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Abstract

We model an electronic limit order book as a multi-class queueing system under fluid dynam-
ics, and formulate and solve a problem of limit and market order placement to optimally buy
a block of shares over a short, predetermined time horizon. Using the structure of the optimal
execution policy, we identify microstructure variables that affect trading costs over short time
horizons and propose a resulting microstructure-based model of market impact costs. We use
a proprietary data set to estimate this cost model, and highlight its insightful structure and
increased accuracy over conventional (macroscopic) market impact models that estimate the
cost of a trade based on its normalized size but disregarding measurements of limit order book
variables.

1. Introduction

Modern equity markets have, to a large extent, become computerized technological systems. Market
participants, including institutional investors, market makers, and opportunistic investors, interact
within today’s high-frequency marketplace with the use of electronic algorithms. These algorithms
differ across participants and trading styles. At a high level, they dynamically optimize where, how
often, and at what price to trade taking into account the state of the exchanges and other real-time
market information. Our goal in this paper is to develop models based on queueing theory for the
dynamics of an electronic market over short time scales, and to understand how features of the
market microstructure impact the execution costs that market participants face.

We will focus on markets that are organized as so-called electronic limit order books (LOBs).
This is the dominant market structure among, for example, exchange-traded U.S. equities. In an
electronic limit order book, traders may provide liquidity by submitting limit orders to buy or sell
specific quantities of stock at a specified price, or remove liquidity by sending market orders to
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buy or sell at the best available prices. When a market order arrives, it will be matched by the
exchange to a contra-side resting limit order. These resting orders are first prioritized by price,
and then, within each price level, prioritized by their time of arrival. In this way, each price level
can be associated with a queue of resting limit orders that await execution according to a first-in-
first-out (FIFO) service discipline, and an electronic limit order book can be naturally modeled as
a multi-class queueing system.

A simplified view of a typical portfolio manager is as an agent that makes high-level decisions to
buy or sell quantities of securities. The outcomes of these investment decisions are then delegated
to a ‘trader’ that executes them, often making use of a so called ‘algorithmic trading’ system.
These systems are developed internally by large institutional investors or, alternatively, offered as
a service by a multitude of banks or brokers. Broadly speaking, such algorithmic trading strategies
are designed hierarchically. First, they decide how to schedule the parent order, at a high level,
over the course of its execution horizon. For example, if an investor seeks to buy a block of shares
over the course of a trading day, this might involve scheduling target quantities for purchase in 5-
minute intervals. In this way, the trade scheduling phase involves strategic decisions that consider
trade-offs that are realized over minutes or hours. Second, they consider each such sub-interval of
the longer horizon, and decide how to execute the target quantity over the sub-interval by dividing
it into smaller child orders that are tactically directed to the market either as market or limit orders
at optimized price levels and time points. This second phase is often referred to as the micro-trader
or slicer, and involves tactical decisions that consider trade-offs on the time scale of seconds to
minutes; the queueing delay incurred by limit orders is an important consideration in this step.

An essential input to both the portfolio selection decision as well as the algorithmic trade
execution process is the so-called market impact model. This model estimates the anticipated cost
of a trade and takes into account the adverse effect of one’s own trading activity to the price of
the security — i.e., how much will the price move against a trader that is buying or selling a
block of a specific stock over a specified time horizon. The market impact model depends on the
characteristics of the security, such as its liquidity, volatility and typical bid-ask spread, as well as
the size and timing of the trade itself. In portfolio construction, a market impact model is often used
as a penalty term to capture the trading frictions and resulting costs associated with a portfolio
transition. In trade scheduling, it is used in the context of deciding how aggressively to trade —
aggressive execution will result in high expected execution costs over shorter trading horizons but
reduce execution risk due to exposure to fluctuating market prices. In the micro-trader, a market
impact model is used in the tactical optimization of order placement decisions.

In this paper, we first formulate and solve a stylized version of the optimal execution problem
faced by the micro-trader described above that takes the form of optimally buying (or selling) a pre-
specified quantity of stock over a fixed short time horizon, typically in the order of a few minutes.
Then, leveraging the solution of the execution problem, we construct a market impact model that
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explicitly takes into account the microstructure information that describes the state and queueing
dynamics of the limit order book. Specifically, the key contributions of the paper are the following:
(a) We develop a model of the LOB as a multi-class queueing network. Using a fluid (deterministic,
mean-field) model of the queueing system, we solve the resulting optimal execution problem, that
describes what fraction of the trade quantity will be executed using limit and market orders and
at what price levels. (b) Our optimal execution problem yields an estimate for the (optimized)
execution costs, which suggests a functional form for a market impact model and identifies relevant
microstructure variables (e.g., queue lengths, arrival rates, etc.) that impact trading costs. The
microstructure market impact model seems to be novel viz the extensive literature on this topic
and to be of practical interest in estimating transaction costs and optimizing trading decisions over
short time horizons of the order of a few minutes. (c) Finally, we calibrate the microstructure
market impact model using a proprietary data set of algorithmic trades and contemporaneous real-
time measurements of limit order book variables. We compare the quality of the statistical fit
of the microstructure model to what can be achieved using a typical macroscopic market impact
model that estimates costs without consideration of limit order book variables. We find that our
microstructure impact model yields a factor of four improvement in out-of-sample explanatory
power. We further test the robustness of our model over its specification and over the problem
primitives. We find our model has the most explanatory power for larger orders (measured as a
percentage of overall volume) and for assets with greater market depth (measured through queues
sizes capturing available liquidity). These correspond to settings where our fluid model assumptions
are most realistic. Further, we note conventional macro models are also more successful in settings
with greater market depth, a fact that seems unobserved thus far in the literature.

Literature review. This paper is related to the growing literature that lies on the interface of
queueing and the study of limit order book markets. This connection was first illustrated by
Cont et al. (2010); see also Cont and Larrard (2013), Lakner et al. (2013), Blanchet and Chen
(2013), Stoikov et al. (2011), and Lakner et al. (2014). Our model builds on Cont et al. (2010),
recognizing the multiple price levels in a limit order book can be modeled as a multi-class queue.
We work directly with the fluid model representation and do not study the stochastic dynamics of
the multi-class queue. The majority of the papers above focus on characterizing the performance
of the limit order book, in many cases involving fluid or diffusion approximations. Our emphasis
is on optimization of tactical trading decisions, and specifically in optimizing how to execute a
block of shares in a limit order book over a predetermined time horizon that is of the same order
as that of queueing delays in the order book, and as such modeling of queueing effects becomes
important. Related work includes that of Guo et al. (2013), who study a problem of optimizing
when to send limit orders and market orders in the market, taking into account, in a stylized
manner, the limit order book dynamics but excluding a careful consideration of queueing delays
and order cancellation effects. Cont and Kukanov (2013) study the smart order routing problem,
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specifically taking into account the fact that there are multiple exchanges to which one can post
a limit order, so the control decision becomes how much to post and to which exchange. Our
work considers one consolidated limit order book, like Guo et al. (2013), but models explicitly
the queueing dynamics, order cancellations, and the ability to trade aggressively on multiple price
levels with market orders. Apart from optimizing limit order placement, we find that the optimized
routing of market orders over the optimization horizon is an important ingredient that affects the
overall execution cost; in particular, it is typically not optimal to send all market orders to trade
at the end of the time horizon. The resulting execution cost motivates the microstructure market
impact model.

A separate set of papers deal with the longer horizon trade scheduling problem. Bertsimas
and Lo (1998) solved this problem when optimizing the expected cost, and Almgren and Chriss
(2000) considered the mean-variance criterion; see also Almgren (2003) and Huberman and Stanzl
(2005). These papers use a market impact model to capture the cost of the execution expressed
as a function of the speed of trading, but do not explicitly model the interaction in a limit order
book, or the state variables of the order book. Obizhaeva and Wang (2006), Rosu (2009), Alfonsi
et al. (2010) treat the market as one limit order book and use an aggregated and stylized model of
market impact to capture how the price moves as a function of trading intensity. These references
address the trade scheduling problem, whose longer time horizon allows one to abstract away the
queueing effects that are inherent in the limit order book.

Market impact models estimate the expected transaction cost of a trade. They take various
functional forms, and typically deconstruct the price impact into temporary and permanent com-
ponents, and further specify the decay behavior of the temporary contribution. They depend on
specific characteristics of the stock as well as the speed of trading, often assumed to be a constant
participation rate – e.g., an order executed at 10% participation rate would aim to trade 100 shares
for every 1,000 shares traded in the market across all participants. Huberman and Stanzl (2004)
showed using a no-arbitrage argument that the permanent price impact must be a linear function of
the quantity traded; see also Gatheral (2010). The functional form and decay kernel of the tempo-
rary impact term is not as simple to characterize analytically. The simplest assumption treats that
decay as being instantaneous. Other alternatives typically allow for exponential or power decay
functions. The functional form that specifies the magnitude of the temporary cost is itself typically
assumed to be linear or sub-linear function of the speed of trading; stylized analytical arguments
and statistical evidence suggest a sub-linear functional form. For example, Chacko et al. (2008)
provide empirical evidence that the expected price impact is proportional to the square root of the
quantity traded; see also Bouchaud et al. (2008).

We refer to the class of models described above as macroscopic (or “macro”) models in the
sense that they do not take into account microstructure variables that can be gleaned from the
limit order book, and typically try to give cost estimates over long time durations, minutes to hours
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to days. These models are typically estimated through large scale cross-sectional regressions based
on the realized costs of a proprietary set of algorithmically executed trades. Almgren et al. (2005)
describe an econometric approach for that problem, while Rashkovich and Verma (2012) provide
important insights that improve the estimation procedure, and allow for more accurate de-trending
of the trade data. Moallemi et al. (2014) extend the above approach to include a short term alpha
fixed effect associated with the identity of the trader.

