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Abstract

We investigate the welfare implications of operating alternative market structures
known as electronic crossing networks or “dark pools” alongside traditional “lit” mar-
kets. We study equilibria of a market where intrinsic traders and speculators, endowed
with heterogeneous fine-grained information, endogenously choose between dark and
lit venues. We establish that while the dark pool attracts relatively uninformed in-
vestors, the orders therein experience adverse selection. Moreover, the informational
segmentation created by a dark pool leads to greater transaction costs in the lit mar-
ket. Taken together, we conclude that there exist reasonable parameter regimes where
introducing a dark pool decreases the overall welfare.
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1. Introduction
Crossing networks, more commonly known as dark pools, are a market mechanism that
seeks to directly facilitate trade between buyers and sellers of an asset outside of traditional
exchanges or dealer markets. Dark pools operate by having buyers and sellers submit orders
that are hidden from the overall market. Trades occur from direct matches between orders
in the pool with complementary trading needs. One touted advantage of dark pools is
that they can often directly match natural buyers with natural sellers of an asset without
intermediating market makers as in a dealer market, or with market orders on an exchange.
Thus, in the absence of transaction costs charged by liquidity providers, trade can be cheaper
in a dark pool. On the other hand, trade is uncertain in a dark pool: a priori, an agent
faces a risk that their order will not be matched (or, “filled”), and they may face more
disadvantageous prices at a later time. In this way, dark pools offer investors a choice that
exposes a fundamental trade-off between price and uncertainty of trade.

Dark pools have grown in popularity as a financial market mechanism in recent years.
Currently, in the U.S. equity market, there are 40+ dark pools1 handling approximately
one in seven trades.2 Recently, however, these alternative markets have received significant
attention from regulators and prosecutors. One focus of this attention is overt fraud, such as
possible misrepresentations regarding the operations of these opaque and largely unregulated
entities. However, beyond this, there has also been a worry that dark pools may negatively
impact the broader market in more subtle ways, e.g.,3

A rise in off-exchange trading could hurt investors … The reason: With more
investors trading in the dark, fewer buy and sell orders are being placed on ex-
changes. That can translate into worse prices for stocks, because prices for stocks
are set on exchanges.

In the present paper, we explore this phenomenon and study the interactions between con-
tingent trade in a dark pool and certain trade in a lit market, with a particular view toward
characterizing welfare effects.

To understand the trade-off between price and execution risk, a critical element is the
role of information, specifically, private, asymmetric information possessed by market partic-
ipants as to the short-term value of an asset. The role of information in the analysis of market
microstructure has been a longstanding topic of study, dating back to the seminal work of
Glosten and Milgrom (1985) and Kyle (1985). In our setting, information is important for

1Ganchev et al. (2010).
2S. Patterson. Regulator probes dark pools. The Wall Street Journal, February 15, 2013.
3Ibid.
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two fundamental reasons: First, if an agent has information or beliefs about short-term
price changes, this will clearly impact their individual decision-making. For example, an
agent might justify paying a premium for certain trade given commensurate certainty in the
value of the asset. Second, however, even in the absence of any such information, an agent
needs to reason about the informational characteristics of those with whom they trade. In
considering contingent trade, agents with less information about the value of an asset face
adverse selection or a “winner’s curse”: by systematically trading with more informed in-
vestors, trade occurs in situations where it is in fact ex post undesirable to the agent. Not
surprisingly, informational considerations affect all aspects of market operation, from trader
behavior to the profitability of market making. Given the complex strategic interactions
involved, qualitative insights and operational guidelines can be elusive.

In this paper, we address this challenge. Specifically, we consider a stylized, one period
model, where a continuum of infinitesimal, risk-neutral agents can choose to trade an asset.
Agents seeking to buy or sell an asset can do so on the open market. Here, they may trade
the asset immediately and with certainty by trading with market-making intermediaries (i.e.,
a traditional, competitive dealer market), in exchange for paying a premium in the form of
a transaction cost (i.e., the bid-offer spread). Alternatively, agents may choose to trade in a
dark pool market where they are directly matched with other agents. Trade in the dark pool
occurs by reference to the mid-market price in the open market, and hence does not incur
a transaction cost.4 On the other hand, a dark pool presents a risky opportunity for trade:
if there is a mismatch between the overall populations of buyers and sellers in a dark pool,
then a subset of the agents’ orders will not be filled.

Agents make this decision based on private information as to the short-term future price
of the asset (i.e., the common value or fundamental value), as well as their own intrinsic
demand for the asset (i.e., their individual hedging demand or idiosyncratic value). A central
contribution of the paper is to allow a rich and high resolution model of information. All

4Note that one claimed benefit of dark pools is that they mitigate the pre-trade information leakage that
might arise from the placement of a large order in the open market. In a typical dark pool, only trades that
occur are reported to the broader market — the underlying orders are confidential — and these are only
reported after the fact. In this paper, we do not focus on this aspect of dark pools. While the information
leakage of a large execution is an important issue in electronic markets, this is typically managed by spreading
out a large order into smaller orders across time (see, e.g. Moallemi et al., 2012), rather than executing such
large orders on a dark pool. Indeed, in U.S. equity markets, order and trade sizes in a typical dark pool are
largely comparable to those in lit markets (Tuttle, 2013). This suggests that information leakage from large
orders is a second order effect in the choice of trade venue.

Similarly, we consider a stylized, “crossing network” view of dark pools as venues where trade occurs only
through mid-point matches with reference to a lit market. Strictly speaking, many dark pools are internally
organized as (hidden) electronic limit order books, and more complex mechanisms for trade are possible.
Our focus here is on the trade-off between price and execution risk that dark pools present, and our modeling
choices are made to highlight this trade-off while maintaining tractability.
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agents in our setting possess private information as to the asset value. However, their private
signals are heterogeneous and vary in strength across agents.

Agents are also endowed with an idiosyncratic value for the asset. In this regard, there are
three classes of agents: intrinsic buyers, with positive idiosyncratic value, intrinsic sellers,
with negative idiosyncratic value, and speculators, with no idiosyncratic value — the latter
class seek only to maximize their expected wealth. Note that speculators trade only on
the basis of the private information they possess. Thus by varying the mass of speculators
present in the market, our model admits exogenous variation of the level of information
present in the market.

Our equilibrium concept involves a Bayes-Nash equilibrium among the agents, with trans-
action costs in the open market set through a zero profit condition (i.e., competitive market
makers). In our analysis, we compare two market structures: (1) one where agents choose
between the dark pool and the open market; and (2) one where agents can trade only in the
open market.

We derive several analytic and numerical insights:

1. Information segmentation. We find that, in general, traders are segmented by their
level of information. More precisely, in equilibrium, when all else is equal, the dark
pool is utilized by relatively uninformed or mildly informed traders, whereas highly
informed traders will trade in the open market so as to exploit their short-term infor-
mation through guaranteed profitable executions. This implies that, via an information
segmentation mechanism, trade in the dark pool will alter the informational charac-
teristics of trade in the open market.

2. Adverse selection. We establish that, in equilibrium, traders in the dark pool experi-
ence adverse selection. Specifically, conditional on their order being filled in the dark
pool, a buyer’s (resp., seller’s) expectation of the asset’s fundamental value is lower
(resp., higher) than their prior, unconditional expectation. This arises from the fact
that the execution of an order in the dark pool is correlated with the fundamental
value of the asset in way that is to the detriment of most dark pool participants: buy-
ers in the dark pool are more likely to be filled when the dark pool price is above the
fundamental value, while sellers are more likely to be filled when the dark pool price
is below. The presence of speculators in the market further exacerbates this effect.

However, unlike adverse selection in other settings, this detrimental correlation cannot
be explained by the traditional mechanism of information asymmetry: trade with a
highly informed counterparty. Indeed, as mentioned earlier, the more informed traders
trade in the open market. Instead, in our model, adverse selection is created through

4



the aggregate behavior of the group of investors participating in the dark pool. These
investors are all relatively uninformed, but in the case where the fundamental value
is higher (resp., lower) than the dark pool transaction price, there are more investors
with a slight positive (resp., negative) signal than the opposite. In other words, ad-
verse selection endogenously occurs in the dark pool through the aggregation of diffuse
information from a cross section of marginally informed agents.

3. Welfare. The tractability of our model allows us to provide significant insights regard-
ing the welfare effect of a dark pool. Intuitively, in our setting, monetary transfers
are zero-sum when viewed in aggregate from a systemic perspective — the gain of one
agent is the loss of another. Transfers of the asset, however are not: the sale of the
asset from an agent with low idiosyncratic value to an agent with high idiosyncratic
value can be a Pareto improvement. Welfare quantifies such gains from trade.

A naive view of the introduction of the dark pool suggests that welfare can only in-
crease. After all, traders have an additional venue for trade, and more choice should
imply higher welfare. Of course, this naive view ignores the role of strategic interac-
tions, and the effect of the introduction of a dark pool is significantly more subtle when
these interactions are considered.

Indeed, one of our most striking conclusions is that in reasonable parameter regimes,
the introduction of a dark pool can actually decrease overall welfare. Intuitively, to see
why this occurs, note that with the introduction of a dark pool, agents are facing a
choice of two transaction costs: the explicit spread in the open market, and the implicit
adverse selection cost in the dark pool. We show that the introduction of a dark pool
can cause the transaction cost in the open market to rise — a direct outcome of the
strategic choices made by traders and the market maker in the presence of the dark
pool. (Since the most informed traders head to the open market, the market maker
widens the spread to combat their informational advantage.) At the same time, the
adverse selection cost to traders who transact in the dark pool is shown to be high.
The combination of these effects leads to a welfare loss, as more intrinsic traders avoid
trade in the presence of a dark pool.

We do note that welfare losses may not obtain for all values of the model parameters.
As one example, we demonstrate that when the mass of speculators increases, the in-
troduction of a dark pool may not materially alter the transaction cost in the open
market. Though the adverse selection cost in the dark pool remains high, if intrinsic
buyers and sellers have a sufficiently high idiosyncratic value for the asset, then the
introduction of the dark pool increases welfare. In this particular regime, the naive
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intuition described above is approximately correct: the dark pool functions as a com-
plementary venue of trade for the (highly motivated) intrinsic traders. However, we
note numerically that this region is sensitive to the presence of a sufficiently large mass
of speculators, as well as a sufficiently large idiosyncratic value for intrinsic traders: in
the absence of either condition, we find that the dark pool decreases welfare.

In terms of testable implications, many of our model predictions are consistent with
observations from the empirical literature on dark pool trading. The information segmenta-
tion of relatively uninformed trades to dark pools has been observed (Comerton-Forde and
Putniņš, 2015), nevertheless dark pool trades do have informational content (Nimalendran
and Ray, 2014) and there can be substantial adverse selection costs when trading in a dark
pool (Næs and Ødegaard, 2006). Since we identify two parameter regimes, one where dark
pool trading is welfare decreasing and the other is welfare increasing, a natural and impor-
tant empirical question is to ask which regime real world financial markets fall under. As
is the case with many of the theoretical models in the literature, our model is stylized, and
many of the parameters (e.g., idiosyncratic values) cannot be directly calibrated. That said,
the parameter regime in which welfare decreases in our model largely corresponds to cases
where the introduction of dark pools results in an increase in open market transaction costs,
and this latter phenomenon has been observed in a number of studies (e.g., Comerton-Forde
and Putniņš, 2015; Degryse et al., 2014; Foley et al., 2012). As a result, our model suggests
that today’s markets are best captured by the parameter regime where the introduction of
the dark pool reduces welfare overall.

While others have developed theoretical models for dark pools (e.g., Hendershott and
Mendelson, 2000; Ye, 2011; Zhu, 2014), to our knowledge, ours is the first model offering
concrete theoretical welfare implications for dark pool trading in the presence of asymmetric
information. Our results are dependent on a number of technical assumptions and our model
is stylized. However, it does offer evidence that regulators are rightly concerned about the
real world welfare impact of dark pools.

1.1. Literature review

Our underlying open market setting here is reminiscent of the model of Glosten and Mil-
grom (1985) for studying dealer markets with asymmetric information. In this way, our
model shares some similarities with Zhu (2014), who also builds a information-based frame-
work for studying the relationship between an open market and a dark pool. However, there
are key differences between our work and his; Zhu (2014) considers a coarse model of in-
formation where traders are either fully informed or completely uninformed, and seeks to
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understand the impact of a dark pool on incentives for the costly acquisition of information.
Consistent with our results, he establishes that the dark pool attracts uninformed traders,
and that this may reduce liquidity in the open market. Ultimately, however, Zhu (2014)
focuses on the role of dark pools in price discovery, but without insight into the welfare
implications. To contrast, our work does not speak to price discovery and instead focuses
on welfare. Ye (2011) develops a model for deciding between an open market and a dark
pool in the setting of Kyle (1985), but allows for only a single, fully informed trader with
an endogenous choice of mechanism, and the model is limited by the fact that uninformed
traders exogenously choose a venue. Hendershott and Mendelson (2000) consider a model
where the fully informed traders have an exogenously specified strategy. Baldauf and Moll-
ner (2015) consider a related but different problem where asymmetrically informed traders
choose between multiple exchanges.

A number of other authors develop theoretical models for dark pools in the absence of
asymmetric information as to the asset value (e.g., Dönges and Heinemann, 2006; Degryse
et al., 2009; Afèche et al., 2014). Notably, Buti et al. (2014) model a dark pool that operates
in parallel with a limit order book, and make welfare predictions in a symmetric information
setting. Their model considers a trade-off between execution risk and cost that is similar to
that in the present paper. However, as their paper is in a symmetric information setting,
the authors pose it as a challenge to understand the impact of dark pools in the presence
of asymmetric information, an important driver of real world financial markets. Our paper
resolves this challenge, as our primary concern is to precisely understand how asymmetric
information and adverse selection impact welfare in the presence of a dark pool.

Dark pools have also been studied in the optimal execution literature (e.g., Ganchev
et al., 2010; Klöck et al., 2011; Kratz and Schöneborn, 2013, 2014), where the goal is to
formulate and solve an individual agent’s decision problem of how to trade in order to
efficiently liquidate a large portfolio. In such settings, however, the behavior of other agents
in the market is described through non-strategic, reduced form specifications. Hence, such
models are complementary to our work: their models are not meant to be used to reason
about market structure counterfactuals.

