
Short-Term Trading Skill: An Analysis of Investor
Heterogeneity and Execution Qualityú

Mehmet Sa˘glam

†

Lindner College of Business

University of Cincinnati

email: mehmet.saglam@uc.edu

Ciamac C. Moallemi

Graduate School of Business

Columbia University

email: ciamac@gsb.columbia.edu

Michael G. Sotiropoulos

Deutsche Bank

email: michael.sotiropoulos@db.com

This Version: September 2016

Abstract

We examine short-horizon return predictability using a novel proprietary dataset of institu-

tional traders with known identities. We estimate investor-specific short-term trading skill and

find that there is pronounced heterogeneity in predicting short-term returns among institutional

investors. Incorporating short-term predictive ability, our model explains much higher fraction

of variation in asset returns. Ignoring the heterogeneity in short-term trading skill has major

implications in modeling price impact. We analyze the di�erences between trading characteris-

tics of skilled and unskilled investors. A simple trading strategy exploiting our skill estimates

yields statistically significant abnormal returns supporting the skill-based interpretation.

Keywords: Short-term Trading Skill, Price Impact, Execution Costs

JEL Classification: G11, G14, G24.

úWe are grateful for helpful comments from Robert Battalio, Alex Borisov, Zhi Da, Larry Glosten, Hui Guo, Brian
Hatch, Gerry Tsoukalas, Kumar Venkataraman, Haoxiang Zhu and seminar participants at Columbia University, 2012
INFORMS conference, Princeton University and University of Cincinnati. Sağlam acknowledges support from Deming
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Short-Term Trading Skill: An Analysis of Investor
Heterogeneity and Execution Quality

Abstract

We examine short-horizon return predictability using a novel proprietary dataset of institu-
tional traders with known identities. We estimate investor-specific short-term trading skill and
find that there is pronounced heterogeneity in predicting short-term returns among institutional
investors. Incorporating short-term predictive ability, our model explains much higher fraction
of variation in asset returns. Ignoring the heterogeneity in short-term trading skill has major
implications in modeling price impact. We analyze the di�erences between trading characteris-
tics of skilled and unskilled investors. A simple trading strategy exploiting our skill estimates
yields statistically significant abnormal returns supporting the skill-based interpretation.
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1. Introduction

There is ample evidence that excess stock returns are predictable at various horizons by macro-

economic and firm-level characteristics such as dividend-price and book-to-market ratios, short-term

rates, aggregate volatility, and lagged returns. Indeed, there is ongoing active research in uncovering

predictive variables or proposing trading strategies generating abnormal returns against standard

asset-pricing models. This literature is motivated by the fact that investors can exploit predictable

returns when making portfolio decisions dynamically. For example, Johannes et al. (2014) find

statistically and economically significant benefits for investors using models of return predictability.

In addition to the documented sources of return predictability, some investors may have pri-

vate information about the fundamental value of the asset. It is unlikely that this informational

advantage is due to having access to non-public material information as a corporate insider but,

rather, some investors may just be more skilled in processing short-term information flows to iden-

tify under- or over-valued stocks. For example, using a large set of institutional trading data, Yan

and Zhang (2009) show that trades of short-term institutional investors are positively correlated

with future stock returns. Similarly, Diether et al. (2009) examine daily short-sale trading activity

and argue that short-sellers can detect when the asset prices deviate from their fundamental value.

These examples show that, exploiting particular return-predictive signals, some investors will be

able to forecast short-term price movements. The literature on the evidence of informed trading by

institutional investors mostly focuses on these types of skilled investors. However, not all investors

are motivated by short-term goals. Investors will also undertake certain trading strategies that are

idiosyncratically dependent on their own investment objectives, style, and horizon, and may end

up employing trading strategies that are at odds with short-term return predicting signals. As

an extreme case, consider a fund manager with a value-style investment view and a long-horizon

performance benchmark. Asness et al. (2013) document that value and momentum signals are

negatively correlated and have di�erent time horizons, hence a value investor may systematically

trade in a way that is opposite to short-term predictable returns generated through momentum

e�ects.

In this paper, we analyze a large data set of intraday institutional trading data with masked

investor identities, and decompose the performance of trades into two components: (i) an investor-
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specific “trading skill” component which captures the timing of the decision to trade relative to

favorable or unfavorable short-term price movements; and (ii) a market impact or price impact

component, which measures investor-independent execution costs. We document the presence of

skilled short-term investors in our data set. They are identified as the ones that systematically buy

(resp., sell) an asset during a period when the asset return is positive (resp., negative). In addition,

we find strong evidence for the presence of unskilled investors in our data. These systematically

decide to buy (resp., sell) the asset during a trading interval when the asset return is negative (resp.,

positive) on average.1 This heterogeneity in short-term trading skill has important implications

for measures of execution costs, such as the implementation shortfall, introduced by Perold (1988).

Since skilled traders correctly predict short-run future returns, the cost of their trades appear high

when compared to the trades of a benchmark noise trader. Similarly, because unskilled traders

make trading decisions that are systematically opposite to short-term returns, the execution cost

of their trades appear low when compared to a noise trader. As a result, measured execution costs

may not be an unbiased estimate of the true cost of trading, which has been the crucial measure of

market quality assessment in the literature. For example, a number of earlier studies (e.g., Huang

and Stoll (1996), Bessembinder and Kaufman (1997a), Bessembinder and Kaufman (1997b)) utilize

execution costs to compare execution quality di�erences between NYSE and NASDAQ. Similarly,

in order to improve the transparency on market quality, the Securities and Exchange Commission

(SEC) adopted Rule 605 on November 15, 2000, which requires market centers to make monthly

public disclosure of certain execution costs. Given this regulatory emphasis, execution costs have

also been a popular comparison metric with various changes in market structure. Brogaard et al.

(2014) and Tong (2015) examine the impact of high-frequency trading on the executions costs of

institutional investors. Similarly, Korajczyk and Murphy (2015) and Van Kervel and Menkveld

(2015) use execution costs to study the interaction between high-frequency liquidity provision and

large order institutional executions. All of these studies motivate the significance of obtaining

accurate measures of execution quality for the use of brokers and policy-makers.

There is also evidence from both theoretical and empirical literature that heterogeneity in

trading skill may a�ect the choice of selecting di�erent venues for trading needs. Zhu (2014) and
1We use the terms, skilled and unskilled, to highlight the timing ability of the investor as the prices move in the

same direction with his trading in a permanent basis.
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Iyer et al. (2015) argue that informed traders strategically choose the lit markets for their execution

needs, whereas dark pools are relatively more attractive to uninformed traders. Consequently, a

naive execution cost analysis that does not take this into account may systematically suggest that

(assuming all else is equal) dark pools have better execution quality. Similarly, there is strong

evidence that short-term information may a�ect the choice of limit orders versus market orders, or

the choice of a high-rebate or low-rebate trading venue (e.g., Kaniel and Liu (2006), Maglaras et al.

(2012), Collin-Dufresne and Fos (2015)). Thus, an execution cost analysis across trading venues

controlling for all other e�ects but not investor heterogeneity should similarly be systematically

biased.

In this paper, we are interested in jointly estimating an investor-dependent short-term trading

skill and an investor-independent measure of execution costs. To our knowledge, the e�ects of

heterogeneous short-term predictive ability have been largely ignored in prior execution cost studies.

In general, these e�ects are much more di�cult to model ex ante, since short-term predictions

cannot be observed directly. In a typical algorithmic trading situation, where an investor executes

a large order through an algorithm provided on an agency basis by a broker, the investor rarely

communicates their short-term price views directly to the executing broker. Instead, investors

might implicitly express their alpha view by choosing the asset, direction, and time of the trade,

and by adjusting the parameters of the broker’s trading algorithm. By not accounting for short-term

trading skill, any subsequent transaction cost analysis may misestimate the price impact associated

with the investor’s trades.

For this purpose, we propose a model to attribute the asset returns observed during the execution

of a large order between the short-term predictive skill of the investor and the price impact of

the resulting trades. Specifically, we consider short-term trading skill as a characteristic of the

investor. Besides the usual price impact factors such as the relative size of the order, speed and

volatility, the model introduces the investor’s short-term predictive ability in the form of risk-

adjusted performance metric as in the typical usage with Sharpe ratio. We do not impose any

a priori grouping of investors into categories that might explain their predictive ability, such as

institutional investors, quantitative funds, or retail investors. The risk-adjusted measure of short-

term trading performance allows our model to capture the dependence of future price movements

on the mere desire of an investor to trade a specific asset at a specific point in time.
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We estimate our proposed model on a unique and proprietary historical data set consisting of

a large sample of intraday equity execution data along with masked investor identifiers, obtained

from a large broker who provides algorithmic trading services. We analyze our estimation results

for robustness, and our contributions can be summarized as follows:

1. There is strong evidence for investor heterogeneity in short-term trading skill. We find that

approximately one third of the investors are systematically skilled or unskilled relative to

the rest. In other words, ability to predict short-term price changes may be a significant

motivation for many investors in our sample to trade a specific asset at a specific point in

time. A falsification test on bootstrapped samples provides further evidence that the numbers

of skilled and unskilled investors are abnormally high.

2. Short-term trading skill significantly increases the power of the model in explaining the vari-

ation of returns relative to arrival price. In fact, including investor specific skill variables

improves the R2 of the model relative to a model that only considers the price impact of or-

ders by an order of magnitude, from 0.5% to 10%. In other words, the identity of an investor

who wishes to trade is highly predictive of future price movements relative to considering

only the orders the investor places. Moreover, ignoring investor identity results in system-

atic misestimation of the price impact of trades. Our results are robust to alternative model

specifications and can actually predict out-of-sample returns with skill estimates.

3. We analyze the trading characteristics of skilled and unskilled investors and find that skilled

traders di�er significantly from unskilled investors by trading (relatively) larger orders and

trading more in lit markets. Unskilled traders tend to sell recent winners and buy recent

losers over the past month. Both types of investors are not able to time favorable liquidity

conditions. Finally, out-of-sample execution costs have major statistical dependence on our

skill estimates as well. Expected execution cost di�erence between short-term skilled and

unskilled traders is 25 bps which is economically substantial. This finding reinforces the

potential problem of using execution costs as a standalone metric of trading costs by ignoring

heterogeneous short-term trading skill.

4. We construct a simple out-of-sample trading strategy based on skill estimates and find that
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this trading strategy generates significant abnormal returns when benchmarked against the

Carhart (1997) four-factor model. In other words, our classification of skilled and unskilled

traders is consistent with their ability to predict future returns in the short-term.

In current literature, there has been little evidence of the cross-sectional structure of short-term

trading skill across a universe of institutional investors. Our paper proposes a methodology to

identify such investor behavior. We demonstrate that short-term predictive ability is very het-

erogeneous among an institutional investor base. This is consistent with theoretical agent-based

microstructure models where information asymmetry provides a major motivation to trade (see e.g.,

Easley et al. (2002)). Moreover, while the literature focuses on informed and uninformed investors,

our results reveal the presence of another type that systematically places orders in the opposite

direction of short-term future returns.