In contrast to the above mentioned papers, our analysis proposes a temporary price impact
model that explicitly depends on limit order book variables. It is best suited over short time horizons
of the order of minutes (the same order of magnitude as that of queueing delays encountered by limit
orders until they execute in the market). Recently, Cont et al. (2014) studied a price impact model
expressed as a function of the so-called order flow imbalance that measures the difference between
events (arrivals, trades and cancellations) on the two sides of the limit order book. Imbalance
should be normalized by the queue depth, which is something that emerges in our work as well in
capturing the effect of market orders; limit orders have a different relation to depth that we also
identify. Cont et al. (2014) did not suggest a model that could be used to explain and predict
trading costs, but such an extension may be possible.

The remainder of the paper is organized as follows. Section 2 models the operation of a limit
order book as a multi-class queueing system and studies its fluid dynamics. Section 3 states the
optimal execution problem. Section 4 characterizes the optimal strategy, on which a microstructure
cost function we provide in Section 5 is predicated. Section 6 reports on the empirical performance
of our model and provides a comparison with some benchmark models in the literature.

2. The Limit Order Book

An electronic limit order book (LOB) can be modeled as a multi-class queueing system. In broad
terms, we will associate queues at each price point where buy or sell limit orders can wait until
executed or canceled by the respective traders. We model and track cumulative arrivals of limit
orders into the various queues, model the arrival and execution behavior of market orders, and
subsequently discuss the dynamics of this queueing system. Figure 1 provides a useful schematic
to visualize the various aspects of the LOB.

This paper studies an optimal execution problem and explores how this provides the basis of
a microstructure-based transaction cost function. The specific problem that we analyze is one of
optimally buying C shares of a security at the lowest possible price over a given time horizon T .
In our setting, we typically imagine T to be of the order of a few minutes.

This transient optimal control problem motivates the use of a deterministic fluid model (some-
times known as a “mean field” model) for the evolution of the LOB, where the discrete and stochastic
primitive processes (e.g., order arrivals, cancellations) are replaced by continuous and deterministic
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limit order book.
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Figure 2: An illustration of the coupled, multi-
class priority queueing network associated with an
electronic limit order book and its fluid dynamics.

analogues, where infinitesimal orders arrive continuously over time at a rate that is equal to the
instantaneous intensity of the underlying stochastic processes. This model can be justified as an
asymptotic limit using the functional strong law of large numbers in settings where the rates of
order arrivals grow large but the size of each individual order is small relative to the overall order
volume over any interval of time.1 It is well-suited for characterizing transient dynamics in such
systems, which roughly correspond to the time scale over which queues drain or move from some
initial configuration to an equilibrium state; this is also the relevant time horizon for our optimal
execution problem. Indeed, our model is oriented towards liquid securities, where orders arrive on
a time scale measured in milliseconds to seconds, while we will consider a time horizon on the order
of minutes.

2.1. Multiclass Queueing Network

Our multiclass queueing network model of the LOB is defined as follows:
Prices. We will consider a discrete price grid indexed by i ∈ {1, . . . , N}, refer to the ith price

point by pi, and assume that prices are labeled so that p1 < p2 < · · · < pN ; it is natural to think
that this price sequence is in uniform increments of an underlying minimum tick-size.

Queues. At each price point pi we associate two queues for buy and sell limit orders, respectively.
Specifically, at each time t ≥ 0, denote by Qbi(t), Qsi (t) ∈ R+ the total quantity of shares available
for purchase or sale, respectively, at price level pi. We define the best-bid queue bt ∈ {1, . . . , N} to
be the non-empty queue of buy orders of highest price, i.e.,

bt := min
{

1 ≤ i ≤ N : Qbj(t) = 0, for all i < j ≤ N
}
,

and the best-ask queue at ∈ {1, . . . , N} to be the non-empty queue of sell orders of lowest price,
1Mandelbaum and Pats (1995) provides a framework that could be adapted into this setting to justify such a limit.
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i.e.,
at := max

{
1 ≤ i ≤ N : Qsj(t) = 0, for all 1 ≤ j < i

}
.

We denote the overall state of the LOB by Q(t) := (Qb(t), Qs(t)) ∈ RN+ × RN+ , where

Qb(t) :=
(
Qb1(t), . . . , QbN (t)

)
∈ RN+ and Qs(t) :=

(
Qs1(t), . . . , QsN (t)

)
∈ RN+ .

We will require that queue length vectors satisfy bt < at, or, equivalently, that pbt < pat , i.e.,
the best-bid price is strictly less than the best-ask price. This will be made clearer through the
equations of dynamics. Further, we require that both sides of the limit order book be non-empty,
i.e., the best bid and best ask levels are well defined and Qbbt(t) 6= 0 and Qsat(t) 6= 0. Denote by
Q ⊂ RN+ × RN+ the set of such feasible queue length vectors.

Limit order arrivals. Limit orders seek to buy (resp., sell) a certain quantity of shares at any
price up to and including a limit price that is below (resp., above) the best-bid (resp., best-ask)
price in the market.2 Limit orders cannot be filled upon their arrival, but instead join FIFO queues
associated with their limit prices and wait until they are filled or canceled.

Market order arrivals. Market orders seek to buy (resp., sell) a certain quantity of shares at
the “best” available price. Market orders trade instantaneously against posted limit orders on the
contra-side of the order book according to a price-time priority rule: when matching a market
order to buy (resp., sell) against resting limit orders to sell (resp., buy), the resting orders are
first considered in increasing (resp., decreasing) order of price; within each price level, resting limit
orders are considered in a first-in-first-out (FIFO) order. The resting limit order shares that are
matched to and filled by a market order are subsequently removed from the order book.

Limit order cancellations. Resting limit orders may be canceled at any point. When a cancel-
lation occurs, the canceled shares are removed from their corresponding queue in the order book.

In queueing parlance, a limit order book corresponds to a coupled multiclass queueing network;
cf. Figure 2. Job arrivals correspond to the arrival of limit orders, service completions correspond
to the arrival of market orders, and abandonments correspond to the arrival of limit order cancel-
lations. The price-time priority rule creates a service discipline where queues are assigned priority
classes based on their prices and where each queue is served in FIFO.

2.2. Fluid Model Dynamics

The fluid model approximation of the LOB replaces stochastic and discrete arrival and cancellation
processes by continuous and deterministic flows.

Limit order arrivals. At time t, we assume that buy and sell limit orders arrive at each price
level pi with rates λbi · 1(i ≤ bt) and λsi · 1(i ≥ at), respectively, given two vectors λs, λb ∈ RN+ . In

2These are commonly known as non-marketable limit orders. In our setting, limit orders that do not satisfy this
price condition (i.e., marketable limit orders) are equivalent to market orders and thus considered as such.
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other words, limit orders arrive at price levels that are at the top-of-the-book, i.e., at the current
best-bid and best-ask, or at prices inside the book, i.e., buy orders at prices below the best-bid and
sell orders at prices higher than the best-ask.3

Market order arrivals. Market orders to sell or to buy arrive at rates that are dependent on
the current best-bid and best-ask prices, respectively, denoted by µsbt and µbat . The two vectors
µs, µb ∈ RN+ define the market order arrival rates at different price levels for the best-bid and
best-ask, respectively.

Limit order cancellations. We assume that resting limit orders are canceled at a uniform rate
γ > 0, which implies that the cancellation rate per unit time in a queue of size Q is γQ.

Combining the above, we obtain the following ODEs for the order book state process:

Q̇bi(t) = λbi · 1(i ≤ bt)− µsi · 1(i = bt)− γQbi(t), ∀ 1 ≤ i ≤ N,(1)

Q̇si (t) = λsi · 1(i ≥ at)− µbi · 1(i = at)− γQsi (t), ∀ 1 ≤ i ≤ N.(2)

We will make the following assumption regarding the arrival rate parameters:

Assumption 1. The arrival rate of limit orders at any price level exceeds the arrival rate of contra-
side market orders associated with that price level. That is, λsi ≥ µbi and λbi ≥ µsi for all 1 ≤ i ≤ N.

The following lemma characterizes the unique stationary point of the fluid dynamics (1)–(2).

Lemma 1. Given an arbitrary initial condition Q(0) ∈ Q, there exists a unique solution Q : [0,∞)→
Q to the fluid model ODEs (1)–(2). This solution satisfies:

(i) bt = b0, at = a0, for all t ≥ 0,

(ii) As t→∞, Q(t)→ q∗, where q∗ := (q∗,b, q∗,s) is given by

q∗,bi :=


λbi/γ if 1 ≤ i < b0,

λbi − µsi
γ

if i = b0,

0 if b0 < i ≤ N,

q∗,si :=


0 if 1 ≤ i < a0,

λsi − µbi
γ

if i = a0,

λsi/γ if a0 < i ≤ N,

(All proofs can be found in the Appendix.) Part (i) of Lemma 1 states that starting from any
initial condition, the best-bid and best-ask prices remain constant. This is a direct consequence of
Assumption 1.4 Part (ii) of Lemma 1 identifies the long-run equilibrium configuration of the limit
order book in terms of the rate parameters and the initial condition.

3The rates λbi and λsi are specified as functions of the price level pi, and and these limit order flows turn off
depending on the price level as compared to the prevailing best-bid and best-ask prices. A more complex model
would allow for the rates at pi to depend on the distances of pi from bt and at, and possibly on the queue lengths,
especially these at the best-bid and best-ask. Given our end goal of extracting a transaction cost model which is
parsimonious and easily estimable using data, we will not consider these extensions herein.

4If Assumption 1 is relaxed, then there may be a short term transient that one would need to consider, e.g., the
event rates λi, µi may be imbalanced in a way that the best-bid or the best-ask would change.
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3. The Optimal Execution Problem

We consider a trader that seeks to buy C shares over a given time interval [0, T ] by posting limit and
market orders over time and at various price levels in the limit order book. The trader’s objective
is to minimize the average buying price. We describe this problem in detail as follows:

Limit orders. Given Lemma 1, any limit orders posted at price levels pi with i < bt (i.e., strictly
below the best-bid price) will never trade and can therefore be excluded from consideration, without
loss of generality. The following assumption also disallows limit orders strictly above the best-bid
price:

Assumption 2 (No Limit Orders Inside Spread). We restrict attention to execution policies that, at
each time t, submit no limit orders at price level i, if i > bt. In other words, no limit orders are
submitted inside the current best-bid and best-ask prices.

