantly better than orthogonal question selection:
across panels (p < 0�07) and within the Australian

16 Similar significance levels were obtained with an ANOVA similar
to the ANOVA for the Table 2 data, with an additional between-
subject factor capturing the experimental cell.

panel (p < 0�05 – ANOVA on the Australian panel
only). Probabilistic polyhedral question selection per-
forms significantly better than aggregate customiza-
tion question selection: overall (p < 0�06), across the
non-U.S. panels (p < 0�02), and in the New Zealand
panel (p < 0�05). Probabilistic polyhedral question
selection is better in three of the four panels and never
significantly worse. While the results do not always
obtain a significance level of 0.05, we can say, at min-
imum, that probabilistic polyhedral methods show
promise.
In summary, the proposed probabilistic polyhe-

dral question-selection methods improve correlations
between predicted and actual choice in at least some
situations. HB remains the best estimation method
overall. Both ACe and ACi improve predictive ability
relative to deterministic polyhedral methods (AC).

Substantive Results: Consumer Reactions to
Stelvin Screw Caps for Fine Wine
Figure 5 reports the estimates of the average part-
worths for wine closures for leading-edge wine con-
sumers in the United States, Australia, and New
Zealand.17 In Australia and New Zealand there is a
slight preference for Stelvins over traditional cork
closures. However, for the United States, corks are
strongly preferred to Stelvins and closure type is a
more important attribute. U.S. consumers even prefer
MetaCorks™ and synthetic corks to Stelvins, whereas
Australians and New Zealanders prefer Stelvins to
these other nontraditional closures.
We also examine the importance of wine closures

relative to other features. Figure 6 reports the aver-
age partworths for the type of wine and the origin
of the wine. Preferences for the type of wine and the
country of origin are roughly the same for U.S., New
Zealand, and Australian consumers, with the excep-
tion of a home-country bias. (Detailed partworth val-
ues are available from the authors.)
The data suggest that for U.S. consumers, the rel-

ative importance of Stelvins versus corks (6.91) is

17 The average partworths have been normalized such that the low-
est level of each attribute has a partworth of 0 and the sum of the
partworths across attributes is 100.
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Table 3 Comparing Question Selection Methods—Correlation with Choice

Australian New Zealand Average of First U.S. Second Average of
Experimental cell Question-selection method panel panel Australia and NZ panel U.S. panel U.S. panels

Deterministic polyhedral vs. Deterministic polyhedral 0�492 0�429 0�468 n/a n/a n/a
orthogonal (n= 527) Orthogonal 0�445 0�405 0�430 n/a n/a n/a

Probabilistic polyhedral vs. Probabilistic polyhedral 0�498 0�457 0�483 0�373 0�282 0�300
aggregate customization Aggregate customization 0�470 0�411 0�449 0�385 0�270 0�293
(n= 1�728)

Figure 5 Average Partworths for Wine Closures in the U.S., Australia,
and New Zealand Studies
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comparable or less than the relative importance of
wine type (dry red versus blush red, 17.88), region
(United States versus France, 6.68), and type of win-
ery (regional versus international, 8.36). At least ini-
tially, bottles with Stelvin closures will have to be
offered at a discount in order to capture a significant
market share. For example, for higher-priced wines,
market simulations based on our estimates (aver-
aged across question-selection methods) suggest that

Figure 6 Average Partworths for the Type of Wine and Wine Origin
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combining Stelvins with a $10 discount would allow
capturing a 42.1% market share.18 Based on these
results, it appears that (1) there is current resistance to
Stelvins among leading-edge U.S. consumers, (2) the
importance of closure is not high relative to other fea-
tures of wine, and (3) for current U.S. leading-edge
consumers, a modest price discount might encourage
the adoption of Stelvins.