2. Model
We study a market organized for trading shares of a single security. We assume two types
of marketplaces exist to conduct trade: (1) an intermediated open market and (2) a dark
pool market. A continuum of traders decide, based on their private information, whether to
trade in the open market or to enter the dark pool. In this section, we describe the asset, the
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marketplaces, the intermediating market maker, the traders’ types, and their private signals,
utilities, and strategies.

2.1. Asset

A single security is traded in the market at time t = 0. The common value of the security at
t = 1 is unknown, and we model the uncertainty as a random variable σ. More specifically,
we assume that σ takes values in the set {−1,+1}, with either value equally likely. This
captures, in a stylized manner, the notion that the security value may undergo either a
positive or a negative jump of equal magnitude, and that the prior belief about this change
in value is uninformed. We assume that all agents in the market are risk-neutral, and hence
(ignoring idiosyncratic value and private information effects to be discussed shortly) the
mid-market value of the security at time t = 0 is zero. We assume that σ is fully revealed
to all agents in the market at time t = 1.

2.2. Traders

The market has a continuum of infinitesimal traders, each seeking to buy or sell at most
one share of the security at time t = 0. Each trader i is characterized by an idiosyncratic
value vi, that, along with the common value σ, determines the value the trader attaches
to a single unit of the security. More precisely, we assume that, at time t = 1, a trader
with idiosyncratic value vi values the security at σ + vi. Here, the idiosyncratic value vi can
capture, for example, the hedging demand particular to trader i.

We fix a parameter V ∈ (0, 1] and we assume the idiosyncratic value vi can take one
of three values: +V ; −V ; or zero. Our model admits and results hold for more general
distributions of the idiosyncratic value; we adopt this formulation to make the analysis and
the exposition simpler. In particular, depending on their idiosyncratic value, we characterize
the traders into three groups: (1) intrinsic buyers, i.e., those traders with a positive idiosyn-
cratic value (vi = +V ); (2) intrinsic sellers, i.e., those with a negative idiosyncratic value,
(vi = −V ); and (3) speculators, i.e., those with a zero idiosyncratic value (vi = 0).

Intuitively, in the absence of any private information, intrinsic buyers (resp., sellers)
arrive at the market with the inclination to buy (resp., sell) one unit of the security. We
emphasize that this initial inclination may get altered due to their private information (which
we describe below). On the other hand, for a speculator, their motivation to trade arises
only out of their private information. As a result, by varying the mass of speculators in
the market (relative to the mass of intrinsic traders), we are able to parametrically vary the
amount of information entering the market.
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Finally, we assume that the mass or measure of intrinsic buyers and sellers is equal and
normalized to 1, while the mass of speculators is µ ≥ 0. Thus, the total mass of traders in
the market is 2 + µ.

2.3. Marketplaces

The market is composed of two distinct types marketplaces:

1. Open market. We envision the open market as an dealer market where, at time t = 0,
any trader may enter to buy or sell a single unit of the security. The open market is
intermediated by a market maker. We assume the market maker is risk-neutral, has
no idiosyncratic value for the asset, and has an uninformed prior belief (via-à-vis the
private information of Section 2.4) on the common asset value σ. Therefore, the mid-
market value of the asset to the market maker at time t = 0 is zero. The market maker
charges an additional cost δ ∈ [0, 1] over this mid-market value in order to transact.
In other words, at time t = 0, the security is bid at a price of −δ and offered at a price
of δ in the open market. (One may also think of 2δ as analogous to the bid-ask spread
incurred by the market orders in specialist markets or limit order book markets.) Thus,
the open market offers guaranteed immediate execution at the cost of an additional
transaction cost δ.

2. Dark pool. At time t = 0, traders may choose to enter the dark pool to conduct
trade by seeking to buy or sell a single unit of the security. The dark pool is a parallel
marketplace without intermediating market makers. It clears trades an instant after
time t = 0, at a price determined by reference to the prevailing mid-market price in
the open market at time t = 0, i.e., a price of zero. Thus, a trade carried out at the
dark pool market does not incur the transaction cost δ that is imposed in the open
market.

The orders in the dark pool are cleared using a uniform random matching process
between the two sides of the market, i.e., those traders seeking to buy and those
traders seeking to sell. Each buy order has an equal chance of getting matched with
one of the sell orders and vice versa. Thus, if the mass of buy orders in the dark pool is
mb and the mass of sell orders is ms, then when mb > ms, all sell orders get filled, while
only ms of the buy orders get filled. Moreover, each sell order gets filled independently
with probability ms/mb — this quantity is known as the fill rate for buy orders. The
situation is analogous when ms > mb.
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Unless the mass of buy orders exactly equals the mass of sell orders, orders in the dark
pool suffer from a risk of non-execution. Thus, a trader, while deciding between the open
market and the dark pool, has to balance the trade-off between zero transaction cost and
possibility of non-execution.

Each trader in the market is strategic in selecting the marketplace to trade at. Each
trader makes the entry and trade decisions based on her idiosyncratic value as well as her
private information about σ. We next describe the private information structure among the
traders.

2.4. Private information

Recall that the value of the security σ at time t = 1 is an unknown random quantity at time
t = 0. We assume that each trader i at time t = 0 (before making any strategic decision)
receives a private signal si ∈ S informing her about the common value σ.

Formally, we assume that the price movement σ is distributed according to a common
prior P, where

P(σ = +1) = P(σ = −1) = 1/2. (1)

Further, we assume a conditionally independent signal structure: conditional on the price
movement σ, the signals {si} are distributed independently and identically.5

Since the only uncertainly in our model arises from the realization of the common value
σ, which has a Bernoulli distribution, without loss of generality, we assume that each signal
s directly represents the posterior probability that σ = 1, and that the set of possible signals
is the unit interval S , [0, 1]. In other words, for all s ∈ [0, 1],

P(σ = 1|s) = s. (2)

Hence, a signal of s = 1/2 corresponds to a trader who is uninformed beyond the prior, while
more informed traders would see signals closer to 0 or 1. As we will see in what follows, this
representation of private information allows us to express traders’ utility for various actions
as a linear function of their signals, thereby simplifying our analysis.

For tractability of analysis, we further assume that, given σ, the signals are distributed on
S = [0, 1] according to a distribution Fσ, with the following cumulative distribution function

5To be precise, since we consider a model with a continuum of traders, a conditionally independent signal
structure requires appealing to an exact law of large numbers argument (Qiao et al., 2014). We suppress
these technical details for clarity.
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(cdf):6

F1(x) = x2, and F−1 = 1− (1− x)2, for all x ∈ [0, 1]. (3)

A simple application of Bayes’ rule verifies that, given the prior distribution (1), an obser-
vation of a signal from the distribution (3) yields the posterior belief (2).

Our model can extended to a one-parameter family of signal distributions indexed by
κ > 0, based on a sub-class of beta distributions. In particular, the signal distributions F κ

σ

are given by

F κ
1 ∼ Beta(κ+ 1, κ), and F κ

−1 ∼ Beta(κ, κ+ 1).

The quantity κ parameterizes the informativeness of traders’ signal distribution in the follow-
ing sense. As κ→∞, the signal distribution becomes more uninformative: F κ

σ concentrates
around 0.5 irrespective of the value of σ. On the other hand, as κ→ 0, the signal distribution
becomes more informative: for small enough κ > 0, F κ

1 is concentrated around 1, while F κ
−1

is concentrated around 0. Note that our choice of signal distribution in (3) corresponds to
the case κ = 1. All our results in Section 4 continue to hold for general values of κ, while
those in Section 5 require κ = 1.

2.5. Trader actions and utility

As the traders are risk-neutral, we assume that they seek to maximize the expected value of
their position at t = 1 while deciding where and how to trade. We explain in detail below
the decision problem faced by a trader at time t = 0.

At time t = 0, a trader with idiosyncratic value v and private signal s, has to decide
among the following actions:

1. (OM,B): Buy a share at the open market, yielding an expected utility of

uOM,B(v, s) = E[σ + v|s]− δ = 2s− 1 + v − δ. (4)

2. (OM,S): Sell a share at the open market, yielding an expected utility of

uOM,S(v, s) = −E[σ + v|s]− δ = 1− 2s− v − δ. (5)
6Here, we abuse the notation Fσ to denote both the distribution as well as its cdf.

11



3. (DP,B): Enter a buy order into the dark pool market, yielding an expected utility of

uDP,B(v, s) = E[(σ + v)I{buy fill}|s], (6)

where I{buy fill} denotes the indicator variable corresponding to the event that the
buy order gets filled in the dark pool market.

4. (DP, S): Enter a sell order into the dark pool market, yielding an expected utility of

uDP,S(v, s) = −E[(σ + v)I{sell fill}|s], (7)

where I{sell fill} denotes the indicator variable corresponding to the event that the sell
order gets filled in the dark pool market.

5. N : Do not trade, yielding an expected utility of uN(v, s) = 0.

We let A , {(OM,B), (OM,S), (DP,B), (DP, S), N} denote the action set available to
a trader. Thus, a trader’s decision problem is to choose an action a ∈ A that will maximize
her expected utility, given her idiosyncratic value and her private signal:

maximize
a∈A

ua(v, s).

Observe that the expected utility of a trader on entering an order (buy or sell) into the
dark pool depends on the likelihood of the order getting filled, which depends on how many
other orders are present in the dark pool. This, in turn, depends on the actions of other
traders in market. Thus, we see that the traders’ decision problems are intricately coupled.

2.6. Trader strategies

Having defined the traders’ decision problem, we now look at their strategies. A strategy
for a trader specifies, for every signal s ∈ S, the action to take in the market. Formally, a
strategy for a trader is a map λ : S → A. (Here and throughout the paper, we only consider
pure strategies for the market participants.)

We will restrict our attention to the case where all traders with the same idiosyncratic
value use the same strategy. In other words, we require the collection of strategies used by
the traders to satisfy an anonymity condition, where the strategy used by a trader does not
depend on her identity. With this condition in place, we denote the strategy of a trader with
idiosyncratic value v as λv : S → A, and we define a strategy profile λ , (λ−V , λ0, λV ) as
the tuple of strategies employed by all the traders in the market.
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2.7. Competitive market makers

We will be interested in studying market-making in the open market in a state of perfect
competition with free entry. In such a situation, if the market maker made a positive expected
profit, competitors would enter the open market and undercut the market maker by reducing
the transaction costs. This suggests that in any equilibrium under perfect competition and
free entry, the market maker’s expected utility should be zero.

Formally, we capture this competitive limit by assuming that the open market is orga-
nized by a risk-neutral market maker, with the uninformed prior P, who receives the entire
transaction cost δ for each trade in the open market. Along with this revenue, she also faces
the risk of adverse selection due to the presence of informed traders. The cost due to this
risk depends on the traders’ strategies, which in turn depend on δ. We will then assume
that the the transaction cost δ in the open market is set so that the market maker’s total
expected utility is zero.

3. Equilibrium
From the description of the market model in the preceding section, we observe that the
traders’ decision problems are coupled due to the order matching process in the dark pool.
In particular, a trader’s optimal action depends on how many other traders enter orders in
the dark pool. For any fixed transaction cost δ, this defines a game among the traders, for
which we define a partial equilibrium concept. As described in the preceding section, the
transaction cost δ is then set so that the market maker earns zero profit; we call a resulting
solution a competitive equilibrium. In this section we formalize the definitions of both partial
and competitive equilibria.

3.1. Partial equilibrium

In this subsection we formulate a partial equilibrium concept for the game among the traders,
given a fixed transaction cost δ in the open market. We first specify in more detail how a
trader’s utility depends on the actions of all other traders in the market, and in particular, on
the fill rate (i.e., the fraction of buy or sell orders that are executed) in the dark pool for each
realization of the common value σ. We then introduce the appropriate equilibrium concept
for the game among traders: Bayes-Nash equilibrium (BNE). In a BNE, each trader’s strategy
specifies for any signal s an optimal action, holding fixed the other traders’ strategies.
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3.1.1. Fill rates

In order to calculate the fill rates, as described in Section 2.3, we need to know the mass of
buy and sell orders in the dark pool. These are determined by the strategies of the traders.

Suppose the traders’ strategy profile is given by λ = (λ−V , λ0, λV ). For each idiosyncratic
value v ∈ {0,±V } and each action a ∈ A, we define the set

Θλ
v,a , {s ∈ [0, 1] : λv(s) = a}. (8)

Thus, Θλ
v,a ⊂ [0, 1] denotes the set of signal values for which a trader with idiosyncratic

value v chooses action a under the strategy profile λ. In the rest of the paper, we restrict
our attention to those strategies for which the preceding sets are Fσ-measurable.

Conditional on the security value σ, the mass of buy orders in the dark pool is given by

mλ
B(σ) =

∑
v∈{±V }

Fσ(Θλ
v,(DP,B)) + µFσ(Θλ

0,(DP,B)). (9)

Similarly, the mass of sell orders is given by

mλ
S(σ) =

∑
v∈{±V }

Fσ(Θλ
v,(DP,S)) + µFσ(Θλ

0,(DP,S)). (10)

Observe that mλ
B(1) is positive if and only if mλ

B(−1) is positive. Similarly, mλ
S(1) is positive

if and only if mλ
S(−1) is. This follows from the fact that the measures F1 and F−1 are

equivalent.
Now, suppose both mλ

B(σ) and mλ
S(σ) are positive. As a buy order in the dark pool is

matched uniformly with a sell order, if mλ
B(σ) ≤ mλ

S(σ), a buy order in the dark pool gets
filled with certainty, while a sell order gets filled with probability mλ

B(σ)/mλ
S(σ). On the

other hand, if mλ
B(σ) ≥ mλ

S(σ), a sell order gets filled with certainty, while a buy order gets
filled with probability mλ

S(σ)/mλ
B(σ). Thus for every value of σ, we can define the buy fill

rate φλB(σ) and sell fill rate φλS(σ) as

φλB(σ) , E[I{buy fill}|σ] = min
(

1, m
λ
S(σ)

mλ
B(σ)

)
,

φλS(σ) , E[I{sell fill}|σ] = min
(

1, m
λ
B(σ)

mλ
S(σ)

)
,

(11)

where mλ
B(σ) and mλ

S(σ) are as defined in (9) and (10). For completeness, we set φλB(σ) , 0
if mλ

B(σ) = 0 and we set φλS(σ) , 0 if mλ
S(σ) = 0.
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3.1.2. Trader expected utility

From the fill rates, we obtain refined expressions for a trader’s utility, in terms of other
traders’ actions. Suppose the strategy profile in the market is given by λ = (λ−V , λ0, λV ).
In order to explicitly specify the dependence of the trader’s utility on the strategy profile,
we qualify them with a superscript λ. Then, from (6), we have

uλDP,B(v, s) = E[(σ + v)I{buy fill}|s]

= E [E[(σ + v)I{buy fill}|σ]|s]

= E
[
(σ + v)φλB(σ)|s

]
= s(1 + v)φλB(1) + (1− s)(−1 + v)φλB(−1).