We make this assumption for tractability reasons. It disallows the trader from setting a new
best-bid price. Under Assumption 2, the limit order placement decision is reduced to selecting
how much quantity to submit at the best-bid price level pbt . In our model, again without loss of
generality, we can assume that all limit orders are placed in a single block at time t = 0.5 Thus, we
will restrict attention to policies which place all limit orders (if any) at time t = 0 at the best-bid
price level b0. We denote by SL the aggregate size of this limit order, and require that 0 ≤ SL ≤ C.

Market orders. The trader may also place market orders. We denote by S(t) the cumulative
number of market orders placed over the interval [0, t].

Assumption 3 (Regularity of Market Orders). The market order process S(·) must satisfy:

(i) S(·) is nondecreasing and right continuous with left limits. Denote by S(t−) the left limit of
function S(·) at t ∈ (0, T ] and define S(0−) := 0.

(ii) S(·) has finitely many jump discontinuities and is absolutely continuous on the intervals be-
tween jumps.

Given the above assumption, the process S(·) can be rewritten as a combination of discrete
jumps or “block” trades, and continuously emitted orders or “flow” trades. Specifically, denote the
times of the jump discontinuities by 0 ≤ t1 ≤ · · · ≤ tK ≤ T. Denote by Jk the size of the kth jump
or block trade. Then, there exists a Lebesgue integrable instantaneous rate function r : [0, T ]→ R+

such that

(3) S(t) =
K∑
k=1

1 {tk ≤ t} · Jk +
∫ t

0
r(s) ds, ∀ t ∈ [0, T ].

5We will not provide a proof of that assertion. Intuitively, any policy that submits limit orders at some time t > 0
can be weakly improved by submitting the same quantity of limit orders at t = 0, which due to the FIFO priority
rule, will now execute sooner.
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Constraints on the policy. An execution policy is specified via a quantity of limit orders SL
and a market order process S(·) that comprises of block trades {Jk} and flow trades r(·).

Definition 1 (Admissible Policy). Given an initial order book state Q(0−) ∈ Q, an execution policy(
SL, S(·)

)
with representation (3) is said to be admissible if it satisfies

(i) A total of C shares is purchased by the end of the time horizon.

(ii) For each block trade Jk occurring at time tk, with k = 1, · · · ,K, the sizes of block trade does
not exceed the available liquidity on the ask side of the order book, i.e.,

Jk ≤
N∑

i=a
t−
k

Qsi (t−k ).

Denote by P
(
Q(0−)

)
the set of admissible policies given an initial condition Q(0−) ∈ Q. For

simplicity, we will further assume that ask queues outside of the best-ask price start at their
stationary queue lengths specified in Lemma 1. Specifically:

Assumption 4 (Initial Conditions). Q(0−) ∈ Qeq, where

Qeq := {q : q ∈ RN+ , qi = λsi/γ for i = a0 + 1, · · · , N}.

Price movement and the effect on book dynamics. We need to augment the dynamics specified
in Section 2, to incorporate the effect of the trader’s actions:

(a) Buy market orders submitted by the trader may empty queues on the ask side of the LOB,
which would induce a price change in the order book. We will assume that the the order book
maintains a constant bid-ask spread after a price shift, formalized in Assumption 5.

(b) Buy limit orders submitted by the trader to the best-bid price must be tracked separately
from other limit orders at the best-bid price, so as to maintain their queue position and priority to
execute relative to other orders at the same price level. Specifically, the total quantity of buy limit
orders Qbbt(t) at the best-bid price level at time t can be decomposed as follows

Qbbt(t) = Q0(t) +QL(t) +Q1(t),

where Q0(t) is quantity of limit orders still in the queue that were submitted at t = 0−; QL(t) is
quantity of limit orders still in the queue submitted by the trader at t = 0; and Q1(t) is quantity
of limit orders submitted by other participants after t = 0. These orders are placed in the queue
as illustrated in Figure 3: Q0(t) is in the front of the queue, followed by QL(t) and then by Q1(t).

The trader’s market order policy may deplete price levels on the ask side of the book. Let τi be
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time when the aggregate queue lengths up to price pi, for i = a0, . . . , N , are depleted, i.e.,

(4) τi := inf
{
t ∈ [0, T ] | Qsj(t) = 0, ∀ j = 0, . . . , i

}
,

and set τi =∞ if the condition is not satisfied at any time in [0, T ].
Note that we have suppressed the dependence of these times on the initial conditions and the

execution policy in our notation. By their definition, 0 ≤ τa0 ≤ · · · ≤ τN . The best ask process at,
for t ∈ [0, T ], can be expressed in terms of these depletion times by

(5) at = a0 +
N∑
i=a0

1 {τi ≤ t} .

The next assumption describes the order book behavior when an ask queue is depleted. We
assume that the bid-side queues shift to higher price points as needed to ensure that the bid-ask
spread at − bt is constant over time.

Assumption 5 (Constant Bid-Ask Spread). Denote by kt := at − at− the price jump at the ask at a
time t ∈ {τa0 , . . . , τN}. We assume that the bid-side of the book shifts up by the same amount kt at
each such time t. In other words,

(6) Qbi(t) =

Q
b
i−kt(t

−) + 1{t = 0, i = b0} · SL for i = 1 + kt, . . . , bt,

λbi/γ for i = 1, · · · , kt,

for t ∈ {τa0 , . . . , τN}. Further, queue priority at the best-bid price level is not affected by the price
change, i.e., Q0(t) = Q0(t−), QL(t) = QL(t−), Q1(t) = Q1(t−), for t ∈ {τa0 , . . . , τN}.

System dynamics. Under Assumptions 1–5, and for an admissible policy the evolution of buy
limit orders at the best-bid price are as follows:

Q0(0) = Qbb0(0−), Q̇0(t) =

−µ
s
bt
− γQ0(t) if Q0(t) > 0,

0 otherwise,
(7)

QL(0) = SL, Q̇L(t) =

−µ
s
bt
· 1{Q0(t) = 0} if QL(t) > 0,

0 otherwise,
(8)

Q1(0) = 0, Q̇1(t) = λbbt − µ
s
bt · 1{Q

0(t) = QL(t) = 0} − γQ1(t).(9)

Specifically, the orders submitted by other participants before t = 0 or after t = 0 may get canceled
at rate γ, whereas the block of orders submitted by the trader at t = 0 will not get canceled. At
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Figure 3: Illustration of system dynamics.

times t ∈ {τa0 , . . . , τN}, the bid-side queues will shift price levels according to (6). Further,

Q̇bi(t) = λbi · 1(i < bt)− γQbi(t) for 1 ≤ i < bt, t 6∈ {τa0 , . . . , τN}.

The ask-side queues evolve, for 1 ≤ i ≤ N as follows: for t ∈ {t1, . . . , tK},

Qsi (t) =


(
Qsi (t−)−

(
Jk −

∑i−1
j=at−

Qsj(t−)
)+
)+

if i ≥ at− ,

0 otherwise,

and for t 6∈ {t1, . . . , tK},

Q̇si (t) = λsi · 1{i ≥ at} −
(
µbi + r(t)

)
· 1{i = at} − γQsi (t) for at ≤ i ≤ N.

Objective function. The optimal execution problem is to pick an admissible policy
(
SL, S(·)

)
to minimize the total purchase cost

(10)

P
(
SL, S(·)

)
:=
∫ T

0
pbt · µsbt1

{
Q0(t) = 0, QL(t) > 0

}
dt+

∫ T

0
pat · r(t) dt

+
K∑
k=1

atk−1∑
j=a

t−
k

pjQ
s
j(t−k ) + patk

Jk − atk−1∑
j=a

t−
k

Qsj(t−k )


 ,

under Assumptions 1–5, and where the first term is the cost of the executed limit orders, and the
second and third terms are the costs due to the flow and block market order trades, respectively.
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4. The Optimal Execution Policy

The characterization of the optimal execution policy involves three steps: (a) We identify the
execution policy that uses only market orders and minimizes the time needed to fill a target quan-
tity at a given price level. (Lemma 2.) (b) We characterize the optimal execution policy that
would complete a target quantity within the specified time horizon again using only market orders.
(Lemma 3.) (c) Steps (a)–(b) will ultimately guarantee that the market order execution path will
maintain the current price level (b0, a0) for all t < T , and then push the price at T as needed to
complete the target quantity. This property allows us to compute the maximum number of shares
that can be executed via limit orders at the best bid, b0, taking into account the queue priority of
orders posted into that best-bid queue prior to t = 0 and their respective cancellations over the
execution horizon. (Lemma 4.) Jointly these results characterize the optimal policy in Theorem 1.

We first consider the problem of executing in minimum time a target quantity Ca0 using market
orders only at pa0 , i.e., the (highest priority) best-ask queue that is non-empty at time t = 0. In
studying this problem we impose the constraint that the queue cannot be depleted prior to finishing
the target quantity, and, specifically, that the queue length stays above some arbitrary value ε > 0.
This is imposed for mathematical tractability and to guarantee the existence of an optimal policy;
without that minimum quantity, the control will strive to take the queue length arbitrarily close to
zero, yet without actually depleting the queue that would trigger a price change. This assumption
is useful in deriving the structural insight of the next lemma, and will be relaxed later on.

Lemma 2 (Market Orders at One Price). Without loss of generality we focus at the price level pa0.
Let Ca0 be the target number of shares to trade using market orders only at pa0 and let Qsa0(0−) > 0
be the initial queue length. Consider the minimum time control problem:

(11) minimize {τ : S(τ) = Ca0} ,

over admissible market order control trajectories {S(t) : t ∈ [0, τ ]} that satisfy the following con-
straints

(12) Qsa0(t) ≥ ε, t ∈ [0, τ) and S(τ)− S(τ−) ≤ Qsa0(τ−).