Do the Managerial Recommendations Change
Based on Question-Selection Method?
As an illustration, Figure 7 plots the estimates of the
average partworths for wine closures based on the
two question-selection methods in the U.S. panels.
Comparing the two plots, we see subtle differences
between methods. However, these plots only capture
the average partworths across respondents, not the
full distribution of partworths estimates. Moreover,
without reference to the managerial context, it is diffi-
cult to intuit whether the estimates based on different
question-selection methods imply differences in strat-
egy. Thus, we examine the quantitative implications.
We begin by comparing the predicted response to

a price discount of $10 on Stelvin closures. Partworth
estimates based on aggregate customization questions
suggest that a price discount of $10 on Stelvin clo-
sures would capture 44.3% of this premium wine mar-
ket; partworth estimates based on the probabilistic
polyhedral questions suggest lower market share of
39.8% (p < 0�03). Depending on the costs of market-
ing Stelvins, this lower reward might be the difference
between a GO and a NO GO decision.
To gain further insight into whether or not part-

worth differences imply different managerial deci-
sions, we draw on recent research by Belloni et al.
(2005). Belloni et al. solve an optimal product design
problem based on partworth data similar in structure
to that collected here. Their design problem consists
of selecting product features for the profiles in a prod-
uct line in order to maximize profit (faced with a fixed
set of competitors). Using Lagrangian relaxation with
branch and bound, they identify the optimal product

18 Results are approximate because the sponsors defined prices with
ranges. We used the midpoint of each range in our share and profit
calculations.
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Figure 7 Average Partworths for the Wine Closures by Two Different
Methods
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line for relatively large numbers of features and cus-
tomers. More importantly, they compare a variety
of heuristics and demonstrate that simulated anneal-
ing (1) is feasible for reasonably sized problems and
(2) achieves 100% of the optimum in their test prob-
lems (p. 20). We adopt their structure and modify
their simulated annealing code to optimize a product
line of wine profiles based on cost estimates obtained
from wine experts. We assumed that the competi-
tive products available to consumers were the set of
all profitable profiles containing traditional corks. We
assumed that each consumer purchased exactly one
bottle.
Using Belloni et al.’s (2005) formulation, we devel-

oped optimal Stelvin-based product lines (consisting
of 10 products) using (1) probabilistic polyhedral
questions and (2) aggregate customization questions.
Within this framework, the product line based on the
partworths obtained by probabilistic polyhedral ques-
tions had three profiles in common with that designed
based on the aggregate customization partworths.
Another four pairs of profiles varied on one feature.
Furthermore, if the partworths obtained from proba-
bilistic polyhedral questions describe the market, the
profit obtained with the polyhedral-based product
line was 19.4% higher than the product line based on
aggregate-customization partworths.19

19 This calculation assumes that probabilistic polyhedral is the best
estimate and is provided for illustration. Profit is guaranteed to be
no worse by the principle of optimality. However, we find the mag-
nitude of the difference—almost 20%—to be interesting, especially
compared to the 2.1% difference due to optimization method found
by Belloni et al. (2005, p. 28). For alternative methods of profitabil-
ity comparisons, see Rust and Verhoef (2005).

7. Conclusions and Future Research
This paper focuses on improved methods for adap-
tive question selection in conjoint analysis. We nest
deterministic polyhedral methods using conjugate
classes of likelihood functions and prior distribu-
tions. Our probabilistic Bayesian framework over-
comes prior weaknesses by enabling researchers to
(1) take response error into account and (2) intro-
duce informative priors. Simulation and empirical
tests suggest that these improvements are promis-
ing. The wine-closure application is the first predic-
tive test of choice-based polyhedral methods. For this
application, individual adaptation of questions shows
promise.
We close by noting limitations and avenues for