(12)

Here, we have used the tower property of conditional expectation in the second equality.
Similarly, from (7), we have

uλDP,S(v, s) = −E[(σ + v)I{sell fill}|s]

= −E
[
(σ + v)φλS(σ)|s

]
= −s(1 + v)φλS(1)− (1− s)(−1 + v)φλS(−1).

(13)

Finally, observe that, in the open market, a trader transacts directly with the market maker.
Thus, the utility of actions involving trade in the open market (or the explicit choice not to
trade) do not depend on the actions of other traders or on the strategy profile λ. Hence, we
have, as in (4)–(5),

uλOM,B(v, s) = 2s− 1 + v − δ, uλOM,S(v, s) = 1− 2s− v − δ, uλN(v, s) = 0.

for all v ∈ {0,±V } and s ∈ [0, 1].

3.1.3. Bayes-Nash equilibrium

We use Bayes-Nash equilibrium as the partial equilibrium solution concept for the game
among traders, for a fixed transaction cost δ.

Definition 1 (Partial equilibrium). A strategy profile λ = (λ−V , λ0, λV ) and a fixed open market
transaction cost δ together constitute a partial equilibrium if, assuming the open market
transaction cost is fixed at δ, the strategy profile λ satisfies the Bayes-Nash equilibrium (BNE)
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condition given by

λv(s) ∈ argmax
a∈A

uλa(v, s), (14)

for all v ∈ {0,±V } and s ∈ [0, 1].

Thus, in a partial equilibrium, each trader’s strategy employs an optimal action for every
signal, fixing all other traders’ strategies and assuming a given open market transaction cost.

In what follows, it will be useful to adopt the following convention breaking ties among
various actions: N > (DP,B) > (DP, S) > (OM,B) > (OM,S). This is arbitrary, and is
done primarily so that there is a unique best response at each signal for any trader. (As
will be seen later, tie-breaking is only needed on a set of measure zero, and hence does not
alter fundamental characteristics of a strategy profile such as the associated fill rates in the
dark pool or the adverse selection experienced by the market maker.) With the tie-breaking
rule in place, the inclusion in the definition of a partial equilibrium can be replaced with an
equality. Further, given any strategy profile λ, we can now define a best response strategy
profile Λ[λ] , (Λ−V [λ],Λ0[λ],ΛV [λ]), where for any v ∈ {0,±V }, Λv[λ] is the unique strategy
defined by

Λv[λ](s) , argmax
a∈A

uλa(v, s),

for all s ∈ [0, 1]. The definition of a partial equilibrium (λ, δ) can now be simplified to
require that the strategy profile λ satisfy λ = Λ[λ], i.e., a fixed point of the best response
map Λ assuming a transaction cost δ. Note that the map Λ implicitly depends on the mass
of speculators µ, the idiosyncratic value V , and the transaction charge δ; we will make these
dependencies explicit when the context demands.

3.2. Competitive equilibrium

In this subsection we define a competitive equilibrium by adding the zero profit condition
for the market maker to the preceding definition of a partial equilibrium. We start by fixing
the transaction cost δ, and compute the expected utility of the market maker given a partial
equilibrium among the traders. We then use this calculation to formalize the zero profit
condition.
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3.2.1. Market maker profit

Suppose the transaction cost in the open market is δ, and consider a partial equilibrium (λ, δ).
Let mλ

(OM,B)(σ) (resp., mλ
(OM,S)(σ)) denote the volume of buy orders (resp., sell orders) in

the open market, conditional on the security value σ. As the market maker receives the
transaction cost on each trade in the open market, the total revenue to the market maker
is the product of the transaction cost δ and the total volume of trade in the open market.
Thus, the total expected revenue for the market maker due to the transaction cost is given
by

utr(δ, λ) = δE
[
mλ

(OM,B)(σ) +mλ
(OM,S)(σ)

]
.

Next, note that conditional on σ, the market maker’s net position in the security is given
by the difference mλ

(OM,S)(σ) − mλ
(OM,B)(σ). Ignoring the transaction cost, the expected

mark-to-market profit from this position between time t = 0 and t = 1 is given by

umm(δ, λ) = E
[
σ
(
mλ

(OM,S)(σ)−mλ
(OM,B)(σ)

)]
.

Observe that if the net quantity of the security bought by the market maker had been
independent of the security value σ, then in expectation this mark-to-market profit would
have value zero. In general, however, if according to the strategy profile λ, only the more
informed traders choose to trade with the market maker, it will likely be the case that
umm(δ, λ) ≤ 0. Indeed, −umm(δ, λ) represents the cost incurred by the market maker due to
adverse selection.

Putting these together, the total expected utility of the market maker is

u(δ, λ) = utr(δ, λ) + umm(δ, λ)

= E
[
(δ + σ)mλ

(OM,B)(σ) + (δ − σ)mλ
(OM,S)(σ)

]
.

(15)

3.2.2. Zero profit condition

We are now ready to formally define a competitive equilibrium, which combines our BNE
conditions with a zero profit condition for the market maker:

Definition 2. A strategy profile λ and a transaction cost δ together constitute a competitive
equilibrium if and only if

1. For a transaction cost of δ, the strategy profile λ constitutes a BNE; and
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2. Given the strategy profile λ and transaction cost δ, the market maker’s utility u(δ, λ),
as defined in (15), is zero.

Observe that, from (15),

u(δ, λ) ≥ E
[(
δ − |σ|

) (
mλ

(OM,B)(σ) +mλ
(OM,S)(σ)

)]
.

Then, if δ > |σ| = 1 and there is any trade in the open market, the market maker’s utility
will be strictly positive. Therefore, when the transaction cost is large (δ > 1), there can be
no competitive equilibrium involving trade in the open market. To avoid this uninteresting
situation, we require that δ ∈ [0, 1].

4. Structural results on partial equilibrium
In this section, we introduce a natural symmetry condition on the equilibrium strategies
that lets us obtain results on the structure of a partial equilibria. First, we show that partial
equilibria involving such strategies are completely specified by the buy fill rate in the dark
pool. Second, from the structure of the equilibrium strategy, we show how the traders’ choice
of the trading venue depends on their private information. Finally, we demonstrate that, in
equilibrium, trade in the dark pool experiences adverse selection.

4.1. Symmetric strategy profiles

As the model we consider is symmetric with respect to change in the asset value σ, the
idiosyncratic valuations of intrinsic buyers and sellers, and the mass of intrinsic buyers or
sellers in the market, we focus our attention on a class of strategy profiles that satisfy a
natural symmetry requirement. We begin with the following definition:

Definition 3. A strategy profile λ = (λ−V , λ0, λV ) is symmetric if the following holds, for all
v ∈ {0,±V } and s ∈ [0, 1]:

λv(s) = (OM,B) if and only if λ−v(1− s) = (OM,S),

λv(s) = (DP,B) if and only if λ−v(1− s) = (DP, S),

λv(s) = N if and only if λ−v(1− s) = N. (16)

In words, in a symmetric strategy profile, we require that if an intrinsic buyer with signal
s enters an order into the dark pool market, then an intrinsic seller with signal 1− s enters
an opposite order into the dark pool market. Similarly, if an intrinsic buyer with signal s
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trades in the open market, then an intrinsic seller with signal 1−s trades in the open market
in the opposite direction. Finally, we require analogous conditions to hold for speculators
with signals s and 1− s.

As our first result shows, the class of symmetric strategy profiles is closed under the best
response map. The proof is deferred to the appendix.

Lemma 1. Suppose λ = (λ−V , λ0, λV ) is a symmetric strategy profile. Then the best response
strategy profile Λ[λ] is symmetric.

The preceding result allows us to focus on partial equilibria with a symmetric strategy
profile. This is useful because, as we show next, in any partial equilibrium with symmetric
strategy profile, the fill rates are symmetric and can be characterized by a single parameter.

4.2. Fill rates

Observe that, following Definition 3, in a symmetric strategy profile λ, for any v ∈ {0,±V }
and any s ∈ [0, 1], we have s ∈ Θλ

v,(DP,B) if and only if 1−s ∈ Θλ
−v,(DP,S), where Θλ

v,(DP,B) and
Θλ
v,(DP,S) are the sets of signals resulting in buy and sell orders in the dark pool from a trader

with idiosyncratic value v, as defined in (8). Thus, from (9), we obtain for σ ∈ {−1, 1},

mλ
B(σ) =

∑
v∈{±V }

Fσ(Θλ
v,(DP,B)) + µFσ(Θλ

0,(DP,B))

=
∑

v∈{±V }
Fσ(1−Θλ

−v,(DP,S)) + µFσ(1−Θλ
0,(DP,S))

=
∑

v∈{±V }
F−σ(Θλ

−v,(DP,S)) + µF−σ(Θλ
0,(DP,S))

= mλ
S(−σ).

Here, in the second line, we have defined 1 − A , {1 − x : x ∈ A} for any set A ⊂ R. The
equality in the third line follows from the symmetry of the signal structure. In particular,
we have f1(s) = f−1(1− s) for all s ∈ [0, 1], where fσ is the density of Fσ for σ ∈ {−1,+1}.
The last equality follows from (10).

Thus, when the strategy profile is symmetric and mλ
B(σ) is positive for all σ, the fill rates,

as defined in (11), satisfy

φλB(σ) = φλS(−σ) = min
(

1, m
λ
S(σ)

mλ
B(σ)

)
> 0, for σ ∈ {−1, 1}.

This implies that, when mλ
B(σ) is positive for all σ and λ is symmetric, the fill rates must
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satisfy one of the following two possibilities:

φλB(1) = φλS(−1) = 1, 0 < φλB(−1) = φλS(1) < 1; OR

0 < φλB(1) = φλS(−1) ≤ 1, φλB(−1) = φλS(1) = 1.

In the former case, a buy order in the dark pool is more likely to be filled when the asset
value increases, and less likely when it decreases. On the other hand, in the latter case, a
buy order in the dark pool is less likely to be filled with the asset value increases, and more
likely when it decreases. The following result shows that, in any partial equilibrium with
trade in the dark pool, the fill rates must satisfy the latter condition. The proof is deferred
until the appendix.

Theorem 1. For any δ ∈ [0, 1], suppose there is a partial equilibrium (λ, δ) with symmetric
strategy profile λ involving trade in the dark pool.7 Then,

0 < φλB(1) = φλS(−1) ≤ 1, φλB(−1) = φλS(1) = 1.

The preceding result establishes that in any partial equilibrium in symmetric strategies
with trade in the dark pool, a buy order in the dark pool will get filled with certainty if the
asset value decreases. As we show later in Section 4.5, this aspect of a partial equilibrium
plays an important role in generating an adverse selection cost that is incurred by traders
in the dark pool.

4.3. Threshold strategies

Next, we show that the strategies in a partial equilibrium take a particularly simple form:
there are thresholds that completely determine behavior of intrinsic traders and speculators.
Formally, for each transaction cost δ ∈ [0, 1], fill rate f ∈ [0, 1] and v ∈ {−V, 0, V }, define

7Note, if the equilibrium symmetric strategy profile λ does not involve trade in the dark pool, then the
fill rates satisfy φλB(σ) = φλS(σ) = 0 by definition.
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the following sub-intervals of the unit interval [0, 1]:

Θf,δ
v,(OM,B) ,

(
max

{
1− v + δ

2 ,
δ

(1 + v)(1− f)

}
, 1
]

Θf,δ
v,(DP,B) ,

(
1− v

1− v + f(1 + v) ,
δ

(1 + v)(1− f)

]
,

Θf,δ
v,N ,

[
max

{
1− v − δ

2 ,
f(1− v)

f(1− v) + 1 + v

}
, min

{
1− v

1− v + f(1 + v) ,
1− v + δ

2

}]

Θf,δ
v,(DP,S) ,

[
1− δ

(1− v)(1− f) ,
f(1− v)

f(1− v) + 1 + v

)

Θf,δ
v,(OM,S) ,

[
0, min

{
1− v − δ

2 , 1− δ

(1− v)(1− f)

})
(17)

Note that we allow the possibility for some of these intervals to be empty.8 For each δ ∈ [0, 1],
define H(δ) as a one parameter family of symmetric strategy profiles

H(δ) ,
{
λf,δ : f ∈ [0, 1]

}
,

where for any f ∈ [0, 1], and v ∈ {0,±V }, we define

λf,δv (s) , a, if a ∈ A, s ∈ Θf,δ
v,a. (18)

In words, the strategy λf,δv picks the action for a given signal according to membership in
the intervals defined in (17). In the case where one of the intervals in (17) is empty, the
corresponding action is not used.

We refer to H(δ) as the set of threshold strategies, since, for a fixed idiosyncratic value v,
these strategies determine actions through a set of thresholds (the endpoints of the intervals
defined above) that partition the set of possible signals. The following lemma establishes
the importance of these strategies in equilibrium. The proof is deferred to the appendix.

Lemma 2. Suppose δ ∈ [0, 1]. Then,

(i) For any f ∈ [0, 1] and v ∈ {0,±V } the intervals {Θf,δ
v,a}a∈A form a partition of the

signal set S = [0, 1], i.e., they are mutually exclusive and collectively exhaustive.