The optimal control trajectory {S∗(t), t ∈ [0, τ ]} for (11)–(12) is the following:

(13) S∗(0) =

 Qsa0(0−)− ε, if Ca0 > Qsa0(0−),
Ca0 , otherwise,
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and

(14) Ṡ∗(t) = r∗(t) = κa0 , S∗(t)− S∗(t−) = 0, for t ∈ (0, τ), τ =
(
Ca0 −Qsa0(0−)

)+
κa0

,

where κa0 := λsa0 − µ
b
a0 − γε, and

(15) S∗(τ)− S∗(τ−) =

 ε, if Ca0 > Qsa0(0−),
Ca0 , otherwise.

The intuition behind the lemma is simple: we trade as much as possible without depleting the
queue at t = 0 to avoid the effect of order cancellations at the best-ask queue; if the order is not
completed, we trade with a continuous submission of market orders until we fill Ca0 − ε shares; we
finish the trade with a small block trade of size ε. Note that the value of κa0 is such that the queue
length will remain constant at ε during (0, τ). The total duration of the execution is 0 if the target
quantity is less than the displayed depth, and is otherwise determined by the length of the interval
that is needed to continuously trade at rate κa0 until the order is completed.

Based on Lemma 2, the length of the execution interval li := τi − τi−1 to execute Ci shares at
price pi, for i = a0, · · · , N , is

(16) li = (Ci −Qsi (0−))+

λsi − µbi − γε
≈ (Ci −Qsi (0−))+

κi
,

where we redefine κi := λsi − µbi , and the approximation occurs when ε is small; recall that
Qsi (0−) = Q̄si for i > a0. We adopt the above approximation for the remainder of this paper.
Let Ca0 , Ca0+1, · · · , CN denote the amount of market orders to execute at prices pa0 , pa0+1, · · · , pN ,
respectively. Given the relationship in equation (16), the optimal execution problem described in
Section 3 can be simplified into the following control problem:

(17) minimize
SL,Ca0 ,··· ,CN

∫ T

0
pbt · µsbt1

{
Q0(t) = 0, QL(t) > 0

}
dt+

N∑
i=a0

Ci · pi,
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subject to

SL +
N∑
i=a0

Ci = C, SL, Ca0 , · · · , CN ≥ 0,(18)

∫ T

0
µsbt1

{
Q0(t) = 0

}
dt ≥ SL, (limit order time)(19)

bt = b0 + min

0 ≤ j ≤ N − a0 :
a0+j∑
i=a0

li > t

 , (limit order dynamics)(20)

Q0(t) satisfies (7), QL(t) satisfies (8), for t ∈ [0, T ], (limit order dynamics)(21)
N∑
i=a0

li
(16)
≈

N∑
i=a0

(Ci −Qsi (0−))+

κi
≤ T, (market order time)(22)

Ci ≥ Qsi (0−), for i < n, (market order dynamics)(23)

n = min {a0 ≤ j ≤ N : Ck = 0 for all k > j} . (market order dynamics)(24)

Constraint (19) upper bounds the number of shares that can be traded using limit orders within
time T , taking into account the execution priority of limit orders resting in book before time t = 0.
Constraint (22) ensures that the total time taken trading using market orders at different price
levels is upper bounded by the specified time horizon T . Condition (24) identifies the highest price
queue in which market orders will be executed, indexed by n, at price pn, and (23) ensures the
time-price priority rule that ensures that all lower priced queues (that have higher priority) will be
depleted.

For the remainder the paper we make the following simplifying assumption on κi:

Assumption 6. Assume that κi = λsi − µbi = κ for all i.

κi captures the rate at which the trader can continuously execute with market orders when
the best-ask is at price pi, and without causing a price change. One would expect the continuous
trading rate κi increases as the price moves up, because more limit orders to sell get submitted at
these more favorable price levels. The solution of the optimal execution problem is more involved
in that case, and we will not consider it in this paper, given our ultimate interest in specifying a
parsimonious microstructure market impact model.

Lemma 3 studies a subproblem of (17)–(24) that seeks to optimize over how to execute C ′ shares
over a time horizon of length T at minimum cost using only market orders, allocated according to
Ca0 , · · · , CN across price levels.

Lemma 3 (Market Orders Across Price Levels). Given initial queue lengths Qsa0(0−) > 0 and Qsk(0−) =
Q̄sk for k = a0 + 1, · · · , N as assumed in Section 3. Consider the problem of minimizing the total
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execution cost of C ′ shares of market orders over a time horizon of length T

(25)

min
{Ck≥0, k=a0,...,N}

N∑
k=a0

Ck · pk

s.t.
N∑

k=a0

Ck = C ′,
N∑

k=a0

lk
(16)=

N∑
k=a0

(Ck −Qsk(0−))+

κ
≤ T

Ci ≥ Qsi (0−), for i < n,

n = min {a0 ≤ j ≤ N : Ck = 0 for all k > j} .

Then, the optimal solution to (25) is {C∗k , k = a0, . . . , N} given by
(26)

C∗a0 = min
{
Qsa0(0−) + κT,C ′

}
and C∗k = min

Qsk(0−),
(
C ′ −

k−1∑
m=a0

C∗m

)+ , k = a0 + 1, . . . , N.

Under Assumption 6, the above problem admits a simple solution where the trader only applies
this continuous submission of market orders at rate κ at the best-ask queue at price a0, and then
submits a block order (as needed) to deplete higher price level queues at T . This is the cheapest price
at which the trader can accumulate up to κT shares. A consequence of Lemma 3 is that the best-bid
and the best-ask remain equal to (b0, a0) for all t ∈ [0, T ), which simplifies the determination of the
limit order placement decision, SL ∈ [0, C].

Lemma 4 (Limit Orders). In the optimal solution of problem (17)–(24),

(27) SL = min
{
µsb0

(
T − 1

γ
log

(
1 + γ

µb0

Q0(0)
))+

, C

}
.

The above expression is intuitive, and crucially depends on the quantity tdrain := 1
γ log

(
1 + γ

µb0
Q0(0)

)
,

which is derived from a transient analysis of a fluid queue with abandonments and is equal to the
length of time required for the initial queue length Q0(0) to get depleted either due to cancellations
or trades (service completions); this is increasing in the initial queue length and decreasing in the
trading rate µb0 and the cancellation rate γ.

The next theorem characterizes the optimal strategy.

Theorem 1 (Optimal Policy). Fix the target size C > 0, execution horizon T > 0, and consider an
arbitrary initial condition Q(0) ∈ Qeq. The optimal execution policy for (17)–(24) is the following:

(a) set the limit order execution quantity SL according to (27);

(b) for C ′ = C − SL, set the market order execution quantities Ca0 , Ca0+1, . . . , CN according to
(26);
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(c) for i = a0 and Ca0 specified above, set the market order execution trajectory {S(t) : t ∈ [0, τa0)}
according to (13)–(15);

(d) for i = a0 + 1, · · · , N , according to Lemma 3, τi = τa0 ≤ T . That is, market order executions
at higher prices happen with block trades at t = τa0. We will refer to this aggregate block as
the “cleanup” trade.

In Part (c), the solution uses the infinitesimal ε > 0 to denote the minimum queue length to be
maintained in Qsa0 while submitting a continuous stream of market orders (i.e., service completions)
at rate κ.

5. A Microstructure Market Impact Cost Model

In this section, we exploit the solution of the execution problem studied thus far in order to
propose a microstructure market impact model. Such a model estimates the trading cost of an
order as a function of microstructure limit order book variables, including, for example, real-time
measurements of queue lengths and trading rates. We will propose a series of approximations that
will yield a parsimonious microstructure market impact model that can be easily and robustly
estimated through trade data.

The optimal value of the control problem studied in the previous two sections provides an
estimate of the cost of purchasing C shares in T time units. given by

(28)

Total cost = pb0 · SL + pa0 · Ca0 +
N∑

i=a0+1
pi · Ci

= (p− s/2) · SL + (p+ s/2) · Ca0 +
N−a0∑
k=1

(p+ s/2 + kδ) · Ca0+k

= (p+ s/2) · C − s · SL +
N−a0∑
k=1

kδ · Ca0+k,

where p is the arrival price, i.e., the mid-price at the start time of the execution, and the last
expression accounts for the execution cost relative to the (contra side or far side) price p+s/2 = pa0 .
The implementation shortfall, or average purchase price relative to the arrival price, is

(29) IS := Total cost
C

− p = s/2− s · SL
C

+
N−a0∑
k=1

kδ · Ca0+k
C

.

In this formula, the first term accounts for the cost relative to the best-ask price pa0 (the far side),
which is half the spread (s/2) above the mid-price p. The second term then subtracts the spread
for the shares traded using limit orders at the lower price pb0 = pa0 − s. The final term adds price
increments (a multiple of the tick size) for the higher priced queues that were used in the cleanup
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trade. In order to simplify the subsequent empirical analysis, we will make several approximations
to the final two terms:

(i) The limit order cost compensation term depends on SL = min
{
µsb0

(T − tdrain)+, C
}
. We will

disregard cancellations and approximate the draining time tdrain of the orders posted on the
near side of the market prior to t = 0 by tdrain ≈ Q0(0)/µsb0

. Subsequently, we approximate
SL as follows

SL ≈ min
{(
µsb0T −Q

b
b0(0)

)+
, C

}
.

(ii) For the cleanup cost term, we will first assume that the stationary queue lengths Q̄si , a0 <

i ≤ N , as defined in Assumption 4, are all equal to some value Q̄s.6 In that case, it follows
from Lemma 3 that Ca0+k = Q̄s for 0 < k < n, where

(30) n :=
⌈

(C ′ − Ca0)+

Q̄s

⌉
=
⌈(
C − SL −Qsa0(0)− κT

)+
Q̄s

⌉

denotes the number of additional price levels needed in the cleanup trade. We will further sim-
plify the expression by dropping SL from its calculation, i.e., we set n ≈

(
C −Qsa0(0)− κT

)+
/Q̄s,

and subsequently approximate the average price penalty per share due to market order exe-
cutions relative to the far side to be

(31)
∑n
i=0 iδ · Q̄s

Ca0 + nQ̄s
.