future research. First, computation issues forced us
to use approximations and to use prior distribu-
tions described by only few polyhedra. More effi-
cient algorithms could be developed and the structure
of the problem may be exploited further to allevi-
ate this limitation. Second, analytic-center estimation
continues to improve, but does not yet perform as
well as hierarchical Bayes. Using the Bayesian inter-
pretation of polyhedral question selection, we might
derive a formal Bayesian-loss-function minimization
that improves analytic-center estimation (Rossi and
Allenby 2003). Third, as a first approximation we
used the same value of � for all choice questions
and all respondents. We might improve estimation if
� is specified as a function of the difficulty of the
choice questions and/or is allowed to vary over
the number of questions (Liechty et al. 2005). Using
the formulae in this paper, we might also specify
a prior on �, conditional on the partworths and
the choice set, and formulate a posterior given the
observations.20 Fourth, our simulations used a now-
standard structure, but there remain interesting tests
with nondiagonal covariance matrices and specifi-
cations where the average partworths vary. Finally,
other approaches to handling response error may be
developed using stochastic optimization (Spall 2003)
or statistical learning theory (Evgeniou et al. 2005).
Polyhedral methods remain a nascent technique that
we hope will improve with future testing and future
developments.
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Appendices. Derivations and Algorithms

A1. Computation of �′, the Tuning Parameter for
Error Modeling

We compute �′ as follows:
• Estimate a population mean for the partworths, �̄upop.

In Monte Carlo simulations we use the true mean; in the
empirical applications we use hierarchical Bayes estimates
from the pretest subjects.
• Generate R random questions (R= 100 in the simula-

tions and experiments) with logistic probabilities based on
�̄upop. The probability, �′

r , that a respondent chooses the max-
imum utility profile is the maximum logistic probability for
that respondent on that question. Averaging over respon-
dents gives an initial estimate, ��′

o.
• Use �̄upop to simulate N respondents (N = 100 in the

simulations and experiments) using �o = 	J ��′
o − 1
/	J − 1


for polyhedral question selection. Recompute ��′ as above
(assuming logistic probabilities).
In theory, one might iterate these steps toward conver-

gence; however, in practice we found that ��′ was not sen-
sitive to the initial estimate, ��o� used to generate the ques-
tions. Nonetheless, this means that our simulations are
conservative.

A2. Sensitivity to �′
In the simulations, we purposefully base the choices of syn-
thetic respondents on logistic probabilities. These simulated
choices imply that �′ varies by respondent and thus tests the
sensitivity of our approximation that �′ is constant across
respondents. We study further the sensitivity with respect
to �’ using a simulation set up similar to that in §4. We sim-
ulate five sets of 100 synthetic respondents using magnitude
and heterogeneity parameters equal to 2.0. Questions are
selected with probabilistic polyhedral methods with error
modeling and informative priors; the estimation method is
ACe+i.
Figure A.1 suggests that predictive accuracy is flat for a

fairly wide interval for �′. Fortunately, the values obtained
using the above procedure always fell within this interval

Figure A.1 Sensitivity of Predictive Accuracy to �′
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for both the simulations and the empirical tests. Predictions
degrade only as �′ is selected to imply almost random
choice (toward 0.3) or almost no response error (toward 1.0).

A3. Mixture Weights for Informative Priors
(Mixtures of Normal Distributions)

Our goal is to approximate a normal distribution N	 �u
 by a
mixture of uniform distributions supported by polyhedra:

M∑
m=1

�mP�m
	 �u
+

(
1−

M∑
m=1

�m

)
P�0

	 �u
�

where �m = �u� �̂u − Cm ≤ �u ≤ �̂u + Cm, �u ≥ 0, �e′ �u = 100�. In
the Monte Carlo simulations, we used M = 3, with C1 = 5,
C2 = 10, and C3 = 15. Without loss of generality, assume that
C1 <C2 < · · ·<CM so that the “boxes” used to approximate
the normal distribution are of increasing sizes. The weights
�1� � � � ��M are found by solving the following system of
equations:

