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Abstract. In modern equity markets, participants have a choice of many exchanges at
which to trade. Exchanges typically operate as electronic limit order books under a price-
time priority rule and, in turn, can be modeled as multiclass first-in-first-out queueing
systems. A market with multiple exchanges can be thought as a decentralized, parallel
queueing system. Heterogeneous traders that submit limit orders select the exchange
(i.e., the queue), in which to place their orders by trading off financial considerations
against anticipated delays until their ordersmay fill. These limit orders can be thought of as
jobs waiting for service. Simultaneously, traders that submit market orders select which
exchange (i.e., queue) to direct their order. These market orders trigger instantaneous
service completions of queued limit orders. In this way, the server is the aggregation of self-
interested, atomistic traders submitting market orders. Taking into account the effect of
investors’ order-routing decisions across exchanges, we find that the equilibrium of this
decentralized market exhibits a state space collapse property whereby (a) the queue
lengths at different exchanges are coupled in an intuitive manner; (b) the behavior of the
market is captured through a one-dimensional process that can be viewed as a weighted
aggregate queue length across all exchanges; and (c) the behavior at each exchange can be
inferred via a mapping of the aggregated market depth process that takes into account the
heterogeneous trader characteristics. The key driver of this coupling phenomenon is
anticipated delay as opposed to the queue lengths themselves. Analyzing a trade and quote
data set for a sample of stocks over a one-month period, we find empirical support for the
predicted state space collapse. Separately, using the data before and after NASDAQ’s
natural fee-change experiment from 2015, we again find agreement between the observed
market behavior and the model’s predictions around the fee change.
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1. Introduction
1.1. Motivation
Modern equity markets are highly fragmented. In the
United States alone, there are more than a dozen
exchanges and about 40 alternative trading systems
where investors may choose to trade. Market par-
ticipants, including institutional investors, market
makers, and opportunistic investors, interact within
today’s high-frequency, fragmented marketplace with
the use of electronic algorithms that differ across par-
ticipants and types of trading strategies. At a high level,
they dynamically optimize where, how often, and at
what price to trade, seeking to achieve their own best
execution objectives while accounting for short-term dif-
ferences or opportunities across the various exchanges.
Exchanges function as electronic limit order books,
typically operating under a price-time priority rule:
resting orders are prioritized for trade first based on

their respective prices and then, at a given price,
according to their time of arrival (i.e., in first-in-first-
out (FIFO) order). The dynamics of an exchange can be
understood as that of a multiclass system of queues,
where each queue is associated with a price level. Job
arrivals into these queues correspond to new limit
orders posted at the respective prices. Market orders
trigger executions that, in queueing system parlance,
correspond to service completions.
The market, consisting of multiple exchanges, can

be viewed as a stochastic network that evolves as a
collection of parallel, multiclass queueing systems.
Figure 1 depicts one side of the market at one price
level. Heterogeneous, self-interested traders optimize
where to route their limit andmarket orders, coupling
the dynamics of these parallel queues. Studying the
interaction effects betweenmarket fragmentation and
high-frequency, optimized order-routing decisions is
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an important issue in understanding market behav-
ior and trade execution and is the main focus of
this paper.1

At a point in time, conditions at the exchanges may
differ with respect to the best bid and offer2 price
levels, themarket depth at various prices, recent trade
activity, and so on. Exchanges publish real-time in-
formation for each security that allow investors to
know or compute these quantities. These, in turn,
imply differences in a number of execution metrics
across exchanges, such as the probability that an
order will be filled, the expected delay until such a fill,
or the adverse selection associated with a fill. Ex-
changes also differ with respect to their underlying
economics. Under the make-take pricing that is com-
mon, exchanges typically offer a rebate to liquidity
providers (i.e., investors that submit limit orders that
make markets when their orders get filled; simulta-
neously, exchanges charge a fee to takers of liquidity
that initiate trades using marketable orders that trans-
act against posted limit orders). Fees range in magni-
tude and are typically between −$0.00103 and $0.0030
per share traded. Because the typical bid-offer spread
in a liquid stock is $0.01, the fees and rebates are a
significant fraction of the overall trading costs and
material in optimizing over routing decisions. Most
retail investors do not have access to this information,
but essentially all institutional investors and market
makers—that, taken together, account for almost all
trading activity—have access and do make use of this
information. They use so-called smart order routers
that take into account real-time state information and
formulate an order-routing problem that considers
various execution metrics in order to decide whether
to place a limit order or trade immediately with a mar-
ket order and accordingly to which venue(s) to direct
their order. Investors are heterogeneous; specifically,

theydifferwith respect to theway that they trade offmet-
rics such as price, rebates, and delays, primarily driven
by their intrinsic patience until they fill their order.
From a modeling viewpoint, the aforementioned

system consists of parallel multiclass queues (the
exchanges) that differ in their economics and antici-
pated delays. These subsystems are decentralized.
Moreover, service capacity is neither centrally con-
trolled nor dedicated as is typical in production or
service systems. Instead, it emerges by aggregating
individual market orders (service completions) di-
rected to different queues, themselves optimizing
over heterogeneous tradeoffs between economics and
operational metrics related to queueing effects.

1.2. Summary of Results
First, the paper offers a novel model for order rout-
ing in fragmented markets that takes into account
queueing phenomena in limit order books, as well as
the atomistic limit order placement and market order
(service completions) routing decisions. This model
explicitly leverages ideas for the economics of queues
literature to capture the tradeoff between delay and
rebate capture in the routing decision of limit orders.
It also incorporates, in a reduced form, the self-
interested routing decisions of marker orders that
comprise the service completion process. The re-
sulting model is a two-sided parallel queue system.
The self-interested nature of the service completion
process may be of independent interest; for example,
one possible application might be in modeling per-
sonnel that work in retailing that may strategize over
which customer to help next, or self-interested drivers
in a ride hailing network that can select where to drive
their car when they are not serving customers. The
formulation of the limit order-routing problem, impor-
tantly, incorporates the heterogeneous preferences of

Figure 1. (Color online) A One-Sided, Top-of-Book Model of Multiple Limit Order Books

Notes. Limit orders (i.e., jobs) arrive to each exchange (modeled by the respective queues) in (a) dedicated streams and (b) optimized limit order
placement decisions. Liquidity is removed through the arrival of decentralized, self-interested market orders, acting as service completions.
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the various market participants with respect to the
way they trade off delays (time) with the anticipated
rebate (money).4

Second, from a methodological viewpoint, we study
a deterministic and continuous fluid model associated
with this system that takes into account the routing
decisions of atomistic limit order placements and mar-
ket orders (service completions). The key result is to
characterize the structural form of the equilibrium state
of this fluid model and derive a form of state space
collapse (SSC) property. The market equilibrium and
SSC are not the result of the price protection mecha-
nism5 imposed in the U.S. equities market. Rather,
they arise out of order-routing decisions among ex-
changes that offer to trade at the same price level but
at different (rebate, delay) combinations. We char-
acterize this coupling effect that yields a strikingly
simplifying property whereby the behavior of the
multidimensional market reduces to that of a one-
dimensional system expressed in terms of what we
refer to as workload, which is an aggregate measure
of the total available liquidity. In equilibrium, the
workload is a sufficient statistic that summarizes the
state of the market. The expected delay at each ex-
change is proportional to the workload, where the
proportionality constant depends on exchange spe-
cific parameters. In equilibrium, if one exchange is
experiencing long delays, then the other exchanges
will also be experiencing proportionally long delays.
Conversely, if (out of equilibrium) one exchange has
temporarily an atypically small associated delay rel-
ative to its cost structure, the new order flow will
quickly take advantage of that delay/cost opportu-
nity and erase that difference.6 For N � 2 exchanges,
we use a geometric argument to prove that the fluid
model transient starting from an arbitrary initial
condition converges to the equilibrium state in finite
time. We conjecture that a similar argument carries
through when there areN > 2 exchanges. The specific
form of our SSC result depends on our assumptions
regarding the routing of limit andmarket orders, as is
typical of such results. The parameters that describe
the heterogeneity of trader preferences and the fees
and rebates at the various exchanges dictate the
resulting equilibrium state.

Third,we empirically verify the state space collapse
property for a sample of trade and quote (TAQ) data
for the month of September 2011 for the 30 securities
that comprise the Dow Jones Index. Although all are
liquid stocks, these securities differ in their trading
volumes, price, volatility, and spread. Our method-
ological results suggest certain testable hypotheses,
most notably regarding the effective dimensionality
of the market dynamics, the linear relation between
the expected delays across exchanges, and the relation
between expected delays and market-wide workload.

These empirical findings are summarized in Section 4
and find statistical support for the SSC prediction of
our model, despite its stylized assumptions. To our
knowledge, this seems to be one of the first empirical
verifications of SSC in a real and complex stochastic
processing system.
The one-dimensionalworkload characterization seems

to offer a tractable model for downstream analysis of
questions that pertain to exchange competition (e.g.,
how to set fees or associated volume tiers), policy
questions that may affect the routing decision problem
or impose exogenous transaction costs (e.g., a trans-
action tax), andmarket design questions (e.g., whether
the coexistence of competing, differentially priced
exchanges is beneficial from a welfare perspective). To
that effect, one of its predictions is that if a high-rebate
exchange was to lower its rebate and fee, the market
response would be such that the queues and trading
volumeswould equilibrate in such away to reduce the
anticipated delay for limit orders placed in that ex-
change comparedwith the delays encountered in other
exchanges. Lower feeswouldmake the exchangemore
attractive for the submission ofmarket orders, possibly
increasing volume. On the other hand, lower rebates
would reduce the attractiveness of the exchange for
placing limit orders,whichwould, all other things kept
constant, lead to a reduction in queue sizes. Small
queues, in turn, discourage market order activity. Our
model predicts the above opposing effects would
balance out through their effect on trading delays,
which should decrease, as traders will be willing to
wait less to receive the smaller rebate. In 2015, NAS-
DAQ ran a pilot experiment to precisely explore this
issue for a sample of 14 stocks. In Section 4.4, we find
strong statistical support for our model’s predic-
tion. Our study complements several industry reports
that studied market data before and after this natu-
ral experiment (Hatheway 2015, Pearson 2015) that
had primarily focused on descriptive statistics and
ex ante/ex post comparisons of volume and depth
comparisons.

1.3. Literature Survey
There are two strand of literature that we briefly re-
view. The first is on market microstructure and fi-
nancial engineering and focuses on the structure and
behavior of limit order books. Apart from the classical
market microstructure models, such as those pro-
posed by Kyle (1985), Glosten and Milgrom (1985),
and Glosten (1987), our paper is related to several
strands of work. First is the set of papers that report
on empirical analyses of the dynamics of exchanges
that operate as electronic limit order books, such as
Bouchaud et al. (2004), Griffiths et al. (2000), and
Hollifield et al. (2004) and the review article of Parlour
and Seppi (2008). Related to the above work, there is a
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body of literature that studies the effect of adverse
selection, which factors in order placement decisions
(Holthausen et al. 1990, Sofianos 1995, Keim and
Madhavan 1998, Dufour and Engle 2000, Huberman
and Stanzl 2004, Gatheral 2010).