From a policymaker perspective, our results illustrate that mere comparison of execution costs

cannot be a standalone measure of execution quality. Venues populated either with skilled or

unskilled traders may have misestimated measures of execution quality if the heterogeneity in

short-term trading skill is ignored. Consequently, these biased estimates may not lead to an optimal

policy recommendation.

From a practical perspective, moreover, our results illustrate that incorporating short-term

trading skill is important in the estimation of execution costs and, in particular, of price impact.

Ignoring skill heterogeneity results in models that have both much lower predictive ability and

systematically biased estimates of price impact, which may often be conflated with skill. Eliminating

this bias may result in improved decision-making throughout the trading process. In the pre-

trade phase, for example, more accurate transaction cost estimates will result in better portfolio

construction. During trade execution, accounting for short-term trading skill will allow brokers

to tailor their trading algorithms on an investor-by-investor basis and achieve better execution

results. Finally, our predictive variables for short-term trading skill can be utilized in the absence

of investor identities or limited execution data availability so that execution costs will be estimated

more accurately in the pre-trade phase.

The rest of the paper is organized as follows: in Section 1.1, we present a brief literature review.

In Section 3, we set up the underlying statistical model. Section 4 describes our experimental study,
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while Section 5 contains our model estimation and analysis. Sections 6 examines the robustness

of our results and provide strong evidence for our interpretations with investor heterogeneity in

short-term trading skill. Section 7 discusses the di�erences in trading styles of skilled and unskilled

investors. Section 8 presents empirical evidence that the skill estimates can be utilized to generate

a profitable long-short trading strategy. Finally, we conclude in Section 9.

1.1. Literature Review

Our paper is related to two main strands of the literature: studying skill in institutional trading

and estimating the price impact of trading activity.

A large literature on institutional trading activity addresses the question whether institutional

investors are informed. Gompers and Metrick (2001) find that there is positive relationship between

institutional ownership and future stock returns. Yan and Zhang (2009) argue that this relationship

is driven by short-horizon institutions. Using a more high-frequency data, Puckett and Yan (2011)

find that institutional investors are skilled even after accounting for trading costs. In a more

recent study using news analytics, Hendershott et al. (2015) find that institutional investors are

informed and their trading direction can predict the sentiment of the future news. There are also a

number of studies that document skill in the general context of fund management (e.g., Cohen et al.

(2005), Kacperczyk et al. (2005), Mamaysky et al. (2008)). On the other hand, Anand et al. (2012)

document that institutional trading desks have persistent trading costs – institutions that have low

trading costs continue to have low trading costs over time. Our paper is related to this literature

but focuses on studying the heterogeneity in short-term trading skill. In terms of documenting

unskilled short-term investors, our results also resemble the underperformance of fund managers

after accounting for management fees as in Wermers (2000).

The relationship between trading activity and asset prices in financial markets has been an

important question in the economic microstructure literature for several decades. The theoretical

origins of price impact arise from the presence of informed traders as, for example, in the celebrated

models of Kyle (1985) or Glosten and Milgrom (1985). As a result, a line of literature has emerged

focusing on the empirical analysis of the impact of trades on prices, motivated by the economic

question of understanding the role of information asymmetry in markets. This work is nicely

summarized by Hasbrouck (2007) and it is still actively pursued, see Easley et al. (2012).
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More recently, however, with the rise of electronic and algorithmic trading, a new line of lit-

erature has emerged. Motivated by the concerns of practitioners, this literature focuses on the

decision problem faced by an investor seeking to algorithmically spread his trades out over time, in

order to minimize execution costs. A key ingredient in such algorithmic trading is the estimation

of the e�ect of a sequence of “child” orders placed by an algorithm executing an investor’s “parent”

order on the asset price across future time horizons. The most notable early works here are those

of Bertsimas and Lo (1998) and Almgren et al. (2005). More broadly, Bouchaud et al. (2008)

provides a summary of theoretical and empirical results on models which predict the impact of

trades on prices, bid-ask spreads, and other market dynamics over time. They theorize that much

of these dynamics can be explained by the presence of algorithmic traders strategically spreading

their orders across time.

A closely related question is the estimation of overall transaction costs for large block trades

(e.g., Keim and Madhavan (1996), Almgren (2008)). These cost functions play an important role

in portfolio optimization and other pre-trade analysis. Obizhaeva (2009) estimates such trading

cost functions using a data set of large portfolio transitions. Kyle and Obizhaeva (2014) provide

a theoretical model that seeks to explain the cross-sectional variation of trading costs across a

universe of stocks. Hendershott et al. (2013) propose an approach for measuring the temporary

component of the total trading cost of a large execution. Our work extends this line of inquiry by

explicitly including investor identity as a predictive factor of order execution costs.

Finally, our paper is related to the analysis of transaction costs with respect to di�erent invest-

ment strategies. Using equity executions from 21 institutional traders, Keim and Madhavan (1997)

find that total trading costs for a technical-style investment strategy is higher compared with value-

style investment strategy. Intuitively, they relate this finding to the di�erences in aggressiveness as

value investors trade patiently via worked orders. Similarly, using transactions of 37 money man-

agers, Chan and Lakonishok (1995) find that growth-oriented strategies incur higher transaction

costs due to di�erences in their demands for immediacy. These papers mainly study the varia-

tion in execution skill across institutional invetors. Controlling for di�erences in trading schedules

or demands for immediacy, our paper complements these studies by focusing on a fundamentally

di�erent theme. In our model, heterogeneity across investors does not stem from better trading

schedules as this is ultimately controlled by the algorithm of the broker, but from di�erences in skill
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levels of timing ability. Investor’s information set at the time of his trading decision determines

the execution strategy which remains unchanged throughout the execution. In this context, the

trading skill emerges due to the particular timing of the trade decision by anticipating favorable

short-term price changes.

2. Theoretical Background

In this section, we briefly review the relevant theoretical models that guide our empirical work.

Specifically, we summarize potential theories regarding the short-term price movements around

large order executions.

In a survey of market microstructure, Biais et al. (2005) summarize two main competing theories

for price formation which is also applicable for executions of large orders: inventory (liquidity)

and information (adverse selection) paradigm. In the inventory paradigm (see e.g., Ho and Stoll

(1981)), uninformed investors trade with risk-averse market makers who can control the order flow

by changing their quotes. For example, when the uninformed investor buys (sells) a large number

of shares for liquidity needs, market makers are forced to a net short (long) position deviating from

their preferred inventory positions. In this case, they raise (lower) their bid and ask quotes in order

to bring their inventory back to their preferred position which leads to increase (decrease) in mid-

quote prices. In the information-based trading paradigm (see e.g., Glosten and Milgrom (1985) and

Kyle (1985)), an investor trades a large order due to his private information about the fundamental

value of the asset and thus the market maker accounts for the information content of the order and

set his quotes accordingly. In this framework, prices are formed according to the expectations of the

value of the asset conditioned on the realized order flow and consequently buy (sell) orders imply

higher (lower) valuation and increase (decrease) equilibrium prices. Another di�erence between

these theories is their di�erent implication on the transitory or permanence of the the price impact.

Liquidity-based trading causes temporary price impact whereas information-based trading moves

the prices permanently.

The literature mostly focuses on two types of traders, informed and liquidity. However, infor-

mation based-trading models can be generalized to accommodate investors with di�ering beliefs.

For example, Easley et al. (2002) propose an information-based theoretical model in which there
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is investor heterogeneity with regards to their beliefs of expected returns and correctness of these

priors. Therefore, it is also possible to observe unskilled investors who are systematically deciding

to buy (sell) the asset during a trading interval when the asset return is negative (positive) on

average due to heterogeneous beliefs. Their trades can be profitable in the long-term but they can

be subject to short-term losses.

Another reason for unskilled trading can emerge from behavioral biases in decision-making.

Based on findings of prospect theory, Shefrin and Statman (1985) document the investor’s tendency

to sell winners too early and ride losers too long. They refer to this behavior as “the disposition

e�ect.” Empirical evidence suggests that this behavior is more pronounced for individual investors.

This theory suggests that a liquidity trader prone to disposition e�ect will sub-optimally sell (buy)

a stock if it has recently realized large positive (negative) returns and as the asset value continues

to increase (decrease), the liquidity trader will be subject to short-term losses.

These theories suggest that there may be investor-specific short-term trading skill originating

from information-based trading (correct beliefs) or insensitivity to behavioral biases. Furthermore,

considering the inventory paradigm, there is also investor-independent measure of price impact

that serves as market maker’s compensation for inventory risk. Thus, it is an empirical question

to determine the most important drivers of short-term price movements during a large execution

among these potential factors of price impact.

3. The Model

We consider a population of J investors sending a total of N orders to an executing broker. The

mapping i
cæ j identifies order i, i = 1 . . . N as belonging to investor j = c(i), with j = 1 . . . J .

Each order is for a quantity of Qi shares of an asset, with Qi > 0 (Qi < 0) for buy (sell) orders,

respectively. Each order also has an execution duration of Ti, measured as a fraction of the trading

day. We define the participation rate fli , |Qi|/Vi, where Vi is the total market volume traded

within the interval Ti. The arrival price Pi,0 is the last traded price prior to the order’s arrival and

the terminal price is the last execution price Pi,Ti . In our model, given order i, we consider the

expected return of the asset over the execution interval Ti, that is, log(Pi,Ti/Pi,0). We posit that

this return is driven by two predictable e�ects. The first e�ect is short-term trading skill. Some
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investors will be able to predict short-term asset returns using models of return predictability or

correct beliefs. Thus, we expect this impact to be persistent in the short-term. Conditional on

the arrival of a buy (resp., sell) order i, we expect a return in the asset price of –c(i)‡i
Ô

Ti over

the execution interval Ti. Here, the coe�cient –c(i) represents the short-term predictive ability of

investor c(i) and ‡i is the daily volatility of the mid-quote of the asset price, typically estimated

as an average of daily volatilities over the prior month. –c(i) can be positive, zero, or negative

which can be interpreted as skilled, unidentified or unskilled respectively. Note that this predictive

ability is parameterized in a risk-adjusted fashion, i.e. we assume that each particular investor has

a constant short-term Sharpe ratio or information ratio over all of the trades.2

The second e�ect is price impact, or, the direct e�ect of the trades placed on behalf of the

investor. The price impact for order i is given by ⁄‡i
Ô

Tih(fli). Here, ⁄ is a (broker-specific) price

impact coe�cient. We normalize the price impact component with the volatility of the asset during

execution horizon captured by ‡i
Ô

Ti so that we represent the impact as a fraction of the typical

movement of the stock return. Transaction cost models sometimes include a bid-o�er spread term to

incorporate stock-specific liquidity costs. However, since we are modeling returns over the execution

horizon as opposed to the average cost, we did not include spreads in our baseline specification. In

Section 6.3, we include an additional spread component in the price impact specification and our

findings remain largely unchanged.3 Our price-impact assumption is consistent with the literature

(e.g., Almgren et al. (2005)). On the theoretical front, Keim and Madhavan (1996) derive that

price impact is a concave function of the trade size. Similarly, Chacko et al. (2008) also find that

expected price impact is proportional to the volatility and empirically validates this claim.