The effect of Ca0 diminishes as n increases. When n is large, the average price per share in
(31) can further be approximated by

n+ 1
2 δ ≈ δ

2 ·
(
C −Qsa0(0)− κT

)+
Q̄s

+ δ

2 .

Combining (i)-(ii), the resulting simplified expression of the implementation shortfall is

(32) IS = s/2− s ·
min

{(
µsb0

T −Qbb0
(0)
)+

, C

}
C

+ δ

2 ·
(
C −Qsa0(0)− κT

)+
Q̄s

+ δ

2 .

This expression depends on the microstructure variables such as trading rates on either side of the
book, queue depths, spread, tick size, as well as the trade quantity and time horizon. Specifically,

(a) Effect of limit orders: The execution cost is decreasing in SL, the volume that can be traded
using limit orders. The latter is decreasing in the queue length on the near side of the book,

6This is certainly an idealization. Typically, one would expect to see the limit order arrival rates λsi increase with
price levels i, which then suggests Q̄si := λsi/γ should also increase with i. Nevertheless, we find in the empirical tests
that using a uniform estimate of the stationary queue lengths performs reasonably well.
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Qbb0
(0) (the bid side when buying, or ask side when selling), and is increasing in the the

arrival rate of market orders to the near side (market orders to trade against the trader’s
posted limit orders), and in the execution horizon T . The expression for SL also indicates
that the execution cost will be decreasing in the cancellation rate, although this dependence
has been suppressed in the simplified cost formula. The limit order effect is independent of
the trade quantity C (assuming the latter is larger than SL).

(b) Market order effect at the top-of-book: This depends on C − SL, the residual quantity to be
traded using market orders, and on Qsa0(0) + κT . The latter is increasing in the displayed
depth Qsa0(0), the time horizon T , and the continuous trading rate κ that, as discussed earlier,
captures the rate at which one can continuously trade with market orders at a given price
level without depleting the respective queue and moving the price.

(c) Market orders at higher prices: the residual quantity that needs to get executed at higher
price levels is decreasing in SL (see (a)), Qsa0(0), κ, and T (see (b)). Its effect is inversely
proportional to the equilibrium depth Q̄s in each of these queues, since that is used to compute
the number of price levels n that the trader will have to deplete.

6. Empirical Results

The microstructure market impact model of equation (32) identifies several important microstruc-
ture variables that may affect execution costs. While this model was based on a number of sim-
plifying assumptions, it is our belief that these variables are nevertheless important. In order to
demonstrate this, in the remainder of this paper, we will calibrate this model using a proprietary
dataset of algorithmic trades executed in the US equities market in the third quarter of 2013.
Specifically, we will calibrate weights for the different microstructure variables identified in (32) via
a regression analysis, and then validate that the resulting microstructure market impact model can
help to explain more of the variability in observed trading costs.

Our data set consists of short time horizon slices of executions arising from algorithms based on
TWAP, VWAP, and POV7 policies. The execution logic used in those trades differs from the optimal
policy derived in our stylized analysis in Section 4. Nevertheless, our findings will indicate that the
microstructure market impact model leads to improved statistical fits, specifically in explaining the
realized costs of execution in this dataset (attribution), when compared with conventional “macro”
market impact models. Moreover, the coefficients of the explanatory variables postulated by our
analysis are significant and have the right signs. The microstructure market impact model also
exhibits improved predictive statistical accuracy, e.g., when used to make real-time predictions of
future trading costs based on available information at the beginning of each trade.

7See, for example, Sotiropoulos (2013) for a description of these policies.
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6.1. The Dataset

We use a proprietary dataset of US equities trades from July to September of 2013. This dataset is
itself a random sample of a larger set of algorithmic orders executed over that time period. For each
parent order (e.g., a full day execution according to the VWAP strategy), the data is summarized
in 1-minute intervals. For each such interval we have execution statistics as well as measurements
of various limit order book variables. The data has 980,000 active trade records (i.e., 1-minute
summaries of execution activity), and represents a sample of 1,800 different securities.

Most of the analysis is performed in rolled-up 5-minute slices. Parent orders that lasted less
than 5 minutes or parent order residuals that lasted less than 5 minutes are discarded. Intervals
over which there were no executions are also discarded. We further filter according to the following
criteria: (a) keep only slices that correspond to VWAP, TWAP, and POV strategies;8 (b) remove
orders for illiquid securities that have an average daily trading volume lower than 300,000 shares;
(c) discard the last slice of each parent order to avoid special considerations and cleanup logic
associated with the respective algorithmic strategy, apart from POV orders; (d) discard slices in
the opening 15 minutes of the trading day, 9:30am–9:45am, and the last 15 minutes of the day,
3:45pm–4:00pm; (e) discard slices for which the realized implementation shortfall exceeds 200 basis
points, where the daily volatility within the period exceeds 4%, or where the trade volume exceeded
5 times the volume of the immediately preceding slice; (f) restrict attention to slices with realized
participation rate9 between 1% and 30%. Table 1 reports monthly descriptive statistics of the
filtered dataset.

6.2. Calibration of Auxiliary Model Parameters

There are three quantities in the market impact equation (32) that are not directly observable in
the data: the equilibrium queue length Q̄s, the effective tick size δ, and the rate of continuous
trading κ.

The parameter κ captures the rate at which one can execute with a continuous stream of
market orders at the best-ask without causing any price change. Motivated by Assumption 6 and
the discussion after it, we will think of κ as a constant multiple of market order rate µb. Specifically,
we postulate that κ can be expressed in the form of θ · µ, where µ is the nominal trading rate and
θ is a parameter between 0 and 1. We assume that θ is the same on the bid side and ask side of
the book, and across all securities.

Returning to our dataset, we identify the set of slices for which: (a) the average queue length on
the far side (i.e., the ask when buying and the bid when selling) was small, specifically less than or

8Such strategies tend to follow a fairly consistent rate of trading over short periods of time. The composition of
the sample after the various filters were applied was roughly uniform across the three strategies and across months.

9The participation rate is the ratio of the execution quantity of the slice over the total volume traded in the
corresponding time interval by all market participants.
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JUL 2013 AUG 2013 SEP 2013
Sample Size

5min Slices 27,760 30,054 29,226
Parent Orders 3,396 3,607 3,882
Distinct Securities 988 896 885

Characteristics
Average Daily Volume (shares)

mean 3,014,000 2,595,000 2,509,000
3rd quantile 2,585,000 2,689,000 2,626,000
1st quantile 554,300 578,500 544,000

Size of 5min Slices (shares)
mean 1,294 1,043 849
3rd quantile 1,000 1,000 700
1st quantile 81 100 82

# 5min Slices in Parent Order
mean 8.2 8.3 7.5
3rd quantile 10 9.5 8
1st quantile 1 1 1

Average Queue Length
mean 10,280 21,730 17,750
3rd quantile 2,278 4,078 5,148
1st quantile 434 477 536

Realized Participation Rate
mean 9.60% 9.40% 8.39%
3rd quantile 17.70% 16.20% 14.19%
1st quantile 2.20% 2.26% 1.90%

Price ($)
mean 46.80 38.16 41.41
3rd quantile 57.41 52.23 51.64
1st quantile 15.35 13.31 13.33

Spread ($)
mean 0.031 0.025 0.025
3rd quantile 0.032 0.028 0.024
1st quantile 0.010 0.010 0.010

Daily Volatility
mean 2.23% 1.90% 1.94%
3rd quantile 2.39% 2.31% 2.34%
1st quantile 1.03% 0.97% 0.90%

Implementation Shortfall (bps)
mean 3.04 3.09 3.48
3rd quantile 7.25 7.86 7.19
1st quantile (2.62) (2.53) (1.84)

Table 1: Descriptive statistics of the filtered dataset, aggregated into 5-minute slices. Average queue
length represents the aggregated per side, time-averaged queue length at the best-bid or best-ask over
the 5-minute interval. Price is the average trading price. Implementation Shortfall (bps) = (average
trading price - arrival price)*side/arrival price∗104; arrival price is the mid-price at the beginning of the
respective 5-minute slice. The above are straight arithmetic averages as opposed to volume or notional
weighted. (See Section 6.3)
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JUL 2013 AUG 2013 SEP 2013
Critical ratio θmonth 0.112 (0.006) 0.104 (0.004) 0.091 (0.006)

Table 2: Estimates of the critical ratio of trading rate to nominal volume for July-September 2013.

equal to 1/3 of the nominal queue length for the corresponding security; and (b) there was no price
impact, i.e., the respective price level did not change. For each such slice we know the quantity that
was executed as part of that order. We also generate a forecast for the nominal trading rate µ. We
first estimate the fraction of the total daily volume that is forecast to trade over the corresponding
time interval, and then re-scale by the average daily volume of the corresponding security.10 The
trading rate estimate µ is set equal to half the forecast volume. The ratio of the executed quantity
by the slice and of the corresponding forecast provides a point estimate for θ that is normalized
relative to stock-specific characteristics. We average these estimates for each month and report the
sample estimates together with the standard errors in Table 2. The estimated parameter can be
interpreted as follows: over short time durations, one could trade at a rate that is 10% of the bid
volume or ask volume, respectively, or, equivalently, at a 5% participation rate while avoiding any
price impact. The order of magnitude of this estimate seems plausible but its precise value is likely
to be slightly optimistic, especially for less liquid securities as well as securities that trade with few
shares at the best-bid and best-ask.

For the equilibrium queue length Q̄s and the effective tick size δ, we proceeded as follows. Our
dataset contains execution information for the trades described earlier, and we also have access
to Trade-And-Quote (TAQ) data for each of the securities included in the dataset over the period
of July to September of 2013. Our dataset does not include depth of book information, i.e.,
information about the price levels and the corresponding queue lengths at the price levels that are
not at the best-bid and best-ask price levels at a given point in time. As a result we did not have
access to information that would allow us to estimate directly the queue length Q̄s, but instead we
approximated it as the average of the queue lengths at the best-bid and best-ask, time averaged
over the time interval of each 5-minute execution slice. Similarly, the effective tick size δ is meant
to capture the change in price necessary to accumulate Q̄s shares in the limit order book. Since this
was not observable, we will use the volatility, σ∗ as a proxy for the tick size δ∗; σ∗ is the volatility
estimate based on intraday data for the time interval of the respective slice and accounts for the
strong time-of-day pattern exhibited by the intraday volatility profile.

