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We propose and test a new approach for modeling consumer heterogeneity in conjoint estimation based
on convex optimization and statistical machine learning. We develop methods both for metric and choice

data. Like hierarchical Bayes (HB), our methods shrink individual-level partworth estimates towards a popula-
tion mean. However, while HB samples from a posterior distribution that is influenced by exogenous parameters
(the parameters of the second-stage priors), we minimize a convex loss function that depends only on endoge-
nous parameters. As a result, the amounts of shrinkage differ between the two approaches, leading to different
estimation accuracies. In our comparisons, based on simulations as well as empirical data sets, the new approach
overall outperforms standard HB (i.e., with relatively diffuse second-stage priors) both with metric and choice
data.

Key words : Bayesian analysis; data mining; econometric models; estimation and other statistical techniques;
hierarchical Bayes analysis; marketing research; regression and other statistical techniques

History : This article was received on August 1, 2006, and was with the authors 2 months for 2 revisions;
processed by Leonard Lodish.

1. Introduction
A number of optimization-based approaches to con-
joint estimation have been proposed in the past.
Examples include methods based on linear program-
ming (Srinivasan and Shocker 1973, Srinivasan 1998)
or statistical machine learning (Cui and Curry 2005,
Evgeniou et al. 2005a), and polyhedral methods
(Toubia et al. 2003, Toubia et al. 2004). While these
optimization approaches have proved fruitful, they
have been exclusively limited to individual level esti-
mation and have not modeled heterogeneity.1 They
have therefore underperformed relative to methods
such as hierarchical Bayes (HB) (Toubia et al. 2003,
Toubia et al. 2004, Evgeniou et al. 2005a).

In this paper we propose and test a new approach to
modeling consumer heterogeneity in both metric and

1 The only exception of which we are aware is an ad-hoc heuris-
tic briefly discussed by Toubia et al. (2004), which is impractical
because it requires the use of out-of-sample data. In contrast, our
goal is to develop a general theoretical framework for modeling
heterogeneity.

choice-based conjoint estimation using convex opti-
mization and statistical machine learning. We compare
our approach with hierarchical Bayes (HB) both the-
oretically and empirically. Both our methods and HB
shrink individual-level partworth estimates toward a
population mean (in HB shrinkage is done toward
the mean of the first-stage prior on the partworths).
However, while HB samples from a posterior distri-
bution that is influenced by a set of exogenous param-
eters (the parameters of the second stage priors), the
proposed approach minimizes a convex loss function
that is influenced by a parameter set endogenously
(determined from the calibration data) using cross-
validation. As a result, the amounts of shrinkage differ
between HB and our approach. Moreover, we show
that the second-stage prior parameters in HB could
in theory be set to give rise to HB estimates identical
to our estimates, or possibly of higher performance.
However, this would require a method for systemat-
ically and optimally selecting the second-stage prior
parameters in HB. Such selection raises both theoret-
ical and practical issues, which we discuss.
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We use simulations as well as two empirical data
sets (one for ratings and one for choice) to compare
the performance of our approach to that of a standard
HB implementation with relatively diffuse second-
stage priors (Allenby and Rossi 1999, Rossi and
Allenby 2003). The proposed approach overall out-
performs HB with both metric and choice data. We
empirically show that the differences between our
approach and HB may be linked to differences in the
amounts of shrinkage, as suggested by our theoreti-
cal comparisons. Moreover, we provide evidence that
selecting the parameters of the second-stage priors in
HB endogenously (e.g., using cross-validation as in
the proposed approach) has the potential to greatly
improve the predictive performance of HB.

Our approach builds upon and combines ideas
from four literatures: statistical learning theory and
kernel methods, convex optimization theory, hierar-
chical Bayes estimation, and the “learning to learn”
or “multitask learning” literature in machine learn-
ing. “Learning to learn” methods were initially devel-
oped mainly using neural networks (Baxter 1997,
Caruana 1997, Thrun and Pratt 1997) and recently
studied using kernel methods (Jebara 2004, Ando and
Zhang 2005, Evgeniou et al. 2005b, Micchelli and
Pontil 2005). The central problem addressed by these
methods is that of simultaneously estimating regres-
sion functions from many different but related data
sets. Our work is novel first by its focus on conjoint
estimation, second by the particular loss functions
and the convex optimization method used to mini-
mize them, and third by the theoretical and empirical
comparison with HB.

The paper is organized as follows. We present our
approach for metric as well as choice-based conjoint
analysis in §2. In §3, we discuss the theoretical similar-
ities and differences between our approach and HB.
We then empirically compare the accuracy and pre-
dictive performance of our methods with HB using
simulations in §4 and two (one for ratings and one for
choice) field data sets in §5. In §6 we illustrate empiri-
cally the theoretical differences between our approach
and HB outlined in §3, and we conclude in §7.

2. Presentation of the Approach
For ease of exposition, we describe the metric version
of our approach first and the choice version second.

2.1. Metric Conjoint Estimation Method

2.1.1. Setup and Notation. We assume I con-
sumers (indexed by i ∈ �1�2� � � � � I�) each rating J pro-
files (with J possibly different across respondents),
represented by row vectors xij , j ∈ �1�2� � � � � J �. We
assume that the number of partworths is p, i.e., each
vector xij has p columns. We note with Xi the J × p

design matrix for respondent i (each row of this
matrix corresponds to one profile); with wi the p× 1
column vector of the partworths for respondent i; and
with Yi the J × 1 column vector containing the rat-
ings given by respondent i. For simplicity we make
the standard assumption of additive utility functions:
the utility of the profile xij for respondent i is Ui�xij 
=
xijwi + �ij . It is important to note that the proposed
method can be extended to include large numbers
of interactions between attributes, using, for exam-
ple, the kernel approach (Wahba 1990, Vapnik 1998)
introduced to marketing by Cui and Curry (2005)
and Evgeniou et al. (2005a). We discuss this in detail
in the online technical appendix. In agreement with
previous research on individual-level conjoint esti-
mation (Cui and Curry 2005, Evgeniou et al. 2005a),
the presence of interactions in the model specifica-
tion enhances the relative performance of our meth-
ods compared to HB.

2.1.2. Individual-Level Partworth Estimation
Using Statistical Machine Learning: A Brief Review.
We build upon a particular individual-level statistical
estimation method known as ridge regression (RR),
or Regularization Networks. This individual-level
method (and various extensions, for example to the
estimation of general nonlinear functions) has been
extensively studied in the statistics and machine
learning literatures (see, for example, Tikhonov and
Arsenin 1977, Wahba 1990, Girosi et al. 1995, Vapnik
1998, Hastie et al. 2003, and references therein) and
more recently in the theoretical mathematics literature
(see for example Cucker and Smale 2002).

RR estimates individual-level partworths for re-
spondent i by minimizing a convex loss function with
respect to wi. This loss function is parameterized by
a positive weight � that is typically set using cross-
validation.