Second, there are several papers that study market
fragmentation, exchange competition, and their effect
on market outcomes dating back to the work of
Hamilton (1979), Glosten (1994, 1998), and more re-
cently, Bessembinder (2003) and Barclay et al. (2003).
A number of papers, including O’Hara and Ye (2011),
Jovanovic and Menkveld (2011), and Degryse et al.
(2011), empirically study the impact of exchange
competition on available liquidity and market effi-
ciency. Biais et al. (2010) and Buti et al. (2011) consider
the impact of differences in tick-size on exchange
competition, whereas in the markets we consider, the
tick-size is uniform. Foucault et al. (2005) describe
a theoretical model to understand make-take pric-
ing when monitoring the market is costly. Malinova
and Park (2010) empirically study the introduction
of make-take rebates and fees in a single market.
Foucault and Menkveld (2008) study the impact of
smart order routing on market behavior in a setting
with two exchanges. However, they discuss smart
order-routing decisions by traders submitting mar-
ket orders aiming to optimize their execution price
(i.e., in a setting where exchanges operate without a
price protection mechanism, like Regulation National
Market System (Reg NMS) that applies to the U.S.
equities market, which would eliminate the oppor-
tunity from such routing decisions); their paper does
not consider the routing decisions of limit orders and
disregards queueing effects. van Kervel (2012) con-
siders the impact of order routing in a setting where
market makers place limit orders on multiple exchanges
simultaneously to increase execution probabilities.
Their analysis ignores economic and execution delay
differences between venues. Sofianos et al. (2011)
discuss smart order placement decisions in relation to
their all-in cost, introducing similar considerations to
the ones explored in this paper. More recently, Cont
and Kukanov (2013) studied a smart order-routing
control problem, where a trader decides how to split a
noninfinitesimal order size across multiple venues,
taking into account the delay and rebate differences
across exchanges and operating under a control ho-
rizon T. Our model considers traders that submit
infinitesimal order sizes, so the decision of how to
split their order is not relevant, but they are hetero-
geneous in terms of how they trade off delay with re-
bates; our model also considers the routing of market
orders and tries to characterize the (stylized) market
equilibrium.

Third, there is a growing body of work that de-
velops models of limit order book dynamics and

studies optimal execution problems. Obizhaeva and
Wang (2006), Rosu (2009), Alfonsi et al. (2010), and
Parlour (1998), treat the market as one limit order
book and use a model of market impact and ab-
stracts away queueing effects. The high-frequency
behavior of limit order books can probably be best
modeled and understood as that of a queueing
system. This connection has been explored in re-
cent work, starting with Cont et al. (2010) (see also
Blanchet and Chen 2013; Cont and De Larrard 2013;
Guo et al. 2013; Lakner et al. 2016, 2017;Maglaras et al.
2014; Avellaneda et al. 2011); this set of papers does
not consider fragmentation.
The second strand of literature related to our work

is on stochastic modeling and relates to the asymptotic
analysis tools thatmotivate ourmethod of analysis and
the area of queueing systemswith strategic consumers.
So-called equivalent workload formulations and the
associated idea of state space collapse arise in sto-
chastic network theory in the context of their ap-
proximate Brownian model formulations. This idea
has been pioneered by the work of Harrison (1988,
2000). Workload fluid models were introduced in
Harrison (1995). The condition that guarantees that
parallel server systems exhibit SSC down to one-
dimensional systems was introduced by Harrison
and Lopez (1999), and two papers that establish
SSC results with optimized routing of order arrivals
are Stolyar (2005) and Chen et al. (2019). We model
market order-routing decisions via a reduced-form
state-dependent service rate process. Mandelbaum
and Pats (1995) derive fluid and diffusion approxi-
mations for such queues. Our analysis is itself de-
terministic, building on ideas and tools from the
asymptotic analysis of queues. We do not provide a
limit theorem to justify the deterministic fluid model
we postulate as the system model but instead focus
on its analysis and implications. SSC results tend to
be pathwise properties, established via an asymp-
totic analysis after an appropriate rescaling of time.
In our system, arrival rates of limit and market orders
vary stochastically over time on a slower time scale
than that of the transient fluid model dynamics. An
asymptotic analysis on the slower time scale of the
event rate variations, in the spirit of the so-called
pointwise stationary fluid models (PSFM), would
establish such a pathwise SSC property by exploit-
ing the transient fluid model results of this paper.
Standard machinery for establishing such results
either exploit the work by Bramson (1998) or
Bassamboo et al. (2004). Our model seems to satisfy
the key requirements that one would need to derive
the PSFM and as a result the sample path version
of the SSC property, but we will not pursue this here
other than a short discussion in Section A of the
online supplement.
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Optimal order placement decisions are made ac-
cording to an atomistic choice model as per Mendelson
andWhang (1990). In the context of queueing models
with pricing and service competition, there are sev-
eral papers including those of Luski (1976), Levhari
and Luski (1978), Li and Lee (1994), and Lederer and
Li (1997). Cachon and Harker (2002) and So (2000)
analyze customer choice models that divert from the
lowest cost supplier under M/M/1 system models.
Allon and Federgruen (2007) studied the competing
supplier game in a setting where the offered services
are partial substitutes. An extensive survey is pro-
vided in Hassin and Haviv (2003).

Most of these papers look at static rules, where
consumers make decisions based on steady-state ex-
pected delays. Chen et al. (2019) considers competing
suppliers and arriving consumers making decisions
based on real-time information, like in our model, but
where each supplier has his own dedicated pro-
cessing capacity; the resulting dynamics are different
and only couple through order arrivals. The nature of
the service completion process that emerges as the
aggregation of infinitesimal self-interested contribu-
tions appears novel viz the existing literature. Finally,
Plambeck and Ward (2006) study an assemble-to-
order system that involves a two-sided market fed
by product requests on one side and rawmaterials on
the other, but such systems allow queueing on both
sides, and the flow of material is controlled by the
system manager. Caldentey et al. (2009) and Gurvich
and Ward (2014) study the dynamics of match-
ing queues.

2. Model
We propose a stylized model of a fragmented market
consisting of N distinct electronic limit order books
simultaneously trading a single underlying asset. The
model will take the form of a system of parallel FIFO
queues; new price and delay sensitive jobs arrive over
time and optimize their routing decisions, and self-
interested agents arrive over time and optimizewhere
to route their market order that triggers an instan-
taneous service completion at the respective queue
(i.e., this routing decision happens at the end of the
service time). Our focus is to understand the effect of
optimized order-routing decisions on the interaction
between multiple limit order books. We make a
number of simplifying assumptions that aid the trac-
tability of our model studied in Sections 2 and 3.

One-sided market:We model one side of the market,
which, without loss of generality, choose to be the bid
side, where investors post limit orders to buy the
stock and wait to execute against market orders
directed by sellers. Although our model is one
sided, it may be possible to extend our equilibrium

analysis to a two-sided model where both sides are
simultaneously coupled through the flow of market
orders. Exploring such a two-sided model is an im-
portant direction for future research.
Top-of-book only: Limit orders are distinguished by

their limit price. We only consider limit orders at each
exchange posted at the national best bid price, which
is the highest bid price available across all exchanges:
the top-of-book. A profit-maximizing seller would only
choose to trade at the top of book, and, in fact, in the
United States, this is enforced de jure by U.S. Securities
and Exchange Commission (SEC) Regulation NMS.
Fluid model: We consider a deterministic fluid model,

ormean field model, where the discrete and stochastic
order-arrival processes are replaced by continuous and
deterministic analogues, where infinitesimal orders ar-
rive continuously over time at a rate that is equal to the
instantaneous intensity of the underlying stochastic
processes. This model can be justified as an asymptotic
limit using the functional strong law of large numbers in
settings where the rates of order arrivals grow large but
the size of each individual order is small relative to the
overall order volume over any interval of time. It is well
suited for characterizing transient dynamics in such
systems, which is the time scale over which queue
lengths drain or move from one configuration to an-
other; this is also the relevant time scale in order-
routing decisions. For liquid securities, orders arrive
on a time scale measured in milliseconds to seconds,
whereas queueing delays are of the order of seconds
to minutes.
Constant arrival rates: Market activity exhibits strong

time-of-day effects, typically over longer time scales
(e.g., minutes to hours) than what we focus on. The
analysis of the next section assumes that arrival rates
are constant and do not depend on time or the state at
the exchanges.
Our model is illustrated in Figure 1. For each of the

N exchanges, there is a (possibly empty) queue of
resting limit orders at the national best bid price.
The vector of queue lengths at time t is denoted
by Q(t) ≜ (Q1(t),Q2(t), . . . ,QN(t)) ∈ RN+ .

2.1. Limit Order Routing
A continuous and deterministic flow of investors ar-
rives to the market with the intent of posting an in-
finitesimal limit order. This flow consists of two types:
Dedicated limit order flow arrives at rate λi ≥ 0 and is

destined to exchange i, independent of the stateQ(t) at
the various exchanges. This flow could represent, for
example, investors that may not have the ability to
route orders to all exchanges or to make real-time
order-routing decisions.
Optimized limit order flow arrives at a rate Λ > 0.

Each infinitesimal investor observes the state of the
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market, Q(t), and optimizes over where to route the
associated infinitesimal order, or, if conditions are
unfavorable, not to leave a limit order and to trade
instead with a market order at the offered (other) side
of the market; this option is denoted by i � 0.

Once a limit order is posted at a particular ex-
change, it remains queued until it is executed against
an arriving market order. This disregards order can-
cellations. Cancellations occur, for example, when
time-sensitive orders deplete their patience and cancel
to cross the spread and trade with a market order;
when investors perceive an increased risk of ad-
verse selection; and so on. This assumption simplifies
the order-routing decision and leads to a tracta-
ble analysis.7

2.1.1. Expected Delay. All things being equal, an
investor would prefer a shorter delay until an order
gets executed. Apart from price risk considerations,
this is often because of exogenous constraints on the
speed at which the order needs to get filled; in many
instances, a limit order may be a child order that is
part of the execution plan of a larger parent order,
which itself needs to be filled within a limited time
horizon and under some constraints on its execution
trajectory defined by its strategy. As will be seen in
Section 4, the expected delays vary in the range of 1 to
1,000 seconds.

Given Qi(t) and a market order arrival rate μi > 0,
the expected delay in exchange i is

EDi t( )≜ Qi t( )
μi

. (1)

The μi’s are assumed to be known, and, indeed, in
practice, they can be approximated by observing
recent real-time trading activity at each exchange.
When the investor decides not to place a limit order
but instead trade with a market order, the order is
immediately executed and ED0 ≜ 0.