The price impact function h(·) captures the e�ect of the participation rate (or trading speed)
2Here, we ignore the role of a benchmark risk-free return in the definition of a Sharpe ratio, i.e. we do not

consider excess returns. This is reasonable since the risk-free return is e�ectively zero over the intraday time horizons

of interest.

Further, note that we do not scale Sharpe ratio with the square root of the investment horizon (as typically done

with longer horizons in asset management). In Section 6.2, we explore an alternative specification where we define

–c(i) to be a daily Sharpe ratio that is scaled by the square root of the length of the execution horizon, and find that

both models provide very similar findings.
3In Section 6.4, we also consider stock fixed e�ects and obtain very similar findings due to our high-liquid stocks

in the data.
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on price. The idea here is that orders executed with a higher participation rate will have a larger

price impact. In order to illustrate the robustness of our results with respect to our price impact

formulation, we will consider two explicit forms for the price impact function: a linear price impact

function, i.e.,

h(fli) , fli,

or a square root price impact function, i.e.,

h(fli) , fl
1/2
i .

The choice of sublinear price impact has been extensively studied both theoretically and empiri-

cally. There is a long line of literature supporting the choice for a square root price impact law.

For example, Chacko et al. (2008) provides empirical evidence that the expected price impact is

proportional to the square root of the quantity traded. Using a large sample of US equity trades,

Almgren et al. (2005) also estimate the exponent to be very close to 0.5. This exponent is also

consistent with the well-known Barra model for market impact costs outlined in Torre and Ferrari

(1998).

Putting everything together, we assume that the sign-adjusted log-return of an order relative

to the arrival price and over the execution horizon can be expressed as an additive model of the

form

sgn (Qi) log
A

Pi,Ti

Pi,0

B

= –c(i)‡i


Ti + ⁄‡i


Tih(fli) + ‘i , (1)

with ‘i having a mean of zero and variance of ‹2
i .

Explicit forms of the impact function h(·) fully specify the model as a linear regression of the

risk-normalized interval return against short-term trading skill and broker impact. For example,

with a linear price impact function we obtain

sgn (Qi) log
A

Pi,Ti

Pi,0

B

= —0 + ‡i


Ti

Jÿ

j=1
I{c(i)=j}–c(i) + ⁄‡i


Tifli + ‘i , (2)
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with I the indicator function. Likewise, a square-root impact function leads to the model

sgn (Qi) log
A

Pi,Ti

Pi,0

B

= —0 + ‡i


Ti

Jÿ

j=1
I{c(i)=j}–c(i) + ⁄‡i


Tifl

1/2
i + ‘i . (3)

When fitted on a historical sample of short-term execution returns, the above models (2) and (3)

identify the short-term trading of each investor j, along with the impact coe�cient.4 We proceed

by presenting our data set and model estimation results in Section 5.

4. Data

For our empirical study we use a novel proprietary execution data from the historical order

databases of a large investment bank (“The Bank”) which is one of the top five electronic trading

brokers in the US by market share. The orders originate from a diverse pool of investors, such as

institutional portfolio managers, quantitative investment funds, internal trading desks and retail

customers. Our data set consists of two widely used algorithmic execution strategies, the volume

weighted average price (VWAP) and the percentage of volume (POV). These algorithms collectively

constitute roughly 75% of all execution strategies employed by The Bank. The VWAP algorithm

aims to achieve an average execution price that is as close as possible to the volume weighted

average price over the execution horizon. The main objective of the POV algorithm is to have

constant participation rate in the market within the execution interval. VWAP and POV have

relatively small discretion on opportunistically speeding up or slowing down the execution so the

aggressiveness of the execution is mainly controlled by the investor choosing a particular urgency

level in the pre-trade phase. With VWAP and POV algorithms, we eliminate any potential broker-

specific e�ects such as the usage of trading signals and market events that drive more opportunistic

algorithms. Furthermore, we also avoid any biases that can occur with endogenous selection of the

algorithm itself. For example, if we were to have more sophisticated algorithms in our dataset,
4The above models could also be expressed in terms of the arrival slippage log

!
P̄i/Pi,0

"
instead of the interval

return log (Pi,Ti /Pi,0), where P̄i is the average execution price of the i-th order. This would lead to an approximate

rescaling of the coe�cients –c(i) and ⁄ by a factor of 1/2. The execution algorithms considered here trade at constant

participation rate. Therefore, the execution price P̄i is close to the realized interval VWAP, and for a price path with

a constant drift, the VWAP return is half of the interval return.
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one might argue that skilled traders may actually be just better in choosing algorithms. However,

with VWAP or POV, an investor can only have superior short-term trading skill by starting the

execution at a particular time.

This proprietary data set provides a rich set of attributes. For each order i we have access

to the following: investor identity tag,5 c(i), ticker of the traded stock, order size, Qi, order side

(buy/sell), sgn (Qi), execution duration, Ti, participation rate, fli, average volatility of the stock

over the last 20 trading days, ‡i, the percentage return over the execution interval, Pi,Ti/Pi,0 ≠ 1.

These data allows us to fully estimate the model of Section 3. In addition, our data include the

daily, average (i.e., over the last 20 trading days6) and interval (i.e., during the execution horizon)

proportional bid-ask spread, mid-quote volatility and traded volume for each stock.

We use a restricted subset of the execution data, defined by the following selection criteria:

• The trading period is from January 2011 to June 2012, inclusive.

• The asset universe consists of the S&P 500 stocks. We focus on highly liquid stocks to focus on

the di�erences on short-term predictive ability as a result of following certain set of strategies.

For this set of stocks, it is hard to have an investor trading on an insider information.

• Orders come from active investors only: an investor is considered active if he has at least 100

and at most 500 orders within the period of study. This is to prevent any specific investor

from having major influence on our results.

• All orders have been fully filled without intermediate replacements or cancellations.

• The execution duration is greater than 5 minutes but no longer than a full trading day, with

no participation in opening/closing auctions. We exclude executions that last less than 5

minutes to avoid any short term e�ects from market orders and auctions.

Using the above criteria, our final sample consists of 63,379 executions coming from 30,438 buy

and 32,941 sell orders.7 The trading algorithms used are 41,339 VWAP and 22,040 POV. The orders
5Investors are identified by numerical aliases to protect anonymity.
6Throughout the analysis we will refer to this measure as the average over the past-month for conciseness as there

are 21 trading days in each month on average.
7On average, each parent-order has approximately 120 child-order executions so the total number of trades are

roughly 10 million.
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came from a set of 293 active investors, with 216.3 orders per investor and 168 orders per trading

day on average. The highest number of executions on a single stock is 454 which corresponds to

0.71% of all executions. Table I provides additional summary statistics for our data sample.

[Insert Table I here]

The average percentage return realized during the execution interval is 0.3 bps. We observe

that bid-ask spread and volatility lay in a tight range. More than half of the executions have a

bid-ask spread between 2 bps and 5 bps and a mid-quote annualized volatility between 15% and

27%. The mean duration of the executions is a little less than 2.5 hours. Finally, we have a wide

range of participation rates across executions with an average (median) of 6.44% (1.59%).

5. Model Estimation Results

We analyze the execution data using our full model with two price impact specifications, linear

price impact as in (2) and square root price impact as in (3). We also fit a reduced model to the

data by ignoring trading skill terms, i.e., –j = 0,

sgn (Qi) log
A

Pi,Ti

Pi,0

B

= —0 + ⁄base‡i


Tifl

“
i + ‘i , (4)

where “ = 1 for the linear model and “ = 1
2 for the square-root model. We use the superscripts,

base, to emphasize the di�erence between the reduced and full models. We are concerned with

heteroscedasticity, contemporaneous correlation across stocks, and auto-correlation within each

stock and adjust our standard errors by clustering on calendar day and stock throughout the

analysis as suggested by Petersen (2009).

In this section, we first present the di�erences between the reduced and the full model with

respect to the price impact coe�cient and adjusted R2. Then, we illustrate the cross-sectional

distribution of short-term trading skill across investors. Finally, we use bootstrap analyses to

examine the statistical significance of the biased price impact coe�cient in the reduced model and

the presence of short-term trading skill.
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5.1. Price Impact Coe�cients and R2

Table II summarizes the regression results from the full and the reduced model.

[Insert Table II here]

This table suggests a number of interesting observations. First, consider the price impact

parameter, ⁄. In all cases, the estimate of ⁄ is statistically significant. The square-root model in

the absence of trading skill corresponds to the well-known Barra market impact model as outlined

in Torre and Ferrari (1998). Here, our estimate of ⁄ is of order unity — this is consistent with

the prior literature. Yet, we observe that without accounting for investor’s short-term trading skill

level, price impact by itself has a very low explanatory power with the maximum adjusted R2 of

0.52% from both models. The linear price impact model has relatively better fit than the square

root price impact model, even though the di�erence is negligible. However, the inclusion of the

short-term trading skill term substantially increases the goodness of fit, leading to an adjusted

R2 of approximately 10%. This significant di�erence illustrates that the variation in short-term

returns can be explained much better when the systematic short-term trading skill of the investor

is acknowledged.8

Moreover, if we ignore the predictive abilities of the investors, we observe that price impact is

misestimated. If the price impact is linear in participation rate, then accounting for alpha view

of the investors reduces the price impact coe�cient by approximately 20%. This is also observed

for the square-root model, but to a lesser degree. This result suggests that in our sample short-

term skilled trader activity is relatively higher when compared with unskilled trader activity. The

standard errors do not allow us to conclude that the di�erence between ⁄̂ and ⁄̂base is statistically

di�erent. For this reason, we use a bootstrapping analysis in Section 5.3 to formally test for the

statistical significance of the bias introduced in the absence of skill terms.

In summary, we observe that accounting for investor heterogeneity in short-term trading skill

explains much higher variation of asset returns during an execution. We observe that the usual

practice of ignoring investor specific view may introduce a systematic bias in price impact estimates.

We further investigate this implication in the context of execution costs in Section 7.3, and find
8To highlight the economic significance of this increase, it is worth to note that 500 stock dummies move the

adjusted R2 by mere 0.1% in our analysis in Section 6.4.
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that the standard measure of execution cost, implementation shortfall, also depends on short-term

predictive ability with statistical significance.