(ii) Suppose λ is a symmetric strategy profile with fill rates φλB(1) , f ∈ (0, 1] and φλS(1) =
1, then Λ[λ] = λf,δ ∈ H(δ). For a symmetric strategy profile λ with fill rates φλB(1) =
φλS(1) = 0, we have Λ[λ] = λ0,δ ∈ H(δ).

8We adopt the convention that an interval is defined to be the empty set if its endpoints are not ordered,
i.e., [a, b] , ∅ if a > b, and (a, b) , ∅, (a, b] , ∅ and [a, b) , ∅ if a ≥ b.
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Part (i) simply establishes that the threshold strategies described above are well-defined.
Part (ii) has two important implications. First, observe that Theorem 1 guarantees that any
partial equilibrium with a symmetric strategy profile satisfies the hypotheses of Part (ii).
Therefore, Part (ii) guarantees that in any such partial equilibria, the traders employ thresh-
old strategies. Second, observe that, for a fixed δ, a threshold strategies is uniquely char-
acterized by the parameter f ∈ [0, 1]. Then, combined with first implication, in any partial
equilibrium, the Bayes-Nash fixed point condition takes the form Λ[λf,δ] = λf,δ. This is a
one parameter fixed point equation involving a single unknown, the buy fill rate f . The
second implication turns out to be crucial for the downstream analysis of the market in Sec-
tion 5, as well as in numerical analysis through the use of line search methods for equilibrium
computations; we discuss this in detail in Section 6.1.

Before continuing, we note that, for any transaction cost δ ∈ [0, 1] there always exists
a trivial partial equilibrium where no trader enters the dark pool. This corresponds to
λ0,δ ∈ H(δ). This arises due to the fact that trade in the dark pool occurs only through
matching. In particular, from a single trader’s point of view, if no other trader enters the
dark pool, then the fill rate is zero, and hence there is no benefit to unilaterally deviating to
enter the dark pool. Observe that this is the same outcome that arises in a market without
the presence of a dark pool. Subsequently, when evaluating how the presence of a dark pool
affects the market, we will compare market characteristics in this equilibrium with those in
an equilibrium where there is trade in the dark pool.

Further, a partial equilibrium with trade in the dark pool may not exist for certain values
of the model parameters. Typically, such a partial equilibrium may not exist if the traders’
idiosyncratic values are small, there are too many speculators, or if the transaction cost in
the open market is too low. Intuitively, in the former two scenarios, if trade were to occur in
the dark pool, it would primarily be based on the differences in traders’ private information.
However, such a situation is precluded by the no-trade theorem of Milgrom and Stokey
(1982), which prohibits any trade among rational (risk-neutral) traders who differ only in
their beliefs. In the latter scenario of low transaction cost in the open market, the traders
may prefer to trade with certainty with the market maker in the open market over entering
orders in the dark pool.

4.4. Information segmentation

As established in Section 4.3, in any partial equilibrium with a symmetric strategy profile, the
traders must employ threshold strategies. In such strategies, traders with equal idiosyncratic
value are segmented according to their private information in order to determine actions.
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This segmentation creates a relationship between a trader’s choice of venue to trade and
their informedness and takes a particular form, as evidenced in the following corollary to
Lemma 2. The proof is straightforward, and we omit it for brevity.

Corollary 1 (Information segmentation). Define the following total order on the action set A,

(OM,S) ≺ (DP, S) ≺ N ≺ (DP,B) ≺ (OM,B).

Given a transaction cost δ ∈ [0, 1], suppose there exists a partial equilibrium with symmetric
strategy profile λ. Then, for all v ∈ {0,±V } and 0 ≤ s ≤ s′ ≤ 1, we have that λv(s) � λv(s′).

Corollary 1 is depicted pictorially in Figure 1. It establishes that a particular ordering
must hold in the actions chosen in all partial equilibria. Two observations can be made about
this ordering:

1. Regarding the direction of trade, observe that for a fixed idiosyncratic value v, if a
trader with a signal s chooses to sell, all traders with signals less than s will also sell.
Similarly, if a trader with a signal s chooses to buy, all traders with signals greater
than s will also buy. Loosely speaking, traders with high signals will buy, while traders
with low signals will sell, all else being equal.

2. Regarding the choice of venue, observe that for a fixed idiosyncratic value v, if a trader
with a signal s chooses to sell (resp., buy) in the open market, all traders with signals
less (resp., greater) than s will also sell (resp., buy) in the open market. Loosely
speaking, traders who are more informed (i.e., with signals closer to 0 or 1 depending
on the direction of trade) will prefer the open market to the dark pool. In other words,
the dark pool will be populated with traders who are relatively less informed than
those who choose the open market.

The latter observation suggests that, via an information segmentation mechanism, trade
in the dark pool will alter the informational characteristics of trade in the open market.
This fact has important downstream implications for transactions costs in the open market
in competitive equilibrium, which we will see in Section 5.

4.5. Adverse selection

Consider the following definition:

Definition 4 (Adverse selection). A trader submitting a buy (resp., sell) order in the dark
pool suffers from adverse selection if her expectation of the value of the asset, conditional
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s = 0 s = 1

Figure 1: Threshold strategies in partial equilibrium. For any given δ, the thresholds depend
on the idiosyncratic value v, and some intervals may be empty.

on the order being filled, is lower (resp., higher) than her (unconditional) expectation of the
value of the asset. Formally, we have for any s ∈ [0, 1],

E [σ|s, buy fill ] ≤ E [σ|s] ≤ E [σ|s, sell fill ] .

The following result, whose proof is deferred until the appendix, states that adverse
selection in the dark pool is pervasive in any partial equilibrium:

Theorem 2. In any partial equilibrium λ involving symmetric strategies with trade in the
dark pool, all traders in the dark pool suffer from adverse selection. Defining the adverse
selection cost Adv(λ) as

Adv(λ) , E
[
σ
∣∣∣s = 1

2

]
− E

[
σ
∣∣∣s = 1

2 , buy fill
]
,

we have Adv(λ) = E
[
σ
∣∣∣s = 1

2 , sell fill
]
−E

[
σ
∣∣∣s = 1

2

]
≥ 0. Furthermore, the adverse selection

cost under such an equilibrium is strictly decreasing with the buy (sell) fill rate.

Adverse selection arises from the fact that the execution of an order in the dark pool is
correlated with the movement in the value of the asset in a detrimental way: a buy (resp.,
sell) order is more likely to be executed when the value of the asset moves down (resp.,
up). However, this detrimental correlation cannot be directly attributed to information
asymmetry in the dark pool; in fact, as mentioned earlier, the more informed traders trade
in the open market. Rather, adverse selection is created through the aggregate behavior
of the group of overall traders participating in the dark pool. In particular, consider the
behavior of a speculator (v = 0). In a symmetric equilibrium, by Lemma 2, the subset of
signals Θf,δ

0,(DP,B) ⊂ [0, 1] for which a speculator chooses to buy in the dark pool and the
subset of signals Θf,δ

0,(DP,S) ⊂ [0, 1] for which a speculator chooses to sell in the dark pool are
sub-intervals of the real line of equal length, and are symmetric about the point s = 1/2. In
the case where σ = +1 (resp., σ = −1), then, clearly the probability mass of speculators who
choose to buy (resp., sell) in the dark pool is larger than those who choose to sell (resp., buy)

24



in the dark pool. This mismatch of masses creates adverse selection amongst speculators in
the dark pool, and this intuition extends as well to intrinsic buyers and seller. In this way,
adverse selection endogenously occurs in the dark pool through the aggregation of diffuse
information from a cross section of marginally informed agents.

Thus, adverse selection is an intrinsic characteristic of any partial equilibrium in the
market. Note that this adverse selection imposes an implicit transaction cost on the trader
in the dark pool. This explains why there may not be a partial equilibrium involving trade in
the dark pool for sufficiently low values of the (explicit) transaction cost in the open market.

5. Welfare analysis of competitive equilibria
In this section we exploit our structural understanding of partial equilibria to analyze com-
petitive equilibria. Our emphasis is on understanding the welfare consequences of the in-
troduction of a dark pool. A naive view of the introduction of the dark pool would suggest
welfare can only increase with the presence of the dark pool, since participants are afforded
greater opportunities for trade than before. When traders and market makers are strategic
and adapt to the presence of the dark pool, however, it is not a priori evident whether the
dark pool does indeed increase welfare in equilibrium.

Before we begin, we clarify the definition of welfare in our model. As usual, we define
welfare to be the sum of the expected utility of all the agents in the market. (Here the
expectation is with respect to the uninformed common prior P.) Since all agents in the
market are risk neutral, it follows that the monetary transfers among the agents in the
market do not affect the welfare. Hence, the welfare in the market depends solely on the
final allocation of the security in the market. In particular, the market welfare is higher if
more intrinsic buyers end up holding the security at time t = 1, and more intrinsic sellers
end up being short the security at time t = 1. Similarly, the welfare is lower when fewer
intrinsic buyers hold and fewer intrinsic sellers have sold the security at time t = 1. From
this discussion, one can also consider the market welfare as the degree to which the intrinsic
tendencies of the traders (prior to receiving any private information) are actualized.

In our welfare analysis, a central theme is the role of two potential transaction costs
faced by the traders. One transaction cost is explicit in our model: any trader in the open
market faces a transaction cost δ set by the market maker. The second transaction cost is
implicit: any trader in the dark pool faces an adverse selection cost (cf. Section 4.5); from
Theorem 2, we know this cost is higher when the fill rate in the dark pool is lower. To a
large extent, our welfare results are driven by the role of these transaction costs in shaping
the trading decisions of intrinsic buyers and sellers. We compare two types of equilibria:
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those where a dark pool is present, and those where a dark pool is absent. By comparing
the two transaction costs in the former with the open market transaction cost in the latter,
we can get a sense of how welfare is affected by introduction of a dark pool.

Our main result in this section uses this approach to show in a benchmark case that
introduction of the dark pool can actually decrease welfare. In particular, in Section 5.2
we consider a setting where there are no speculators (µ = 0). Regardless of the intrinsic
value parameter V , we first show that the introduction of a dark pool raises the transaction
cost set by the market maker in the open market, relative to the competitive equilibrium
without a dark pool. Now this suggests that the only way welfare can increase is if the dark
pool itself is sufficiently attractive to motivate more intrinsic traders to transact than in the
absence of a dark pool. We show that in fact, the adverse selection cost in the dark pool is
sufficiently high that the opposite occurs: welfare is lower in the presence of a dark pool.

In general, we find the same result holds numerically for a wide range of the problem
parameter values (µ, V ) — our numerical investigation is presented in Section 6. However,
we also note that there are specific combinations of parameter values where the introduction
of a dark pool can increase welfare. In Section 5.3, we consider the behavior of the market as
the mass of speculators increases, and in particular as µ→∞. In this regime, the market is
dominated by speculators trading to exploit private information. Such traders often eschew
the dark pool in favor of the certainty of the open market, and we establish that the explicit
transaction costs in the open market in the equilibria with and without the dark pool are
qualitatively similar. Since the introduction of the dark pool does not materially impact the
transaction cost in the open market, we find ourselves closer to a regime where the “naive”
intuition described above is correct; namely, the dark pool functions as a new venue for
trade for the intrinsic traders, and can only lead to more intrinsic traders participating in
the market.

There is a caveat, however: as µ increases, the (buy) fill rate in the dark pool drops,
i.e., the adverse selection cost in the dark pool increases. Thus, in order to actually see a
welfare gain, the intrinsic value parameter V must be sufficiently high that intrinsic traders
of moderate signal are sufficiently motivated to take advantage of the trading possibilities
created by the introduction of the dark pool. We validate this intuition in by showing that
if both µ and V are large (i.e., many speculators and a high idiosyncratic motivation for
intrinsic buyers and sellers to trade), welfare can in fact increase with the introduction of a
dark pool.
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5.1. Preliminaries: No dark pool

In this section, we define a reference competitive equilibrium NODP with no trade in the
dark pool, against which we compare all equilibria with trade in the dark pool. The following
result shows that such an equilibrium exists. The proof is deferred to the appendix.

Lemma 3. For any µ ≥ 0 and 0 < V ≤ 1, there exists a unique competitive equilibrium,
denoted by NODP, with transaction cost δNODP(µ, V ) = 1 − V√

1+µ < 1, and where the sym-
metric strategy profile involves trade only in the open market (i.e., the fill rate in the dark
pool is zero).

Note that, without the presence of the dark pool, the transaction cost in the open market
would be set at δNODP(µ, V ) in a perfectly competitive market. In order to study how the
presence of the dark pool affects the transaction costs in the open market, we will compare
the transaction cost in any competitive equilibrium with trade in the dark pool to δNODP

9.
Similarly, the welfare implications of trade in the dark pool will be assessed by comparing
the welfare of any competitive equilibrium with trade in the dark pool to the welfare of the
NODP equilibrium.

5.2. A benchmark case: No speculators

In this section we consider a benchmark model, where there are no speculators (µ = 0). We
have two results. First, we show that the transaction cost in the presence of a dark pool is
higher than δNODP. We use this insight to show our main result: the introduction of a dark
pool decreases welfare.

We start with the following theorem, which states that in any competitive equilibrium
where there is trade in the dark pool, the transaction cost in the open market would be
greater than or equal to δNODP. The proof is deferred to the appendix.

Theorem 3. Suppose µ = 0 and 0 < V ≤ 1. For any transaction cost δ < δNODP, the market
maker’s expected utility in any partial equilibrium λ is negative.

Thus, we obtain the following corollary, stating that the presence of the dark pool in-
creases the transaction cost set by a competitive market makers:

Corollary 2. Suppose µ = 0 and 0 < V ≤ 1, in any competitive equilibrium where the fill
rate in the dark pool is positive, the transaction cost is greater than or equal to that in the
NODP competitive equilibrium with no trade in the dark pool.

9We suppress the dependence on the parameters µ and V when the context is clear.
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The intuition behind the preceding result is that the presence of a dark pool increases
the adverse selection cost faced by a competitive market maker. In particular, as relatively
uninformed traders move to trade in the dark pool, the population of traders in the open
market becomes relatively better informed and collectively increases the adverse selection
cost for the market maker. In order to compensate for this, a competitive market maker sets
a higher transaction cost.

We next investigate how the presence of the dark pool affects welfare. Our main result
in this section implies that the presence of the dark pool reduces the welfare of the market.
The proof is available in Appendix B.