2.1.2. Rebates. Exchanges provide a monetary in-
centive to add liquidity by providing rebates for each
limit order that is executed. Over time, these have
varied by exchange from −$0.0010 (a negative li-
quidity rebate is, in fact, a fee charged to liquidity
providers) to $0.0030 per share traded. As mentioned
earlier, they are significant in magnitude compared
with the bid-ask spread of a typical liquid stock of
$0.01 per share and represent an important part of
the trading costs that influence the order-routing
decisions. All things being equal, investors prefer
higher rebates.

We denote the liquidity rebate of exchange i by ri. In
the case where the investor chooses to take liquidity
(i � 0), a market order will, relative to a limit order,
involve both paying the bid-offer spread and paying a

liquidity-taking fee. The sum of these payments is
denoted by r0 < 0.
In practice, order-placement decisions depend on

various factors in addition to the ones described
previously. For example, an investor may have ex-
plicit views on the short-term movement of prices
(short-term alpha), and these can be relevant for the
placement of limit orders, be sensitive to adverse
selection, or the anticipated price movement after the
execution of a limit order. Tomaintain tractability, we
will focus on the direct tradeoff between financial
benefits and delays. We will denote the financial
benefit per share traded associated with exchange i
by r̃i and refer to it as the effective rebate; this includes
the direct exchange rebate but possibly incorporates
other financial considerations. All else being equal, a
higher effective rebate is preferable.
We denote the opportunity set of effective rebate

and delay pairs encountered by an investor arriving
at time t by %(t)≜ {(r̃i,EDi(t)) : 0 ≤ i ≤ N}. Investors
are heterogeneouswith respect to theirway of trading
off rebate against delay. Each investor is character-
ized by its type, denoted by γ ≥ 0, that is assumed to
be an independent identically distributed (i.i.d.) draw
from a cumulative distribution function F(·), which is
differentiable, has a continuous density function, and
selects a routing decision i∗(γ) to maximize his utility
according to the rule8:

i∗ γ
( ) ∈ argmax

i∈ 0,1,...,N{ }
γr̃i − EDi t( ). (2)

In other words, γ is a tradeoff coefficient between
price and delay, with units of time per dollar, that
characterizes the type of the heterogeneous investors.
Given the range of rebates and expected delays, this
tradeoff coefficient should roughly be in the range of
1 to 104 seconds per $0.01. Heterogeneity in γ across
investors is an important feature of our model, which
captures the practical reality that investors differ in
their urgency to execute their orders, which, in turn,
affects their patience and limit order placement be-
havior, implicitly or explicitly (through their choice of
algorithmic trading strategy and associated param-
eters; cf. Endnote 4). If at the time of an order arrival
the prevailing delays are long, then some investors
may choose not to post a limit order altogether but
instead cross the spread and execute their order
with a market order (the exchange designated 0 in
our model).
An equivalent formulation to (2), commonly used

in the economic analysis of queues, is to convert the
delay into a monetary cost by multiplying it with a
delay sensitivity parameter. However, another al-
ternative interpretation would assume that investors
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differ in terms of their expected delay tolerance
(i.e., the maximum length of time they are willing to
wait for an order to be filled). Given an estimate of the
anticipated delays, investors with relatively longer
delay tolerance would try to place orders in high
rebate exchanges, whereas others with shorter delay
tolerance would sacrifice high rebates and place their
orders in exchanges with shorter delays (and lower
rebates) to maximize the probability that their order
will get filled in time. Such a reformulation of (2)
would still involve a fundamental tradeoff between
monetary rebate weighed against measures of delay
or execution risk. Overall, although (2) is a simplified
criterion, it captures the fundamental tradeoff be-
tween time and money, and it will ultimately yield
structural results that are consistent with our em-
pirical analysis.

2.2. Market Order Routing
Investors arrive to the market continuously at an
aggregate rate μ > 0, seeking to sell an infinitesimal
quantity of stock instantaneously via a market order.
For an investor who arrives to the market at time t
when the queue length vector is Q(t), the routing deci-
sion is restricted to the set of exchanges {i : Qi(t) > 0}.
One important factor influencing this decision is that
each exchange charges a fee for taking liquidity, and
these fees vary across exchanges. Typically, the fee at
an exchange is slightly higher than the rebate, and the
exchange pockets the difference as a profit. Fee and
rebate data are given in Section 4. For the purposes of
this discussion, we assume that the fee on exchange i
is equal to the rebate ri. Because a market order ex-
ecutes without any delay, it is natural to route it to
exchange i∗ to minimize the fee paid:

i∗ ∈ argmin
i∈ 1,...,N{ }

ri : Qi t( ) > 0{ }. (3)

In practice, routing decisions may differ from those
predicted by fee minimization for a number of rea-
sons: (a) Real order sizes are not infinitesimal, and to
trade a significant quantity, one may need to split an
order across many exchanges. (b) If an investor ob-
serves that liquidity is available at an exchange, be-
cause of latency in receiving market data information
or in transmitting the market order to the exchange,
that liquiditymay no longer be present by the time the
investor’s market order reaches the exchange. This is
accentuated if there are only a few limit orders posted
at an exchange. Both (a) and (b) create a preference for
longer queue lengths. (c) If an exchange has little
available liquidity, clearing the queue of resting limit
orders is likely to result in greater price impact.
(d) There may be other considerations involved in the

order-routing decision, such as different economic in-
centives between the agent making the order-routing
decision and the end investor. All these effects point to
a more nuanced decision process than the fee mini-
mization suggested by (3), which we will capture
through a reduced form attraction model that is often
used in marketing to capture consumer choice be-
havior. Specifically, givenQ(t), the instantaneous rate
at which market orders to sell arrive at exchange i is
denoted by μi(Q(t)) given by

μi Q t( )( )≜μ
fi Qi t( )( )∑N
j�1 fj Qj t( )( ) . (4)

Equation (4) specifies that the fraction of the total
order flow μ that goes to exchange i is proportional to
the attraction function fi(Qi(t)), with fi(0) � 0, that is,
market orders will not route to an exchange iwith no
liquidity. The previous discussion suggests that fi(·) is
an increasing function of the queue length Qi and a
decreasing function of the size of the fee charged by
the exchange.
In the remainder of this paper, we use a basic linear

model of attraction that specifies

fi Qi( )≜ βiQi, (5)
where βi > 0 is a coefficient that captures the attrac-
tion of exchange i per unit of available liquidity. We
posit (but our model does not require) that the βi’s
be ordered inversely to the fees of the correspond-
ing exchanges. We will revisit this empirically in
Section 4.

2.3. Fluid Model
The deterministic fluid model equations are the fol-
lowing: for each exchange i,

Qi t( ) � Qi 0( ) + λit + Λ

∫ t

0
χi Q s( )( ) ds

−
∫ t

0
μi Q s( )( ) ds.

(6)

The quantity χi(Q(·)) denotes the instantaneous frac-
tion of arriving limit orders that are placed into ex-
change i, defined as

χi Q t( )( )≜
∫
&i Q t( )( )

dF γ
( )

, (7)

where &i(Q(t)) denotes the set of optimizing limit
order investor types γ that would prefer exchange i,
that is, the set of all γ ≥ 0 with γr̃i − EDi(t) ≥ γr̃j −
EDj(t) for all j �� i, given the expected delaysED0(t) � 0
and EDj(t) � Qj(t)/μj(Q(t)), for j � 1, . . . ,N, implied9

by Q(t).
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3. Equilibrium Analysis
Suppose that at some point in time, a high rebate
exchange has a very short expected delay relative to
other exchanges. Then, the routing logic in (2) will
direct many arriving limit orders toward this ex-
change, increasing delays and erasing its relative
advantage over the other exchanges. This type of
argument suggests that queue lengths will evolve
over time and eventually converge into some equi-
librium configuration where no exchange seems to
have a relative advantage with respect to its rebate/
delay tradeoff, taking into account the investors’
heterogeneous preferences and the differences in the
fees and rebates across exchanges.

Expressing (6) in differential form, we have that
Q̇i(t) �λi+Λχi(Q(t)) −μi(Q(t)), for i� 1, . . . ,N. Denot-
ing such an equilibrium queue length vector by Q∗,
we have that

λi + Λχi Q∗( ) � μi Q∗( )
, i � 1, . . . ,N. (8)

These equations are coupled through the market
order rates μi(Q∗) and the aggregated routing deci-
sions given by χi(Q∗) that take into account investor
heterogeneity.

3.1. Equilibrium Definition
For each possible price-delay tradeoff coefficient
γ ≥ 0, πi(γ) denotes the fraction10 of type γ investors
who post limit orders to an exchange if i ∈ {1, . . . ,N}
or choose to use a market order if i � 0. We re-
quire that the routing decision vector π(γ)≜ (π0(γ),
π1(γ), . . . , πN(γ)) satisfies
πi γ
( ) ≥ 0, ∀ i ∈ 0, 1, . . . ,N{ }; ∑N

i�0
πi γ
( ) � 1. (9)

Denote by π≜ (πi(γ))γ∈R+ a set of routing decisions
across all investor types and let 3 denote the set of all
πwhereπ(γ) is feasible for (9), for all γ ≥ 0, andwhere
each πi(·) is a measurable function over R+. We have
suppressed the dependence of π on the rate param-
eters (λ,Λ, μ) and the queue length vector. We pro-
pose the following definition of equilibrium:

Definition 1 (Equilibrium). An equilibrium (π∗,Q∗) ∈ 3 ×
RN+ is a set of routing decisions and queue lengths that
satisfies the following:

(i) Individual Rationality: For all γ ≥ 0, the routing de-
cision π∗(γ) for type γ investors is an optimal solution for

maximize
π γ( ) π0(γ)γr̃0+

∑N
i�1

πi γ
( )

γr̃i− Q∗
i

μi Q∗( )
( )

subject to πi γ
( )≥ 0, ∀ i∈ 0,1, . . . ,N{ };
∑N
i�0

πi γ
( )� 1. (10)

(ii) Flow Balance: For each exchange i ∈ {1, . . . ,N}, the
total flow of arriving market orders equals the flow of
arriving limit orders, that is,

λi + Λ

∫ ∞

0
π∗i γ

( )
dF γ

( ) � μi Q∗( )
. (11)

Assuming that queue lengths are constant and
given by Q∗, the expected delay on each exchange i is
given by Q∗

i /μi(Q∗). The individual rationality con-
dition (i) ensures that limit orders are routed in a way
that is consistent with (2). The flow balance condition,
(ii), ensures that inflows and outflows at each ex-
change are balanced and that the queue length vector
Q∗ remains stationary. Definition 1 is consistent11

with the informal system of Equations (8) because
χi(Q∗) � ∫ ∞

0 π∗i (γ) dF(γ).