6.3. Estimation of the Microstructure and “Macro” Market Impact Models

Microstructure Market Impact Model (In-Sample Regressions). We start by estimating the
microstructure market impact model in equation (32) using a linear regression analysis. Let ISk

10The forecast makes use of a cross-sectional liquidity profile depicted in Figure 4 in the Appendix.
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denote the implementation shortfall of the kth observation (5-minute slice) in the trade data de-
scribed in Section 6.1. Implementation shortfall is defined as the normalized difference between the
average execution price and the arrival price, denoted as Pk and P 0

k , respectively. It is expressed
in basis points. The arrival price is defined as the mid-price, i.e., the average between the best-bid
and best-ask prices at the start time of the slice. The start and end times include millisecond
timestamps. Specifically,

ISk := (Pk − P 0
k )/P 0

k · dk · 104,

where the trade direction dk = 1 for orders to buy and dk = −1 for orders to sell. Normalizing
both sides of (32) by the arrival price we get that

(33) IS = 1
2 · s

∗ −
min

{
C,
(
µsb0

T −Qbb0
(0)
)+
}

C
· s∗ + 1

2 ·
(C −Qsa0(0)− κT )+

Q̄s
· δ∗ + 1

2 · δ
∗,

where s∗ := s/p · 104, δ∗ := δ/p · 104 are the normalized spread and tick size, respectively. Define

(34) RL :=
min

{
C,
(
µsb0

T −Qbb0
(0)
)+
}

C
, RM :=

(
C −Qsa0(0)− κT

)+
Q̄s

,

for the price adjustments due to limit order executions and market orders at higher price levels,
respectively. Expressions (33)–(34) are written for buy orders. The corresponding expressions for
sell orders would replace in the first term µsb0

with µba0 and Qbb0
(0) with Qsa0(0), in the second term

Qsa0(0) with Qbb0
(0) and Q̄s with Q̄b. We will estimate the following linear model:

(35) IS = β0 + β1 · s∗ + β2 · (RLs∗) + β3 · (RMδ∗) + β4 · δ∗.

The regression results can be found in Table 3. We find consistently good performance for
our model, represented by the high R2 values, the fact that the coefficients are all statistically
significant, and that the signs of the coefficients are all in line with our predictions. The month-to-
month variability is partially due to the modest sample size and variations in the set of securities
and parent orders included in our data set as well as variations in market conditions. If, instead
of lower bounding the realized participation rate by 1%, we only allowed slices whose realized
participation rate was greater than 3%, then the explanatory power of the model increased to an
R2 of 12.30%, 11.94% and 15.45% for July, August and September, respectively.

Benchmark “Macro” Market Impact Model. Most transient market impact models in the
literature express the execution cost as a function of the normalized size of the order, expressed as
a percentage of the overall volume that trades in the market in the respective time interval, and
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JUL 2013 AUG 2013 SEP 2013
(intercept)

coefficient -0.6888*** -0.6941*** -0.5832**
std. error 0.1232 0.1140 0.1076

spread (bps): s∗

coefficient 0.3187*** 0.3905*** 0.3950***
std. error 0.0069 0.0077 0.0070

limit order: RLs∗

coefficient -0.3027*** -0.3415*** -0.3658***
std. error 0.0107 0.0100 0.0099

add. tick to pay: RMσ∗

coefficients 0.0991*** 0.1480*** 0.1486***
std. error 0.0234 0.0225 0.0348

tick size: σ∗

coefficients 2.3238*** 1.8508*** 2.4290***
std. error 0.1098 0.0997 0.0996

R-squared 9.91% 10.62% 13.48%
Significance: *** p<0.001, ** p<0.01, * p<0.05

Table 3: Monthly linear regression results for microstructure market impact model of (35).

JUL 2013 AUG 2013 SEP 2013
(intercept)

coefficient 0.3204*** 0.5495*** 0.7799***
std. error 0.1238 0.1148 0.1091

(percent of market vol.)·σ∗

coefficients 10.3835*** 9.0038*** 9.5916***
std. error 0.6445 0.6067 0.6922

volatility: σ∗

coefficients 1.5498*** 1.4778*** 1.9781***
std. error 0.1127 0.1026 0.1046

R-squared 3.24% 3.02% 3.75%
Significance: *** p<0.001, ** p<0.01, * p<0.05

Table 4: Monthly linear regression of benchmark model in (36) with α = 1 (linear).

suggest the use of functions of the form:

(36) IS = β0 + β1 · (Percent of Market Vol.)α σ∗ + β2 · σ∗,

where typically α = 0.5 or 1.11

Table 4 and 5 illustrate the quality of these fits. Note that, as for the microstructure market
impact model estimate, σ∗ is the intraday volatility estimate for the time interval of the respective
slice. A simpler model would use a static volatility estimate, prorated to the duration of the slice,

11We have examined a finer grid of α = 0.1, 0.2, . . . , 1. The performance does not vary much with the selection of
α, and α = 0.5 or α = 1 oftentimes have the best performance. We focus on explaining the market impact of short
duration slices and we will disregard the decay kernel that is sometimes included in transient market impact models.
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JUL 2013 AUG 2013 SEP 2013
(intercept)

coefficient 0.3235** 0.5480*** 0.7839***
std. error 0.1238 0.1148 0.1091

(percent of market vol.)0.5 · σ∗

coefficients 6.4110*** 5.5267*** 5.8011***
std. error 0.3913 0.3685 0.4132

volatility: σ∗

coefficients 0.7626*** 0.8033*** 1.2844***
std. error 0.1429 0.1320 0.1367

R-squared 3.27% 3.04% 3.77%
Significance: *** p<0.001, ** p<0.01, * p<0.05

Table 5: Monthly linear regression of benchmark model in (36) with α = 0.5 (square root).

but independent of the time-of-day. This reduces the explanatory power of the “macro” models
from around 3% to about 1%, underscoring the importance of incorporating this effect.

Cross-Validation. Next we compare the out-of-sample performance of our model against that
of the benchmark models. We perform a 3-fold cross-validation using the three monthly samples
of data from July to September in 2013.12 We proceed as follows: in each round, we select one
monthly sample among the three as the testing data. On the data of the other two months, our
model, the linear benchmark model, and the square root benchmark models are fit. Then, the
calibrated models are applied to the test set to evaluate how much of the variability in market
impact can be explained by each model. Three rounds of training and testing are performed by
rotating through the different months as the test set. Finally, the prediction performance of each
model takes an average among the three rounds of cross-validation.

When evaluating the out-of-sample accuracy of the different models, we compare their mean
squared error with that of the mean predictor to define a generalized R2 as:

(37) generalized R2 := 1− Mean Squared Error (selected model)
Mean Squared Error (mean predictor) .

There are two candidate mean predictors to use: the mean of the train set, or the mean of the
test set. The former is more popular in the literature and has the interpretation that the mean
predictor itself is a model that is trained together with other models on the train dataset in each
round. In Table 6, we report the average generalized R2 values based on both mean predictors.

The microstructure market impact model has an average out-of-sample R2 of around 11%,
explaining a factor of 2.5 more of the out-of-sample variability in realized trading costs relative to
the “macro” models when compared to the mean predictor; the “macro” market impact models had

12Usually a k-fold cross-validation requires dividing all data randomly into equal size subsets. Here we take the
natural monthly division of data instead. We expect the result, in particular, the comparison between the two models,
be of similar quality when we trisect randomly.
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Model eq. (35)
Benchmark model

eq. (36) Mean predictor
α = 1 α = 0.5

Avg. out-of-sample R2 (vs. predicted mean) 11.03% 3.11% 3.12% 0.00%
relative improvement 0.00% 255% 254% Inf

Avg. out-of-sample R2 (vs. current mean) 10.97% 3.04% 3.06% -0.08%
relative improvement 0.00% 261% 258% Inf

Table 6: Average out-of-sample R2 and relative improvements for a 3-fold cross-validation comparison
between our model and the linear/square root benchmark models under two mean predictors. 13

an average out-of-sample R2 of around 3.1%. The performance improvement is consistent across
the three separate test sets, and, as we will see below, fairly robust to various changes to the way
we construct and estimate the microstructure market impact model. The microstructure model
treats separately the limit order effect on the execution cost and suggests that measuring trade size
as a multiple of queue depth is useful in explaining execution costs. The latter suggests a further
segmentation of the data by security characteristics, which we will explore in the next subsection.

The microstructure model adjusts its cost estimate to real-time limit order book conditions,
including trading rates on the bid and ask side of the book, and the depths of the best bid and
ask queues. To numerically illustrate this feature, we randomly generated 4-tuples for the vari-
ables (Qbb0

(0), Qsa0(0), µba0 , µ
s
b0

) to be within a factor of 3 of their nominal values, and evaluated
the market impact cost estimate for a trade of size 3 times the nominal depth; we sampled 10
securities of medium ADV and medium depth. The nominal cost is the one that corresponds to
the average values of these order book variables. Figure 5 shows that cost estimates generated by
the microstructure model may differ by ±50% from the nominal cost, essentially predicting higher
costs when conditions are unfavorable, and lower costs when conditions are favorable.

6.4. Robustness Checks

Order & Security Segmentation. First, we grouped the dataset into three sets depending on their
realized participation rate. We used the following segments: [1%, 10%], (10%, 20%], (20%, 30%].
Table 7 reports the out-of-sample performance14 of the microstructure model and the linear/square
root benchmark models in each of these segments. The microstructure model continues to statisti-
cally outperform the “macro” benchmark models for all of these trade groups, but the explanatory
power of all models improves as the participation rate increases, since, as expected, in these settings

13The above analysis could be repeated to include orders that are traded at lower participation rates, i.e., below
1% which we used as a filter thus far. When including slices with realized participation greater or equal to .25%, the
R2 of the microstructure market impact model drops to 9%; the “benchmark” linear and square root models exhibit
an R2 of about 3%. When we fit a model exclusively to lower participation rates, say in the interval [.25%, 1%], the
microstructure model explains 4.4% of the realized cost variability, while the benchmark models explain 1% of the
variability.