5.2. Heterogeneity in Short-Term Trading Skill

We observe that there is significant investor heterogeneity in predicting short-term returns. We

label an investor as skilled (resp., unskilled) if his short-term trading skill estimate is positive (resp.,

negative) and is statistically significant under the 10% level. We label the remaining investors as

unidentified. Table II reports that with the linear price impact model, 49 out of 293 investors are

skilled, while 48 investors are unskilled and 196 investors are unidentified. With the square root

price impact model, the alpha estimates slightly drop as the square-root model puts more weight on

the price impact unilaterally. Figure 3 illustrates this drop in Sharpe ratio estimates graphically.

In this case, we obtain that 36 investors are skilled whereas 63 are unskilled. In both models,

approximately one third of our investor universe are skilled or unskilled.

Evaluating short-term trading skill for a large number of investors can be viewed as a multiple

hypothesis testing problem. By random chance, some investors may appear to have significant –

coe�cients. Consequently, the number of skilled or unskilled investors may not be statistically

significant in our dataset as we do not know the true distribution of these statistics under the null

hypothesis. Therefore, we employ a bootstrap analysis in Section 5.3 to formally test the statistical

significance of the number of skilled or unskilled investors.

[Insert Figure 1, Figure 2, and Figure 3 here]

We now discuss the magnitudes of the estimated short-term predictive abilities. Figure 1 shows

histograms of investor skill estimates both for the linear and square root price impact model speci-

fications, including statistically insignificant estimates. Figure 2 shows the histograms of the alpha

estimates which are statistically significant. We observe that estimates which are small in absolute

value are likely to be insignificant. We report the investor short-term trading skill estimates as

annualized Sharpe ratios. In the linear model, the range of the estimated Sharpe ratios is between

≠27.7 and 14.3 with the sample mean (median) of ≠0.59 (≠0.40). We find that the distribution

of skill estimates have negative skew and large kurtosis suggesting that the distribution of the skill

estimates are asymmetric and non-normal. The Sharpe ratio estimates arising from our models
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are much larger than typical Sharpe ratios observed in the traditional asset management industry.

However, current empirical literature reports similar Sharpe ratio estimates over short, intraday

investment horizons (e.g., for high-frequency traders). For example, Clark-Joseph (2013) estimates

that annualized Sharpe ratios of high-frequency traders are in the neighborhood of 10 to 11. Baron

et al. (2013) report that the average high-frequency trader Sharpe ratio in their data set is 9.2.

Our findings suggest that, at the individual investor level, there is substantial variation in short-

term predictive ability. Roughly, one third of the investors have statistically significant Sharpe ratio

estimates. On the other hand, we observe that half of these investors make systematically wrong

bets in the short-term. Note that these statistics do not imply that investors in this group are losing

money in the long-run. These investors are possibly long-term investors who are not exploiting the

short-term predictability of asset returns. We further investigate the source of unskilled trading in

Section 7.4 and Section 7.5 with regards to disposition e�ect and long-term objectives, respectively.

5.3. Bootstrap Analyses

In this section, we run two bootstrap analyses to formally assess whether price impact coe�cients

estimated from the full and reduced model are statistically di�erent and whether the number of

skilled or unskilled investors are statistically significant and hence the heterogeneity in short-term

trading skill exists.

[Insert Table III here]

In the first bootstrap test, we randomly sample our data and construct 1, 000 datasets each with

10, 000 executions. For each dataset, we estimate the full and the reduced models and store the price

impact coe�cients, ⁄̂ and ⁄̂base, for both linear and square-root price impact specifications. Table

III reports the mean di�erence of ⁄̂ ≠ ⁄̂base and its corresponding standard error. We find that the

di�erence between ⁄̂ and ⁄̂base is highly statistically significant in both price-impact specifications.

[Insert Table IV here]

In the second bootstrap analysis, we create 10, 000 di�erent samples of our execution dataset

by randomly permuting the investor identifiers across executions. Each investor has still the same

number of assigned executions and the total number of executions remain the same but each investor

18



is now assigned a random selection of executions. This bootstrap procedure allows us to generate

the empirical distribution of the number of skilled and unskilled traders under the null hypothesis

that investor identifiers are unrelated to log-returns during the execution horizon.

For each randomly sampled dataset, we estimate our full model with skill terms and compute

the number of the number of skilled or unskilled investors. We then derive the empirical distribution

for the desired parameters: the numbers of skilled and unskilled investors. Table IV illustrates the

p-values of our original estimates of the numbers of skilled and unskilled investors with respect to

the empirical distribution. In both linear and square-root models, we find strong evidence that

the estimated number of skilled or unskilled investors is indeed abnormally high suggesting that

investor heterogeneity is present with statistical significance. Finally, this analysis also shows that,

the estimated price impact coe�cient, ⁄̂, is also statistically di�erent than what we would obtain

under the null hypothesis that investor identities do not matter.

6. Robustness Tests

In this section, we assess the robustness of our results in six ways. First, in order to control for

the possibility of over-fitting, we assess the robustness of our model predictions on out-of-sample

data. Using our estimated model in-sample, we predict out-of-sample short-term returns over an

execution. Second, we explore a di�erent alpha specification that scales with the square root of the

execution horizon. Third, we consider an alternative price impact specification with an additional

spread component. Fourth, we add stock fixed e�ects to control for the cross-sectional variation

across stocks. Fifth, we test the robustness of our findings when execution horizon is largely the

same across orders and is not in the subset of slowest or fastest executions. Sixth, we consider an

alternative specification that incorporates the market return over the execution time horizon.

6.1. Out-of-Sample Predictions

Our model specifications in equations (2) and (3) contain a number of parameters, namely, one

for each investor. In order to eliminate the possibility of over-fitting, in this section, we consider

a cross-validation experiment that illustrates the ability of our model to predict out-of-sample

execution returns.
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First, we divide the data into two parts: in-sample data and out-of-sample data. We perform

this by randomly allocating half of each investor’s executions into the in-sample data set and the

remaining ones into the out-of-sample data set. We then estimate the model parameters by running

the regressions specified in equations (2) and (3) using only the in-sample data.

[Insert Table V and Figure 4 here]

Table V illustrates the regression results for the in-sample data set. The estimated regression

coe�cients for price impact are very similar to those obtained using all the data. For example,

using the linear price impact specification, the price impact estimate, ⁄̂, is 1.79 whereas using the

complete data, the estimate is 1.81. Similarly, we observe that investor skill estimates are also

very stable. Figure 4 compares skill estimates between the in-sample and the complete data sets.

In both price impact models, these are very close to each other, implying the robustness of the

estimates. Formally, we find that the correlation between the skill estimates is 77% in both price

impact models.

[Insert Table VI here]

Using the skill and price impact estimates obtained from the in-sample data, we can test whether

our model can explain out-of-sample execution returns. Table VI illustrates the root mean squared

prediction error (rMSPE) and R2 estimates both in-sample and out-of-sample. We observe that

in-sample and out-of-sample mean-squared errors are very close to each other. Similarly, we obtain

an out-of-sample R2 of more than 8.1% in both price impact models suggesting that our regression

model does not su�er from over-fitting. Both of these findings emphasize that our model has

out-of-sample predictive power.

6.2. Robustness in Alpha Specification

Sharpe ratio is typically defined over a reference time horizon, and is often scaled with the square

root of the investment horizon when it is projected across di�erent horizons. In our model, however,

we assumed that the Sharpe ratio is held constant, independent of the execution horizon. We can

also consider the alternative model. In this specification, investor j has an expected return of
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‡i–jTi when he trades ith stock during the trading horizon, Ti. Consequently, our skill estimation

models are given by

sgn (Qi) log
A

Pi,Ti

Pi,0

B

= ‡iTi

Jÿ

j=1
I{c(i)=j}–c(i) + ⁄‡i


Tifl

“
i + ‘i , (5)

where “ = 1 for the linear model and “ = 1
2 for the square-root model.

[Insert Table VII here]

Table VII illustrates the regression results for the model presented in Equation 5. The estimated

regression coe�cients for price impact are very similar to those obtained in the original model. For

example, using the linear price impact specification, the price impact estimate, ⁄̂, is 1.875 whereas

in our original specification, the estimate is 1.811. Similarly, we find that the sets of skilled and

unskilled investors from both models are very similar. For example, we find that the exact same

set of 40 (resp., 46) investors are identified as skilled (resp. unskilled) in both models. Collectively,

this common group nearly constitutes 90% of the original set of the identified traders suggesting

that our results are robust to the choice of alpha specification.

6.3. Spread Component in Price Impact

We can generalize our price impact term by including a spread component. Due to a liquidity

premium, the price impact during an execution may be higher for a less liquid stock, keeping all

else equal. To test the robustness of our results with respect to a spread component, we explore

an alternative specification with an additional independent variable controlling for the spread. If

the model with the spread component explains much higher variation without the skill terms,

accounting for short-term trading skill may lose its attractiveness. Formally, we have the following

skill estimation models:

sgn (Qi) log
A

Pi,Ti

Pi,0

B

= ‡i


Ti

Jÿ

j=1
I{c(i)=j}–c(i) + ⁄‡i


Tifl

“
i + ”Si + ‘i , (6)

where Si denotes the time-weighted average bid-o�er spread over the course of the execution, “ = 1

for the linear model and “ = 1
2 for the square-root model.

[Insert Table VIII here]
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Table VIII summarizes the results of these regressions along with the reduced models where we

drop the skill terms. We observe that our conclusions with the original model remain unchanged.

Spread parameter is only significant (at the 10% level) in the models augmented with short-term

trading skill. Inclusion of the spread component do not change the R2 in the models with and

without short-term trading skill. The universe of skilled and unskilled traders and the price impact

coe�cient also stay largely unchanged. These results also illustrate that skilled traders are not

particularly trading illiquid stocks which could have been alternative explanation in the absence of

this analysis.

[Insert Table IX here]

We also provide robustness check for our bootstrap analysis that compares regression coe�cients

in the presence and absence of skill terms. We again randomly sample our data and construct 1, 000

datasets each with 10, 000 executions. For each dataset, we estimate the full model in Equation 6

and the reduced model in which we ignore the skill terms. We store the regression coe�cients, ⁄̂,

⁄̂base, ”̂, and ”̂base using the linear price impact model. Table IX reports the mean di�erences and

their corresponding standard errors. We find that both coe�cients are statistically di�erent when

compared between the full and reduced models. This finding implies that additional explanatory

variables of price impact may also be biased when trading skill terms are ignored.

6.4. Fixed Stock E�ects

We can also generalize our specification by incorporating stock fixed e�ects. If certain characteristics

of stocks are highly correlated with price movements, and investors are consistently trading these

particular stocks, skill could be spuriously assigned to investors. To mitigate this potential concern,

we re-run our regression with stock dummies:

sgn (Qi) log
A

Pi,Ti

Pi,0

B

= ‡i


Ti

Jÿ

j=1
I{c(i)=j}–c(i) + ⁄‡i


Tifl

“
i + +

Sÿ

k=1
“kI{s(i)=k} + ‘i , (7)

where we use the mapping i
sæ k to identify the executed stock k, k = 1 . . . S.