Problem 1.

min
wi

1
�

J∑
j=1

�yij − xijwi

2 +�wi�2� (1)

� set by cross-validation� (2)

The loss function �1/�

∑J

j=1�yij − xijwi

2 + �wi�2 is

composed of two parts. The first,
∑J

j=1�yij − xijwi

2,

measures the fit between the estimated utilities and
the observed ratings. For a fixed �, this may be inter-
preted as the log of the likelihood corresponding to
a normal error term with mean 0 and variance �
(see, for example, Hastie et al. 2003). The second part,
w�

i wi = �wi�2, controls the shrinkage (or complexity) of
the partworth solution wi (Vapnik 1998, Cucker and
Smale 2002, Hastie et al. 2003). The term “shrinkage”
(Hastie et al. 2003) comes from the fact that we effec-
tively “shrink” the partworths toward zero by penal-
izing deviations from zero (�wi�2 may be viewed as
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the distance between wi and 0). The term “complex-
ity control” (Vapnik 1998) comes from the fact that
this essentially limits the set of possible estimates,
making this set less complex (i.e., smaller). The posi-
tive parameter � defines the trade-off between fit and
shrinkage and is typically set using cross-validation
(Wahba 1990, Efron and Tibshirani 1993, Shao 1993,
Vapnik 1998, Hastie et al. 2003). We will provide a
detailed description of cross-validation below, but let
us already stress that cross-validation does not use any
out-of-sample data.

We note that the RR loss function (1) can be gen-
eralized by replacing the square error �yij − xijwi


2

with other error functions, hence retrieving other indi-
vidual-based estimation methods—the loss function
remains convex as long as the error function is con-
vex. For example, for choice data we will use below
the logistic error − log�exijq∗wi /

∑Q
q=1 e

xijqwi 
 (where xijq∗
represents the profile chosen by respondent i in
choice j , which consists of Q alternatives xijq , q ∈
�1� � � � �Q�). Using the hinge loss ��yij − xijwi
�yij −
xijwi
 (where ��x
 = 1 if x > 0, and 0 otherwise)
leads to the widely used method of Support Vector
Machines (Vapnik 1998), introduced to marketing by
Cui and Curry (2005) and Evgeniou et al. (2005a).
Finally, note that the solution when � → 0 (hence
removing the complexity control �wi�2) converges
to the OLS solution wi = �X�

i Xi

−1XT

i Yi, where the
pseudo-inverse is used instead of the inverse when
�X�

i Xi
 is not invertible (Hastie et al. 2003).

2.1.3. Modeling Heterogeneity: Formulation of
the Loss Function. We now extend the RR loss func-
tion to model consumer heterogeneity. Individual-
level RR estimation does not pool information across
respondents and involves minimizing a separate loss
function for each respondent. Inspired by HB (Lenk
et al. 1996, Allenby and Rossi 1999, Rossi and Allenby
2003, Rossi et al. 2005), we propose modeling hetero-
geneity and pooling information across respondents
by shrinking the individual partworths toward the
population mean.

In particular, we consider the following convex opti-
mization problem (if D is not invertible, we replace
D−1 with the pseudo-inverse of D—see Appendix A
for details):

min
�wi ��w0�D

1
�

I∑
i=1

J∑
j=1

�yij − xijwi

2

+
I∑
i=1

�wi −w0

�D−1�wi −w0
�

subject to D is a positive semidefinite matrix
scaled to have trace 1. (3)

Let us note that this is not the complete method pro-
posed, which includes the estimation of the positive

weight � endogenously and is summarized in §2.1.5,
Problem 2. Like the RR loss function (1), this loss func-
tion consists of two parts. The first part reflects fit
and the second part shrinkage (complexity control).
Unlike the individual-level RR loss function (1), the
loss function (2) involves solving a single convex opti-
mization problem and estimating all the partworths
jointly. Moreover, instead of shrinking the partworths
toward 0 as in individual-level RR, it shrinks them
toward a vector w0 (as will be seen below, the value of
w0 that minimizes the loss function is the the popula-
tion mean) through �wi−w0


�D−1�wi−w0
. Matrix D
is related to the covariance matrix of the partworths
(see Appendix A for details on the estimation of
D based on calibration data), such that the shrink-
age penalty is greater for partworths that are distant
from the mean w0 along directions in which there
is less variation across respondents. The parame-
ter � operates the same function as in individual-level
RR, namely, achieving a proper trade-off between fit
and shrinkage. Higher values of � result in more
homogenous estimates (i.e., more shrinkage). Notice
that we scale D by fixing its trace, keeping the prob-
lem convex—otherwise, the optimal solution would
be to simply set the elements of D to � and to maxi-
mize only fit.

We consider next the minimization of the loss func-
tion (2) given �, and in §2.1.5 the selection of � using
cross-validation. The complete method proposed is
summarized in §2.1.5, Problem 2.

2.1.4. Modeling Heterogeneity: Minimization of
the Loss Function Given �. For a fixed �, the loss
function (2) is jointly convex with respect to the wis,
w0, and matrix D.2 Hence one can use any convex
optimization method (see, for example, Boyd and
Vandenberghe 2004) to minimize it.

We choose to solve the first-order conditions di-
rectly, which reveals some similarities with HB that
will be discussed in §3. For a given value of � we
use the following iterative method to find the global
optimal solution, initializing D to a random positive
definite matrix:

(1) Solve the first-order conditions for �wi� and w0
given � and D.

(2) Solve the first-order conditions for D given �wi�,
w0, and �.
In our empirical applications, convergence to a set of
parameters (�wi�, w0, D) that minimizes the loss func-
tion (2) (i.e., solves the entire system of first-order con-
ditions) for a given � was always achieved in fewer
than 20 iterations.

We show in Appendix A how to solve the above
two steps in closed form. We show that the individual

2 This can be seen, for example, from the Hessian, which is positive
semidefinite.
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partworths in Step 1 (for fixed � and D – replacing
inverses with pseudo-inverses if D is not invertible,
as described in Appendix A) can be written as

wi = �X�
i Xi+�D−1
−1X�

i Yi+ �X�
i Xi+�D−1
−1�D−1w0�

(4)
where the optimal w0 is shown to be the population
mean of the partworths, that is, w0 = �1/I


∑
iwi. We

will see in §3 how this relates to the mean of the con-
ditional posterior in HB.

2.1.5. Modeling Heterogeneity: Setting � Using
Cross-Validation. We now describe the estimation of
the trade-off parameter �. Selecting this parameter by
minimizing the loss function (2) would be inappro-
priate because it would lead to � = � and all other
parameters equal to 0. Instead, we select this param-
eter like in individual-level RR, by minimizing the
cross-validation error. This standard technique has
been empirically validated, and its theoretical prop-
erties have been extensively studied (see, for exam-
ple, Wahba 1990, Efron and Tibshirani 1993, Shao
1993, Vapnik 1998, Hastie et al. 2003, and references
therein). It is important to stress that cross-validation
does not require any data beyond the calibration data. In
particular, we measure the cross-validation error cor-
responding to a given parameter � as follows:

(1) Set cross-validation��
= 0.
(2) For k= 1 to J :

(a) Consider the subset of the calibration data

Z�−k
 =
I⋃
i=1

{
xi1� � � � �xi�k−1
�xi�k+1
� � � � �xiJ

}
�

That is, consider the subset of the calibration data that
consists of all questions except the kth one for each of
the I respondents.3

(b) Using only this subset of the calibration data
Z�−k
, estimate the individual partworths �w�−k


i �, pop-
ulation mean w�−k


0 , and matrix D�−k
 for the given �
using the method described in the previous section.