14Out-of-sample results in this section are with respect to the predicted mean unless otherwise indicated.
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Model eq. (35)
Benchmark model

eq. (36) Sample size
α = 1 α = 0.5

Percent of market vol.
[1%,10%] 8.82% 1.87% 1.89% 55,337
(10%,20%] 14.10% 5.34% 5.21% 19,974
(20%,30%] 15.08% 4.23% 4.24% 11,729

overall: [1%,30%] 11.03% 3.11% 3.12% 87,040

Table 7: Out-of-sample performance when clustering by market participation rate.

the statistical signature of the trading slice is likely to be a key driver of the price movement.
Second, following on the observation of the previous subsection, we segmented the trade obser-

vations according to the stock characteristics, and specifically, their average daily volume (ADV)
and average queue length. We divided the dataset according to the 33% and 66% ADV percentiles,
and further segmented according to average queue length at the 30%, 60%, and 90% percentiles.
Table 8 reports the out-of-sample results based on these 12 segments of the data. For 9 out of the
12 segments we have enough observations to perform cross-validation tests. Again, within each of
these segments, the average out-of-sample R2 of our model has consistently significant improvement
over those of the “macro” models. Moreover, we see (as one would expect) that model accuracy
improves as queue depth increases that correspond to settings where the queueing model used in
our analysis may be more relevant. The results are qualitatively similar if we segment with respect
to queue lengths expressed in notional dollars rather than shares.

Last, we examined the quality of the models in explaining trading costs for less liquid securities,
specifically with average daily volumes between 50,000 shares and 300,000 shares. Table 9 reports
the out-of-sample performance of the microstructure and benchmark models on the respective
sample of the trading data. The explanatory power of all models improves, but so does the relative
difference in performance in favor of the microstructure model.

Effect of Nonlinearity. The structural form of the microstructure model involves two non-linear
terms that are not a concern when using the model to produce cost estimates or in attributing
trade execution performance, but they may affect computational tractability in the context of
an optimization model, either for stock selection or for scheduling how to execute a large trade
during the course of a longer time horizon. A drastic simplification of the model would remove the
non-linearities, as in

(38) IS = β0 + β1 · s∗ + β2 ·

(
µsb0

T −Qbb0
(0)
)

C
· s∗ + β3 ·

(
C −Qsa0(0)− κT

)
Q̄s

· δ∗ + β4 · δ∗.

Using this simplified model in (38) in the cross-validation tests, we see that the out-of-sample R2 of
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Model eq. (35)

Low depth Mid depth High depth Ultra deep Overall
Low ADV 6.26% 10.23% 17.14% too few obs.

11.03%Mid ADV 5.38% 8.12% 12.62% too few obs.
High ADV too few obs. 5.56% 10.32% 24.84%

Model eq. (36)
(α = 1)

Low depth Mid depth High depth Ultra deep Overall
Low ADV 2.37% 3.28% 5.10% too few obs.

3.11%Mid ADV 2.23% 2.64% 4.62% too few obs.
High ADV too few obs. 3.03% 3.84% 6.64%

Model eq. (36)
(α = 0.5)

Low depth Mid depth High depth Ultra deep Overall
Low ADV 2.39% 3.25% 5.13% too few obs.

3.12%Mid ADV 2.27% 2.63% 4.59% too few obs.
High ADV too few obs. 3.10% 3.90% 6.68%

Sample size

Low depth Mid depth High depth Ultra deep Overall
Low ADV 14,775 9,503 4,589 133

87,040Mid ADV 9,712 10,617 8,083 614
High ADV 1,625 5,992 13,440 7,957

Table 8: Out-of-sample performance when clustering by (average daily volume, average queue length).

Model eq. (35)
Benchmark model

eq. (36) Mean predictor
α = 1 α = 0.5

Avg. out-of-sample R2 (vs. predicted mean) 23.26% 4.72% 4.91% 0.00%
relative improvement 0.00% 393% 374% Inf

Table 9: Out-of-sample performance for the sample of securities with low daily volumes.

the microstructure model drops to an average of 8.19%, yet still outperforming the “macro” models;
this comparison held across segments of the data by participation rates or security characteristics.

Effect of Time Horizon. The microstructure variables fluctuate over time, and one could
expect that the model accuracy depends on the time horizon of the trade slices. Queue length
measurements are likely to be more representative over shorter time intervals, but trading rate
measurements will be more noisy over short time intervals. Table 10 summarizes our statistical
results when instead of using 5-minute trade slices we organize the data sample in 1-minute slices,
and illustrate that the statistical significance (out-of-sample) of the microstructure model improves
in shorter horizons that may be relevant in the context of dynamic execution algorithms used to op-
timize over tactical order placement decisions. Tables 11–12 report the out-of-sample performance
in segmented data samples of the 1-minute slices, and should be contrasted to Tables 7–8.

The explanatory power of these models improves if one adds lagged residuals of the past two
periods (where each residual is the difference between the realized cost and the predicted cost).
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Model eq. (35)
Benchmark model

eq. (36) Mean predictor
α = 1 α = 0.5

Avg. out-of-sample R2 (vs. predicted mean) 16.57% 2.67% 2.81% 0.00%
relative improvement 0.00% 521% 490% Inf

Avg. out-of-sample R2 (vs. current mean) 16.52% 2.61% 2.75% -0.06%
relative improvement 0.00% 533% 501% Inf

Table 10: Out-of-sample performance for the sample of 1-min trade slices.

Model eq. (35)
Benchmark model

eq. (36) Sample size
α = 1 α = 0.5

Percent of market vol.
[1%,10%] 13.53% 0.94% 0.96% 73,166
(10%,20%] 19.24% 2.26% 2.26% 40,631
(20%,30%] 21.51% 3.59% 3.59% 19,830

overall: [1%,30%] 16.57% 2.67% 2.81% 133,627

Table 11: Out-of-sample performance when clustering by market participation rate (1-min trade slices).

Their respective coefficients are positive and statistically significant, and they seem to capture short-
term price momentum. The explanatory power improves by about 2% when explaining realized
costs of 1-minute trading slices, and by about 0.6% for 5-minute slices. The “macro” model also
improves by about 1% in terms of its explanatory power if one includes the lagged residual variables.
One expects that similar improvements may be realized if one included short-term price signals that
essentially added a short-term drift component in the regression models.

Cost prediction versus attribution. Market impact models are often used to compute pre-trade
cost estimates that may be used as part of a portfolio selection process, or as part of a dynamic
trade execution algorithm. In such settings, the models are used to make cost predictions, e.g., at
the beginning of a trading slice, and they use information available at that time, as opposed to
contemporaneous information that is available in explaining realized costs. This includes snapshots
of the queue lengths as well as trailing averages of the queue lengths and the bid side and ask side
volume. Specifically, when making a prediction for a trading slice that commences at some time
t, we will use exponentially smoothed trailing averages of the relevant limit order book variables
computed over the duration of the previous 5-minute (or 1-minute) trading slice. We discard the
first slice of each parent order in our dataset when we study the predictive accuracy of the market
impact model, since itself was missing prior information needed for the above estimation; this
removes 6.5% of the sample of 5-minute trade slices and 5.6% of the sample of 1-minute slices.

Table 13 reports the resulting average out-of-sample R2 in comparison with the attributive
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Model eq. (35)

Low depth Mid depth High depth Ultra deep Overall
Low ADV 12.18% 13.81% 23.12% too few obs.

16.57%Mid ADV 9.41% 10.84% 18.78% too few obs.
High ADV too few obs. 3.91% 20.74% 28.98%

Table 12: Out-of-sample performance when clustering by (average daily volume, average queue length)
(1-min trade slices).

Model eq. (35) Model eq. (36) (α = 1) Model eq. (36) (α = 0.5)
predictive attributive predictive attributive predictive attributive

5min slices 8.20% 11.07% 2.26% 2.82% 2.25% 2.84%
1min slices 11.93% 16.80% 1.99% 2.62% 2.27% 2.76%

Table 13: Out-of-sample performance using predictive estimates of average queue length, market
volumes, and spread, based on the sample of 5-minute trade slices and the sample of 1-minute trade
slices. “Predictive” refers to the model that is using information available at the beginning of each trade
slice to estimate its cost. “Attributive” is the model that uses information over the slice, such as the
realized participation rate, or the realized bid-side and ask-side volume. The attributive results differ
from those in Tables 6–10 due to the additional filtering of the first trading slice of each parent order;
similarly in Table 14.

models in Section 6.3. The drop in explanatory power is more significant in the microstructure
model as opposed to the macro models, given that the former is using real-time information in a
more nuanced way. However, in absolute terms, the microstructure model continues to significantly
outperform the two benchmark models. A similar comparison is reported in Table 14 where the
various microstructure variables are replaced with historical forecasts, which may be practical in
settings where real-time information is not readily available. We use the average monthly queue
depth and spread for the bid and ask side queues and the spreads, and we use 1/2 of the forecast
interval volume for the bid and ask side rate of market orders. We continue to use the volatility
forecast that corresponds to the time interval of each trading slice in our data set.
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A. Proofs

Proof of Lemma 1. Without loss of generality, we consider the evolution of the buy limit order
queues Qb(t) =

(
Qb1(t), . . . , QbN (t)

)
.

For an arbitrary initial condition Q(0) ∈ Q, the fluid model ODEs in (1) are initialized at
Qb(0) ∈ RN+ , satisfying

Qbb0(0) > 0; Qbi(0) = 0 for all b0 < i ≤ N.