Theorem 4. Suppose µ = 0 and 0 < V ≤ 1. Suppose the transaction cost δ satisfies
δ ≥ δNODP, and λ is a corresponding partial equilibrium. Then, the welfare under λ is less
than or equal to that in the NODP competitive equilibrium with no trade in the dark pool.

Taken together with Theorem 3, we obtain the following result:

Corollary 3. Suppose µ = 0 and 0 < V ≤ 1. The welfare under any competitive equilibrium
with a positive fill rate in the dark pool is less than or equal to the welfare of the NODP
equilibrium with no trade in the dark pool.

We briefly describe the intuition behind the preceding result. Note that as emphasized
above, welfare is improved if more intrinsic buyers hold the security (and symmetrically, more
intrinsic sellers have sold the security). Now observe that the transaction cost in the open
market rises with the introduction of a dark pool; this effect leads to fewer intrinsic buyers
buying in the open market, a negative welfare effect. The only potential countervailing force
is that some of these traders are enticed to buy in the dark pool instead: if that volume is
sufficient, welfare may actually rise. However, in equilibrium, traders in the dark pool suffer
an adverse selection cost; and we show that this is cost is sufficient to actually cause a net
reduction in the fraction of intrinsic buyers ultimately holding the security.

5.3. High levels of speculation and high idiosyncratic value

The preceding section illustrates that the introduction of a dark pool can actually decrease
welfare. In this section we illustrate that this result may not obtain over all parameter
values. In particular, we show that when the mass of speculators µ is high enough and the
idiosyncratic value V is high, there exist competitive equilibria involving trade in the dark
pool that attain a higher welfare than that in the competitive equilibrium NODP with no
trade the dark pool.
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Throughout this section, we assume that the idiosyncratic value V is at its maximum
V = 1. We begin by showing that, for all large enough µ, there exists a competitive
equilibrium where both the intrinsic traders and the speculators trade in both the dark pool
and the open market:

Theorem 5. Suppose V = 1. For all large enough µ ≥ 0, there exists a competitive equilib-
rium, denoted by BOTH, where both the intrinsic traders and the speculators trade in both
the dark pool and the open market; the equilibrium fill rate fBOTH(µ) and the equilibrium
transaction cost δBOTH(µ) in this equilibrium satisfy:10

fBOTH(µ) = C1√
µ

+ o

(
1
√
µ

)
, δBOTH(µ) = 1− C2√

µ
+ o

(
1
√
µ

)
,

where C1, C2 > 0 are constants.

For comparison, we have the following result for the NODP equilibrium:

Lemma 4. Suppose V = 1. Then, for any µ ≥ 0, the transaction cost δNODP(µ) and the
welfare wNODP(µ) in the NODP competitive equilibrium with no trade in the dark pool are
given by

δNODP(µ) = 1− 1√
1 + µ

, wNODP(µ) = 1 + 1√
1 + µ

.

Finally, we compare the resulting welfare wBOTH(µ) in the BOTH equilibrium with wNODP(µ),
the welfare in the NODP equilibrium without trade in the dark pool:

Theorem 6. Suppose V = 1. Then, we have

lim
µ→∞

wBOTH(µ)
wNODP(µ) = 7

4 .

The preceding theorem states that, when the mass of speculators is large and the idiosyn-
cratic value V is high, the presence of the dark pool improves the welfare of the market. To
see the intuition behind this result, consider the traders strategies in the limit when µ =∞.
In the NODP equilibrium, all intrinsic buyers with signals above s = 0.5 and all intrinsic
sellers with signals below s = 0.5 trade with the market maker in the open market. This
leads to a welfare of 1. On the other hand, in the BOTH equilibrium, in addition to these

10In what follows, given functions f, g, q : R+ → R+, we say that f = g + o(q) if lim supµ→∞ |f(µ) −
g(µ)|/q(µ) = 0, i.e., if the difference between f and g converges to 0 at a faster rate than q. Similarly, we
say that f = g + Θ(q) if 0 < lim infµ→∞ |f(µ) − g(µ)|/q(µ) ≤ lim supµ→∞ |f(µ) − g(µ)|/q(µ) < ∞, i.e., if
the difference between f and g converges to 0 at the same rate than q.
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preceding trades, all intrinsic buyers below the signal s = 0.5 enter buy orders in the dark
pool and all intrinsic sellers above the signal s = 0.5 enter sell orders in the dark pool. When
σ = 1, all the intrinsic sellers orders’ get filled with the buy orders from the speculators, and
essentially no intrinsic buyers’ orders get filled. (The situation is symmetric when σ = −1.)
These trades in the dark pool contribute an additional 3/4 to the welfare in the BOTH
equilibrium.

Note that as µ → ∞, Theorem 5 and Lemma 4 reveal that the transaction cost in the
open market scales as 1 − Θ(1/√µ), for the BOTH and the NODP equilibria. In other
words, the introduction of the dark pool does not materially alter the transaction cost in
the open market. As a result, informally, we should expect that at best the introduction
of the dark pool can only induce additional intrinsic traders to participate (which would
increase welfare). However, traders may not enter, because the fill rate in the dark pool
is very low (i.e., the adverse selection cost is very high). As long as traders have high
enough intrinsic value (i.e., V = 1), however, traders of weak-to-moderate signals will find it
advantageous to enter the dark pool and trade. This leads to the welfare increase observed
in Theorem 6. Informally, this suggests that the welfare increase we observe is dependent on
both the presence of a sufficiently large mass of speculators, and a sufficiently high intrinsic
value for trade. Indeed, we investigate this phenomenon numerically in Section 6, and our
results confirm this intuition.

6. Computational experiments
In this section, we augment our analytical results with supporting numerical evidence from
extensive equilibrium computations over a broad parameter regime. We begin by describing
the numerical approach, and provide illustrations of the threshold strategies of the traders.
We then provide three sets of numerical results for the comparative statics of competitive
equilibria. The first set studies the benchmark case with no speculators, and, in particular,
provides comparative statics with respect to the intrinsic value V ; as our theoretical results
in Section 5.2 demonstrate, in this regime introduction of the dark pool causes welfare to
fall. The second set studies the effect of increasing the mass of speculators µ, when traders
have a high intrinsic value for trade; as the results in Section 5.3 suggest, in this regime,
welfare increases for sufficiently large values of µ. Finally, the last set of results investigates
the regime where the mass of speculators is nonzero, but traders have moderate intrinsic
value for trade. In these results, the introduction of the dark pool leads to a fall in welfare—
suggesting that both a sufficiently large mass of speculators and a high intrinsic value for
trade must be present for a dark pool to increase welfare.
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6.1. Numerical approach

Recall that for any fixed values of the the mass of speculators µ, the intrinsic value V , and
the transaction cost δ, a partial equilibrium with symmetric strategy profile is a strategy
profile in the class H(δ) that is the fixed point of the best response map Λ[µ, V, δ; ·] — here,
we make explicit the dependence of Λ[·] on the model parameters. Since the class of strategy
profiles H(δ) is parameterized by a single (buy) fill rate parameter f ∈ [0, 1], we can search
numerically for all partial equilibria with symmetric strategy profile by searching over the
possible values for the fill rate in the interval [0, 1]. In particular, we iterate over a discrete
set F ⊆ [0, 1] of values for the fill rate f , and compute the resulting fill rate parameter of
the best response strategy profile Λ[λf,δ]. We store all values of f for which the absolute
value of the difference between f and the fill rate parameter of Λ[λf,δ] is below a small
threshold ε1. This set of values of f then identifies approximately all partial equilibria with
symmetric strategy profile for any transaction cost δ ∈ [0, 1] and for given values of the
model parameters µ and V .

We perform another numerical search to identify those values of δ ∈ [0, 1] that lead to
zero profit for the market maker in at least one of the corresponding partial equilibria. More
precisely, we iterate over a discrete set D ⊆ [0, 1] of values for the transaction cost δ ∈ [0, 1],
and for each of the corresponding partial equilibria computed earlier, we compute the market
maker’s profit. We store those values of (δ, f) of the partial equilibria for which the absolute
value of the market maker’s expected profit is below a small threshold ε2. The value of
the transaction cost δ along with corresponding partial equilibrium fill rate f together then
identify a competitive equilibrium for the given values of the model parameters, up to a
small numerical tolerance.11

Note that in the numerical results that follow, for a given set of model parameters,
there are multiple equilibria. We distinguish between the equilibria as follows: the NODP
equilibrium, which involves no trade in the dark pool, is labeled “NODP”. The equilibria with
trade in the dark pool vary along continuous curves as model parameters are change. We
label these equilibria as belonging to one of two branches, in order to clarify the relationship
between the sets of equilibria in different subfigures.

6.2. The benchmark case: No speculators

In Figure 2, we consider, for different idiosyncratic values V ∈ (0, 1], the benchmark case
of no speculation, i.e., µ = 0. In Figure 2(b), we plot the adverse selection cost faced by

11We make the following specific choices for the thresholds and the discrete sets for our numerical results:
F = {k/10000 : k = 0, 1, · · · , 10000}, D = {k/1000 : k = 0, 1, · · · , 1000}, ε1 = 10−3, and ε2 = 4 · 10−4.
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an uninformed trader (s = 0.5) in the dark pool in the different competitive equilibria with
trade in the dark pool, for different values of the idiosyncratic value V . In Figures 2(a)
and 2(c), we plot respectively the transaction cost in the open market and the welfare, in
different competitive equilibria, for different values of the idiosyncratic value V . Note that
for values of V below approximately 0.42, there are no competitive equilibria with trade in
the dark pool. Furthermore, given any equilibrium with no trade in the open market, as the
transaction cost increases, equilibrium is maintained. Hence, we have the shaded region in
the upper right corner of Figure 2(a).

First and foremost, we see from these figures that, for a given V , the transaction cost
in any competitive equilibria with trade in the dark pool is higher than that in the NODP
equilibrium. Similarly, for a given V , the welfare in an equilibrium with trade in the dark
pool is lower than that in the NODP equilibrium. This is consistent with our analytical
results in Section 5.2.

Second, from Figure 2(b), we see that the adverse selection cost in the dark pool decreases
as the idiosyncratic value V increases. Furthermore, we see that for values of V greater than
approximately 0.6, there are two sets of competitive equilibria with trade in the dark pool.
In the lower set of equilibria (the first branch), the adverse selection cost decreases to zero as
V increases to one. In the upper set of equilibria (the second branch), although the adverse
selection cost decreases to a positive value approximately equal to 0.33, Figure 2(d) reveals
that the volume of orders in the dark pool converges to zero.

These figures reveal the intricate connection between transaction costs, adverse selection
costs, and welfare. In particular, because the dark pool leads the transaction cost in the open
market to increase, and the adverse selection cost is significant, welfare falls. Notice that
the relative decrease in welfare is lower as V → 1; this results because both the transaction
cost and the welfare in the competitive equilibria with trade in the dark pool approach that
in the NODP equilibrium. As intrinsic traders become more highly motivated to trade, the
welfare losses incurred by introduction of the dark pool are naturally mitigated.

6.3. The market with speculators: The case of high idiosyncratic value

Next, we turn our attention to the market with speculators. We first consider, in Figure 3, the
case of high idiosyncratic value, with V = 0.9. In Figure 3(b), we plot the adverse selection
cost faced by an uninformed trader (s = 0.5) in the dark pool in different competitive
equilibria with trade in the dark pool, for different values of the mass of speculators µ. In
Figures 3(a) and 3(c), we plot respectively the transaction cost in the open market and the
welfare, in different competitive equilibria, for different values of the mass of speculators µ.
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(a) Transaction cost. (b) Adverse selection in the dark pool.

(c) Welfare. (d) Volume of orders in dark pool.

(e) Total volume of orders. (f) Fraction of order volume in dark pool.

Figure 2: Competitive equilibria in the benchmark case with no speculators (µ = 0).
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As before, given any equilibrium with no trade in the open market, as the transaction cost
increases, equilibrium is maintained. Hence, we have the shaded region in the upper left
corner of Figure 3(a).

From Figure 3(c), we see that for µ greater than approximately 3, there exists a compet-
itive equilibrium with trade in the dark pool (in the first branch) such that the welfare is
higher as compared to the NODP equilibrium. This observation expands on the asymptotic
analytical results in Section 5.3; in this case, µ is large but finite, and V is high, but strictly
less than one, and the welfare increases on introduction of the dark pool.

If we try to understand the roots of this effect, we are led to study the transaction cost
in the open market (cf. Figure 3(a)) and the adverse selection cost on introduction of the
dark pool (cf. Figure 3(b)). We have two main observations. First, on the first branch, the
transaction cost in the open market is higher with the presence of the dark pool when µ

is low, but eventually behaves similarly to (and is slightly lower than) the transaction cost
in the open market without the dark pool. Second, the adverse selection cost is significant
throughout the range of µ we consider. However, because V is large, intrinsic buyers and
sellers are still motivated to trade. Since the dark pool does not materially impact the
transaction costs in the open market, the presence of the dark pool merely acts as another
venue for intrinsic buyers and sellers to trade, resulting in welfare gains. This matches the
analytical findings in Section 5.3.

6.4. The market with speculators: The case of moderate idiosyncratic
value

We conclude by considering a regime where the mass of speculators is nonzero, but the id-
iosyncratic value V is moderate; for concreteness we use the value V = 0.6, but our results
remain qualitatively similar for other values of V . In Figure 4(b), we plot the adverse selec-
tion cost faced by an uninformed trader (s = 0.5) in the dark pool in different competitive
equilibria with trade in the dark pool, for different values of the mass of speculators µ. In
Figures 4(a) and 4(c), we plot respectively the transaction cost in the open market and the
welfare, in different competitive equilibria, for different values of the mass of speculators µ.

From these figures, we see that for large enough mass of speculators µ, there is no
competitive equilibrium with trade in the dark pool. This observation supports our assertion
that, in markets with high levels of speculation, for the welfare gains from the presence of
dark pool to be realized, the intrinsic traders must have significant outside incentives to
trade. In the absence of this effect, at best the dark pool will not be a sufficiently attractive
venue for trade to raise welfare; and at worst, it will lead to a loss of welfare, as in Section 5.2.
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(a) Transaction cost. (b) Adverse selection in the dark pool.