(c) Using the estimated partworths �w�−k

i �, com-

pute the ratings on the I questions (one per respon-
dent) left out from the calibration data �x1k�x2k� � � � �
xIk�, and let CV �k
 be the sum of squared differences
between the estimated and observed ratings for these
I calibration questions. (Note that any other perfor-
mance metric may be used.)

(d) Set cross-validation��
 = cross-validation��
 +
CV �k
.

3 Variations exist. For example, one can remove only one question
in total from all I respondents and iterate I × J times instead of
J -leading to the so-called leave-one-out cross-validation error—or
more than one question per respondent. Our particular choice was
driven by computational simplicity.

We simply select the parameter � that minimizes the
cross-validation error by using a line search.

The cross-validation error is, effectively, a “simu-
lation” of the out-of-sample error without using any
out-of-sample data. We refer the reader to the above
references for details regarding its theoretical prop-
erties, such as its consistency for parameter selec-
tion.4 We will later confirm empirically that selecting
� using cross-validation leads to values very close to
optimal (i.e., maximizing estimation accuracy).

To summarize, the proposed method, which we
label as RR-Het, is as follows:5

Problem 2.

�∗ = arg min
�

cross-validation��
�

��w∗
i ��w

∗
0�D

∗
 = arg min
�wi ��w0�D

1
�∗

I∑
i=1

J∑
j=1

�yij − xijwi

2

+
I∑
i=1

�wi −w0

�D−1�wi −w0
�

subject to D is a positive semidefinite matrix

scaled to have trace 1.

It is important to note that if � were set exogenously,
RR-Het would be equivalent to maximum likelihood
estimation (MLE), with the likelihood function pro-
portional to the inverse of the exponential of the loss
function (2)—multiplied by an indicator function that
would enforce the constraints on D. However, because
� is set using cross-validation and the overall estimation
method is given by Problem 2 and not by the minimization
of the loss function �2
, the comparison of RR-Het with
MLE is not straightforward.

2.2. Choice-Based Conjoint Estimation Method
We now show how our approach can be used with
choice data. Choice-based conjoint analysis has be-
come very popular, both among practitioners and
among academics (Carson et al. 1994, Louviere et al.
2000, Hauser and Toubia 2005). As discussed above,
our choice-based method is developed by replacing
the square-error loss in RR-Het with the logistic error,
hence we call the proposed method LOG-Het. In par-
ticular, with choice data, the optimization problem

4 We say that parameter selection is consistent if the probability of
selecting the parameter with optimal out-of-sample performance
converges to 1 as the amount of calibration data increases.
5 A matlab version of the code, for the metric and choice formats,
is available from the authors.
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solved to estimate the partworths becomes:

Problem 3.

�∗ = arg min
�

cross-validation��
�

��w∗
i ��w

∗
0�D

∗
 = arg min
�wi ��w0�D

− 1
�∗

I∑
i=1

J∑
j=1

log
exijq∗wi∑Q
q=1 e

xijqwi

+
I∑
i=1

�wi −w0

�D−1�wi −w0
�

subject to D is a positive semidefinite matrix
scaled to have trace 1�

where xijq is the qth alternative presented to respon-
dent i in question j , and xijq∗ is the chosen alterna-
tive. (Question j for respondent i consists of choosing
among the Q profiles �xijq
�q=1�����Q�.) The parameter J
represents the number of choice questions and Q
the number of alternatives per question (they do not
need to be constant across respondents or questions).
Cross-validation for estimating parameter � is imple-
mented as for RR-Het, with the difference that the
cross-validation performance in Step (2c) is now mea-
sured by the logistic error − log�exijq∗wi /

∑Q
q=1 e

xijqwi 
 on
the left out questions. The other major difference from
RR-Het is that the minimization of the loss function
given � and D may no longer be performed by solv-
ing the first order conditions directly. Instead, we use
Newton’s method (see Appendix B for details and
references to other possible estimation methods). As
a result, unlike RR-Het, we do not have closed-form
solutions for the conditional partworth estimates for
LOG-Het.

In the previous section, we presented an approach
for modeling consumer heterogeneity in conjoint esti-
mation and showed how this approach can be used
with both metric and choice data. In the following
section, we highlight some theoretical similarities and
differences between our approach and hierarchical
Bayes.

3. Theoretical Similarities and
Differences with HB

We consider the following hierarchical Bayes model
for metric data (we assume a standard diffuse prior
onw0, symbolically equivalent tow0 ∼N�0�V −1
 with
V = 0):

Likelihood: yij = xijwi + �ij
�ij ∼N�0� 2
!

First-stage prior: wi ∼N�w0�D
!

Second-stage priors:  2 ∼ IG�r0/2� s0/2

D−1 ∼W�&0�&0 ×'0
�

Table 1 Some Characteristics of HB vs. RR-Het and LOG-Het

HB R-Het and LOG-Het

Shrinks toward the mean of the Shrink toward the population
first-stage prior mean

Samples from posterior distribution Minimize a convex loss function
Posterior distribution is a function of Loss function is a function of

parameters of the second-stage the trade-off parameter �
priors

The parameters of the second-stage � is determined endogenously
priors are set exogenously using cross-validation

We consider the following HB model for choice data
(again assuming a standard diffuse prior on w0):

Likelihood: Prob�xijq∗ is chosen
= exijq∗wi∑Q
q=1 e

xijqwi
!

First-stage prior: wi ∼N�w0�D
!

Second-stage prior: D−1 ∼W�&0�&0 ×'0
�

Our standard HB implementations, throughout the
rest of the paper, follow the literature and use fairly
diffuse second-stage priors (see, for example, Allenby
and Rossi 1999, Rossi and Allenby 2003): &0 = p+ 3,
'0 = I for metric and choice HB, and r0 = s0 = 1 for
metric HB.

Table 1 summarizes some key characteristics of HB
and the proposed approach.

3.1. Similarities
The main similarity between the proposed approach
and HB is that they both shrink individual estimates
toward a population mean. With metric data, the exis-
tence of closed-form expressions enables us to clearly
identify the individual-specific estimates, the popula-
tion means toward which these estimates are shrunk,
and the shrinkage weights. Such explicit comparisons
are not readily available with choice data.

In particular, the mean of the conditional posterior
distribution of wi in metric HB is (see Lenk et al. 1996
for details):6

E�wi �w0� �D�data
 = �X�
i Xi+ 2D−1
−1X�

i Yi

+�X�
i Xi+ 2D−1
−1� 2D−1w0
�

Compare this expression to the minimizers of the
RR-Het loss function (2) given � and D (see Equa-
tion (3)):

wi = �X�
i Xi +�D−1
−1X�

i Yi

+ �X�
i Xi +�D−1
−1��D−1w0
�

6 In Bayesian decision theory, the optimal point estimate corre-
sponding to a quadratic loss function (or to the loss function used
to compute RMSE) is the mean of the posterior (Chaloner and
Verdinelli 1995, Rossi and Allenby 2003).
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These expressions can also be written as follows (if
the matrix Xi is not full rank, for the sake of this argu-
ment use the pseudo-inverse instead of the inverse):

HB:
E�wi�w0� �D�data


= ,�X�
i Xi + 2D−1
−1�X�

i Xi
-��X
�
i Xi


−1X�
i Yi


+ ,�X�
i Xi + 2D−1
−1� 2D−1
-w0

= .
�i

HB��X

�
i Xi


−1X�
i Yi
+ �I −.