Prob	 �u ∈�1 � �u∼N	 �u


=�1+�2Prob	 �u∈�1 � �u∼P�2


+···+�MProb	 �u∈�1 � �u∼P�M



+
(
1−

M∑
m=1

�m

)
P	 �u ∈�1 � �u∼ P�0


�

Prob	 �u ∈�2−�1� �u∼N	 �u


=�2Prob	 �u∈�2−�1 � �u∼P�2
+�3Prob	 �u∈�2−�1 � �u∼P�3




+· · ·+�MProb	 �u ∈�2−�1 � �u∼ P�M



+
(
1−

M∑
m=1

�m

)
P	 �u ∈�2−�1 � �u∼ P�0




� � �

Prob	 �u ∈�M −�M−1 � �u∼N	 �u


=�MProb	 �u ∈�M −�M−1 � �u∼ P�M




+
(
1−

M∑
m=1

�m

)
P	 �u ∈�M −�M−1 � �u∼ P�0


�

In the Monte Carlo simulations the left-hand sides were
approximated numerically by drawing 10,000 sets of para-
meters from N	 �u
, where N	 �u
 was the distribution used to
generate the true partworths. Prob(�u ∈�m −�m−1 � �u∼ P�0



was computed numerically by drawing 10,000 sets of
parameters from P�0

. We recognize that Prob(�u ∈ �m −
�m−1 � �u∼ P�m


 is equal to

Prob	 �u ∈�m −�m−1 � �u∼ P�0



Prob	 �u ∈�m � �u∼ P�0



�

The numerator and denominator were computed numeri-
cally.

A4. Incorporating Population Priors for
Feature Importances

In our empirical application, all features have the same
number of levels, so we define importance as the sum of
the partworths for that feature (setting the lowest partworth
to zero). Importance can also be defined as the difference
between the highest and lowest partworth for a feature.
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We have found that constructing priors based on constraints
on the importances is more practical and intuitively appeal-
ing than using constraints on the partworths themselves.
Let mf be the median of the importance of feature f

based on individual-respondent estimates. Let �mf be the
median importance based on P�0

	 �u
 and let �Pu be the proba-
bility that the importance of feature f is smaller than mf for
P�0

	 �u
. Compute �Pu numerically with 10,000 draws on �0.
If mf > �mf ( �Pu > 0�5
, the constraint corresponding to fea-
ture f is that its importance is greater than mf . This con-
straint is associated with the weight 3f , such that 0�5= 3f +
	1− 3f 
�	1− �Pu
. If mf ≤ �mf 	 �Pu ≤ 0�5
, the constraint cor-
responding to feature f is that its importance is less than
mf , and the corresponding weight is 3f such that 0�5= 3f +
	1− 3f 
 �Pu.
Let F be the number of features, and SF be the set of

subsets of all subsets of 1�2� � � � � F �. The prior distribution
is P	 �u
=∑

s∈SF �ms
P�s

	 �u
, where
• �ms

=∏F
f=1 3

f∈s
f 	1− 3f 


f
s where f ∈ s is 1 if f is in s
and 0 otherwise; f 
 s is its complement.
• �s is the polyhedron obtained from adding the con-

straints corresponding to the features f ∈ s to the initial
constraints defining �0.

A5. Summary of Probabilistic Polyhedral Question
Selection

1. Compute the weights for the probability mixture, ws =
��s�	1−�
i−�s�, for all s ∈ Sq .

2. Compute the analytic center of the mixture, ��uq =∑M
m=1

∑
s∈Sq �mwsAC	�s ∩�m
.

3. Approximate each polyhedron �s ∩�m with an ellip-
soid and compute the longest axis of the ellipsoid according
to deterministic polyhedral methods (see THS for details).
4. Solve for the eigenvalues of V ′)V and select the J/2

eigenvectors associated with the largest J/2 eigenvalues.
(If J is odd, find the 	J + 1
/2 longest axes.) See the section
“Longest Axes of a Mixture of Polyhedra” for details.
5. Find the intersections of the longest axes of the prob-

ability mixture with �0 ⇒ �uj .
6. Find the J profiles by solving the knapsack problem,

maximize �xj �uj subject to �xj
��uq ≤ K, where K is a randomly

drawn constant. (See THS for details.)21

21 In this paper, we drew K up to 30 times until all profiles were
distinct. If all profiles are identical after 30 draws, it is likely that no
further questions are needed and the questioning sequence stops.
If after 30 draws there are only K ′ distinct solutions (1 < K ′ < K),
these are presented to the respondent.
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