[Insert Table X here]
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Table X summarizes our findings. We observe that in both models, the numbers of skilled and

unskilled investors are largely una�ected along with the price impact coe�cients. Furthermore,

we find that including 500 stock dummies moves the adjusted R2 by mere 0.1%. This negligible

increase contrasts with the substantial explanatory power of 293 investor skill coe�cients which

resulted in 10% increase. Overall, these findings do not provide any evidence that skilled investors

are trading particular set of illiquid stocks.

6.5. Choice of Execution Horizon

The investor has the potential to control the execution horizon by adjusting the urgency parameters

of the trading algorithms. Investors having short-term horizon may be more inclined to choose

faster executions compared with long-horizon investors who are satisfied with complete one-day

executions. In other words, the choice of execution horizon may be endogenous.

Summary statistics in Table II also show that fifty percent of the executions are either less than

15 minutes or larger than 325 minutes. To address the concern that the choice of execution horizon

may drive our findings, we consider a subset of executions for which execution horizons are very

similar and do not fall into the fastest and slowest category. For this purpose, we construct another

sample data where execution horizon is between 156 and 234 minutes (between 40% and 60% of a

full trading day). We obtain 1651 executions submitted by 39 distinct investors.

[Insert Table XI here]

Table XI illustrates the regression results using this subset of data. Our earlier conclusions

regarding increased explanatory power with investor identity and heterogeneity in short-term trad-

ing skill also emerge with this substantially di�erent data set. Without accounting for short-term

trading skill, R2 values are very close to zero whereas incorporating skill terms lead to adjusted

R2 values of 16% in both price impact specifications which is again an order of magnitude di�er-

ence. We also observe pronounced heterogeneity in short-term trading skill with roughly 50% of

the investors being either skilled or unskilled. Finally, we note that in both models, price impact

coe�cients di�er significantly when short-term trading skill is taken into account. Our findings

suggest that earlier findings from the original data set remain unchanged qualitatively when using
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the restricted data set, in which execution horizon is no longer a strategic choice and is taken to

be roughly one half of a trading day.

6.6. Accounting for Market Returns

Our model uses raw execution returns as dependent variables as outlined in equations (2) and (3).

Given that active fund managers are evaluated against market-driven benchmarks, we can adjust

our model specifications with benchmarked returns. For this reason, we explore an alternative

specification in a one factor asset-pricing model dealing with abnormal returns, expressed as the

di�erence between the execution return of a single asset and the market return. Consequently,

this adjusted model illustrates that short-term trading skill can also be quantified in a benchmark

setting.

In the following regressions, we check whether such an abnormal return specification results in

di�erent findings with respect to significance of short-term trading skill and price impact. Formally,

we have the following specification:

sgn (Qi) log
A

Pi,Ti

Pi,0

B

≠ ri = ‡i


Ti

Jÿ

j=1
I{c(i)=j}–mkt

c(i) + ⁄mkt‡i


Tifl

“
i + ‘i, (8)

where ri denotes the log-return of the S&P 500 index (excluding dividends) over the date of the

execution, scaled proportionally with the length of the execution duration, “ = 1 for the linear

model and “ = 1
2 for the square-root model. We use the superscripts, mkt, to emphasize the

di�erence between these and original regression models.

[Insert Table XII here]

Table XII summarizes the results of these regressions. When returns are benchmarked against

the market return, we observe that the number of skilled (unskilled) traders decreases (increases)

when compared with our original model. This result is also consistent with the traditional perfor-

mance measurement studies in the mutual fund literature as in Wermers (2000). We observe that

accounting for market returns does also increase the goodness of fit slightly with an adjusted R2 of

11.8%. Our main result from this analysis is the sustained heterogeneity in the short-term trading

skill. The results support our earlier findings regarding the significance of short-term trading skill

24



and price impact.

7. How do Skilled and Unskilled Investors Trade?

In this section, we would like to uncover the di�erences in trading styles of skilled and unskilled

investors. In each analysis, we do not claim causality but we are interested in identifying associations

in out-of-sample data. We first identify skilled and unskilled investors by estimating our full model

using the in-sample data. Consistent with our definition in Section 5, we label an investor as

skilled (resp., unskilled) if his short-term trading skill estimate is positive (resp., negative) and is

statistically significant under 10% level. We then label the executions in the out-of-sample data

with dummy variables to account for skilled and unskilled investors. IsSkilledi (resp., IsUnskilledi)

takes a value of 1 if the ith execution is sent by a skilled (resp., an unskilled) investor. Thus,

our empirical design allows to cleanly evaluate the trading di�erences between these two types of

investors.

7.1. Timing Liquidity

There are a few theoretical studies that show that investors who are informed about the (long-

term) fundamental value of the asset may choose to trade during high episodes of liquidity (see

e.g., Admati and Pfleiderer (1988) and Collin-Dufresne and Fos (Forthcoming)). We test whether

investors with short-term trading skill di�er from unskilled investors in this respect. Using di�erent

liquidity measures, Li, we can run the following regression model with control variables and stock

fixed e�ects to formally test whether out-of-sample liquidity measures have statistical dependence

on the type of the investor:

Li = c0 + —sIsSkilledi + —uIsUnskilledi +
ÿ

j

cjControlVariablesj +
Sÿ

k=1
“kI{s(i)=k} + ‘i. (9)

Our liquidity measures include proportional spread, logarithm of share volume, turnover, and

Amihud Illiquidity measure (ILLIQ) realized during the execution period. Higher values of spread

and ILLIQ indicate lower liquidity whereas higher share volume and turnover tend to be correlated

with higher liquidity.
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[Insert Table XIII here]

Table XIII summarizes the estimated models. Overall, we do not observe a clear pattern

between favorable liquidity conditions and skill level. All of the coe�cients of the skill dummies

are insignificant at 5% level. The signs of the coe�cients are also mixed. With respect to share

volume and turnover, the coe�cient on the skilled investors indicates higher liquidity whereas for

the remaining spread and ILLIQ, the sign of the coe�cient signals lower liquidity. The coe�cient on

the unskilled investors matches with that of skilled investors except in the case of ILLIQ. Moreover,

the linear hypothesis, H0 : —s = —u, testing for the formal di�erence between the trading styles of

skilled and unskilled investors returns insignificant test statistic in each liquidity measure. Overall,

we do not find strong evidence of liquidity timing that is correlated with skill level.

7.2. Execution in the Dark Pools

As we mentioned earlier, skilled investors may also di�er from their unskilled counterparts with

regards to participation in dark pools. As illustrated in Zhu (2014), execution risk in the dark pools

disincentivizes informed traders to send their orders to dark pools. This uncertainty in execution

emerges as there may be additional informed orders accumulating at the same side of the market

and compete for execution with the investor’s order.

Our dataset allows us to verify this theoretical conjecture cleanly as the investors may opt out of

dark venue executions in the pre-trade phase by marking a check box. We have information about

the venue of child-order executions for roughly 20% of the out-of-sample data. Using this data set,

we can compute the ratio of executed shares in the dark pools. We let DPi be the percentage of

the shares traded in the dark pools for the ith execution. We fit the following regression model

with stock dummies and control variables to formally test whether the allocation to dark pools has

statistical dependence on the skill level of the investor in out-of-sample executions:

DPi = c0 + —sIsSkilledi + —uIsUnskilledi +
ÿ

j

cjControlVariablesj +
Sÿ

k=1
“kI{s(i)=k} + ‘i. (10)

We consider di�erent sets of execution-level control variables consisting of participation rate, inter-

val bid-o�er spread, interval mid-quote volatility, and interval turnover.
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[Insert Table XIV here]

Table XIV summarizes the regression results. In each column, we observe that the coe�cient

on skilled investors is negative and significant at 5% level. We observe that the dark pool usage

of unskilled investors is not statistically significant. With respect to skilled investors, unskilled

investors use dark pools more often and this additional allocation is roughly 5%. Considering

that the unconditional average of dark venue usage is at approximately 10%, this di�erence is

economically significant. Our Wald tests indicate that this di�erence is also statistically significant

at 5% when all of the control variables are included. Overall, our findings are consistent with the

theory presented in Zhu (2014). This result also provides empirical support to earlier conjecture

that market venues may significantly di�er in terms of the proportion of skilled and unskilled

investors.

7.3. Out-of-Sample Execution Costs

Our main analysis illustrated that the price impact coe�cients are biased if investor’s short-term

trading skill is ignored. Our model implies that traditional measures of execution cost will also

su�er from the same bias in the presence of systematic short-term predictive ability. Controlling

for execution characteristics, our model predicts that execution costs of skilled (resp., unskilled)

short-term investors will be higher (resp., lower).

In order to explore this hypothesis, we use implementation shortfall (IS) as a measure of exe-

cution cost as introduced by Perold (1988). IS is the widely preferred measure of trading cost for

institutions and has been frequently employed in the literature to proxy institutional trading cost.

It is computed as the normalized di�erence between the average execution price and the price of

the asset prior to the start of the execution. Formally, the IS of ith execution in our data is given

by

ISi = sgn (Qi)
P avg

i ≠ Pi,0
Pi,0

, (11)

where P avg
i is the volume-weighted execution price of the parent order. We fit the following re-

gression model with stock fixed-e�ects and control variables to formally test whether out-of-sample
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execution costs have statistical dependence on the type of the investor:

ISi = c0 + —sIsSkilledi + —uIsUnskilledi +
ÿ

j

cjControlVariablesj +
Sÿ

k=1
“kI{s(i)=k} + ‘i. (12)

We consider execution-level control variables including participation rate, interval bid-o�er spread,

interval mid-quote volatility, execution duration, and average bid-o�er spread and mid-quote volatil-

ity over the past month.

[Insert Table XV here]

Table XV reports the estimated coe�cients of the models with di�erent sets of control variables.

In each column, we observe that the coe�cient on skilled (unskilled) investors is positive (negative)

and they are both highly significant. The cost di�erence between skilled and unskilled investors is

approximately 25 bps which is both statistically and economically significant as verified by Wald

tests.

Combined with our analysis in Section 7.2, these findings have important implications for com-

paring execution quality between market venues. For example, comparing price impact coe�cients

of a dark pool and a lit exchange on a standalone basis cannot be conclusive, as dark pools seem

to be utilized more by unskilled investors. Our model can be employed to correct for this bias by

accounting for the heterogeneity in short-term trading skill.

7.4. Disposition E�ect

There are several empirical studies (see Barber and Odean (2011) for a survey) that document

investors’ exposure to disposition e�ect, i.e., they have tendency to sell winners too early and ride

losers too long. The disposition e�ect may be one channel of unskilled trading as our main analysis

suggests that the stock price tends to fall (increase) while unskilled investors are selling (buying)

it.9 Thus, we need to test whether unskilled traders buy (sell) an asset that has realized large

positive (negative) returns due to this behavioral bias.