�i

HB
w0!

RR-Het:
wi = ,�X�

i Xi +�D−1
−1�X�
i Xi
-��X

�
i Xi


−1X�
i Yi


+ ,�X�
i Xi +�D−1
−1��D−1
-w0

= .
�i

RR��X

�
i Xi


−1X�
i Yi
+ �I −.

�i

RR
w0�

where .
�i

HB = �X�

i Xi +  2D−1
−1�X�
i Xi
 and .

�i

RR =

�X�
i Xi + �D−1
−1�X�

i Xi
. These expressions show
clearly that the mean of the conditional posterior
in HB and the point estimate in RR-Het are both
weighted averages between the individual-level OLS
estimate �X�

i Xi

−1X�

i Yi and a population mean (in RR-
Het, w0 is equal to the population mean; in HB w0 is
the mean of the first-stage prior on the partworths; and
if we assume a diffuse prior on w0, then the mean of
the conditional posterior distribution onw0 is the pop-
ulation mean). The individual-specific weights (i.e.,
amounts of shrinkage) are a function of  2D−1 in HB
and of �D−1 in RR-Het. The mean of the full posterior
distribution of wi in HB is also a weighted average
between the OLS estimate and a population mean,
the weights being given by integrating .

�i

HB over the

posterior distributions of  and D.
Note that if the parameters &0, '0, r0, and s0 in HB

were selected to yield a strong prior on  2 and D
around the values of � and D obtained by RR-Het
estimation, the posterior means provided by HB
would converge to the point estimates provided by
RR-Het (.�i
HB → .

�i

RR). Hence, in theory the set of

point estimates achievable by RR-Het is a subset
of those achievable by HB by varying the parame-
ters of the second-stage priors. Therefore, the max-
imum potential performance achievable by HB is at
least that achievable by RR-Het. However this does
not guarantee higher performance in practice. In par-
ticular, any poorer performance observed for HB
can be attributed to a suboptimal selection of the
second-stage prior parameters. We will suggest later
that endogenizing the selection of these parameters,
although it raises a number of issues that we will dis-
cuss, has the potential to improve performance.

3.2. Differences
Two important differences emerge from Table 1.
First, HB samples from a posterior distribution while

RR-Het and LOG-Het minimize a loss function and
hence only produce point estimates. Confidence inter-
vals and hypothesis testing are also possible with
RR-Het and LOG-Het using, for example, boot-
strapping (Efron and Tibshirani 1993 and references
therein). See the online technical appendix for a brief
review and an example.

Second, while the posterior in HB is a function of
a set of exogenous parameters (the parameters of the
second-stage priors, &0, '0, r0, s0 in the case of met-
ric data and &0 and '0 in the case of choice data),
the loss functions in RR-Het and LOG-Het are a func-
tion of an endogenous parameter � (determined from
the calibration data using cross-validation). The dif-
ference between the way the second-stage priors are
set in HB and � is set in RR-Het and LOG-Het trans-
lates into differences in the way the amount of shrink-
age is determined, as will be confirmed empirically
in §6. For example, in the case of metric data, shrink-
age is a function of  2D−1 in HB and �D−1 in RR-
Het. In HB, the posterior distributions on  and D are
influenced both by the data and by the second-stage
priors  2 ∼ IG�r0/2� s0/2
 and D−1 ∼ W�&0�&0 × '0
.
The exogenous parameters &0, '0, r0, and s0 are often
selected to induce fairly diffuse and uninformative
second-stage priors. Other values could yield differ-
ent second-stage priors, resulting in different amounts
of shrinkage. For example, strong priors around the
“true” values of  and D would clearly lead to maxi-
mal estimation accuracy. While such an extreme case
can be studied hypothetically using simulations, in
field settings where the truth is unknown, one typi-
cally has to revert to fairly diffuse second-stage priors.
On the other hand, in RR-Het (respectively LOG-
Het), the amount of shrinkage is a function of endo-
geneous parameters determined by the minimization
of the loss function and by cross-validation: D and
� are obtained by solving Problem 2 (respectively,
Problem 3).

It is important to note that this second difference is
not intrinsic, and that the second-stage prior parame-
ters in HB could be set in practice endogenously—for
example, using cross-validation as well. The system-
atic incorporation of cross-validation in a Bayesian
framework raises several issues and is beyond the
scope of this paper. We discuss these issues briefly in
the next section and demonstrate the potential of this
approach empirically in §4.

3.3. Using Cross-Validation to Select the
Parameters of the Second-Stage Priors in HB

Our empirical comparisons will suggest that our
approach usually significantly outperforms a stan-
dard HB implementation (with fairly diffuse second-
stage priors). However, such a comparison might be
perceived as unfair because the posterior in HB is
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a function of exogenous parameters, while the loss
function in our approach is a function of an endoge-
nous parameter set using cross-validation.7 It seems
reasonable to hypothesize that selecting the parame-
ters of the second-stage priors in HB using cross-vali-
dation could yield a performance level comparable to
RR-Het and LOG-Het. For example, we have shown
above that the set of point estimates achievable by
RR-Het by changing � is a subset of those achievable
by HB by changing &0, '0, r0, and s0. However, let us
first note that the fact that the set of point estimates
achievable by RR-Het is a subset of those achievable
by HB does not guarantee that endogenously selecting
the second-stage priors will improve performance rel-
ative to RR-Het. For example, because the number of
parameters of the second-stage priors in HB is much
larger than the number of parameters set using cross-
validation in RR-Het or LOG-Het (p2 + 3 versus 1 in
the metric case and p2 +1 versus 1 in the choice case),
there is a risk of overfitting.

Moreover, at least three potential issues arise re-
garding the use of cross-validation to select the para-
meters of the second-stage priors in HB.

First, Bayesian analysis obeys the likelihood prin-
ciple (Fisher 1922, Rossi and Allenby 2003, Liu et al.
2007), which states that all the information relevant
for inference is contained in the likelihood function.
It is not clear whether cross-validation satisfies this
principle, as it appears that the data are used both
to set some parameters and to make some inference
based on these parameters. It might be possible to
construct an alternative HB specification that would
include cross-validation, i.e., cross-validation and esti-
mation would be part of the same comprehensive
model and the likelihood principle would be satisfied
(to the best of our knowledge, this is an open prob-
lem). At this point we are agnostic on whether cross-
validation can be justified in a Bayesian framework.
Our goal in this paper is only to explore whether it
has the potential to improve the predictive perfor-
mance of HB and not to justify its use theoretically,
which we leave for future research.