Starting with best-bid b0 at time t = 0, at least for small t, the fluid model ODEs in (1) can be
specified as follows:

(A.1)

∀1 ≤ i < b0 : Q̇bi(t) = λbi − γQbi(t),

i = b0 : Q̇bb0(t) = λbb0 − µ
s
b0 − γQ

b
b0(t),

∀b0 < i ≤ N : Q̇bi(t) = 0,
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which has unique solution

(A.2)

∀1 ≤ i < b0 : Qbi(t) = λbi
γ

(
1− e−γt

)
+Qbi(0)e−γt,

i = b0 : Qbb0(t) =
λbb0
− µsb0

γ

(
1− e−γt

)
+Qbb0(0)e−γt,

∀b0 < i ≤ N : Qbi(t) = 0.

From (A.2), for b0 < i ≤ N , Qbi(t) will stay at 0. Moreover, since λbb0
> µsb0

from Assumption 1,
Qbb0

(t) will stay positive and never hit the border Qbb0
(t) = 0. Therefore, bt = b0 for all t ≥ 0.

Analogously, at = a0 for all t ≥ 0.
As a result, (A.1) holds for all t ≥ 0. Subsequently, (A.2) is the unique solution to the fluid

model ODEs in (1) for all t ≥ 0.
Since Q(0) ∈ Q, bt = b0 < a0 = at for all t ≥ 0 . And we have shown that Qbb0

(t) > 0, and
analogously Qsa0(t) > 0, for all t ≥ 0. Hence, Q(t) ∈ Q for all t ≥ 0.

Finally, as t→∞, e−γt → 0. From (A.2), we have Qb(t)→ q∗,b, with q∗,b as given in (ii). �

Proof of Lemma 2. If Ca0 ≤ Qsa0(0−), we have that {S∗(t), t ∈ [0, τ ]} = {S∗(0) = Ca0} and it
satisfies the constraints in (11) - (12). Executing immediately with one block trade is feasible and
thus is the optimal solution to the minimum time problem.

If Ca0 > Qsa0(0−), we start with the feasibility of the proposed control trajectory. From (13),

S∗(0) = Qsa0(0−)− ε,

and then Qsa0(0) = ε. From (14), Q̇sa0(t) = 0 for all t ∈ (0, τ), which guarantees the queue length
stays at Qsa0(t) = ε. Furthermore, Ṡ∗(t) = κa0 for the length of the execution interval, which is
determined as τ =

(
Ca0 −Qsa0(0−)

)
/κa0 . As a result,

S∗(τ−) = S∗(0) +
∫ τ

0
r∗(t)dt = Ca0 − ε.

Finally, from (15), we have that S∗(τ)− S∗(τ−) = ε = Qsa0(τ−) and S∗(τ) = Ca0 .
We prove the optimality of the proposed trajectory by contradiction. Under control trajectory

{S∗(t), t ∈ [0, τ ]}, we have that τ =
(
Ca0 −Qsa0(0−)

)
/κa0 . Suppose there exists another feasible

trajectory that executes Ca0 shares within time τ ′ < τ .
Within time [0, τ ′], the total amount of newly arriving sell limit orders into price level pa0 is

λsa0τ
′. From the first constraint in (12), Qsa0(t) ≥ ε for all t ∈ [0, τ ′). The total amount of departed

sell limit orders from price level pa0 is greater than or equal to

µba0τ
′ + γετ ′.
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From the constraints in (12), any feasible trajectory can only submit market orders at price level
pa0 . Accordingly, the completed number of shares Ca0 is constrained by the available liquidity at
price level pa0 in the interval [0, τ ′], and thus is upper bounded as follows,

(A.3) Ca0 ≤ Qsa0(0−) + λsa0τ
′ − µba0τ

′ − γετ ′.

As a result, τ ′ ≥
(
Ca0 −Qsa0(0−)

)
/κa0 = τ , which contradicts with the fact that τ ′ < τ . �

Proof of Lemma 3. If C ′ ≤ Qsa0(0−) + κT , we have that

C∗a0 = C ′, C∗i = 0 for i = a0 + 1, · · · , N.

It is easy to verify that C∗a0 , · · · , C
∗
N is feasible. Furthermore, the resulting total price satisfies

N∑
i=a0

C∗i · pi = C ′ · pa0 ≤
N∑
i=a0

Ci · pi,

for any feasible Ca0 , · · · , CN , as pi ≥ pa0 for i = a0, · · · , N .
If C ′ > Qsa0(0−) + κT , we have that

C∗a0 = Qsa0(0−) + κT, C∗i = Qsi (0−) for i = a0 + 1, · · · , n∗ − 1,

where n∗ is defined as n∗ := min
{
a0 ≤ j ≤ N : κT +

∑j
k=a0

Qsk(0−) ≥ C ′
}
, and

C∗n∗ = C ′ − κT −
n∗−1∑
i=a0

Qsi (0−), C∗i = 0 for i > n∗.

In this execution policy, price pn∗ will be the highest price at which the trader should submit market
orders. It is easy to verify that C∗a0 , · · · , C

∗
N is feasible.

Furthermore, we prove by contradiction that there does not exist an optimal solution with lower
total price. Suppose Ca0 , · · · , CN is such an optimal solution, in which pn is the highest price to
be used by the trader, i.e.,

Ci ≥ Qsi (0−) for i < n, Cn > 0, Ci = 0 for i > n.

We first show that n = n∗. On one hand, if n < n∗, from the definition of n∗, we will have

κT < C ′ −
n∑

i=a0

Qsi (0−) =
n∑

i=a0

(
Ci −Qsi (0−)

)
≤

n∑
i=a0

(
Ci −Qsi (0−)

)+
,
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which contradicts with the time constraint. Hence, n ≥ n∗. On the other hand, if n > n∗, and at
the same time

∑n
i=a0 li < T , then there exists η > 0 that simultaneously satisfies

(A.4) Cn − η > 0,
n∑

i=a0

li + η

κ
≤ T, and η · (pn − pa0) > 0.

In contrast to the original policy, let the trader submit η less market orders at price pn, and
continuously submit market orders for η/κ time more at price pa0 . The latter policy is still feasible
yet has strictly lower price, which contradicts with the fact that Ca0 , · · · , CN is an optimal solution.
Therefore, in this case we should have

n∑
i=a0

κli =
n−1∑
i=a0

(
Ci −Qsi (0−)

)
+
(
Cn −Qsn(0−)

)+ = κT,

Subsequently, since n > n∗, we have that

n−1∑
i=a0

Ci +
(
Cn −Qsn(0−)

)+ = κT +
n−1∑
i=a0

Qsi (0−) ≥ κT +
n∗∑
i=a0

Qsi (0−) ≥ C ′.

However, since (Cn −Qsn(0−))+
< Cn, the left hand side of the above inequality is strictly less than

C ′, which results in contradiction. Therefore, n = n∗.
For the policy Ca0 , · · · , CN , when n = n∗, the resulting total price satisfies

N∑
i=a0

Ci · pi =
n∗−1∑
i=a0

(
Qsi (0−) + κli

)
pi +

C ′ − n∗−1∑
i=a0

(
Qsi (0−) + κli

) · pn∗
= C ′ · pn∗ −

n∗−1∑
i=a0

Qsi (0−) · (pn∗ − pi)− κ
n∗−1∑
i=a0

li · (pn∗ − pi)

≥ C ′ · pn∗ −
n∗−1∑
i=a0

Qsi (0−) · (pn∗ − pi)− κT · (pn∗ − pa0)

=
N∑
i=a0

C∗i · pi,

which contradicts with the fact that it is an optimal solution with lower total price than that of
the solution C∗a0 , · · · , C

∗
N . �

Proof of Lemma 4. Recall that Q0(t) denotes the quantity of limit orders at the best-bid with
higher priority than the trader’s order. Its dynamics have been given in (7). Under the assumptions
in Section 4, from Lemma 3, we have that bt = b0 for all t ∈ [0, T ]. As a result, until it gets depleted,
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the dynamics of Q0(t) can be simplified to

Q̇0(t) = −µsb0 − γQ
0(t).

This ODE has a unique solution for t ≥ 0 given by

Q0(t) = −
µsb0

γ
·
(
1− e−γt

)
+Q0(0) · e−γt.

Thus, the draining time of Q0(0) is

tdrain = 1
γ

log
(

1 + γ

µsb0

Q0(0)
)
.

If T ≤ tdrain, no limit orders submitted by the trader can be executed before the higher priority
limit orders get depleted. In this event, SL = 0.

If T > tdrain, for t ∈ (tdrain, T ], we have that Q0(0) = 0. Recall that QL denote the number
of shares left in the trader’s limit order. Its dynamics have been given in (8). For t ∈ (tdrain, T ],
Q̇L(t) = µbt if QL(t) > 0. Therefore, the maximum size of limit order SL the trader can execute
within time t ∈ (tdrain, T ] is µsbt · (T − tdrain).

Moreover, since SL ≤ C,

SL = min
{
µsbt · (T − tdrain)+ , C

}
.

�
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Figure 4: S&P500 cross-sectional, smoothed intraday trading volume profile (min-by-min). Averaged
across 5 consecutive trading days. A trading day in the US equities market starts at 9:30am and closes
at 4:00pm, i.e., it has 390 minutes. This profile is indicative of “typical” days and it should be adjusted
for special occasions such as option expirations, end of month, end of quarter, index rebalancing, Fed
announcements, etc.; we do not include that level of granularity in our forecasts but instead apply the
typical profile throughout the period of our sample and for all securities, including the ones that are not
in the S&P500 and ETFs.

0 0.5 1 1.5 2 2.5 3 3.5
−80

−60

−40

−20

0

20

40

60

80

100

1

0

Volumei/Nominal Volume

(c
os

t i
−

N
om

in
al

C
os

t)
|N

om
in

al
C

os
t|

(%
)

Figure 5: Simulated costs as microstructure variables are varied. Order size = 3 × nominal queue
length. Microstructure variables including queue lengths and market order arrival rates vary by a
random multiplier in (1/3, 1) w.p. .5 and (1, 3) w.p. .5.
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