(c) Welfare. (d) Volume of orders in dark pool.

(e) Total volume of orders. (f) Fraction of order volume in dark pool.

Figure 3: Competitive equilibria with speculators, for high idiosyncratic value (V = 0.9).
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(a) Transaction cost. (b) Adverse selection in the dark pool.

(c) Welfare. (d) Volume of orders in dark pool.

(e) Total volume of orders. (f) Fraction of order volume in dark pool.

Figure 4: Competitive equilibria with speculators, for moderate idiosyncratic value (V = 0.6).
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7. Conclusion
Our main goal in this paper is to analyze the welfare implications of operating a dark pool
alongside traditional lit markets. We consider a stylized model of a competitive market where
traders have heterogeneous fine-grained private information about the short-term future price
of the asset. The main conclusion is that in reasonable parameter regimes, the introduction
of a dark pool can decrease market welfare. This welfare decrease can be attributed primarily
to the fact that in equilibrium, the orders in the dark pool face an implicit transaction cost in
the form of adverse selection. We show that this adverse selection occurs despite the fact that
highly informed traders trade in the open market, whereas the dark pool is populated with
orders from relatively moderately informed traders. This implicit transaction cost, combined
with a higher transaction cost in the open market, leads to a decrease in the overall welfare
of the market.

Our analysis also shows the existence of parameter regimes where the presence of dark
pool can be welfare improving, in particular, when the level of speculation is high, and
when intrinsic buyers and sellers have sufficiently high idiosyncratic value for the asset.
However, as noted in our welfare analysis, the welfare gains obtain in this regime precisely
because the dark pool does not significantly raise the transaction cost in the open market;
thus it functions as a complementary venue of trade for highly motivated intrinsic traders.
This finding is important because it is in contrast to empirical findings that suggest that
the introduction of a dark pool typically raises transaction costs in the lit market (e.g.,
Comerton-Forde and Putniņš, 2015; Degryse et al., 2014; Foley et al., 2012). Our model
suggests that in parameter regimes where transaction costs in the open market increase
on introduction of a dark pool, welfare decreases. As a result, our paper finds that the
regulators have a legitimate concern about the potentially negative welfare implications of
the introduction of dark pools alongside traditional lit markets.
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A. Proofs
Proof of Lemma 1. Suppose the strategy profile λ is symmetric. Then, it follows directly
from the definition that, for any v ∈ {0,±V } and any s ∈ [0, 1], we have s ∈ Θλ

v,(DP,B) if and
only if 1− s ∈ Θλ

−v,(DP,S). Thus, we obtain for all v ∈ {0,±V } and σ ∈ {±1},

Fσ(Θλ
v,(DP,B)) = Fσ(1−Θλ

−v,(DP,S)) = F−σ(Θλ
−v,(DP,S)).

Here, for any set A, we have defined 1 − A , {1 − x : x ∈ A}. The second line follows
from the symmetry of the signal structure. In particular, we have f1(s) = f−1(1− s) for all
s ∈ [0, 1], where fσ is the density of Fσ. This implies that for any set A, Fσ(A) = F−σ(1−A).

39

http://www.sciencedirect.com/science/article/pii/S1386418113000128
http://www.sciencedirect.com/science/article/pii/S1386418113000128
http://arxiv.org/abs/1410.1147
http://arxiv.org/abs/1410.1147
http://ssrn.com/paper=1521494


Thus, from (9), we obtain

mλ
B(σ) =

∑
v∈{±V }

Fσ(Θλ
v,(DP,B)) + µFσ(Θλ

0,(DP,B))

=
∑

v∈{±V }
Fσ(1−Θλ

−v,(DP,S)) + µFσ(1−Θλ
0,(DP,S))

=
∑

v∈{±V }
F−σ(Θλ

−v,(DP,S)) + µF−σ(Θλ
0,(DP,S))

= mλ
S(−σ).

The last equality follows from (10). Thus, when the strategy profile is symmetric and mλ
B(σ)

is positive for all σ, the fill rates, as defined in (11), satisfy

φλB(σ) = φλS(−σ) = min
(

1, m
λ
S(σ)

mλ
B(σ)

)
, for σ ∈ {−1, 1}.

From this, (12) and (13), it is straightforward to verify that

uλ(OM,B)(v, s) = 2s− 1 + v − δ

= 1− 2(1− s)− (−v)− δ

= uλ(OM,S)(−v, 1− s).

uλ(DP,B)(v, s) = s(1 + v)φλB(1) + (1− s)(−1 + v)φλB(−1)

= s(1 + v)φλS(−1) + (1− s)(−1 + v)φλS(1)

= −(1− s)(1− (−v))φλS(1)− s(−1 + (−v))φλS(−1)

= uλ(DP,S)(−v, 1− s).

Furthermore, we have uN(v, s) = 0 = uN(−v, 1 − s). Thus, while computing the best
response strategies, the decision problem faced by a trader with idiosyncratic value v at
signal s is equivalent to that of a trader with idiosyncratic value −v at signal 1− s, with the
qualification that whenever the former buys, the latter sells (and vice versa). This suffices
to conclude that the best response strategy profile Λλ is symmetric. �

Proof of Theorem 1. Consider a symmetric strategy profile λ such that φλB(−1) = φλS(1) =
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f < 1 and φλB(1) = φλS(−1) = 1. The traders’ expected utility can be simplified as

uλOM,B(v, s) = 2s− 1 + v − δ,

uλOM,S(v, s) = 1− 2s− v − δ,

uλDP,B(v, s) = s(1 + v) + (1− s)f(−1 + v)

= s(1 + v + f(1− v))− f(1− v),

uλDP,S(v, s) = sf(−1− v) + (1− s)(1− v)

= 1− v − s (f(1 + v) + 1− v) ,

uλN(v, s) = 0.

From this, it is straightforward to conclude that

Λλ
v(s) =

(DP,B) for s ≥ 1−v
2 ;

(DP, S) for s < 1−v
2 .

This implies that, under the strategy profile γ , Λλ, the mass of buy orders in the dark pool
when σ = 1 satisfies

mγ
B(1) = F1

[1− V
2 , 1

]
+ F1

[1 + V

2 , 1
]

+ µF1

[1
2 , 1

]
= F−1

[
0, 1 + V

2

]
+ F−1

[
0, 1− V

2

]
+ µF−1

[
0, 1

2

]
≥ F1

[
0, 1 + V

2

]
+ F1

[
0, 1− V

2

]
+ µF1

[
0, 1

2

]
= mγ

S(1).

Here, we have used in the second line the fact that Fσ(A) = F−σ(1−A) for any set A. The
inequality follows from the observation that for any x, we have F1[0, x] = x2 ≤ 1− (1−x)2 =
F−1[0, x].

Thus, we obtain mγ
B(1) ≥ mγ

s (1). Furthermore, as V ∈ (0, 1], we have mγ
B(1) > 0. Hence,

we obtain φγS(1) = min{1, m
λ
B(1)

mλS(1)} = 1. Since φλS(1) < 1, this shows that λ 6= γ = Λλ, and
hence λ is not a BNE.

This implies that any partial equilibrium (λ, δ) with symmetric strategy profile λ involv-
ing trade in the dark pool must satisfy 0 < φλB(1) = φλS(−1) ≤ 1 and φλB(−1) = φλS(1) =
1. �

Proof of Lemma 2. Let f ∈ [0, 1] and v ∈ {−V, 0, V }. It is straightforward to verify that
Θf,δ
v,(OM,B) ∩ Θf,δ

v,(DP,B) = ∅, Θf,δ
v,(OM,B) ∩ Θf,δ

v,N = ∅, and Θf,δ
v,(DP,B) ∩ Θf,δ

v,N = ∅. Similarly,
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Θf,δ
v,(OM,S) ∩ Θf,δ

v,(DP,S) = ∅, Θf,δ
v,(OM,S) ∩ Θf,δ

v,N = ∅, and Θf,δ
v,(DP,S) ∩ Θf,δ

v,N = ∅. Now, for any
s ∈ Θf,δ

v,(OM,B) ∩ Θf,δ
v,(OM,S) we have (1 − v − δ)/2 > s > (1 − v + δ)/2, which contradicts

δ ≥ 0. Also, for any s ∈ Θf,δ
v,(DP,B) ∩ Θf,δ

v,(DP,S) we have f(1 − v)/(f(1 − v) + 1 + v) > s >

(1−v)/(1−v+f(1+v)), which contradicts f ≤ 1. Similarly, for s ∈ Θf,δ
v,(OM,B)∩Θf,δ

v,(DP,S), we
have f(1− v)/(f(1− v) + 1 + v) > s > (1− v+ δ)/2, which contradicts δ(1− f) ≥ 0. Similar
argument shows that s ∈ Θf,δ

v,(DP,B) ∩Θf,δ
v,(OM,S) = ∅. This completes the proof of part (i).

Next, suppose λ is a symmetric strategy profile with φλB(1) = f ∈ (0, 1], and φλS(1) = 1.
Given this, it is straightforward to verify that a trader’s utility functions for different actions
are linear in s. This implies that the best response strategy profile Λ[λ] has a simple threshold
structure, where the thresholds correspond to those signal values where two (or possibly
more) actions yield the same expected utility. Finally, given the fill rate f = φλB(1), one
can verify through straightforward calculations that these thresholds correspond exactly to
those of λf,δ ∈ H(δ).

Finally, suppose the symmetric strategy profile λ has fill rates φλB(1) = φλB(1) = 0.
Since this can arise only if there is a zero mass of buy (or sell) orders in the dark pool,
the best response strategy Λ[λ] would never involve submitting an order to the dark pool,
and would only involve orders in the open market. Given this and using the fact that a
trader’s utility for different actions are linear in s, again we obtain through straightforward
computation that the best response strategy profile Λ[λ] has a threshold structure, with
thresholds corresponding exactly to that of λ0,δ ∈ H(δ). This completes the proof of part (ii).

�

Proof of Theorem 2. Consider a partial equilibrium λ involving symmetric strategies, with
trade in the dark pool. A trader with signal s ∈ [0, 1] submitting a buy order in the dark
pool, has the following belief about the value of the asset upon her order being filled:

P (σ = 1|s, buy fill) = P (buy fill|s, σ = 1) P (σ = 1|s)
P (buy fill|s, σ = 1) P(σ = 1|s) + P (buy fill|s, σ = −1) P(σ = −1|s)

= sP (buy fill|σ = 1)
sP (buy fill|σ = 1) + (1− s)P (buy fill|σ = −1) .

Here, the first equation follows from Bayes’ rule, the second equation follows from the fact
that the signal structure satisfies P(σ = 1|s) = s, and that conditional on σ, the event
I{buy fill} is independent of the signal s, as the trade in the dark pool is through uniform
matching.
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Now, by definition of the fill rates, we have P(buy fill|σ) = φλB(σ). This implies that,

P (σ = 1|s, buy fill) = sφλB(1)
sφλB(1) + (1− s)φλB(−1) .

Since E[σ|s] = 2s− 1, and E [σ|s, buy fill] = 2P (σ = 1|s, buy fill)− 1, we obtain

E [σ|s]− E [σ|s, buy fill] = 2s− sφλB(1)
sφλB(1) + (1− s)φλB(−1)

= 2s(1− s)
sφλB(1) + (1− s)φλB(−1)

(
φλB(−1)− φλB(1)

)
.

From Theorem 1, we know that in the partial equilibrium λ, the fill rates satisfy φλB(−1) = 1
and φλB(1) ≤ 1. Thus, we obtain that

E [σ|s]− E [σ|s, buy fill] ≥ 0, for all s ∈ [0, 1].

Thus all traders submitting a buy order in the dark pool suffer from adverse selection. The
proof for a trader submitting a sell order follows symmetrically.

Finally, we have

Adv(λ) , E
[
σ
∣∣∣s = 1

2 , buy fill
]
− E

[
σ
∣∣∣s = 1

2

]
= 1− φλB(1)

1 + φλB(1) .

From this expression, using Theorem 1, it is straightforward to show thatAdv(λ) = E
[
σ
∣∣∣s = 1

2 , sell fill
]
−

E
[
σ
∣∣∣s = 1

2

]
≥ 0. Furthermore, again from the expression, we obtain that Adv(λ) is a strictly

decreasing function of the buy (sell) fill rate φλb (1) = φλs (−1). �

Proof of Lemma 3. For any δ ∈ [0, 1], consider λ0,δ, the partial equilibrium involving trade
only in the open market. The market maker’s payoff in this partial equilibrium is given by,

u(δ, λ0,δ) = δ

(
1− F1

(
1− V + δ

2

)
+ F1

(
1− V − δ

2

)
+ 1− F1

(
1 + V + δ

2

)
+ F1

(
1 + V − δ

2

))

+ µδ

(
1− F1

(
1 + δ

2

)
+ F1

(
1− δ

2

))

−
(

1− F1

(
1− V + δ

2

)
− F1

(
1− V − δ

2

))
−
(

1− F1

(
1 + V + δ

2

)
− F1

(
1 + V − δ

2

))

− µ
(

1− F1

(
1 + δ

2

)
− F1

(
1− δ

2

))
.

Here, the first two lines represent the market maker’s revenue from trade, and the last two
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lines represent the cost due to adverse selection. These expressions for the revenue and the
adverse selection cost follow from the threshold structure of λ0,δ, and from the fact that
F1(x) = 1− F−1(1− x).

Using the fact that F1(x) = x2 for x ∈ [0, 1], F1(x) = 0 for x < 0 and F1(x) = 1 for
x > 1, we obtain that,

u(δ, λ0,δ) =


1
2 (V 2 − (1 + µ)(1− δ)2) for δ ≥ 1− V ;
1
2 (2V 2 − (2 + µ)(1− δ)2) for δ < 1− V .

From this, we observe that u(δ, λ0,δ) is strictly increasing in δ, and negative for δ < 1 − V .
Since u(1, λ0,1) = V 2/2 > 0, we obtain that there is a unique δ = δNODP(µ, V ) ∈ [0, 1) such
that u(δ, λ0,δ) = 0. Thus, there exists a unique competitive equilibrium (δ, λ0,δ) with trade
only in the open market, where δ = δNODP(µ, V ). From a straightforward calculation, we
obtain

δNODP(µ, V ) = 1− V√
1 + µ

. �

Our results in Section 5.2 make use of the following lemma, which states that for values
of the transaction cost lower than δNODP, there is always trade in the open market in any
partial equilibrium with a symmetric strategy profile.