Second, a practical issue arises due to the number of
parameters of the second-stage priors in HB. Indeed,
in the case of metric data the number of parameters is
p2+3, and in the case of choice data it is p2+1. Setting
the values of all these parameters directly using cross-
validation in a hierarchical Bayes framework would
be intractable in most practical applications given the
set of candidate values.

Third, another practical issue arises from the fact
that the computation of the cross-validation error

7 Note, however, that our approach does not use any additional data
compared to HB: all methods only use the calibration data and use
the same calibration data.

associated with each set of values of the second-stage
prior parameters usually requires sampling from the
corresponding posterior distribution to obtain point
estimates. This is, again, a computational issue given
the set of candidate parameter values.

We hope that future research will address these two
practical issues. In this paper we are able to assess
the potential of using cross-validation in Bayesian
estimation by considering a simpler, nonhierarchical,
metric model with only one hyperparameter (there-
fore avoiding the first practical issue) and by taking
advantage of the existence of closed form expressions
for the posterior means in the metric case (therefore
avoiding the second practical issue).

In particular, we first run metric HB with standard
second-stage priors to obtain initial point estimates
for w0 and D, and we then consider the following
simple (nonhierarchical) model:

Likelihood: yij = xijwi + �ij
�ij ∼N�0� 2

0 
�

First-stage prior: wi ∼N�w0�D
�

where  0 is a parameter set using cross-validation.
This specification is a special case of the metric HB
specification in which '0 = D, &0 → �, s0 = r0 ×  0,
and r0 → �. The full posterior mean of wi has the
same expression as the conditional mean in the gen-
eral model:

E�wi � data
 = �X�
i Xi + 2

0D
−1
−1X�

i Yi

+ �X�
i Xi + 2

0D
−1
−1� 2

0D
−1w0
�

Because the full posterior mean of wi is given in
closed form, there is no need to sample from the pos-
terior to obtain point estimates, and the cross-vali-
dation error associated with a given value of  0 can
be estimated conveniently fast. Note that varying  0
directly varies the amount of shrinkage characterized
by  2

0D
−1. Note also that unlike in RR-Het, w0 and D

are fixed here. We label this model Metric Bayes-CV.8

Unfortunately, such closed-form expressions are
available only for metric data and not for choice data.
Hence, we are unable to test an equivalent model for
choice (note that the second practical problem would
remain even if we were able to address the first).

In the previous section, we showed that although
both our approach and hierarchical Bayes shrink
individual-level estimates toward a population mean,
the amount of shrinkage is partly exogenous in HB
while it is completely endogenous in our approach.
Endogenizing the amount of shrinkage in HB (by
endogenizing the selection of the second-stage prior

8 This model is in the spirit of the empirical Bayes approach of
Rossi and Allenby (1993), to the extent that w0 and D are based on
a preliminary analysis of the data. However, Rossi and Allenby do
not use cross-validation.
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parameters) raises some theoretical and practical
issues. Despite these issues, we explore the potential of
such modification with a simple, nonhierarchical, met-
ric Bayesian model. In the following two sections, we
compare the estimation accuracy and predictive per-
formance of our approach to that of hierarchical Bayes.

4. Simulation Experiments
We first compare our approach with HB both for met-
ric and choice data using simulations. We compare
the methods using two field data sets (one for ratings
and one for choice) in §5.

4.1. Metric-Based Simulations
We compare RR-Het to the following methods:

(1) A standard HB implementation using typical
values for the parameters of the second-stage pri-
ors (resulting in fairly diffuse second-stage priors):
&0 = p+ 3, '0 = I , r0 = s0 = 1.

(2) The Metric Bayes-CV method described above.
We used a 2 (low versus high heterogeneity) × 2

(low versus high response error)×2 (low versus high
number of questions) simulation design. We simu-
lated ratings-based conjoint questionnaires with 10
binary features (plus an intercept). The true part-
worths were drawn from wi ∼ N�w0� w × I
 where
w0 = ,5�5� � � � �5- and  w = 2 in the low-heterogeneity
case and  w = 4 in the high-heterogeneity case. The
profiles were obtained from an orthogonal and bal-
anced design with 16 profiles, and the ratings were
equal to yij = xijwi + �ij where �ij ∼ N�0� e
 with
 e = 2 in the low-response error case and  e = 4 in
the high-response error case. In the low-number-of-
questions conditions, 8 profiles were drawn randomly
without replacement from the orthogonal design for
each simulated respondent. In the high-number-of-
questions conditions, all 16 profiles were rated by
each simulated respondent. We simulated 5 sets of 100
respondents in each condition, estimation being per-
formed separately for each set. Our performance met-
ric was the root mean square error (RMSE) between
the estimated and true partworths.

We note that the model used to generate the
data follows the distributional assumptions of HB. If
strong second-stage priors around the true values of
 and D were used, then we would clearly expect
HB to perform best. We focus on a more realistic and
practical setting in which no prior information on the
values of  and D is available to either method.

Table 2 reports the average RMSE across respon-
dents in each magnitude × heterogeneity × number
of questions cell.

We see the following:
(1) RR-Het performs significantly better than stan-

dard HB in 7 out of 8 conditions. Overall, it is best
or nonsignificantly different from best (at p < 0�05) in
7 out of 8 conditions.

Table 2 RMSE (Lower Numbers Indicate Higher Performance) of
Estimated vs. True Partworths for the Metric-Based
Simulations

Response Metric
Heterogeneity error Questions Standard HB Bayes-CV RR-Het

Low Low 8 1.502 1.453 1.459
16 0.989 0.941 0.920

Low High 8 1.751 1.736 1.861
16 1.485 1.414 1.417

High Low 8 3.189 2.479 2.358
16 1.026 1.005 0.993

High High 8 3.363 2.909 2.839
16 2.465 1.898 1.834

Notes. Bold numbers in each row indicate best or not significantly different
from best at the p < 0�05 level. The proposed method, RR-Het, is signifi-
cantly better than standard HB in 7 out of 8 conditions. It is overall best or
nonsignificantly different from best (at p < 0�05) in 7 out of 8 conditions.

(2) Metric Bayes-CV performs significantly better
than standard HB in all 8 conditions (these signifi-
cance tests are not reported in the table). This suggests
that selecting the parameters of the second-stage pri-
ors in HB using cross-validation has the potential to
greatly improve predictive ability.