Let Ri be the cumulative return of the asset over the previous month before the execution. If

the unskilled investors in our dataset are exposed to disposition e�ect, we would expect that they
9The presence of retail investors in our dataset can strengthen this behavioral bias.
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would sell (buy) the asset, when Ri is positive (negative). We fit the following regression model

with stock fixed-e�ects and control variables to formally test this hypothesis:

≠sgn (Qi) Ri = c0 + —sIsSkilledi + —uIsUnskilledi +
ÿ

j

cjControlVariablesj +
Sÿ

k=1
“kI{s(i)=k} + ‘i,

(13)

where the dependent variable measures the investor’s holding return before the execution. We

consider average volatility and turnover over the past month as our control variables.

[Insert Table XVI here]

Table XVI reports the estimated coe�cients of the model. We observe that the group dummy

of unskilled investors has statistically significant positive coe�cients at 1% level suggesting that

higher holding period is correlated with their execution decisions. We find that skilled investors

do not make trading decisions based on prior month returns. Furthermore, we formally test for

the di�erences between —s and —u using a Wald test. In all cases, we reject the null hypothesis

suggesting that unskilled investors di�er significantly from skilled ones in selling (buying) winning

(losing) stocks.

7.5. Long-Term Objective

Our estimation results illustrated that unskilled investors are making unprofitable trading decisions

in the short-term. However, this does not mean that they are losing money consistently. Another

explanation for the presence of unskilled investors may be due to their long-term objectives. In this

section, we will compare the long-term performance of skilled and unskilled investors.

Let LRi be the cumulative return of the investor’s execution over the next year in basis points

using the average price of the execution as the initial cost. We fit the following regression model

with stock-dummies to formally test whether out-of-sample long-term performance have statistical

dependence on the skill level of the investor:

LRi = c0 + —sIsSkilledi + —uIsUnskilledi +
ÿ

j

cjControlVariablesj +
Sÿ

k=1
“kI{s(i)=k} + ‘i. (14)
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We use the volatility of the asset and prior yearly (momentum signal) and monthly (short-term

reversal signal) stock returns as control variables.

[Insert Table XVII here]

Table XVII reports the regression results. We observe that the dummy for the set of unskilled

investors is positive and statistically significant at 10% level in each specification. These coe�-

cients are also larger than those estimated for skilled investors suggesting that their trades tend

to perform better in the long-term. However, Wald tests do not provide statistical significance for

this di�erence.

7.6. Trade Size

In a theoretical model, Easley and O’hara (1987) show that informed investors can choose to trade

larger amount of shares. Thus, in this section, we study the relationship between trading skill and

order size decision. We can fit the following regression to formally test whether out-of-sample order

sizes have statistical dependence on the short-term trading skill level of the investor:

log(Qi) = c0 + —sIsSkilledi + —uIsUnskilledi +
ÿ

j

cjControlVariablesj +
Sÿ

k=1
“kI{s(i)=k} + ‘i, (15)

where we use stock dummies and execution-level control variables that are in the information set

of the investor when he decides on the number of shares to be executed. These can include prior

stock and market returns, and average share volume and turnover over the past month.

[Insert Table XVIII here]

Table XVIII reports the estimated coe�cients of the model. In five di�erent specifications, we

observe that the dummy for the set of skilled investors has positive coe�cient but it is not statisti-

cally significant at 5% level. On the other hand, the dummy for unskilled investors has statistically

significant negative coe�cients. Furthermore, we formally test for the di�erence between —s and

—u, H0 : —s = —u, using a Wald test. The results show a clear rejection pattern of the hypotheses

highlighting that skilled investors choose to execute larger asset quantities than their unskilled

counterparts.
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8. Does – Measure Skill?

Our estimation methodology allowed us to identify skilled and unskilled traders qualified by a short-

term Sharpe ratio over the interval of execution. If skilled trading arises from superior predictive

ability (based on short-term information), as is our interpretation, then skilled trading should also

be predictive of future returns beyond the execution horizon. As outlined in Section 2, the price

change after a large order execution will be permanent when the trading motive is information-

based. The construction of a profitable trading strategy based on the short-term informational

asymmetry will be consistent with this theory, as it implies that the price impact is permanent as

opposed to transitory e�ects observed in liquidity-based trading.

In this section, we propose a long-short portfolio strategy that exploits the classification of

traders based on skill. Our interpretation based on trading skill would be supported if this trading

strategy were to generate significant abnormal returns. This conjecture is based on the theoretical

evidence summarized in Section 2, arguing that information-based trading induces permanent price

impact.

8.1. Data

We use the estimated short-term predictive ability of each trader from our model estimation in

Section 5. In order to test our trading strategy, we complement the original data set by extracting

the next day returns of the executed stock from the CRSP database. We download daily four factor

data based on portfolio returns of market risk premium, HML, SMB and UMD (momentum) and

the risk-free rate from Ken French’s webpage.10

8.2. Construction of Trading Strategy

We construct a simple trading strategy according to the sign of the estimated short-term trading

skill for each trader. We will restrict our universe of traders to skilled and unskilled based on

our earlier definition in Section 5. The main idea of the strategy is to follow the trades of the

skilled investors and perform trades in the opposite direction of what unskilled investors trade.
10See Ken French’s data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.

html.
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This strategy is motivated by the hypothesis that skill should be persistent in the short-run.

We rebalance our portfolio at the end of each trading day between January 3rd, 2011 and June

29th, 2012. Specifically, we construct our long-short portfolio specifically as follows:

• On trading day t, there are Lt distinct stocks that skilled traders have bought and unskilled

traders have sold. Then, at the beginning of (t + 1)th trading day, our long portfolio will put

equal (positive) weight to each of these securities with a maximum possible weight of w
max

.

Formally, each security will have a weight of min
1

1
Lt

, w
max

2
.

• On trading day t, there are St distinct stocks that skilled traders have sold and unskilled

traders have bought. Then, at the beginning of (t + 1)th trading day, our short portfolio will

put equal (negative) weight to each of these securities with a minimum possible weight of

≠w
max

. Formally, each security will have a weight of max
1
≠ 1

St
, ≠w

max

2
.

• The remaining portfolio is invested in the risk-free rate. Formally, at the beginning of (t+1)th

trading day, the weight in the risk-free security is

w
rf,t+1 = 1 ≠ Lt min

3 1
Lt

, w
max

4
≠ St max

3
≠ 1

St
, ≠w

max

4
.

We set w
max

to 5% as a base calibration and also provide sensitive analysis for this parameter.

8.3. Results

Using this long-short trading strategy, we obtain the time-series of returns for our strategy resulting

from 377 trading days. The average daily return from our trading strategy is 6.91 bps corresponding

to 17.4% of annualized return. The standard deviation of the daily return resulting from our

strategy is 71.23 bps corresponding to annualized volatility of 11.3%. The resulting annualized

Sharpe ratio is 1.94. In order to ensure that these raw return statistics are abnormal, we regress

our strategy returns against the four-factor model of Carhart (1997).

[Insert Table XIX here]

Table XIX shows that our long-short portfolio returns have statistically significant Jensen’s

alpha. In annualized terms, employing our strategy earns an excess return of 18.8% which is also
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economically significant. These abnormal return statistics provide further supporting evidence

of our classification of traders with regards to short-term predictive ability. Note that this also

illustrates that the trades of the skilled and unskilled investors do predict the returns of the next

day, which is actually a stronger result.

Table XIX also illustrates that our results are robust to the choice of w
max

. We use three other

choices of w
max

with 2.5%, 10% and 15% and in each scenario we obtain statistically significant

excess returns for our strategy. The annualized excess returns are between 13.9% and 20.3% and

Sharpe ratios are between 1.54 and 1.99.

We observe that the excess return of our strategy is very high compared to the reported returns

of the standard anomalies studied in the empirical asset pricing literature. This is expected as this

long-short portfolio construction is not implementable with public data sources. Thus, the main

key takeaway from this analysis is its supporting evidence on skill-based trading at the investor

level. Our profitable trading strategy implies that the realized execution returns are persistent in

the short-term.

9. Conclusion

Statistical models for short-term returns observed during the execution of a large order typically

have low explanatory power. It is di�cult to separate price impact due to demand for liquidity

from predicting price changes due to trading skill. Consequently, trading cost models are estimated

on large order samples, where the e�ect of short-term predictive ability is expected to cancel out.

In this paper, we first propose a model to explain the variation in short-term returns with

the short-term trading skill of the investors along with a parametric modeling of price impact.

Motivated by the performance metrics for the fund management industry, we measure trading skill

in a risk-adjusted way using short-term Sharpe ratios. We estimated our model on a large sample

of executions with masked investor identities and our results show that incorporating short-term

predictive ability o�ers drastic improvements in explaining the variation in security returns over an

execution horizon. We also observe that ignoring short-term trading skill may lead to biased price

impact estimates which are economically large.

The estimated trading skill is specific to each investor in the sample, and can be used to
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classify investors according to the success of their predictive ability. We find that in addition

to the presence of skilled investors, a significant portion of the investor universe is unskilled in

the sense that their trades are in the opposite direction of future short-term price movements.

This cross-sectional variation implies a pronounced heterogeneity in short-term trading skill among

institutional investors. Bootstrapping analyses rigorously illustrate that the numbers of skilled

and unskilled investors are abnormally high and the price impact coe�cients are biased when

heterogeneity in short-term trading skill is ignored. Furthermore, this classification is robust and

has predictive power about the future trading performance of an investor. In order to test for

persistence in the short-term, we propose a trading strategy exploiting the signs of estimated skill

coe�cients and find that this strategy generates economically substantial abnormal returns even

against a benchmark Fama-French four-factor model.

We analyze the trading characteristics of skilled and unskilled investors and find that skilled

traders di�er significantly from unskilled investors by trading (relatively) larger orders and trading

more in lit markets. Unskilled traders tend to sell recent winners and buy recent losers over the

past month. Both types of investors are not able to time favorable liquidity conditions. Finally,

out-of-sample execution costs have major statistical dependence on our skill estimates as well. Ex-

pected execution cost di�erence between short-term skilled and unskilled traders is 25 bps which is

economically substantial. These findings have important policy implications. Our results illustrate

that mere comparison of execution costs cannot be a standalone measure of execution quality. We

find that dark pools are avoided by skilled investors, which may consequently bias their measures

of execution quality. In the presence of investor heterogeneity, these biased estimates may not

ultimately lead to an optimal policy recommendation. Moreover, our findings have several other

practical applications. For example, an agency broker can use the historically estimated trader

skill to advise individual investors on the choice of algorithm and parameter settings. Tracking the

predictive ability of an investor through time gives a measure of trading e�ciency, that would be of

interest to this investor. Such measures can complement the traditional transaction cost analysis

(TCA) that brokers typically provide.
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Figure 1: Histogram of all investor skill estimates expressed as annualized Sharpe ratios, when the price
impact is proportional to the participation rate (left) and when the price impact is proportional to the
square root of participation rate (right).
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Figure 2: Histogram of statistically significant investor skill estimates, expressed as annualized Sharpe
ratios, when price impact is proportional to the participation rate (left) and when the price impact is
proportional to the square root of the participation rate (right).
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Figure 3: The di�erence in trading skill estimates between the linear and square root price impact
models in Equations (2) and (3).
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Figure 4: As a robustness check, we compare trading skill estimates computed from the complete data
set and a randomly constructed in-sample data set in which for every investor only random half of his
executions are considered. We use two price impact specifications for our comparisons: the linear model
(left) and the square-root model (right).
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Table II: Regression results for two price impact models with and without trading skill terms. Two
price impact specifications are estimated, linear and square root. We label an investor as skilled (resp.,
unskilled) if his short-term trading skill estimate is positive (resp., negative) and is statistically significant
under 10% level. In each column, we report estimated coe�cients and their standard errors, adjusted
by clustering on calendar day and stock as suggested by Petersen (2009).