3.2. State Space Collapse
Given a vector of queue lengthsQ, define theworkload
to be the scaled sum of queue lengths given by
W≜

∑N
i�1 βiQi. The workload captures the aggregate

market depth across all exchanges, weighted by the
attractiveness of each exchange. Orders queued at
attractive exchanges (high βi, typically corresponding
to low r̃i) are weighted more because these orders
have greater priority to get filled first, and, therefore,
more greatly impact the delays experienced by ar-
riving limit orders at all exchanges. In fact, from (1)
and (4), the expected delay on exchange i is given by

EDi � W
μβi

. (12)

That is, the one-dimensional workload is sufficient
to determine delays at every exchange. Theorem 1
establishes something stronger: in equilibrium,
the queue length vector Q∗, which is the state of the
N-dimensional system, can be inferred from the
equilibrium workload W∗. This is a notion of state
space collapse.

Theorem 1 (State Space Collapse). Suppose that the pair
(π∗,W∗) ∈ 3 × R+ satisfy
(i) π∗ is an optimal solution for

maximize
π

∫ ∞

0
π0 γ

( )
γr̃0 +

∑N
i�1

πi γ
( ){

× γr̃i −W∗
μβi

( )}
dF γ

( )
subject to πi γ

( ) ≥ 0, ∀ i ∈ 0, 1, . . . ,N{ },∀ γ ≥ 0,

∑N
i�0

πi γ
( ) � 1, ∀ γ ≥ 0.

(13)
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(ii) π∗ satisfies
∑N
i�1

λi + Λ

∫ ∞

0
π∗i γ

( )
dF γ

( )( )
� μ. (14)

Then, (π∗,Q∗) is an equilibrium, where for each exchange
i �� 0, Q∗ is defined by

Q∗
i ≜ λi + Λ

∫ ∞

0
π∗i γ

( )
dF γ

( )( )
W∗
μβi

. (15)

Conversely, if (π∗,Q∗) is an equilibrium, defineW∗≜β
Q∗.
Then, (π∗,W∗) satisfies (i) and (ii).

Proof. Suppose that (π∗,W∗) satisfies (i) and (ii). ForQ∗
given by (15), we have that

β
Q∗ � ∑
i��0

W∗
μ

λi + Λ

∫ ∞

0
π∗i γ

( )
dF γ

( )( )
� W∗.

Thus,

W∗
μβi

� β
Q∗
μβi

� Q∗
i

μi Q∗( ) . (16)

Combining this with the fact that optimization problem
in (i) is separable with respect to γ (i.e., it can be op-
timized over each π(γ) separately), it is clear that
(π∗,Q∗) satisfies the individual rationality condi-
tion (10). Furthermore, rewriting (15),

λi +Λ

∫ ∞

0
π∗i γ

( )
dF γ

( ) � μ
βiQ∗

i

W∗ � μ
βiQ∗

i

β
Q∗ � μi Q∗( )
.

Thus, (π∗,Q∗) satisfies theflowbalance condition (11),
and (π∗,Q∗) is an equilibrium.

For the converse, suppose that (π∗,Q∗) is an equi-
librium and W∗≜ β
Q∗. Then,

W∗
μβi

� β
Q∗
μβi

� Q∗
i

μi Q∗( ) .

Given that (π∗,Q∗) satisfies (10), this implies that
(π∗,W∗) satisfies (i). Furthermore, if we sum up all N
equations in (11), it is clear that (π∗,W∗) satisfy (ii). □

Condition (i) of Theorem 1 implies individual ra-
tionality when faced with delays implied by the
workload W∗ (cf. (10) and (12)). Condition (ii) is a
market-wide flow balance equation. Given a pair
(π∗,W∗) satisfying (i) and (ii), Q∗ is determined as a
function of workload W∗ through the lifting map (15)
that distributes the workload across exchanges in a
way that takes into account rebates, delays, and in-
vestor heterogeneity through the distribution F(·) of
the tradeoff coefficient γ. The liftingmap corresponds
to Little’s law: each queue length is equal to the
corresponding aggregate arrival rate (dedicated and
optimized) times the equilibrium expected delay.

3.3. Equilibrium Characterization
Theorem 1 allows us to characterize the equilib-
rium behavior of N decentralized limit order books
through their one-dimensional workload. The fol-
lowing assumption will turn out to be sufficient for
the existence of an equilibrium.

Assumption 1. Assume that
(i) The cumulative distribution function F(·) over the

price-delay tradeoff coefficients γ is nonatomic with a
continuous and strictly positive density on the nonnega-
tive reals.
(ii) The arrival rates (λ,Λ, μ) satisfy ∑N

i�1λi <μ<Λ+∑N
i�1λi.
(iii) Each exchange i ∈ {1, . . . ,N} satisfies r̃i > r̃0.

The dedicated flow
∑N

i�1 λi is not delay sensitive.
Condition (iii) ensures that the queueing system is
stable (

∑N
i�1 λi < μ) and leads to a nontrivial equilib-

riumwhere queue lengths are nonzero (μ<Λ+∑N
i�1λi).

Condition (iii) says that if delays are zero, then the
effective rebate of a limit order is always preferable
to the cost of crossing the spread and paying a fee to
trade with a market order, r̃0. Returning to condition
(ii), given that μ<Λ+∑N

i�1λi, one would expect non-
zero queue lengths to build up in the system to dis-
courage some optimizing investors from placing a
limit order and instead trade with a market order.
Intuitively, one expects this to be the most impatient
investors, that is, those of type γ ≤ γ0, for some γ0,
chosen to satisfy (14),

Λ 1 − F γ0
( )( ) +∑N

i�1
λi � μ. (17)

Under conditions (i) and (ii) of Assumption 1, γ0
satisfying (17) exists and is uniquely determined by

γ0 ≜ F−1 1 − μ −∑N
i�1 λi

Λ

( )
. (18)

For all types γ ≤ γ0 not to submit limit orders, the
routing criterion (2) requires that

max
i��0

γ r̃i − r̃0( ) −W∗
μβi

≤ 0, (19)

for all γ ≤ γ0. Under Assumption 1(iii), the left side of
(19) is increasing in γ. Hence, (19) is satisfied if we
ensure that type γ0 investors are indifferent between
market orders and limit orders.

Lemma 1. Under Assumption 1, suppose that (π∗,W∗) is
an equilibrium and define γ0 by (18). Then,

max
i��0

γ0 r̃i − r̃0( ) −W∗
μβi

� 0. (20)
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Furthermore, suppose that for a given W∗, (20) holds, and
for each exchange i, define

κi ≜ βi r̃i − r̃0( ). (21)
Then, an exchange i achieves the maximum in (20) if and
only if i ∈ argmaxj��0 κj.

(The proof of Lemma 1 is provided in the online
supplement.) The quantity κi is related to the desir-
ability of exchange i from the perspective of a limit
order investor; κi is high when βi is high (resulting in
low delay) or when r̃i is high (resulting in a high
rebate). Lemma 1 suggests that maximizing κi char-
acterizes the behavior of type γ0 (the marginal) in-
vestors that are indifferent between choosing be-
tween a market order and a limit order. We refer to
exchanges that achieve this maximum as marginal ex-
changes. Thus, given amarginal exchange ī ∈ argmaxj ��0 κj,
according to Lemma 1,

γ0 r̃ī − r̃0( ) −W∗
μβī

� 0,

and therefore the equilibriumworkload isW∗ �γ0μκī.
Theorem 2, whose proof can be found in the online
supplement, summarizes the previous discussion and
characterizes the equilibrium.

Theorem 2 (Equilibrium Characterization). Under Assump-
tion 1, define γ0 by (18). Suppose that the pair (π∗,W∗) ∈
3 × R+ satisfy

W∗≜γ0μmax
i��0

κi, (22)

and

π∗0 γ
( ) � 1, for all γ < γ0,

π∗i γ0
( ) � 0, for all i /∈ !∗ γ0

( ) ∪ 0{ },
π∗i γ

( ) � 0, for all γ > γ0, i /∈ !∗ γ
( )

,

(23)

where !∗(γ)≜ argmaxi��0 γr̃i −W∗/μβi. Then, (π∗,W∗)
is an equilibrium, that is, satisfies (13) and (14).

Conversely, suppose that (π∗,W∗) ∈ 3 × R+ is an equi-
librium, that is, satisfies (13) and (14). Then, W∗ must
satisfy (22) and π∗ must satisfy (23), except possibly for γ
in a set of F-measure zero.

This characterization of the workload process and
its dependence on model parameters can be used as a
point of departure to analyze market structure and
market design issues and competition and welfare
implications of the presence of many differentiated
exchanges. Theorem 2 implies that the equilibrium
workload is unique and that equilibrium routing
policies are unique up to ties.

We can establish uniqueness of the equilibrium
queue length vector Q∗ in the Theorem 3 (its proof is

available in the online supplement), under the fol-
lowing mild assumption:

Assumption 2. Assume that the effective rebates {r̃i, i �� 0}
are distinct and, without loss of generality, that the ex-
changes are labeled in an increasing order, that is, r̃0 <
r̃1 < · · · < r̃N .

Theorem 3 (Uniqueness of Equilibria). Under Assump-
tions 1 and 2, there is a unique equilibrium queue length
vector Q∗.
In the online supplement, we consider the question

of whether the fluid model queue length vector Q(t)
converges to the unique equilibrium vector Q∗ as
t→∞. For N � 2 exchanges, we use a geometric ar-
gument to prove that the fluid model transient
starting from an arbitrary initial condition converges
to the equilibrium state in finite time. We conjecture
that a similar argument carries through when there
are N > 2 exchanges.

3.4. Discussion
The state-space collapse result and its functional form
hinge on the formulation of the order-routing models
described in Sections 2.1 and 2.2. The primary drivers
of the dimension reduction are (a) the desirability to
place an order at a given queue is decreasing in its
anticipated delay and (b) that the attractiveness of an
exchange for an incoming market order is increasing
in its queue length. Both drivers seem plausible even
under different models of order-routing optimization
logic on both sides of the market, and one might
expect these to lead to some form of state-space
collapse: long queues would discourage new orders
from joining while attracting more service comple-
tions, thus reducing queue size; small queues would
attract more arrivals but fewer service completions,
thus increasing queue size. For example, the same
rationale holds if we replace themarket order-routing
model (4) with a model of the form μi(Q)≜Mi + fi(Q),
for each exchange i. Here, each Mi ≥ 0 represents
dedicatedmarket orderflow to exchange i that does not
react to the state of the system, whereas the fi(Q) term
captures optimized order flow. The detailed form of
the equilibrium of such a system would not coincide
with the one derived here; however, at a high level,
one would expect similar results under different
modeling assumptions that satisfy (a) and (b).