4.2. Choice-Based Simulations
We extended the simulation setup above to com-
pare choice HB to LOG-Het. As discussed in §3, we
were unable to test a choice version of the Metric
Bayes-CV method. We used again a 2 (low versus
high heterogeneity) × 2 (low versus high response
error) × 2 (low versus high number of questions)
design, assumed 10 binary features, and used 8 and
16 as our low and high numbers of questions. We
assumed two profiles per choice set and derived our
orthogonal design by applying the shifting method
of Bunch et al. (1994) (see also Huber and Zwe-
rina 1996, Arora and Huber 2001) to the orthogonal
design used for the metric simulations (if Xi is the
ith row of the effects-coded orthogonal design, then
choice i is between Xi and 1 − Xi). Following the
tradition of choice-based conjoint simulations (Arora
and Huber 2001, Evgeniou et al. 2005a, Toubia et al.
2004), we drew the true partworths from normal dis-
tributions with mean ,mag�mag� � � � �mag- and vari-
ance  2 = het×mag where the parameter mag controls
the amount of response error and the paramater het
the amount of heterogeneity. We set the parameters
mag and het to capture the range of response error and
heterogeneity used in the previous simulations in the
aforementioned studies. In particular, we set mag =
1�2 and 0.2, respectively in the low and high response
error conditions,9 and het = 1 and 3, respectively, in

9 Because our number of features (10) is 2.5 times the number
(4) used by previously published simulations using the same
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Table 3 RMSE (Lower Numbers Indicate Higher Performance) of
Estimated vs. True Partworths for the Choice Simulations

Het Response error Quest HB LOG-Het

Low Low 8 0.5933 0.6235
16 0.4486 0.4600

Low High 8 0.9740 0.9609
16 0.8050 0.7946

High Low 8 0.7389 0.7289
16 0.4970 0.4827

High High 8 0.9152 0.9013
16 0.6935 0.6878

Notes. LOG-Het is the proposed method, HB is hierarchical Bayes. Bold num-
bers in each row indicate best or not significantly different from best at the
p < 0�05 level. LOG-Het performs significantly better than HB in 6 out of 8
conditions.

the low and high heterogeneity conditions. We used
logistic probabilities to simulate the answers to the
choice questions. We measure performance using the
RMSE between the true and estimated partworths,
normalized to have a norm of 1.

The results of the simulations (based on 5 sets of
100 respondents) are summarized in Table 3. We see
that the proposed method LOG-Het performs signif-
icantly better than standard HB in 6 out of 8 condi-
tions.10 HB outperforms LOG-Het only in the case of
low response error and low heterogeneity.

5. Comparisons Based on Field Data
5.1. Comparison of the Metric-Based Methods

Using Field Data
We compared RR-Het, HB, and Metric Bayes-CV on
a field data set used in a previously published paper
(Lenk et al. 1996).11 The data come from a ratings-
based conjoint study on computers, with 180 con-
sumers rating 20 profiles each. The first 16 profiles
form an orthogonal and balanced design and are
used for calibration; the last 4 are holdouts used for
validation. The independent variables are 13 binary
attributes and an intercept (see Table 2 in Lenk et al.
1996 for a description). The dependent variable is
a rating on an 11-point scale (0 to 10). We mea-
sured performance using the root mean square error
(RMSE) between the observed and predicted holdout
ratings. We estimated the partworths using 8 (ran-
domly selected) and 16 questions.

We report the results in Table 4. Both RR-Het and
Metric Bayes-CV perform significantly better than

simulation design, we divide the values of typical mag parame-
ters used in previously published simulations (0.5 and 3) by 2.5
to make the overall utilities, and hence the level of response error,
comparable.
10 Note that the numbers from Tables 2 and 3 are not comparable
because they are not on the same scale.
11 We thank Peter Lenk for kindly sharing this data set with us.

Table 4 RMSE for Holdout Questions from the Metric Field Data of
Lenk et al. (1996) (Lower Numbers Indicate Higher
Performance)

Questions Standard HB Metric Bayes-CV RR-Het

8 1.905 1.851 1.794
16 1.667 1.610 1.608

Notes. Bold numbers in each row indicate best or not significantly different
from best at the p < 0�05 level. Both RR-Het and metric Bayes-CV perform
significantly better than standard HB with both 8 and 16 questions. RR-Het
performs overall best or nonsignificantly different from best with both 8 and
16 questions.

standard HB with both 8 and 16 questions. RR-Het
performs overall best or nonsignificantly different
from best with both 8 and 16 questions. This further
confirms the potential of RR-Het, as well as the poten-
tial of using cross-validation in Bayesian estimation.
Note that our numbers are comparable but not equal
to the ones reported by Lenk et al. for the follow-
ing reasons. First, to perform significance tests, we
compute the RMSE for each respondent and report
the averages across respondents, as opposed to com-
puting an aggregate metric as in Lenk et al. Second,
we assume homoskedasticity (same  for all respon-
dents). Third, we do not use demographic variables in
the model. We show in the online technical appendix
how RR-Het can be extended to include such covari-
ates, and compare the performance of this extension
to that of HB with covariates and Metric Bayes-CV
with covariates. The same conclusions apply.

5.2. Comparison of the Choice-Based Methods
Using Field Data

We compared LOG-Het to HB on an empirical con-
joint data set kindly made available to us by Research
International.12 Note that we were not involved in the
design of the conjoint study that led to this data set.

The product in this study was carbonated soft
drinks. Three attributes were included: brand (6 lev-
els), size (7 levels), and price (7 levels), for a total of
20 partworths per respondent. A pseudo-orthogonal
design was first generated with 76 choice tasks, each
involving 8 alternatives. This design was divided into
4 subsets of 18 questions plus 4 additional questions.
There were 192 respondents subjected to 1 of the 4
22-question sets (presented in a randomized order).
We used 8 (randomly selected from the first 16) or
16 questions to estimate the models, and the last 6 as
holdouts.

We compare performance in Table 5. LOG-Het is
not significantly different from HB with 8 questions
and significantly better with 16 questions. As a ref-
erence, a homogeneous estimate obtained by logis-
tic regression achieved a hit-rate error of 21.7% (note

12 The data are proprietary but are available from the authors and
Research International upon request.
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Table 5 Holdout Hit Rates (Higher Numbers Indicate Higher
Performance) from the Choice Field Data Set

Questions Standard HB (%) LOG-Het (%)

8 48.37 47.76
16 51.04 52.34

Notes. LOG-Het is the proposed method, HB is hierarchical Bayes. Bold num-
bers in each row indicate best or not significantly different from best at the
p < 0�05 level. LOG-Het performs overall best or nonsignificantly different
from best in both cases, and significantly better than HB with 16 questions.

that, as each question involved 8 products, a random
model would achieve a hit rate of 12.5%).

The empirical comparisons reported in the previous
two sections indicate that our approach, overall, out-
performs standard hierarchical Bayes (with relatively
diffuse second-stage priors) and show that endoge-
nizing the selection of the second-stage prior param-
eters in hierarchical Bayes has the potential to greatly
improve estimation accuracy and predictive perfor-
mance. In the following section, we further explore
the relation between the amount of shrinkage and
performance, and we assess the validity of using
cross-validation for parameter selection.

6. The Relation Between Shrinkage
and Estimation Accuracy

We have argued in §3 that RR-Het and LOG-Het
differ from HB in the approach used to determine
the parameters on which the posterior distribution
(respectively, the loss function) depend (parameters
of the second-stage priors exogenous in HB versus
� endogenously estimated using cross-validation in
RR-Het and LOG-Het), and that these differences
translate into differences in the amounts of shrinkage
performed by the estimators. We have also argued,
based on past literature, that cross-validation is an
effective way of selecting the parameter � on which
the RR-Het and LOG-Het loss functions depend, and
hypothesized that it could be an effective way of
selecting the second-stage prior parameters on which
the HB posterior distribution depends. This raises the
following two sets of questions, which we address
empirically:

1. What is the relation between the amount of
shrinkage and performance? Are differences in per-
formance between methods systematically coupled
with differences in the amount of shrinkage?