Linear Square root

Trading Skill? Yes No Yes No
Intercept (bps) 1.26 ≠1.34 1.51 ≠3.27

(1.24) (2.42) (1.22) (2.69)
⁄ 1.811úúú 2.277úúú 0.744úúú 0.837úúú

(0.291) (0.363) (0.173) (0.154)
Number of skilled investors 49 N/A 35 N/A
Number of unskilled investors 48 N/A 63 N/A
R2 10.5% 0.5% 10.5% 0.4%
Adj. R2 10.1% 0.5% 10.0% 0.4%
***p < 0.01, **p < 0.05, *p < 0.10
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Table III: Bootstrapping results for the di�erence in price impact coe�cients by constructing 1, 000
random datasets each with 10, 000 executions. In each column, we report the mean di�erence between
the price impact coe�cients and its corresponding standard errors.

Linear Square root

⁄̂ ≠ ⁄̂base ≠0.467úúú ≠0.096úúú

(0.012) (0.007)
N 1, 000 1, 000
***p < 0.01, **p < 0.05, *p < 0.10

Table IV: Results of the falsification test based on a bootstrapping analysis via shu�ing investor iden-
tifiers across executions. We randomly construct 10, 000 di�erent samples of our execution dataset by
permuting the investor ids. In each column, we report the estimated coe�cients from the original mod-
els and their corresponding p-values in square brackets. Empirical distribution for the parameters are
obtained under the null hypothesis that investor identifiers are unrelated to log-returns realized during
each execution horizon.

Linear Square root
Number of skilled investors 49úúú 35úúú

[< 0.001] [< 0.001]
Number of unskilled investors 48úúú 63úú

[0.001] [0.016]
⁄̂ 1.811úúú 0.744úúú

[< 0.001] [< 0.001]
N 10, 000 10, 000
***p < 0.01, **p < 0.05, *p < 0.10
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Table V: Regression results for two price impact models with an in-sample data set constructed using
random half of each investor’s executions. We label an investor as skilled (resp., unskilled) if his short-
term trading skill estimate is positive (resp., negative) and is statistically significant under 10% level. We
estimate two price impact models with and without predictive ability of the investor. In each column,
we report estimated coe�cients and their standard errors, adjusted by clustering on calendar day and
stock as suggested by Petersen (2009).

Linear Square root
Trading Skill? Yes No Yes No
Intercept (bps) 1.41 ≠0.76 1.55 ≠2.93

(1.54) (2.41) (1.53) (2.62)
⁄ 1.793úúú 2.160úúú 0.767úúú 0.838úúú

(0.310) (0.366) (0.179) (0.156)
Number of skilled investors 42 N/A 32 N/A
Number of unskilled investors 45 N/A 53 N/A
R2 11.4% 0.5% 11.4% 0.5%
Adj. R2 10.6% 0.5% 10.6% 0.5%
***p < 0.001, **p < 0.01, *p < 0.05

rMSPE R2

Model In-Sample Out-of-Sample In-Sample Out-of-Sample
Linear 93.19 95.06 10.6% 8.2%
Square root 93.19 95.07 10.6% 8.1%

Table VI: This table reports root mean squared prediction errors (rMSPE) between in-sample and out-
of-sample execution returns and in-sample and out-of-sample R2. Predicted execution returns use the
skill and price impact coe�cients estimated from in-sample data set. rMSPE values are reported in
basis points.
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Table VII: Regression results for two price impact models using constant daily Sharpe ratio for each
investor. We only consider the presence of trading skill terms. We label an investor as skilled (resp.,
unskilled) if his short-term trading skill estimate is positive (resp., negative) and is statistically significant
under 10% level. In each column, we report estimated coe�cients and their standard errors, adjusted
by clustering on calendar day and stock as suggested by Petersen (2009).

Linear Square root
Intercept (bps) 1.48 1.08

(1.03) (1.20)
⁄mkt 1.875úúú 0.759úú

(0.243) (0.140)
Number of skilled investors 45 35
Number of unskilled investors 61 71
R2 10.9% 10.9%
Adj. R2 10.5% 10.5%
***p < 0.01, **p < 0.05, *p < 0.10
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Table VIII: Regression results for two price impact models with an additional spread component in
the price impact model. We label an investor as skilled (resp., unskilled) if his short-term trading skill
estimate is positive (resp., negative) and is statistically significant under 10% level. We estimate two
price impact models with and without predictive ability of the investor. In each column, we report
estimated coe�cients and their standard errors, adjusted by clustering on calendar day and stock as
suggested by Petersen (2009).

Linear Square root
Trading Skill? Yes No Yes No
Intercept (bps) 0.41 ≠1.12 0.63 ≠2.78

(1.31) (1.80) (1.29) (2.03)
⁄ 1.758úúú 2.284úúú 0.721úúú 0.846úúú

(0.310) (0.366) (0.179) (0.176)
” (bps) 0.304ú ≠0.055 0.316ú ≠0.135

(0.179) (0.433) (0.179) (0.180)
Number of skilled investors 46 N/A 32 N/A
Number of unskilled investors 48 N/A 63 N/A
R2 10.5% 0.5% 10.5% 0.4%
Adj. R2 10.1% 0.5% 10.0% 0.4%
***p < 0.001, **p < 0.01, *p < 0.05

Table IX: Bootstrapping results for the di�erence in coe�cients of the linear price impact model when
skill terms are included or excluded. Superscript base refers to the exclusion case. We construct 1, 000
random datasets each with 10, 000 executions. In each column, we report the mean di�erence between
the price impact coe�cients and its corresponding standard errors.

Linear

⁄̂ ≠ ⁄̂base ≠0.530úúú

(0.012)

”̂ ≠ ”̂base 0.362úúú

(0.008)
N 1, 000
***p < 0.01, **p < 0.05, *p < 0.10
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Table X: Regression results for two price impact models with stock fixed-e�ects in the price impact
model. We label an investor as skilled (resp., unskilled) if his short-term trading skill estimate is positive
(resp., negative) and is statistically significant under 10% level. We estimate two price impact models
with and without predictive ability of the investor. In each column, we report estimated coe�cients
and their standard errors, adjusted by clustering on calendar day and stock as suggested by Petersen
(2009).

Linear Square root
Trading Skill? Yes No Yes No
Intercept (bps) ≠7.60 ≠10.51 ≠7.65úúú ≠10.27úúú

(7.12) (7.41) (0.60) (1.70)
⁄ 1.75úúú 2.183úúú 0.733úúú 0.812úúú

(0.178) (0.135) (0.194) (0.191)
Number of skilled investors 46 N/A 31 N/A
Number of unskilled investors 50 N/A 60 N/A
R2 11.2% 1.4% 11.2% 1.3%
Adj. R2 10.1% 0.6% 10.1% 0.5%
***p < 0.001, **p < 0.01, *p < 0.05
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Table XI: Regression results for two price impact models for a subset of executions that lasted between
156 and 234 minutes (between 40% and 60% of a full trading day). We label an investor as skilled
(resp., unskilled) if his short-term trading skill estimate is positive (resp., negative) and is statistically
significant under 10% level. We estimate two price impact models with and without predictive ability
of the investor. In each column, we report estimated coe�cients and their standard errors, adjusted by
clustering on calendar day and stock as suggested by Petersen (2009).

Linear Square root
Trading Skill? Yes No Yes No
Intercept (bps) ≠2.29 ≠3.79 ≠3.28 ≠4.70

(8.77) (6.28) (8.65) (3.29)
⁄ 2.726úú 2.455ú 1.063ú 0.464

(1.243) (1.411) (0.554) (0.649)
Number of executions 1651 1651 1651 1651
Number of investors 39 39 39 39
Number of skilled investors 9 N/A 8 N/A
Number of unskilled investors 9 N/A 10 N/A
R2 17.9% 0.3% 18.0% 0.1%
Adj. R2 15.8% 0.2% 15.9% 0.1%
***p < 0.01, **p < 0.05, *p < 0.10
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Table XII: Regression results for two price impact models using abnormal (excess) returns. We only
consider the presence of trading skill terms. We label an investor as skilled (resp., unskilled) if his
short-term trading skill estimate is positive (resp., negative) and is statistically significant under 10%
level. In each column, we report estimated coe�cients and their standard errors, adjusted by clustering
on calendar day and stock as suggested by Petersen (2009).

Linear Square root
Intercept (bps) 1.89 2.46

(2.49) (2.44)
⁄mkt 1.609úúú 0.555úú

(0.406) (0.265)
Number of skilled investors 33 25
Number of unskilled investors 55 61
R2 12.2% 12.2%
Adj. R2 11.8% 11.8%
***p < 0.01, **p < 0.05, *p < 0.10
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Table XIII: The dependent variables are liquidity measures based on proportional spread, logarithm of
share volume, turnover, and Amihud Illiquidity measure (ILLIQ) realized during the execution period.
We regress these measures on our skill dummies and execution level control variables including volatility,
average spread and logarithm of average volume over the past month, absolute values of asset and market
return over the past week. Formally, we run the model with stock dummies specified in Equation 9. We
use the out-of-sample data constructed for robustness checks in Section 6. Using the estimation from
in-sample data, IsSkilledi (resp., IsUnskilledi) takes a value of 1 if the ith execution is sent by a skilled
(resp., an unskilled) investor (as defined in Section 5). Standard errors are given in parentheses and are
adjusted by clustering on calendar day as suggested by Petersen (2009).