4. Empirical Results
Motivated by our analysis and the fact that for liquid
securities the markets experience high volumes of
flow per unit time, one would expect the market to
behave as if it is near its equilibrium state most of the
time,whichwouldmanifest itself as a strong coupling
between the quote depths and dynamics of competing
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exchanges. More precisely, the expected delay tra-
jectories across exchanges and over time should ex-
hibit strong linear relationships and behave like a
lower dimensional process. Our model suggests the
coupling of the dynamics across exchanges should be
best explained through the relation of the respective
expected delays as opposed to the queue lengths
themselves. The expected delay in exchange i is of the
form Qi/μi(Q), from which we see that the queue
length affects the delay in a nonlinearway that should
likely result in a worse fit in the data according to our
model. Moreover, the workload process (a measure
of weighted aggregate depth) should offer accurate
estimates of delays and queue depths at different
exchanges, as stated in (12).

The precise form of our predictions is, of course,
predicated on the structure of (2), (4), and (5) and the
deterministic and stationary nature of the model we
studied. In the sequel, we will explore whether our
predictions are supported through empirical evi-
dence from a representative sample of market data
that incorporates actual trading behaviors that are
more complex, and its dynamics are stochastic and
nonstationary. We will also examine data of long
periods of time, thus empirically exploring the SSC
predictions in a pathwise sense (see the short dis-
cussion in Section 1 earlier and in Section A of the
online supplement).

The first few subsections will estimate our model
primitives and empirically explore the predicted SSC
result on a data set for all 30 constituent stocks of the
Dow Jones Industrial Average (DJIA) over the du-
ration of a one-month period in 2011. In Section 4.4,
we will explore a more recent sample of data in the
beginning of 2015 where the NASDAQ runs a natural
experiment of reducing the rebates and fees for a
sample of stocks. In that context, we will verify the
validity of our model predictions around this exog-
enous parameter change and illustrate how our
model could prove useful in studying such market
design and policy questions.

4.1. Overview of the Data Set
WeuseTAQdata,which consists of sequences of quotes
(price and total available size, expressed in number
of shares, at the best bid and offer on each exchange)
and trades (price and size of all market transactions,
again expressed in number of shares), with millisecond
timestamps. Our trade and quote data are from the
nationally consolidated data feeds. We treat the depth
at the bid or the ask at each exchange as if it is made up
of individual infinitesimal orders, and we ignore the
fact that the quantity actually arises from a collection of
discrete, noninfinitesimal orders.

We consider the 30 component stocks of the DJIA
over the 21 trading days in the month of September

2011. A list of the stocks and some basic descriptive
statistics are given in Table 1. In Section 4.4, we will
study a more recent, different data set.
We restrict attention to the N � 6 most liquid U.S.

equity exchanges: NASDAQ, New York Stock Ex-
change (NYSE),12 ARCA, DirectEdge X (EDGX), BATS,
and DirectEdge A (EDGA). Smaller, regional exchanges
were excluded because they account for a small fraction
of the composite daily volume and are often not quoting
at theNBBOlevel. Theassociated feesand rebatesduring
the observation period of September 2011 are given in
Table 2.
Throughout the observation period of our data set,

the exchange fees and rebates were constant, and
similarly we will assume in our subsequent analysis
that the effective rebates {r̃i} and attraction coefficients
{βi} for each stock were also constant throughout.
In contrast, the arrival rates (λ,Λ, μ) are time varying.

We will estimate these rates for each stock by aver-
aging the event activity over one-hour time intervals
between 9:45 a.m. and 3:45 p.m. (i.e., excluding the
opening 15 minutes and the closing 15 minutes).13

This yields T � 126 time slots over the 21-day ho-
rizon of our data set. For each time slot t, exchange i,
stock j, and side s ∈ {BID,ASK}, we estimated the
corresponding queue length as the average number of
shares available at the NBBO, denoted by Q(s,j)

i (t).
Similarly, denote by μ(s,j)

i (t) the arrival rate of market
orders to side s on exchange i for security j, in time
slot t. The rates μ

s,j
i (t) are estimated by classifying

trades to be bid or ask side of the market, bymatching
trade time stamps with the prevailing quote at the
same time, that is, using a zero time shift in the context
of the well-known Lee-Ready algorithm. Given these
parameters, we compute the following measure of
expected delay:

ED
s,j( )
i t( )≜ Q

s,j( )
i t( )

μ
s,j( )
i t( )

. (24)

This expression disregards the effect of order can-
cellations from the bid and ask queues, as well as the
noninfinitesimal nature of the order flow (compare
with the remarks in Endnote 6 on cancellations). It
serves as a practical proxy for expected delay that is
commonly used in trading systems. For each stock
and each exchange, Figure 2(a) shows the expected
delay, averaged across time slots and the bid and ask
sides of the market. Delays range from five seconds to
about five minutes across the 30 stocks we studied,
and we observe two to three times the variation in the
delay estimates at different exchanges for the same
security. Similarly, for each stock and each exchange,
Figure 2(b) shows the average queue lengths, or the
number of shares available at the NBBO, averaged
across time slots and the bid and ask sides of the
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market. Queue lengths range from 10 to 100,000
shares across securities, and exhibit about a 10 times
variation in the queue sizes across exchanges for the
same security. Deeper queues correspond to lon-
ger delays.

4.1.1. Principal Component Analysis. The state-space
collapse result of our model predicts that delays are
coupled across exchanges and are restricted to a one-

dimensional subspace. Define the empirically ob-
served expected delay vector trajectories {ED(s,j)(t) :
t � 1, . . . ,T; s � BID,ASK}, where ED(s,j)(t) was esti-
mated in (24), and the trajectories consider all one
hour time slots in the 21 days of our observation
period. A natural way to test the effective dimen-
sionality of this vector of trajectories is via principle
component analysis (PCA) by examining the number
of principle components necessary to explain the

Table 1. Descriptive Statistics for the 30 Stocks over the 21 Trading Days of September 2011

Symbol Listing exchange

Price
Average bid-ask

spread ($)
Volatility
(daily)

Average daily
volume(shares, × 106)Low ($) High ($)

Alcoa AA NYSE 9.56 12.88 0.0099 2.2% 27.8
American Express AXP NYSE 44.87 50.53 0.0135 1.9% 8.6
Boeing BA NYSE 57.53 67.73 0.0170 1.8% 5.9
Bank of America BAC NYSE 6.00 8.18 0.0098 3.0% 258.8
Caterpillar CAT NYSE 72.60 92.83 0.0286 2.3% 11.0
Cisco CSCO NASDAQ 14.96 16.84 0.0098 1.7% 64.5
Chevron CVX NYSE 88.56 100.58 0.0181 1.7% 11.1
DuPont DD NYSE 39.94 48.86 0.0110 1.7% 10.2
Disney DIS NYSE 29.05 34.33 0.0102 1.6% 13.3
General Electric GE NYSE 14.72 16.45 0.0098 1.9% 84.6
Home Depot HD NYSE 31.08 35.33 0.0101 1.6% 13.4
Hewlett-Packard HPQ NYSE 21.50 26.46 0.0099 2.2% 32.5
IBM IBM NYSE 158.76 180.91 0.0596 1.5% 6.6
Intel INTC NASDAQ 19.16 22.98 0.0097 1.5% 63.6
Johnson & Johnson JNJ NYSE 61.00 66.14 0.0114 1.2% 12.6
JPMorgan JPM NYSE 28.53 37.82 0.0099 2.2% 49.1
Kraft KFT NYSE 32.70 35.52 0.0100 1.1% 10.9
Coca-Cola KO NYSE 66.62 71.77 0.0108 1.1% 12.3
McDonalds MCD NYSE 83.65 91.09 0.0135 1.2% 7.9
3M MMM NYSE 71.71 83.95 0.0181 1.6% 5.5
Merck MRK NYSE 30.71 33.49 0.0098 1.3% 17.6
Microsoft MSFT NASDAQ 24.60 27.50 0.0097 1.5% 61.0
Pfizer PFE NYSE 17.30 19.15 0.0099 1.5% 47.7
Procter & Gamble PG NYSE 60.30 64.70 0.0107 1.0% 11.2
AT&T T NYSE 27.29 29.18 0.0099 1.2% 37.6
Travelers TRV NYSE 46.64 51.54 0.0128 1.6% 4.8
United Tech UTX NYSE 67.32 77.58 0.0182 1.7% 6.2
Verizon VZ NYSE 34.65 37.39 0.0099 1.2% 18.4
Wal-Mart WMT NYSE 49.94 53.55 0.0103 1.1% 13.1
Exxon Mobil XOM NYSE 67.93 74.98 0.0109 1.6% 26.2

Notes. The average bid-ask spread is a time average computed from our TAQ data set. The volatility is an average of daily volatilities over
September 2011. All the other statistics were retrieved from Yahoo Finance.

Table 2. Rebates and Fees of the Six Major U.S. Stock Exchanges During the September
2011 Period per Share Traded

Exchange code Rebate ($ per share, × 10−4) Fee ($ per share, × 10−4)

BATS Z 27.0 28.0
DirectEdge X (EDGX) K 23.0 30.0
ARCA P 21.0a 30.0
NASDAQ OMX T 20.0a 30.0
NYSE N 17.0 21.0
DirectEdge A (EDGA) J 5.0 6.0

aRebates on NASDAQ and ARCA are subject to tiering: higher rebates than the ones quoted may be
available to traders that contribute significant volume to the respective exchange.
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variability of the expected delay trajectories across
exchanges and over time. The output of the PCA
analysis is summarized in Table 3: the first principle
component explains approximately 80% of the vari-
ability of the expected delays across exchanges, and
the first two principle components explain approxi-
mately 90%. This is consistent with the hypothesis of
low effective dimension. In contrast, when we con-
duct PCA for the vector trajectories of observed queue
lengths {Q(s,j)(t) : t � 1, . . . ,T; s � BID,ASK}, we find
relatively weaker evidence for a low effective di-
mensionality. In this test, the first principle component

explains approximately 65% of the variability of the
queue lengths across exchanges, and the first two
principle components explain less than 80%. A detailed
report of the results can be found in Table 19 in the
online supplement.
Intuitively, in the high-flow environment of our

observation universe, that is, whereΛ and μ are large,
expected delay deviations from the equilibrium con-
figuration would be quickly erased by optimized
arriving limit and market orders. The equilibrium
state itself changes over time as the rates of events
change, but the coupling across exchanges remains

Figure 2. (Color online) Averages of (a) Hourly Estimates of the Expected Delays and (b) Queue Lengths for the Dow 30 Stocks
on the Six Exchanges During September 2011

Notes. Results are averaged over the bid and ask sides of themarket for each stock. Queues do not include estimates of hidden liquidity at each of
the exchanges.
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strong and persists even if we shorten the time period
over whichmarket statistics are averaged from 1 hour
down to 15 minutes.14

4.2. Estimation of the Market Order-Routing Model
Define μ

(s,j)
i (t) to be the total arrival rate of market

orders for security j and side s ∈ {BID,ASK} in time
slot t directed to exchange i, and let μ(s,j)(t) be the total
arrival rate across all exchanges for (s, j) in time t. The
attraction model of Section 2.2 for market orders
suggests the following relationship:

μ
s,j( )
i t( ) � μ s,j( ) t( ) β

j( )
i Q

s,j( )
i t( )∑N

i′�1 β
j( )

i′ Q
s,j( )
i′ t( )

, (25)

where β(j)i is the attraction coefficient for security j on
exchange i. Our market order-routing model is in-
variant to scaling of the attraction coefficients; hence,
we normalize so that the attraction coefficient for each
stock on its listing exchange is 1. Given that {μ(s,j)

i (t)},
{μ(s,j)(t)}, and {Q(s,j)

i (t)} are observable, we estimated
the β(j)i ’s using a nonlinear regression in (25). The results

are given in Table 4. All attraction coefficient esti-
mates are statistically significant.