2. Does cross-validation in RR-Het, LOG-Het, and
Metric Bayes-CV yield parameter values (� and  0
respectively) close to the ones that maximize estima-
tion accuracy?

We addressed these questions both with metric and
choice data. We report the case of metric data here
because of the availability of Metric Bayes-CV. The

conclusions with choice data are identical—details
and graphs are available from the authors.

To explore the relation between shrinkage and per-
formance, we manually varied the parameters � and
 0 in RR-Het and Metric Bayes-CV and assessed the
corresponding performance. See Figure 1 for the sim-
ulations and Figure 2 for the field data (we report
only the graphs based on 16 questions. The graphs
based on 8 questions yield similar results and are
available from the authors). The parameters � and
 0 are not on the same scale; however, there is a
one-to-one mapping between each of these parame-
ters and the amount of shrinkage. Hence, we report
the realized amount of shrinkage on the x-axis, mea-
sured by

∑I
i=1 �wi −w0�2/I . Performance, measured

by the RMSE of the true versus estimated partworths
for the simulations and by the holdout RMSE for
the field data (as in Tables 2 and 4), is reported
on the y-axis. The solid and dotted curves represent
the amount of shrinkage and the corresponding per-
formance achieved respectively by Metric Bayes-CV
and RR-Het as  0 (respectively �) is varied. The
labels “RR-Het” and “Bayes-CV” correspond to the
amount of shrinkage and corresponding performance
achieved by the two methods when � and  0 are
selected using cross-validation (i.e., they correspond
to the numbers reported in Tables 2 and 4).13 We
also report the amount of shrinkage and performance
achieved by standard HB.

Figures 1 and 2 illustrate the existence of a U-shaped
relationship between the amount of shrinkage and
performance. Moreover, they confirm that differences
in performance between the different methods are
systematically coupled with differences in the amount
of shrinkage: the smaller the difference in the amount
of shrinkage, the smaller the difference in perfor-
mance. This confirms that the approach used to deter-
mine the amount of shrinkage can be viewed as a key
difference between our approach and HB.

Finally, Figures 1 and 2 also suggest that the
amount of shrinkage and performance achieved by
RR-Het and Metric Bayes-CV when selecting parame-
ters using cross-validation is close to the bottom of the
corresponding curves, i.e., it is close to what would
be achieved if the true partworths (or holdout rat-
ings) were used to calibrate the parameters � and  0.
In particular, for the simulations (respectively ratings
field data) the RMSE achieved by RR-Het or Metric
Bayes-CV when � or  0 is selected using cross-vali-
dation is on average only 0�59% (respectively, 0�38%)

13 For each set of simulated respondents, the labels “Bayes-CV” and
“RR-Het” lie exactly on the corresponding curves. However, this
does not necessarily hold for our graphs because they are based
on averages across the five sets of simulated respondents. Note also
that the differences between the two curves are due to differences
in D and w0.
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Figure 1 Performance as a Function of the Amount of Shrinkage—Metric Simulated Data
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Notes. Estimates are based on 16 questions. The amount of shrinkage is measured by
∑I

i=1 �wi −w0�2/I. The solid lines represent the amount of shrinkage
and corresponding RMSE (estimated versus actual partworths) performance achieved by metric Bayes-CV as �0 is varied, and the labels “Bayes-CV” represent
the amount of shrinkage and performance achieved when �0 is selected using cross-validation. The dotted lines represent the amount of shrinkage and
performance achieved by RR-Het as � is varied, and the labels “RR-Het” represent the amount of shrinkage and performance achieved when � is selected
using cross-validation. “Standard HB” corresponds to HB with standard second-stage priors, as in Table 2.

higher than the minimum achievable if the true part-
worths (respectively, holdout ratings) were used to
select � and  0. This confirms that cross-validation is
an effective method for parameter selection, both for
RR-Het and Metric Bayes-CV, and hence potentially
for all the second-stage prior parameters in HB.

7. Conclusions and Future Research
Our main results can be summarized as follows.

• We have proposed a novel approach for handling
consumer heterogeneity in conjoint estimation based
on convex optimization and machine learning, and
we applied it to both metric and choice data (§2).

• This approach shares some similarities with hier-
archical Bayes. However, one of the major differences
is that while the amount of shrinkage is influenced by
a set of exogenous parameters in HB (the parameters
of the second-stage priors), it is completely endoge-
nous in our approach (§3).

• Simulations, as well as two empirical data sets,
suggest that the approach overall outperforms a stan-
dard HB implementation (with relatively diffuse sec-
ond-stage priors) (§§4 and 5).

• Selecting the second-stage prior parameters in
HB endogenously, like in our approach, raises some
practical and theoretical issues. However, we show
the potential of this modification with a simple, metric,
nonhierarchical model (§§3, 4, and 5).

• There exists a U-shaped relation between amount
of shrinkage and performance, and differences in per-
formance can be traced to differences in the amounts
of shrinkage. Selecting some of the shrinkage param-
eters using cross-validation gives rise to an amount of
shrinkage that is close to optimal (§6).

The experimental results suggest that an important
and challenging area for future research is to develop
systematic and computationally efficient ways of
selecting the parameters of the second-stage priors
in HB more optimally. A second area for future
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Figure 2 Performance as a Function of the Amount of Shrinkage—
Field Metric Data
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Notes. Estimates are based on 16 questions. The amount of shrinkage is
measured by

∑I
i=1 �wi −w0�2/I. The solid line represents the amount of

shrinkage and corresponding performance (holdout RMSE) achieved by met-
ric Bayes-CV as �0 is varied, and the label “Bayes-CV” represents the amount
of shrinkage and performance achieved when �0 is selected using cross-
validation. The dotted line represents the amount of shrinkage and perfor-
mance achieved by RR-Het as � is varied, and the label “RR-Het” represents
the amount of shrinkage and performance achieved when � is selected using
cross-validation. “Standard HB” corresponds to HB with standard second-
stage priors, as in Table 4.

research would be to explore the use of population
based complexity/shrinkage control in other individ-
ual level optimization based methods (e.g., Srinivasan
and Shocker 1973, Srinivasan 1998, Toubia et al. 2003,
Toubia et al. 2004), for estimation and possibly as
well for adaptive questionnaire design. Third, in this
paper we have focused on unimodal representations
of heterogeneity. Future research could introduce and
model segments of consumers. This could be achieved
by modifying the form of the complexity control in
loss function (2) to reflect, for example, the existence
of multiple clusters of respondents. Finally, optimiza-
tion and statistical learning methods could be used
to capture and model other phenomena beyond con-
sumer heterogeneity. For example, our methods could
be extended to capture recently researched learning
phenomena in conjoint analysis (Liechty et al. 2005,
Bradlow et al. 2004). Another potential area of appli-
cation is modeling the formation of consideration sets
(Gilbride and Allenby 2004, 2006; Jedidi and Kohli
2005; Hauser et al. 2006).
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Appendix A. Minimization of the RR-Het Loss
Function (2) Given �

A.1. Estimating �wi� and w0 Given D
We first transform the data as x̃ij = xijD1/2 and define �wi =
D−1/2wi and �w0 =D−1/2w0 (see the case of a noninvertible D
below). Note that with this transformation we can estimate
first the �wi’s and �w0 using the transformed data x̃ij and the
modified cost function

min
��wi �� �w0

1
�

I∑
i=1

J∑
j=1

�yij− x̃ij �wi

2+

I∑
i=1

��wi− �w0

���wi− �w0
� (A.1)

and then get the final solution as wi = D1/2 �wi and w0 =
D1/2 �w0. This is because x̃ij �wi = xijD1/2D−1/2wi = xijwi and
��wi − �w0


���wi − �w0
 = �wi − w0

�D−1�wi − w0
. With this

transformation we never compute the inverse of matrix D.
Note that (A.1) is jointly convex with respect to the pair

of variables ��wi� and �w0. Taking the derivative with respect
to �w0 we see that

�w0 =
1
I

I∑
i=1

�wi�

Taking the derivative with respect to �wi we have that

2
�

�X�
i
�Xi �wi −

2
�

�X�
i Yi + 2��wi − �w0
= 0

⇒ �wi = � �X�
i
�Xi +�Ip


−1 �X�
i Yi + � �X�

i
�Xi +�Ip


−1� �w0

= �wi +�Zi �w0� (A.2)

where Ip is the p-dimensional identity matrix, �Xi is the
matrix with rows x̃ij , �wi = � �X�

i
�Xi + �Ip


−1 �X�
i Yi and Zi =

� �X�
i
�Xi+�Ip


−1. Finally, substituting �wi into the equation for
�w0 we get

�w0 =
1
I

∑
i=1

��wi +�Zi �w0
�

which implies

�w0 =
(
Ip −�

1
I

∑
i=1

Zi

)−1 1
I

∑
i=1

�wi�

If the matrix �Ip − ��1/Ip

∑

i Zi
 is not invertible, we follow
the individual RR literature and take its pseudo-inverse.
It can be shown, like in the individual-level RR case dis-
cussed in §2.1.2, that using the pseudo-inverse is equivalent
to adding to the loss function (2) an extra term 1w�

0 D
−1w0

with 1→ 0.
Having estimated �wi and �w0 we then get wi =D1/2 �wi and

w0 = D1/2 �w0. Finally, to get (4)—which we no not need to
compute in practice—we just have to replace �Xi with XiD

1/2

in (A.2) and use the fact that wi =D1/2 �wi.
If D is not invertible, we replace D−1/2 with the square

root of the pseudo-inverse of D and follow the exact same
computations above—note that we never have to com-
pute D−1. In this case, the projections on D1/2 (computed
using only the nonzero eigenvalues of D) above also ensure
that �wi� and w0 are in the range of D – otherwise notice



Evgeniou, Pontil, and Toubia: A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation
Marketing Science 26(6), pp. 805–818, © 2007 INFORMS 817

that the complexity control can be set to 0 by simply con-
sidering �wi� and w0 in the null space of D. We can also get
(4)—which we do not need to compute in practice again—
with all inverses being pseudo-inverses by replacing again
�Xi with XiD

1/2 in (A.2) and use the fact that wi =D1/2 �wi.
Note that we have closed-form solutions for both �wi�

and w0. Moreover, the estimation of the partworths wi is
decomposed across the individuals and requires only 2I
inversions of p-dimensional (small) matrices.

A.2. Estimating D Given �wi� and w0
We assume for simplicity that the covariance of the wis,
and hence the matrix �

∑I
i=1�wi − w0
�wi − w0


�
, has full
rank (which is typically the case in practice when we have
many respondents). If the covariance matrix is not full rank,
we replace the inverse of the solution D below with the
pseudo-inverse. It can be shown as in the individual-level
RR case discussed in §2.1.2, that using the pseudo-inverse
is equivalent to adding to the loss function (2) the term
�Trace�D−1
 with �→ 0, keeping the loss function convex.

Given �wi� and w0 we solve

minD

I∑
i=1

�wi −w0

�D−1�wi −w0
�

subject to D is a positive semidefinite matrix
scaled to have trace 1�

Using a Lagrange multiplier 2 for the trace constraint and
taking the derivative with respect to D we have that

−1
2
D−1

( I∑
i=1

�wi −w0
�wi −w0

�
)
D−1 +2I = 0

⇒ D= 1
22

( I∑
i=1

�wi −w0
�wi −w0

�
)1/2

(A.3)

which is positive definite; 2 is simply selected so that D has
trace 1.

Appendix B. Newton’s Method for LOG-Het
Notice that for given �wi� and D, assuming D is invert-
ible (otherwise, as for RR-Het, use the pseudo-inverse of D)
we get as before that w0 = �1/I


∑
iwi. Similarly, given �wi�

and w0 we can solve for D like for RR-Het above—because
D appears only in the complexity control. Hence, we need
only to show how to solve for �wi� given D and w0, and
then iterate among the conditional estimations like for RR-
Het (in all our experiments, fewer than 20 iterations were
required for convergence). As for RR-Het above, to avoid
computing the inverse of D, we first transform the data as
x̃ijq = xijqD1/2 and define �wi = D−1/2wi and �w0 = D−1/2w0.
Note that with this transformation we can estimate first �wi

minimizing the modified cost function

− 1
�∗

I∑
i=1

J∑
j=1

log
ex̃ijq∗ �wi∑Q
q=1 e

x̃ijq �wi +
I∑
i=1

��wi − �w0

���wi − �w0
 (B.1)

and then get the final solution as wi =D1/2 �wi.
Notice that for a fixed �w0, problem (B.1) is decomposable

into I separate subproblems, one for each respondent, each

of them being a standard (widely studied) regularized ker-
nel logistic regression problem (Jaakkola and Haussler 1999,
Hastie et al. 2003, Keerthi et al. 2005, Minka 2003, Zhu and
Hastie 2005). We can solve (B.1) for �wi using various stan-
dard methods used for logistic regression (e.g., see Minka
2003). We use here a standard Newton’s method imple-
mented based on the matlab code of Minka (2003) available
at http://research.microsoft.com/∼minka/papers/logreg/.
For this purpose we need only the gradient and Hessian of
the loss function (B.1). These are given as

G=
J∑
j=1

(
x̃�ijq∗ −

∑Q
q=1 e

x̃ijq �wi x̃�ijq∑Q
q=1 e

x̃ijq �wi

)
+���wi − �w0


for the gradient and

H =
J∑
j=1

Q∑
q=1

(
− ex̃ijq �wi x̃�ijq x̃ijq∑Q

q′=1 e
x̃ijq′ �wi

+ ex̃ijq �wi x̃�ijq
(∑Q

q′=1 e
x̃ijq′ �wi x̃ijq′

)
(∑Q

q′=1 e
x̃ijq′ �wi )2

)
+�Ip

for the Hessian. At each Newton step the new �wi (for
each respondent i independently) is given by �wnew

i =
�wold
i −H−1G.
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