Lemma 5. Let µ = 0 and V ∈ (0, 1]. For some fixed transaction cost δ, suppose there exists
a partial equilibrium in symmetric strategy profile with no trade in the open market. Then,
we must have δ ≥ δNODP(0, V ).

Proof of Lemma 5. For a fixed δ ∈ [0, 1], consider a partial equilibrium with symmetric
strategy profile λDP where there is no trade in the open market. The strategy λDP

+V (·) is given
by

λDP
+V (s) =


(DP,B) if s ≥ b−;

(DP, S) if s ≤ a;

N otherwise,

where

b− ,
1− V

1− V + f(1 + V ) , a ,
f(1− V )

f(1− V ) + 1 + V
,
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and f is the equilibrium fill rate, satisfying the equation

f = a2 + (1− b−)2

1− b2
− + 1− (1− a)2 . (19)

Now, observe that

a2

1− (1− a)2 = a

2− a ≤
a

1− a = f(1− V )
1 + V

≤ f.

Thus, since f satisfies (19), we must have

(1− b−)2

1− b2
−
≥ f.

This implies that

f ≤ 1− b−
1 + b−

= f(1 + V )
2(1− V ) + f(1 + V ) .

Since f > 0, we obtain,

(1 + V )(1− f) ≥ 2(1− V ) ≥ 1− V = δNODP(0, V ). (20)

Finally, observe that since in equilibrium there is no trade in the open market, an intrinsic
buyer with signal s = 1 must prefer submitting a buy order in the dark pool over buying in
the open market. Thus, we must have uOM,B(V, s) ≤ uDP,B(V, s) for s = 1. This implies that,
in equilibrium, we have, δ ≥ (1+V )(1−f). Thus, using (20), we obtain δ ≥ δNODP(0, V ). �

Proof of Theorem 3. From Lemma 5, we know that for δ < δNODP, there does not exists
a partial equilibrium in symmetric strategy profiles with no trade in the open market. We
prove the theorem by considering the two possible types of partial equilibrium for δ < δNODP,
and showing the statement holds for each case.

1. Case 1. A partial equilibrium with no trade in the dark pool. Note that when the
transaction cost is zero, in the partial equilibrium where there is no trade in the dark
pool, the market maker’s expected utility is negative, as she faces only the adverse
selection risk, and receives no revenue from the transaction charge. For any δ < δNODP,
consider the partial equilibrium λOM

δ where there is no trade in the dark pool. (Such
a partial equilibrium always exists.) It is straightforward to show that the market
maker’s utility in such a partial equilibrium is continuous in δ. If the market maker’s
expected utility at (δ, λOM

δ ) were positive, by the continuity of the market maker’s
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utility and the intermediate value theorem, there exists a value of the transaction cost
between 0 and δ, where the market maker’s expected utility, in the corresponding
partial equilibrium with no trade in the dark pool market, is zero. However, this
contradicts the uniqueness of the NODP competitive equilibrium with no trade in the
dark pool. Hence, the market maker’s expected utility in the partial equilibrium with
the symmetric strategy profile λOM

δ is negative.

2. Case 2. A partial equilibrium with trade in both the dark pool and the open market.
We split the market maker’s expected utility into four components: (1) that from
intrinsic buyers who buy in the open market; (2) from intrinsic buyers who sell in the
open market, (3) that from intrinsic sellers who sell in the open market; and (4) from
intrinsic sellers who buy in the open market. We show that for δ < δNODP, in a partial
equilibrium with trade in both the dark pool and the open market, each of the four
components of the market maker’s expected utility is negative. We focus on the first
two parts, as the analysis for the last two parts is symmetric.

First, consider a trader with signal s who buys the asset from the market maker.
From such a trade, the market maker’s utility is δ − 1 if σ = 1 and δ + 1 if σ = −1.
Thus, the contribution to the market maker’s expected utility from all intrinsic buyers
buying in the open market and having signal s is given by u(B, s) , (δ−1)f1(s)P(σ =
1) + (δ + 1)f−1(s)P(σ = −1) = δ − 2s + 1. (Here, fσ is the density of Fσ; we have
f1(s) = 2s and f−1(s) = 2(1 − s).) Similarly, the contribution to the market maker’s
expected utility from all intrinsic buyers selling in the open market having signal s is
given by u(S, s) , (δ+ 1)f1(s)P(σ = 1) + (δ−1)f−1(s)P(σ = −1) = δ−1 + 2s. (Same
expressions hold for intrinsic sellers.) Moreover, from these expressions, we see that
u(B, s) is strictly decreasing in s, and u(S, s) is strictly increasing in s.

Second, for δ < δNODP, consider the partial equilibrium with no trade in the dark pool,
λOM
δ . From the threshold structure of λOM

δ , the contribution to the market maker’s
expected utility from intrinsic buyers who buy in the open market under λOM

δ is given
by

E[u(B, s)I{λOM
δ,V (s) = (OM,B)}] = E[(δ − 2s+ 1)I{s > 1 + V − δ

2 }]

= 1
4(1 + V − δ)(δ + V − 1).

Similarly, the contribution to the market maker’s expected utility from intrinsic buyers
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who sell in the open market under λOM
δ is given by

E[u(S, s)I{λOM
δ,V (s) = (OM,S)}] = E[(δ + 2s− 1)I{s < 1− V − δ

2 }]

= 1
4(1− V − δ)(δ − V − 1).

(Symmetric expressions hold for intrinsic sellers.) Since δ < δNODP = 1 − V , we see
that the two quantities are negative.

Next, for δ < δNODP, let λ be a partial equilibrium involving trade in both the dark
pool and the open market. Under the strategy profile λ, the dark pool draws some
traders away from the open market, as compared to the partial equilibrium λOM

δ . From
the threshold structure of the strategies in a partial equilibrium, it is straightforward
to verify that all intrinsic buyers who buy in the open market under λOM

δ but enter
a buy order in the dark pool under λ have lower value of the signal than that of any
intrinsic buyer who buys in the open market in both the partial equilibria. Similarly,
all intrinsic buyers who sell in the open market under λOM

δ but enter a sell order in
the dark pool under λ have higher value of the signal than that of any intrinsic seller
who sells in the open market in both the partial equilibria. (Same statement holds
respectively for intrinsic sellers.) From the discussion in the preceding paragraph and
the strict monotonicity of u(B, s) and u(S, s), it follows that the contribution to the
market maker’s expected utility from intrinsic buyers who buy in the open market is
negative, and from those intrinsic buyers who sell in the open market is again negative.
(Same statements hold for intrinsic sellers.) As there is no other contribution to the
market maker’s expected utility, we obtain that the market maker’s expected utility is
negative under λ. �

Proof of Theorem 5. Suppose in such an equilibrium, the (buy) fill rate in the dark pool is
given by f > 0, and let δ be the transaction cost in the open market. For such an equilibrium
to exist, it must be the case that a speculator with a high enough signal (in particular, s = 1)
must be willing to trade in the open market as opposed to the dark pool. This implies that
we must have

δ < 1− f. (21)

Similarly, since there are some speculators that enter the dark pool, we must have the
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following condition between the thresholds of the speculators’ strategies:

1
1 + f

<
δ

1− f . (22)

Supposing these conditions hold between the transaction cost δ and the fill rate f , the best
response strategies of the traders are as follows: an intrinsic buyer with signal s > δ

2(1−f)

enters the open market, whereas all other intrinsic buyers enter buy orders in the dark pool.
Speculators with signals greater that δ/(1 − f) buy in the open market, those with signals
between 1/(1+f) and δ/(1−f) enter buy orders in the dark pool, those with signals between
1 − δ/(1 − f) and f/(1 + f) enter sell orders in the dark pool, those with signals less than
1 − δ/(1 − f) sell in the open market, and finally, the rest do not trade. (The strategy for
intrinsic sellers is symmetric.)

Under this strategy profile for the traders, the market maker’s expected utility is given
by

u(δ, f) = 2
(

1− δ

2(1− f)

)(
δ − δ

2(1− f)

)
+ 2µ

(
1− δ

1− f

)(
δ − δ

1− f

)
.

As the market maker sets the transaction cost such that her expected profit is zero, we obtain
the following expression for the transaction cost in terms of the buy fill rate:

δ = 2(1− f)
(

2f(1 + µ)− 1
2f(1 + 2µ)− 1

)
. (23)

Next, note that, in equilibrium, the fill rate f is given by the ratio of the mass of sell orders
to that of buy orders in the dark pool, when σ = 1. Thus, we obtain

f =
µ
((

f
1+f

)2
−
(
1− δ

1−f

)2
)

+
(

1−
(
1− δ

2(1−f)

)2
)

µ
((

δ
1−f

)2
−
(

1
1+f

)2
)

+
(

δ
2(1−f)

)2

Substituting the value of δ from (23), canceling non-zero factors, and simplifying, we obtain
that, in equilibrium, the fill rate must satisfy g(f, µ) = 0, where g(f, µ) is defined as follows:

g(f, µ) , f 4
(
16µ3 + 36µ2 + 24µ+ 4

)
− f 3

(
8µ2 + 12µ+ 4

)
− f 2

(
20µ2 + 20µ+ 3

)
+ f (8µ+ 4) + µ− 1.

We observe that g(1/√µ, µ) < 0 and g(2/√µ, µ) > 0 for large enough µ. Thus, for large
enough µ, there exists a root f ∈ [1/√µ, 2/√µ] of the polynomial g(·, µ).
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To conclude there exists an equilibrium, we must verify that the root f of the polynomial
g(·, µ) and the corresponding transaction cost in (23) satisfy the necessary conditions in (21)
and (22). This is readily verified to be true for all large enough µ. Thus, for all large enough
µ, there exists a competitive equilibrium, denoted by BOTH, where both the intrinsic traders
and the speculators trade in both the dark pool and the open market.

Let fBOTH(µ) denote the buy fill rate, and δBOTH(µ) denote the transaction cost in the
open market in the BOTH equilibrium. Since fBOTH(µ) ∈ [1/√µ, 2/√µ] for all large enough
µ, we let t(µ) = µf 2

BOTH(µ) for t(µ) ∈ [1, 4]. Choose any subsequence µn → ∞ such that
limn→∞ t(µn) exists, and let the limit be equal to t. As we have g(fBOTH(µn), µn) = 0 for all
large enough µn, on taking limits as n→∞ we obtain that t satisfies

16t2 − 20t+ 1 = 0.

As t(µn) ∈ [1, 4] for each µn, this implies t = 5+
√

21
8 . Since any converging subsequence has

the same limit, we obtain that t(∞) = limµ→∞ µf
2
BOTH(µ) exists, and satisfies t(∞) = 5+

√
21

8 .
This implies that, for all large enough µ, we have,

fBOTH(µ) =
√
t(∞)
µ

+ o

(
1
µ

)
.

Finally, substituting for fBOTH(µ) in the expression for the transaction cost (23), we obtain

δBOTH(µ) = 1−
(

1 + 1
4t(∞)

)√
t(∞)
µ

+ o

(
1
µ

)
. �

Proof of Lemma 4. Suppose V = 1 and µ ≥ 0. From the proof of Lemma 3, we obtain
that the transaction cost in the NODP equilibrium satisfies

δNODP(µ) = 1− 1√
1 + µ

.

Given this, the traders’ strategies in equilibrium are as follows: all intrinsic buyers with
signals s ≥ δNODP(µ)/2 buy at the open market; all intrinsic sellers with signals s ≤ 1 −
δNODP(µ)/2 sell at the open market; speculators with signals s ≥ (1 + δNODP(µ))/2 buy at
the open market; speculators with signals s ≤ (1 − δNODP(µ))/2 see at the open market;
and all other traders do not trade. Using the structure of the equilibrium strategies and the
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expression for δNODP(µ), we obtain that the welfare in this equilibrium is given by

wNODP(µ) = 1−
(
δNODP(µ)

2

)2

+
(

1− δNODP(µ)
2

)2

= 1 + 1√
1 + µ

.

Here the first line follows from the fact that, when σ = 1, the mass of intrinsic buyers who
buy at the open market is given by the first two terms, and the mass of intrinsic sellers
who sell at the open market is given by the third term. (The expressions are symmetrically
interchanged when σ = −1.) This completes the proof. �

Proof of Theorem 6. The welfare in the BOTH equilibrium is given by

wBOTH(µ) = 1 +
1−

(
δBOTH(µ)

2(1− fBOTH(µ))

)2
+ fBOTH(µ)

(
δBOTH(µ)

2(1− fBOTH(µ))

)2

= 7
4 + 1

4

(
1 + 1

2t(∞)

)√
t(∞)
µ

+ o

(
1
µ

)
.

Here the first two terms in the first equality follow from the fact that, when σ = 1, all
intrinsic sellers sell the asset, and all intrinsic buyers in the open market buy the asset. The
third term in the first equality follows from the fact that only a fraction f(µ) of the intrinsic
buyers in the dark pool end up holding the asset, when σ = 1. All such traders contribute
V = 1 to the welfare. (The case when σ = −1 is symmetric.) We obtain the second line
after substituting for fBOTH(µ) and δBOTH(µ) using expressions from the proof of Theorem 5.

Since, for large enough µ, we have wNODP(µ) = 1 + 1√
1+µ , the result in the theorem

statement follows. �

B. Welfare comparisons for the benchmark case (µ = 0)
In the following, we assume that the mass of speculators µ = 0 and V ∈ (0, 1]. For δ = δNODP,
no intrinsic buyer sells in the open market. Thus, the strategy of an intrinsic buyer can be
represented as follows:
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do not
trade

buy in
open market

b
s = 0 s = 1

Without DP

Intrinsic
buyer

It is straightforward to verify that b = (1− V + δNODP)/2 = 1− V. For δ ≥ δNODP, in any
partial equilibrium involving the dark pool, the thresholds for an intrinsic buyer’s strategy
can be represented as follows:

sell in
dark pool

do not
trade

buy in
dark pool

buy in
open market

a b− b+
s = 0 s = 1

With DP

Intrinsic
buyer

The thresholds for an intrinsic buyer’s strategy are given by

a = f(1− V )
f(1− V ) + 1 + V

, b+ = min
{

max
{

δ

(1− f)(1 + V ) ,
1− V + δ

2

}
, 1
}
,

b− = min
{

1− V
f(1 + V ) + 1− V , b+

}
. (24)

These thresholds satisfy one of two conditions:

Case (i) b ≤ b− ≤ b+; OR Case (ii) b− < b ≤ b+.