4.3. Empirical Evidence of State-Space Collapse
Ourmodel postulates the investorsmake order-placement
decisions by trading off delay against effective rebates
and concludes that delays across exchanges, as mea-
sured by Q(s,j)

i /μ
(s,j)
i , are linearly related. It gives an

expression for estimating delays in each exchange in
terms of an aggregate measure of market depth,
which we call workload.

4.3.1. Verification of linear dependence of expected
delays via regression analysis. Denote by W(s,j)(t)
the workload for side s of security j in time slot t,
that is,

W s,j( ) t( )≜ ∑N
i�1

β
j( )

i Q
s,j( )
i t( ), (26)

and observe that using (25), the vector of expected
delays can be written as

ED s,j( ) t( ) � W s,j( ) t( )
μ s,j( ) t( )

1

β
j( )

1

, . . . ,
1

β
j( )

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (27)

In other words, the expected delays across different
exchanges are linearly related, and specifically, for
each security j, exchanges i, i′, and market side s,

ED
s,j( )
i t( ) � β

j( )
i′

β
j( )

i

ED
s,j( )
i′ t( ), (28)

for each time slot t. Testing the pairwise linear rela-
tions in (28) explores whether (ED1, . . . ,EDN) live on a
one-dimensional space; this statistical test is based on
the expected delaymeasurements in (24), obtained by
dividing the average observed queue size in each
exchange with its respective observed rate of trading,
for all time slots, both sides of the market, and all the
30 component stocks of the Dow Jones Industrial
Average. For each stock and each exchange, we have
126 measurements in the respective time series per
side of the market. The quality of the fit of these
linear regressions will be an indirect indication of the
goodness of fit in (25). In more detail, we will perform
a cross-sectional regression. We will normalize the
expected delay measurements at each exchange by
dividing them by the median expected delay of that
security on a benchmark exchange (ARCA) across all
time slots and both sides of the market as follows:

ED
s,j( )
i t( )≜ ED

s,j( )
i t( )

median
τ�1,...,T; s�BID,ASK

ED
s,j( )
ARCA τ( )

( ) , (29)

Table 3. Results of PCA: How Much Variance in the Data
Can the First Two Principle Components Explain

Percentage of variance explained

One factor Two factor

Alcoa 80% 88%
American Express 78% 88%
Boeing 81% 87%
Bank of America 85% 93%
Caterpillar 71% 83%
Cisco 88% 93%
Chevron 78% 87%
DuPont 86% 92%
Disney 87% 91%
General Electric 87% 94%
Home Depot 89% 94%
Hewlett-Packard 87% 92%
IBM 73% 84%
Intel 89% 93%
Johnson & Johnson 87% 91%
JPMorgan 90% 94%
Kraft 86% 92%
Coca-Cola 87% 93%
McDonalds 81% 89%
3M 71% 81%
Merck 83% 91%
Microsoft 87% 95%
Pfizer 83% 89%
Procter & Gamble 85% 92%
AT&T 82% 89%
Travelers 80% 88%
United Tech 75% 88%
Verizon 85% 91%
Wal-Mart 89% 93%
Exxon Mobil 86% 92%
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Table 4. Estimates of the Attraction Coefficients βi from Nonlinear Regression

Attraction coefficient

ARCA NASDAQ BATS EDGX NYSE EDGA

Alcoa 0.73 0.87 0.76 0.81 1.00 1.33
(0.01) (0.01) (0.01) (0.01) (0.00) (0.03)

American Express 1.19 1.08 0.99 0.94 1.00 0.94
(0.02) (0.02) (0.04) (0.03) (0.00) (0.06)

Boeing 0.95 0.67 0.81 0.74 1.00 0.73
(0.02) (0.01) (0.01) (0.02) (0.00) (0.04)

Bank of America 0.94 1.04 1.01 0.77 1.00 1.43
(0.01) (0.02) (0.02) (0.01) (0.00) (0.04)

Caterpillar 0.82 0.78 1.13 0.70 1.00 0.58
(0.01) (0.01) (0.03) (0.02) (0.00) (0.04)

Cisco 0.95 1.00 1.06 0.98 — 1.45
(0.01) (0.00) (0.01) (0.02) — (0.03)

Chevron 0.70 0.93 1.17 0.65 1.00 0.75
(0.01) (0.01) (0.02) (0.01) (0.00) (0.05)

DuPont 0.90 0.98 0.98 1.03 1.00 1.00
(0.01) (0.01) (0.02) (0.02) (0.00) (0.06)

Disney 0.69 0.88 0.78 0.88 1.00 1.04
(0.01) (0.01) (0.02) (0.03) (0.00) (0.03)

General Electric 0.79 1.01 0.94 0.73 1.00 1.63
(0.01) (0.01) (0.02) (0.01) (0.00) (0.03)

Home Depot 0.76 0.98 0.79 0.84 1.00 1.02
(0.01) (0.01) (0.01) (0.02) (0.00) (0.03)

Hewlett-Packard 1.04 1.04 1.02 0.68 1.00 0.82
(0.02) (0.01) (0.02) (0.02) (0.00) (0.03)

IBM 1.25 1.20 1.20 1.05 1.00 0.54
(0.02) (0.02) (0.03) (0.02) (0.00) (0.02)

Intel 0.83 1.00 0.96 0.84 — 1.04
(0.01) (0.00) (0.01) (0.02) — (0.03)

Johnson & Johnson 0.80 0.94 0.86 0.92 1.00 0.77
(0.01) (0.01) (0.01) (0.02) (0.00) (0.03)

JPMorgan 0.78 0.99 0.93 0.84 1.00 0.91
(0.01) (0.01) (0.01) (0.01) (0.00) (0.02)

Kraft 0.72 0.89 0.83 0.73 1.00 1.06
(0.01) (0.01) (0.01) (0.02) (0.00) (0.03)

Coca-Cola 0.68 0.84 0.79 0.76 1.00 0.88
(0.01) (0.01) (0.02) (0.02) (0.00) (0.05)

McDonalds 0.90 0.86 1.03 0.82 1.00 0.82
(0.01) (0.01) (0.02) (0.02) (0.00) (0.04)

3M 0.89 0.67 0.62 0.66 1.00 0.57
(0.02) (0.01) (0.01) (0.02) (0.00) (0.04)

Merck 0.68 1.01 0.83 0.90 1.00 0.81
(0.01) (0.01) (0.01) (0.02) (0.00) (0.02)

Microsoft 0.83 1.00 1.02 0.95 — 1.41
(0.01) (0.00) (0.01) (0.02) — (0.03)

Pfizer 0.84 1.01 0.96 0.87 1.00 1.29
(0.01) (0.01) (0.02) (0.02) (0.00) (0.03)

Procter & Gamble 0.79 0.89 0.88 0.89 1.00 0.89
(0.01) (0.01) (0.01) (0.02) (0.00) (0.03)

AT&T 0.62 0.94 0.75 0.59 1.00 1.00
(0.01) (0.01) (0.01) (0.01) (0.00) (0.03)

Travelers 0.80 0.69 0.69 0.84 1.00 0.80
(0.01) (0.01) (0.01) (0.03) (0.00) (0.03)

United Tech 1.18 0.89 0.79 0.87 1.00 0.53
(0.02) (0.01) (0.01) (0.03) (0.00) (0.04)

Verizon 0.77 0.95 0.88 0.72 1.00 0.85
(0.01) (0.01) (0.01) (0.02) (0.00) (0.03)

Wal-Mart 0.72 0.88 0.79 0.71 1.00 0.91
(0.01) (0.01) (0.01) (0.02) (0.00) (0.03)
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whereED(s,j)
i (t)was estimated in (24).Wewill perform

a linear regression of the normalized left side of (28)
as a function of the normalized right side of (28),
rescaled by the ratio of the attraction coefficients of
the two exchanges.

The results of these regressions are summarized in
Table 5. TheR2 varies between 52% and 70% across the
five exchanges. The results are statistically signifi-
cant, and we are able to reject the null hypothesis that
the delay on a particular exchange has a zero re-
gression coefficient relative to the rescaled delay on
ARCA. These results statistically verify the linear
dependence of delays across different exchanges sug-
gested by (28). Note that (28) further predicts that the
regression should have a zero intercept, and the slope
of the rescaledEDARCA term should be 1. These are not
born in the regressions—the intercept is statistically
different from 0, and the slope is statistically different
from 1. Nevertheless, the intercept and slope are,
respectively, quite close to 0 and 1. This is remarkable
given the stylized nature of the routing model of
Section 4.2 and the noise in the extensive market
data sample.

Although the regressions in Table 5 were per-
formed cross-sectionally across all securities, similar
results hold if the analysis is performed on a security
by security basis. Figure 3 depicts the delay rela-
tionships in the case of Bank of America. It illustrates
the strong linear relationship across all exchanges
over time and across significant variations in pre-
vailing market conditions; the latter is manifested in

the roughly two orders of magnitude variation in
estimated expected delays.
A competing hypothesis is that queue lengths across

exchanges are linearly related, that is, for each security j,
exchanges i, i′, and market side s,

Q
s,j( )
i t( ) � cii′Q

s,j( )
i′ t( ), (30)

for each time slot t. The following test explores such
an alternative hypothesis. According to (30), predi-
cated on queue length estimates obtained in Section 4.1,
that is, Q(s,j)

i (t) as the average number of shares avail-
able at the NBBO for time slot t, exchange i, stock j,
and side s ∈ {BID,ASK}, we perform a cross-sectional
linear regression of the queue length of each security
on a particular exchange, as a function of that on a
benchmark exchange (ARCA). As before, we normalize
the queue lengths by dividing them by the median
queue length of that security on a benchmark exchange
(ARCA) across all time slots and both sides of the
market; that is, we use

Q
s,j( )
i t( )≜ Q

s,j( )
i t( )

median
τ�1,...,T; s�BID,ASK

Q
s,j( )
ARCA τ( )

( )

as the queue length measure in the regression. Our
model would predict that queue lengths will not
exhibit such a strong linear dependence as we show
earlier in terms of delays. Indeed, the results provided
in Table 6 show that theR2 we foundwas significantly

Table 5. Linear Regressions of the Normalized Expected Delay on a Particular Exchange vs.
That of the Benchmark Exchange (ARCA) Rescaled by the Ratio of the Attraction Coefficients
of the Two Exchanges

Dependent variable: EDexchange

NASDAQ OMX BATS DirectEdge X NYSE DirectEdge A

Intercept 0.27∗∗∗ 0.28∗∗∗ 0.24∗∗∗ 0.28∗∗∗ 0.36∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Rescaled EDARCA 0.70∗∗∗ 0.72∗∗∗ 0.72∗∗∗ 0.63∗∗∗ 0.60∗∗∗
(0.01) (0.01) (0.01) (0.01) (0.01)

R2 70% 70% 52% 60% 52%

***p < 0.01.

Table 4. (Continued)

Attraction coefficient

ARCA NASDAQ BATS EDGX NYSE EDGA

Exxon Mobil 0.89 1.13 0.97 0.89 1.00 1.35
(0.01) (0.01) (0.01) (0.02) (0.00) (0.10)

Notes. The attraction coefficient of the listing exchange is normalized to be 1. We note that exchanges with
lower fees (and rebates) tend to have higher attraction coefficients β.
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lower than that in Table 5, varying between 13%
and 26%.