Dependent variable: Liquidity Measures

Spread Log Volume Turnover ILLIQ

IsSkilled 0.03 0.09 0.22 0.01
(0.04) (0.12) (0.44) (0.01)

IsUnskilled 0.004 0.12 0.49ú ≠0.02
(0.04) (0.10) (0.29) (0.01)

Volatility 105.89úúú ≠4.47 20.54 6.05úúú

(3.69) (3.16) (17.24) (0.75)

Average Past Spread 0.10 0.01 ≠0.02 ≠0.001
(0.08) (0.004) (0.02) (0.01)

Log Average Past Volume 0.59úúú 0.53úúú 1.85úúú ≠0.06úúú

(0.15) (0.07) (0.25) (0.02)

|Prior Market Return| ≠3.94ú 8.77ú 45.74ú ≠0.56
(2.30) (4.92) (23.85) (0.53)

|Prior Week Return| ≠0.83 0.93 9.07úúú ≠0.11
(0.51) (0.59) (3.45) (0.10)

Observations 31,670 31,670 31,670 31,670
R2 0.75 0.41 0.20 0.27
Adjusted R2 0.75 0.40 0.19 0.26

Wald Test: H0 : —s = —u

Chi-squared statistic 0.23 0.04 0.29 2.1
p-value [0.63] [0.84] [0.59] [0.15]

***p < 0.01, **p < 0.05, *p < 0.10
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Table XIV: We regress fraction of shares executed in the dark pool on our skill dummies and execution
level control variables including participation rate, bid-o�er spread, mid-quote volatility, and turnover
during the execution horizon. Formally, we run the model with stock dummies specified in Equation 10.
We use the out-of-sample data constructed for robustness checks in Section 6. Using the estimation
from in-sample data, IsSkilledi (resp., IsUnskilledi) takes a value of 1 if the ith execution is sent by a
skilled (resp., an unskilled) investor (as defined in Section 5). Standard errors are given in parentheses
and are adjusted by clustering on calendar day as suggested by Petersen (2009).

Dependent variable:
DP

(1) (2) (3) (4) (5)

IsSkilled ≠0.04úú ≠0.04úú ≠0.03úú ≠0.04úú ≠0.03úú

(0.01) (0.01) (0.01) (0.01) (0.01)

IsUnskilled 0.01 0.01 0.01 0.01 0.01
(0.02) (0.02) (0.02) (0.02) (0.02)

Participation Rate ≠0.37úúú ≠0.38úúú ≠0.40úúú ≠0.30úúú

(0.08) (0.08) (0.08) (0.07)

Spread ≠0.003 0.0001 0.001
(0.002) (0.003) (0.003)

Volatility ≠1.44ú ≠1.90úúú

(0.78) (0.72)

Turnover 0.002úúú

(0.001)

Observations 6,633 6,633 6,633 6,633 6,633
R2 0.10 0.11 0.11 0.11 0.12
Adjusted R2 0.03 0.04 0.04 0.04 0.05

Wald Test: H0 : —s = —u

Chi-squared statistic 3.4 3.6 3.6 4.0 4.0
p-value [0.067] [0.059] [0.058] [0.046] [0.046]

***p < 0.01, **p < 0.05, *p < 0.10
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Table XV: We regress implementation shortfall on our skill dummies and execution level control variables
including including participation rate, bid-o�er spread, mid-quote volatility, and turnover during the
execution horizon. Formally, we run the model with stock dummies specified in Equation 11. We use the
out-of-sample data constructed for robustness checks in Section 6. Using the estimation from in-sample
data, IsSkilledi (resp., IsUnskilledi) takes a value of 1 if the ith execution is sent by a skilled (resp., an
unskilled) investor (as defined in Section 5). Standard errors are given in parentheses and are adjusted
by clustering on calendar day as suggested by Petersen (2009).

Dependent variable:
Implementation Shortfall

(1) (2) (3) (4) (5)

IsSkilled 11.24úúú 11.43úúú 11.42úúú 11.42úúú 11.43úúú

(2.53) (2.62) (2.63) (2.62) (2.71)

IsUnskilled ≠14.16úúú ≠13.49úúú ≠13.49úúú ≠13.49úúú ≠13.53úúú

(3.71) (3.69) (3.69) (3.68) (3.62)

Participation Rate 35.52úúú 35.10úúú 35.12úúú 23.52úúú

(8.66) (8.90) (8.95) (6.82)

Spread 0.44 0.53 0.42
(0.40) (0.38) (0.36)

Volatility ≠35.69 7.09
(205.66) (183.15)

Turnover ≠0.43
(0.27)

Observations 31,690 31,690 31,690 31,690 31,689
R2 0.03 0.03 0.03 0.03 0.03
Adjusted R2 0.01 0.01 0.01 0.01 0.01

Wald Test: H0 : —s = —u

Chi-squared statistic 35.5 33.6 33.5 33.6 33.5
p-value [<0.0001] [<0.0001] [<0.0001] [<0.0001] [<0.0001]

***p < 0.01, **p < 0.05, *p < 0.10
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Table XVI: We regress out-of-sample holding returns realized over the past month on our skill dummies
and execution level control variables including average volatility and turnover over the past month.
Formally, we run the model with stock dummies specified in Equation 13. We use the out-of-sample
data constructed for robustness checks in Section 6. Using the estimation from in-sample data, IsSkilledi

(resp., IsUnskilledi) takes a value of 1 if the ith execution is sent by a skilled (resp., an unskilled) investor
(as defined in Section 5). Standard errors are given in parentheses and are adjusted by clustering on
calendar day as suggested by Petersen (2009).

Dependent variable:
Past Month Holding returns

(1) (2) (3)

IsSkilled 0.001 0.001 0.001
(0.003) (0.003) (0.003)

IsUnskilled 0.01úúú 0.01úúú 0.01úúú

(0.004) (0.004) (0.004)

Average Volatility 0.22 0.22
(0.35) (0.35)

Average Turnover 0.0001
(0.0004)

Observations 31,640 31,640 31,640
R2 0.03 0.03 0.03
Adjusted R2 0.01 0.01 0.01

Wald Test: H0 : —s = —u

Chi-squared statistic 4.5 4.5 4.5
p-value [0.034] [0.034] [0.034]

***p < 0.01, **p < 0.05, *p < 0.10
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Table XVII: We regress out-of-sample one-year future returns on our skill dummies and execution
level control variables including average volatility and turnover over the past month. Formally, we run
the model with stock dummies specified in Equation 14. We use the out-of-sample data constructed for
robustness checks in Section 6. Using the estimation from in-sample data, IsSkilledi (resp., IsUnskilledi)
takes a value of 1 if the ith execution is sent by a skilled (resp., an unskilled) investor (as defined in
Section 5). Standard errors are given in parentheses and are adjusted by clustering on calendar day as
suggested by Petersen (2009).

Dependent variable:
Future Annual Holding Return (bps)

(1) (2) (3)

IsSkilled 95.94 100.82ú 101.87ú

(59.38) (58.52) (58.50)

IsUnskilled 146.45ú 151.15ú 152.46ú

(89.01) (87.84) (87.48)

Average Volatility (bps) 1.08 0.93
(0.78) (0.68)

Prior Yearly Return 155.22
(169.50)

Prior Monthly Return ≠464.41
(286.37)

Observations 31,663 31,663 31,663
R2 0.02 0.02 0.02
Adjusted R2 0.001 0.001 0.002

Wald Test: H0 : —s = —u

Chi-squared statistic 0.24 0.25 0.26
p-value [0.62] [0.62] [0.61]

***p < 0.01, **p < 0.05, *p < 0.10
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Table XVIII: We regress logarithm of order size on our skill dummies and execution level control
variables including logarithm of average daily volume (over the past month), absolute values of prior
weekly asset and market return and average turnover (over the past month). Formally, we run the model
with stock dummies specified in Equation 15. We use the out-of-sample data constructed for robustness
checks in Section 6. Using the estimation from in-sample data, IsSkilledi (resp., IsUnskilledi) takes a
value of 1 if the ith execution is sent by a skilled (resp., an unskilled) investor (as defined in Section 5).
Standard errors are given in parentheses and are adjusted by clustering on calendar day as suggested
by Petersen (2009).

Dependent variable:
log(Qi)

(1) (2) (3) (4) (5)

IsSkilled 0.16 0.16 0.17ú 0.16 0.16
(0.10) (0.10) (0.10) (0.10) (0.10)

IsUnskilled ≠0.30úú ≠0.30úú ≠0.30úú ≠0.30úú ≠0.30úú

(0.14) (0.14) (0.14) (0.14) (0.14)

Log Average Past Volume 0.28úúú 0.22úúú 0.26úúú 0.39úúú

(0.09) (0.09) (0.08) (0.09)

|Prior Week Return| 2.12úúú 2.44úúú 2.48úúú

(0.64) (0.68) (0.68)

|Prior Market Return| ≠4.39 ≠4.46
(3.53) (3.53)

Average Turnover ≠0.01úúú

(0.004)

Observations 31,690 31,686 31,670 31,670 31,670
R2 0.13 0.13 0.13 0.13 0.13
Adjusted R2 0.12 0.12 0.12 0.12 0.12

Wald Test: H0 : —s = —u

Chi-squared statistic 7.9 8.0 8.0 8.0 8.0
p-value [0.0049] [0.0046] [0.0046] [0.0047] [0.0047]

***p < 0.01, **p < 0.05, *p < 0.10
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Table XIX: Regression results for long-short portfolio returns against the four factor model due to
Carhart (1997). In each column, we report estimated coe�cients and their standard errors, calculated
using heteroskedasticity and auto-correlation consistent standard errors.

(1) (2) (3) (4)
w

max

= 2.5% w
max

= 5% w
max

= 10% w
max

= 15%

Intercept (bps) 5.50ú 7.48úú 8.07úú 6.59ú

(3.05) (3.34) (3.51) (3.51)

Mkt-RF ≠0.024 ≠0.044 ≠0.033 ≠0.024
(0.059) (0.059) (0.037) (0.049)

SMB ≠0.090 ≠0.075 ≠0.025 ≠0.051
(0.073) (0.075) (0.065) (0.070)

HML ≠0.080 ≠0.089 ≠0.037 0.032
(0.091) (0.104) (0.115) (0.119)

UMD 0.006 0.021 0.104ú 0.114ú

(0.061) (0.066) (0.055) (0.066)

Sharpe Ratio 1.61 1.94 1.99 1.54
N 377 377 377 377
R2 0.02 0.03 0.03 0.02
Adjusted R2 0.01 0.02 0.02 0.01

***p < 0.01, **p < 0.05, *p < 0.10

58


	Introduction
	Literature Review

	Theoretical Background
	The Model
	Data
	Model Estimation Results
	Price Impact Coefficients and R2
	Heterogeneity in Short-Term Trading Skill
	Bootstrap Analyses

	Robustness Tests
	Out-of-Sample Predictions
	Robustness in Alpha Specification
	Spread Component in Price Impact
	Fixed Stock Effects
	Choice of Execution Horizon
	Accounting for Market Returns

	How do Skilled and Unskilled Investors Trade?
	Timing Liquidity
	Execution in the Dark Pools
	Out-of-Sample Execution Costs
	Disposition Effect
	Long-Term Objective
	Trade Size

	Does  Measure Skill?
	Data
	Construction of Trading Strategy
	Results

	Conclusion