In Case (i), it is straightforward to see that the welfare is lower, as fewer intrinsic buyers
end up holding the security. Hence, hereafter we will focus on Case (ii). From b− < b, we
obtain that the fill rate has to satisfy f > V/(1 + V ).

In this case, the change in the welfare from the introduction of the dark pool can be
written as

Change in welfare = F1(b, b+)(−V ) + F1(b−, b+)f(+V ) + F1(0, a)(−V )

+ F−1(b−, b)(+V ) + F−1(0, a)f(−V ). (25)

Here the first line corresponds to the net change in welfare when σ = +1, and the second
line corresponds to the case when σ = −1. The first term on the first line represents those
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traders who initially were trading in the open market, but now have decided to enter the
dark pool. By forgoing trading in the open market, these traders each contribute a welfare
loss of −V . The mass of such traders is F1(b, b+). This is offset by the trade in the dark
pool: each buyer in the dark pool contributes a welfare gain of +V with probability f equal
to the fill rate. The mass of such buyers is F1(b−, b+). Finally, we have those intrinsic buyers
who were initially not trading, but now have decided to enter an sell order in the dark pool.
As σ = 1, these orders are filled with probability one, and the mass of such orders is F1(0, a).
Each such order contributes a welfare loss of −V . The terms on the second line are obtained
in a similar manner.

Rewriting (25), we obtain that the change in welfare is equal to

V (−F1(b, b+) + F−1(b−, b)− F1(0, a)) + V f (F1(b−, b+)− F−1(0, a)) .

Using the fact that F1(x, y) = y2 − x2 and F−1(x, y) = (1− x)2 − (1− y)2, we obtain

Change in welfare

= V (F1(b)− F1(b+) + F−1(b)− F−1(b−)− F1(a)) + V f (F1(b+)− F1(b−)− F−1(a))

= V
(
b2 − b2

+ + 1− (1− b)2 − 1 + (1− b−)2 − a2
)

+ V f
(
b2

+ − b2
− − 1 + (1− a)2

)
= V

((
−b2

+ + 2b− 2b− + b2
− − a2

)
+ f

(
b2

+ − b2
− − 2a+ a2

))
.

Next, observe that in a partial equilibrium, the (buy) fill rate f is given by

f ,
mass of sell orders
mass of buy orders = F1(0, a) + F−1(b−, b+)

F−1(0, a) + F1(b−, b+) = a2 + 2b+ − 2b− − b2
+ + b2

−
2a− a2 + b2

+ − b2
−

.

Thus, letting ∆W , (change in welfare)/V , we obtain the change in welfare is given by

∆W = −b2
+ + 2b− 2b− + b2

− − a2 +
(
a2 + 2b+ − 2b− − b2

+ + b2
−

2a− a2 + b2
+ − b2

−

)
(b2

+ − b2
− − 2a+ a2).

Observing from (24) that b, a, b−, b+ are functions of V, f, δ, we define the following functions,

Q(V, f, δ) , −b2
+ + 2b− 2b− + b2

− − a2,

R(V, f, δ) , b2
+ − b2

− − 2a+ a2,

N(V, f, δ) , a2 + 2b+ − 2b− − b2
+ + b2

−

D(V, f, δ) , 2a− a2 + b2
+ − b2

−. (26)
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In a partial equilibrium, the fill rate satisfies f = N/D. Moreover, taken as a function of
V, f, δ, we have ∆W = Q+ (N/D)R for all V ∈ [0, 1], f ∈ (V/(1 + V ), 1] and δ ≥ δNODP.

Theorem 7. Let µ = 0. For any δ ≥ δNODP, the welfare in any partial equilibrium involving
the dark pool is lower than that in the competitive no-dark-pool equilibrium.

Proof. Since if b− ≥ b, fewer intrinsic buyers end up holding the security, hereafter we
assume that b− < b. Thus, from Lemma 6, we have Q + R ≤ 0. Now, if Q ≤ 0, we obtain
that in any partial equilibrium,

∆W = Q+ (N/D)R ≤ max{Q+R,Q} ≤ 0,

where the first inequality follows from the fact that, in any partial equilibrium, the fill rate
N/D ∈ [0, 1], and the last inequality follows from Lemma 6. Thus, for the rest of the proof,
we further assume that Q > 0.

Next, as we assume b− < b, this implies f > V/(1 + V ). Further, since Q > 0, from
Lemma 7, we obtain that b+ < 1. This in turn implies that

1 > b+ = δ

(1− f)(1 + V ) ≥
δNODP

(1− f)(1 + V ) = 1− V
(1− f)(1 + V ) , (27)

from which we obtain that f < 2V/(1 + V ). These two bounds allow us to write f =
V (1 + u)/(1 + V ) for some u ∈ (0, 1). From the definition of the thresholds, (24), we have

a = f(1− V )
f(1− V ) + 1 + V

= V (1− V )(1 + u)
1 + 3V + uV − uV 2 ,

b− = 1− V
f(1 + V ) + 1− V = 1− V

1 + uV
, (28)

and from (27), we obtain the following lower-bound on b+:

b+ ≥
1− V

(1− f)(1 + V ) = 1− V
1− uV . (29)

From Lemma 8, we obtain an upper-bound on b+, namely, b+ < 2b − b− − 2a2 + a. Taken
together, we write b+ as

b+ = (1− t)
( 1− V

1− uV

)
+ t

(
2b− b− − 2a2 + a

)
for some t ∈ [0, 1). Using the preceding relations, we can now express ∆W as a function of
V ∈ (0, 1], u ∈ (0, 1) and t ∈ [0, 1). However, we can further restrict the domain of V, u. To
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see, note that we have

1− V
1− uV ≤ b+ < 2b− b− − 2a2 + a.

Using the expressions for b− and a from (28), and the fact that b = 1− V , we obtain

1− V
1− uV < 2(1− V )− 1− V

1 + uV
− 2 V 2(1− V )2(1 + u)2

(1 + 3V + uV − uV 2)2 + V (1− V )(1 + u)
1 + 3V + uV − uV 2 .

Rearranging and canceling non-negative factors, we obtain

0 ≥ u4(2V 5 − 3V 4 + V 3) + u3(−9V 4 + 8V 3 + 5V 2) + u2(2V 4 + 19V 3 + 12V 2 + 3V )

+ u(−3V 2 − 1)− 2V 2 − V − 1.

In Lemma 9, we show that this implies that V ≤ min(37−30u
25 , 1). Thus, it suffices to show

that ∆W ≤ 0 for u ∈ (0, 1), 0 < V ≤ min(37−30u
25 , 1) and t ∈ [0, 1). Furthermore, since

D > 0 in any partial equilibrium with trade in the dark pool, this is equivalent to showing
QD +NR ≤ 0 for the same values of u, V and t.

We show this by splitting the analysis into two cases, namely when (1) u ∈ (0, 2/5] and
V ∈ [0, 1]; and (2) u ∈ (2/5, 1) and 0 < V ≤ 37−30u

25 .
Case 1. u ∈ (0, 2/5] and V ∈ (0, 1]: We make the following substitution:

u = 2
5(1 + x2) , V = 1

1 + y2 , t = 1
1 + z2 ,

where x, y, z ∈ R3. On making the substitution, and canceling non-negative factors from
the denominator, we are left with a polynomial in x2, y2, and z2 with all monomial terms
non-positive. From this, we obtain that QD +NR is non-positive.

Case 2. u ∈ (2/5, 1) and 0 < V ≤ 37−30u
25 : In this case, we make the following substitution:

u = 1− 3
5(1 + x2) , V = 1

1 + y2

(37− 30u
25

)
, t = 1

1 + z2 ,

where x, y, z ∈ R3. Again, on making the substitution, and canceling non-negative factors
from the denominator, we are left with a polynomial in x2, y2, and z2 with all monomial
terms non-positive. From this, we obtain that QD +NR is non-positive. �

The following lemma is useful for proving the main result.

Lemma 6. For δ ≥ δNODP, in any partial equilibrium involving the dark pool with b− < b, we
have Q+R ≤ 0.
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Proof. From (26), we have Q+R = 2b− 2b− − 2a. Since, b− < b, we have from (24),

b− = 1− V
f(1 + V ) + 1− V , a = f(1− V )

f(1− V ) + 1 + V
, b = 1− V.

Thus, we get

Q+R = 2(1− V )
(

1− 1
f(1 + V ) + 1− V −

f

f(1− V ) + 1 + V

)

= − 2V (1− V )(1− f)2(1 + V )
(f(1 + V ) + 1− V )(f(1− V ) + 1 + V )

≤ 0. �

Lemma 7. For δ ≥ δNODP, in any partial equilibrium involving the dark pool with b− < b and
b+ = 1, we have Q ≤ 0.

Proof. Using the definition of Q from (26) for b+ = 1, we have

Q , −b2
+ + 2b− 2b− + b2

− − a2,

= −1 + 2b− 2b− + b2
− − a2,

= 2b− 2 + (1− b−)2 − a2,

= −2V + f 2(1 + V )2

(f(1 + V ) + 1− V )2 −
f 2(1− V )2

(f(1− V ) + 1 + V )2

= −2V (f 4(1− V 2)2 + 4f 3V 2(1− V 2) + 2f 2(1 + 3V 4) + 4f(1− V 4) + (1− V 2)2)
(f(1 + V ) + 1− V )2(f(1− V ) + 1 + V )2

≤ 0,

where the fourth equality follows from the definition of the thresholds (24), and the final
inequality follows from the fact that the term inside the parenthesis in the numerator is
always non-negative. �

Lemma 8. For δ ≥ δNODP, in any partial equilibrium involving the dark pool, if Q > 0, then
we have b+ < 2b− b− − 2a2 + a.

Proof. Observe that Q > 0 implies

b2
+ < 2(b− b−) + b2

− − a2. (30)
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Furthermore, in a partial equilibrium, we have N/D ≤ 1. This implies that

a2 + 2b+ − 2b− − b2
+ + b2

− ≤ 2a− a2 + b2
+ − b2

−

which leads to

b+ ≤ b2
+ − b2

− + b− − a2 + a

< (2(b− b−) + b2
− − a2)− b2

− + b− − a2 + a

= 2b− b− − 2a2 + a,

where the second inequality follows from (30). �

Lemma 9. For u, V ∈ [0, 1] with V > min((37− 30u)/25, 1), we have

u4(2V 5 − 3V 4 + V 3) + u3(−9V 4 + 8V 3 + 5V 2)+

u2(2V 4 + 19V 3 + 12V 2 + 3V ) + u(−3V 2 − 1)− 2V 2 − V − 1 > 0.

Proof. The statement is trivially true for u ≤ 2/5, as in that case (37− 30u)/25 ≥ 1. Thus,
we only need to consider u ∈ (2/5, 1] and V > (37− 30u)/25. We make the following change
of variables:

u = 2 + 3x
5 , V = (1− y) + y

(37− 30u
25

)
= 1− 18

25xy,

where x ∈ (0, 1] and y ∈ [0, 1). Substituting, we obtain the polynomial in x and y as

P (x, y) = y5
(
−306110016x9

6103515625 − 816293376x8

6103515625 −
816293376x7

6103515625 −
362797056x6

6103515625 −
60466176x5

6103515625

)

+ y4
(

59521392x8

244140625 + 31177872x7

244140625 −
49128768x6

244140625 −
36531648x5

244140625 −
5038848x4

244140625

)

+ y3
(
−4251528x7

9765625 + 10707552x6

9765625 − 2676888x5

9765625 −
22884768x4

9765625 − 10054368x3

9765625

)

+ y2
(

26244x6

78125 −
148716x5

78125 + 813564x4

78125 + 1241244x3

78125 + 335664x2

78125

)

+ y

(
−1458x5

15625 + 972x4

15625 −
366768x3

15625 − 451548x2

15625 − 81198x
15625

)

+ 108x3

125 + 1836x2

125 + 2004x
125 + 52

125 .

When y = 0, we see trivially that P (x, y) > 0 for x ∈ (0, 1]. Next, for x ∈ (0, 1] and
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y ∈ (0, 1), we again make the following change of variables:

x = 1
1 + t2

, y = 1
1 + s2 ,

where s, t ∈ R. Making the substitution, and writing the polynomial P as functions of s and
t, we obtain,

(1 + s2)5(1 + t2)9P (t, s)

= 4s10 (t2 + 1)6

125
(
13t6 + 540t4 + 1500t2 + 1000

)
+ 2s8 (t2 + 1)4

15625
(
16250t10 + 666901t8 + 2853080t6 + 4570700t4 + 3169000t2 + 800000

)
+ 4s6 (t2 + 1)3

78125
(
81250t12 + 3212760t10 + 15539976t8 + 30302525t6

+28784820t4 + 13201200t2 + 2317000
)

+ 4s4 (t2 + 1)2

9765625
(
10156250t14 + 386376875t12 + 2071716000t10 + 4709497408t8

+5564360065t6 + 3554905650t4 + 1148445500t2 + 142835000
)

+ 4s2 (t2 + 1)
244140625

(
126953125t16 + 4639484375t14 + 27135400000t12

+69809011025t10 + 97143948313t8 + 77507176490t6

+34774505800t4 + 7864505000t2 + 654250000
)

+ 1
6103515625

(
2539062500t18 + 88985156250t16 + 559961250000t14

+1594118520000t12 + 2518282168800t10 + 2354402950374t8

+1295555779740t6 + 387607598400t4 + 49432614000t2 + 350540000
)
.

From this, it follows that P (t, s) > 0 for all s, t ∈ R. Hence P (x, y) > 0 for all x ∈ [0, 1] and
y ∈ [0, 1). This completes the proof. �
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