4.3.2. Residual Analysis and Accuracy of Delay Esti-
mates Based on the Aggregate Workload. The SSC
result culminated in relationship (27) that makes
expected delay predictions in each exchange based on
the one-dimensional aggregated workload process.
Specifically, given the market model coefficients β

(j)
i

and a measurement of the queue sizes at the various

exchanges, Q(s,j)
i (t), one can compute the workload

via (26) and then construct estimates for the expected
delays at the various exchanges via (27). We denote
the resulting delay estimates by ÊD(s,j)(t), where the ˆ
notation denotes in this context the estimate obtained
via the one-dimensional workload process, as op-
posed tomeasuring the actual expected delayED(s,j)(t)
via (24). This prediction can be tested again through a
set of linear regressions between the workload delay
estimate and the delay estimate that uses information

Figure 3. (Color online) Scatter Plots of the Expected Delay for Bank of America (BAC) on Each Exchange vs. the Delay on
ARCA Rescaled by the Ratio of the Attraction Coefficients of the Two Exchanges

Notes. (a) Slope = 0.88, intercept = 6 × 10−3, R2 = 84%; (b) slope = 0.80, intercept = 9 × 10−3, R2 = 79%; (c) slope = 1.04, intercept = 9 × 10−4, R2 =
71%; (d) slope = 1.11, intercept = −4 × 10−3, R2 = 63%; (e) slope = 0.90, intercept = 4 × 10−3, R2 = 73%. Black lines correspond to linear regressions
with intercept.
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about the state of the exchange (queue length and
trading rate). All these regressions are statistically
significant and are accompanied with high R2 values.
We do not report on these results; instead, we pursue a
more detailed analysis of the residuals, that is, the errors
between the workload and exchange-specific delay
estimates, ED(s,j)(t) − ÊD(s,j)(t). We define the quantity

R2∗≜ 1 −
Var ED s,j( ) t( ) − ÊD s,j( ) t( )

⃦⃦⃦ ⃦⃦⃦( )
Var ED s,j( ) t( )

⃦⃦⃦ ⃦⃦⃦( ) ,

for each security j. Here, Var(·) is the sample variance,
averaged over all time slots t and both sides of the
market s. The quantity R2∗ measures the variability of
the residuals unexplained by the relationship (27),
relative to the variability of the underlying expected
delays. By its definition, when R2∗ is close to 1, most of
the variability of expected delays is explained by the
relationship (27). Numerical results for R2∗ across
securities are given in Table 7. Typical values for R2∗
are approximately 80%, highlighting the predictive
power of the one-dimensional workload model as a
means of capturing the state of the decentralized
fragmented market.

4.4. Effects of Fee Change: Evidence from the
NASDAQ Fee Experiment

We conclude with a separate verification of the pre-
dictions of our model in the context of a natural ex-
periment done by the NASDAQ exchange, whereby
they made a significant reduction of its fee and rebate
schedule for a subset of 14 stocks between February
andMayof 2015.15 NASDAQ lowered the fees charged
to liquidity takers from $0.0030 per share to $0.0005
per share, and correspondingly, lowered the rebates
rewarded to liquidity providers from $0.0029 per share
to $0.0004 per share.
To test the impact of this significant reduction in the

make-take fee on NASDAQ, we analyze and compare
TAQ data of the 14 tested symbols in two separate
time periods: the preperiod of January 12–30, 2015 and
the postperiod of February 9–27, 2015 (three weeks
before and after the initiation of the program at the
beginning of February 2015, respectively). Table 8
contains the fees charged on the six major exchanges
in the tested periods, during which only that of NAS-
DAQ changed.
A change in the per share fee and rebate will affect

the attractiveness of the exchange for traders placing
limit orders and traders sending aggressive market
orders. Our model of market and limit order routing
makes some direct predictions on market outcomes,
specifically suggesting that the fee change will affect
both the trading rate and displayed depth at the

Table 6. Linear Regressions of the Normalized Queue Length on a Particular Exchange vs. That of the Benchmark
Exchange (ARCA)

Dependent variable: Qexchange

NASDAQ OMX BATS DirectEdge X NYSE DirectEdge A

Intercept 0.84∗∗∗ 0.39∗∗∗ 0.25∗∗∗ 0.57∗∗∗ 0.05∗∗∗
(0.02) (0.01) (0.01) (0.02) (0.01)

QARCA 0.74∗∗∗ 0.45∗∗∗ 0.29∗∗∗ 0.96∗∗∗ 0.24∗∗∗
(0.02) (0.01) (0.01) (0.02) (0.00)

R2 19% 20% 13% 26% 26%

***p < 0.01.

Table 7. The Reduction of Variability in Expected Delays
Explained by the Workload Relationship

R2∗
Alcoa 75%
American Express 64%
Boeing 75%
Bank of America 80%
Caterpillar 58%
Cisco 87%
Chevron 67%
DuPont 82%
Disney 78%
General Electric 82%
Home Depot 87%
Hewlett-Packard 77%
IBM 63%
Intel 82%
Johnson & Johnson 83%
JPMorgan 88%
Kraft 79%
Coca-Cola 81%
McDonalds 74%
3M 62%
Merck 78%
Microsoft 80%
Pfizer 79%
Procter & Gamble 80%
AT&T 77%
Travelers 67%
United Tech 47%
Verizon 79%
Wal-Mart 85%
Exxon Mobil 81%
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exchange through their impact on the expected delay
experienced by limit orders.

In what follows, we will first estimate the exchange
attraction coefficients before and after the fee change.
We will propose a structural model for the attrac-
tiveness of each exchange that explicitly incorporates
its prevailing fee. From this model, we expect that the
attractiveness of NASDAQ is increased after the fee
reduction, and we verify this prediction. We then
study the effect of the fee change in the routing of
limit orders. In this case, our model predicts that the
equilibrium expected delay for limit orders to get
filled on NASDAQ will decrease after the fee change.
The empirical analysis will again verify this prediction.

Separately, we randomly construct a control group
of 100 securities that were constituents of the S&P500
index during the January–February 2015 period and
not included in the access fee experiment. We em-
pirically estimate the attraction coefficients of the
market order-routing model and the expected delays
for these securities in the pre- and postfee change
periods and then perform a difference-in-differences
analysis that verifies that there are statistically signifi-
cant differences between the control and test groups.

Together, these observations suggest that the im-
pact of the fee change is best understood through its
structural impact to limit and market order-routing
policies and their impact on trading delays. The
agreement of our predictions with the observed market
response suggests that our model could be useful in
addressing either policy related questions or ques-
tions of exchange competition that often involves
changes in pricing (fee/rebate) decisions. Our find-
ings complement those reported by Hatheway (2015)
and Pearson (2015) on the impact of this fee change;
these studies are not predicated on an underlying
model of order routing and are primarily focused on
market share and depth comparisons, before and after
the fee change.

4.4.1. Attraction Coefficient βNASDAQ. The discussion in
Section 2.2 suggested that the attractiveness of an
exchange formarket orders is a decreasing function of
its fee. Our earlier analysis focused on an observation
period where fees were constant, which implied that
the attractiveness coefficients of the exchanges were
themselves constant throughout that time period. The
NASDAQ fee experiment allows us to proceed with a
more nuanced analysis to examine the effect of the
exchange fees on market order flow.We postulate the
following structural model for the routing of mar-
ket orders:

μ
s,j( )
i t( ) � μ s,j( ) t( )

ea
j( )

i +ri,tb j( )
[ ]

Q
s,j( )
i t( )

∑N
k�1 ea

j( )
k +rk,tb j( )

[ ]
Q

s,j( )
k t( )

. (31)

In other words, we are postulating the attractiveness
coefficients take the form β

( j)
i � ea

( j)
i +ri,tb( j) , given pa-

rameters a( j)i , b( j) that we estimate using three weeks of
data before and after the fee change. Our hypothesis is
that the parameter b( j) is negative, that is, an higher fee
makes an exchange less desirable, all other things
being equal. The corresponding {μ(s,j)

i (t)}, {μ(s,j)(t)},
and {Q(s,j)

i (t)} are estimated from the two trade and
quote data samples as outlined in Section 4.1.
We normalize the results so that the parameter

a( j)ARCA of the benchmark exchange ARCA is 0. Finally,
b( j) is estimated using nonlinear regressions on (31),
based on the combined sample for each security.
Results are in Table 9. Indeed, the estimated {b( j)}
coefficients are negative for all 14 tested securities; 12
of these estimated coefficients are statistically sig-
nificant at the 5% level of the corresponding one-sided
test. This agrees with our hypothesis.
We also directly estimate the βNASDAQ coefficients

before and after the fee change and compare. This
estimation is nonparametric in the sense that it is not
predicated on (31) and estimates βNASDAQ via non-
linear regressions the following:

μ
s,j( )
i t( ) � μ s,j( ) t( ) β

j( )
i Q

s,j( )
i∑N

i′�1 β
j( )

i′ Q
s,j( )
i′

, (32)

based on the preperiod sample and postperiod sample,
respectively. Our market order-routing model is
invariant to scaling of the attraction coefficients, and
in this section, we normalize so that the attraction
coefficient for each stock on the benchmark exchange
ARCA is 1. Table 10 reports and compares the esti-
mated attraction coefficients before and after the
NASDAQ fee experiment for individual stocks. Note
that β( j)NASDAQ - post is greater than β( j)NASDAQ - pre for

Table 8. Fees of the Six Major U.S. Stock Exchanges, per
Share Traded, in January–February 2015 Around the Time
of the NASDAQ Access Fee Experiment

Exchange Fee ($ per share, × 10−4)

NASDAQ OMX: January 2015 30.0
February 2015 5.0
BATS 30.0
DirectEdge X (EDGX) 30.0
ARCA 30.0
NYSE 27.0
DirectEdge A (EDGA) −2.0

Note. The fees here are different from previous numbers in Table 2
because they are in different time periods.
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12 of the 14 tested securities. For all these 12 names,
the increments are statistically significant under a
one-sided test at the 5% level. This is again consistent
with our prediction.

4.4.2. Expected Delay EDNASDAQ. Our limit order-
routing model suggests that traders tradeoff ex-
pected delay with rebate and that, in equilibrium,
exchanges that offer lower rebates will also offer
lower expected delays for limit orders placed in the
back of the queue at the best bid (top of book) until
they get filled.

As stated in (12), the expected delay satisfies
EDi � W

μβi
. We expect the workload W to remain the

same after NASDAQ reduces its make-take fee, as the
equilibrium value of W depends on the marginal ex-
change, which is likely to be the one with the lowest
rebate, which is not NASDAQ; we are assuming that
the remaining model parameters remain the same.

As described previously, we anticipate the attraction
coefficient βNASDAQ to increase after the fee change,
which would result in a lower expected delay
EDNASDAQ after NASDAQ reduced its make-take fee.
An alternative justification is that traders submitting
orders into NASDAQ would expect lower expected
delays given that they are compensated with a lower
rebate when their orders trade. In equilibrium, pa-
tient traders will submit orders to higher rebate ex-
changes, which would result in a lower equilibrium
delay at NASDAQ after the fee change.
To test this hypothesis, we will compare the nor-

malized expected delay at NASDAQ before and after
the fee change. We first compute the measure of ex-
pected delay along the lines of Section 4.1, as

ED
s,j( )
i t( )≜ Q

s,j( )
i t( )

μ
s,j( )
i t( )

, (33)

Table 9. Estimates of b and ai in the Attraction Model (31) and Hypothesis Testing Results
on Whether the Coefficient b Is Negative

b( j) a( j)NASDAQ a( j)EDGX a( j)BATZ a( j)NYSE a( j)EDGA b Negative? One-sided 5% test

AAL −4.92 0.11 −0.02 0.27 0.09 Yes No
BAC −179.50 0.42 0.20 0.26 0.13 0.46 Yes Yes
FEYE −98.65 −0.30 −0.20 0.10 −0.32 Yes Yes
GE −93.50 0.15 −0.04 0.13 −0.01 0.27 Yes Yes
GPRO −50.15 −0.07 −0.21 0.07 −0.07 Yes Yes
GRPN −94.41 0.12 −0.07 0.25 0.00 Yes Yes
KMI −113.10 0.09 0.06 0.13 −0.18 −0.02 Yes Yes
MU −89.02 0.06 −0.02 0.14 0.19 Yes Yes
RAD −138.46 −0.05 −0.22 0.07 −0.29 −0.09 Yes Yes
RIG −76.56 −0.02 −0.02 0.04 −0.14 0.10 Yes Yes
S −162.59 −0.22 −0.29 0.04 −0.26 −0.38 Yes Yes
SIRI −69.31 0.13 −0.13 0.17 0.33 Yes Yes
TWTR −87.33 −0.14 −0.16 −0.01 −0.27 −0.23 Yes Yes
ZNGA −17.66 0.14 −0.28 0.14 0.41 Yes No

Note. For each stock, the results are based on a combined sample that includes both the preperiod and
the postperiod of the fee experiment.

Table 10. Estimates of the Attraction Coefficient of Individual Stocks on NASDAQ Before and After the Fee Experiment and
Hypothesis Testing Results on Whether the Attraction Coefficient Increases Under the Fee Change

β
( j)
NASDAQ - pre Standard deviation β

( j)
NASDAQ - post Standard deviation Increase? One-sided 5% test

AAL 1.1478 0.0152 1.0787 0.0189 No No
BAC 1.4516 0.0297 2.5617 0.0647 Yes Yes
FEYE 0.6958 0.0136 0.9543 0.0156 Yes Yes
GE 1.1339 0.0244 1.5250 0.0386 Yes Yes
GPRO 0.9285 0.0196 1.0557 0.0250 Yes Yes
GRPN 1.1035 0.0253 1.4288 0.0258 Yes Yes
KMI 1.0814 0.0163 1.4780 0.0267 Yes Yes
MU 1.0314 0.0124 1.3862 0.0186 Yes Yes
RAD 0.9515 0.0302 1.3530 0.0368 Yes Yes
RIG 0.9775 0.0230 1.1925 0.0239 Yes Yes
S 0.9905 0.0453 1.0957 0.0429 Yes Yes
SIRI 1.1787 0.0265 1.3045 0.0347 Yes Yes
TWTR 0.9093 0.0235 1.0623 0.0269 Yes Yes
ZNGA 1.2111 0.0337 1.1939 0.0332 No No
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for side s, security j, on exchange i, in time slot t. We
then use these measures to calculate an aggregate,
normalized estimate of the expected delay on NAS-
DAQ, as follows:

˜ED
j( )

NASDAQ � 1
2T

∑
s∈ BID,ASK{ }

∑T
t�1

ED
s,j( )
NASDAQ t( )∑N

k�1 ED
s,j( )
k t( )

. (34)

For each stock, we can obtain two estimates
˜ED( j)

NASDAQ(pre) and ˜ED( j)
NASDAQ(post) based on the

preperiod sample and postperiod sample, respec-
tively. Table 11 reports on these two statistics for
individual securities. We observe that the normalized
expected delay on NASDAQ decreases for all 14
tested securities; in 13 of these 14 cases, the reduction
is statistically significant. This agrees with the pre-
diction of our model. Table 12 illustrates that this
result is robust to normalizing the delay by the me-
dian (rather than the sum) of delays.

4.4.3. Linear Relation EDNASDAQ � βARCA/βNASDAQ · EDARCA.
Last, we examine how the fee change affects the linear
relation (28), which is one of the major conclusions
arising from our model:

ED
s,j( )
i t( ) � β

j( )
i′

β
j( )

i

ED
s,j( )
i′ t( ). (35)

Specifically, we want to test that when consider-
ing the linear relation between NASDAQ and the
benchmark exchange, ARCA, the slope of that lin-
ear relation before and after the fee change will de-
crease, because we expect that the attraction coeffi-
cient βNASDAQ should increase in response to that
change. We perform linear regressions for each

security between the expected delays on NASDAQ
against that on the benchmark exchange ARCA before
and after the fee change and report the results in Ta-
ble 13. We observe that the resulting slopes decrease
for all 14 tested securities, among which 8 are statis-
tically significant under a one-sided test at the 5% level.
In addition, in a cross-sectional linear regression, the
slope before the fee change was 0.78564∗∗∗(0.01571),
R2 � 58%, and 0.66384∗∗∗(0.01221), R2 � 62% after
the fee change; the decrease in the slope is statistically
significant. Table 14 illustrates that these results are
robust to performing the regressionwith no intercept.

4.4.4. Difference-in-Differences Analyses. We randomly
selected a control group of 100 securities that were
constituents of the S&P500 index during our study
period January–February 2015 andwere not included
in the NASDAQ fee experiment; the control group is
denoted by#, and the text groupwill be denoted by7.
For each security j ∈ #, we used market data to first
estimate the market order-routing model as in (25),
denoted by β

( j)
NASDAQ(pre) and β

( j)
NASDAQ(post), and to

empirically measure the normalized average expected
delay encountered, denoted by ˜ED( j)

NASDAQ(pre) and
˜ED( j)

NASDAQ(post), using (33) and (34). We define Yj �
β
( j)
NASDAQ(post) − β

( j)
NASDAQ(pre) and Zj � ˜ED( j)

NASDAQ

(post) − ˜ED(j)
NASDAQ(pre) and regress Yj and Zj against

the indicator variables Ij � 1 if j ∈ 7 and � 0, otherwise.
The results of these regressions are shown in

Tables 15 and 16. After the fee reduction, it became
more attractive to route market orders to NASDAQ
as reflected in the positive and statistically signifi-
cant change in its attractiveness coefficient, β( j)NASDAQ,
relative to the corresponding change in the con-
trol set.

Table 11. Estimates of the Normalized Expected Delay on NASDAQ of Individual Stocks
Before and After the Fee Experiment and Hypothesis Testing Results on Whether the
Normalized Expected Delay Decreases Under the Fee Change

˜ED( j)
NASDAQ(pre)

Standard
error ˜ED( j)

NASDAQ(post)
Standard
error Decrease?

One-sided 5%
test

AAL 0.1978 0.0023 0.1886 0.0027 Yes Yes
BAC 0.1556 0.0022 0.0963 0.0020 Yes Yes
FEYE 0.2282 0.0037 0.1964 0.0031 Yes Yes
GE 0.1688 0.0026 0.1265 0.0023 Yes Yes
GPRO 0.2262 0.0053 0.2145 0.0057 Yes No
GRPN 0.2030 0.0034 0.1700 0.0035 Yes Yes
KMI 0.1646 0.0018 0.1265 0.0018 Yes Yes
MU 0.2062 0.0023 0.1683 0.0024 Yes Yes
RAD 0.1750 0.0038 0.1027 0.0030 Yes Yes
RIG 0.1721 0.0022 0.1401 0.0024 Yes Yes
S 0.1765 0.0063 0.1305 0.0034 Yes Yes
SIRI 0.2150 0.0072 0.1558 0.0077 Yes Yes
TWTR 0.1813 0.0026 0.1453 0.0035 Yes Yes
ZNGA 0.1831 0.0062 0.1515 0.0054 Yes Yes
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Table 12. Results in Parallel to Those in Table 11 when the Expected Delays Are
Normalized by Median Delay Instead of by Sum of Delays

˜ED(j)
NASDAQ(pre)

Standard
error ˜ED(j)

NASDAQ(post)
Standard
error Decrease?

One-sided 5%
test

AAL 1.0029 0.0109 0.9681 0.0139 Yes Yes
BAC 0.9293 0.0121 0.5895 0.0137 Yes Yes
FEYE 1.2431 0.0202 1.0567 0.0164 Yes Yes
GE 1.0267 0.0160 0.7863 0.0169 Yes Yes
GPRO 1.1619 0.0336 1.0842 0.0360 Yes No
GRPN 1.0468 0.0191 0.8941 0.0168 Yes Yes
KMI 0.9938 0.0100 0.7622 0.0108 Yes Yes
MU 1.0318 0.0114 0.8699 0.0127 Yes Yes
RAD 1.1165 0.0303 0.6757 0.0195 Yes Yes
RIG 1.0361 0.0128 0.8614 0.0142 Yes Yes
S 1.2665 0.0711 0.8699 0.0218 Yes Yes
SIRI 1.4101 0.1685 1.4559 0.4852 No No
TWTR 1.1077 0.0166 0.9034 0.0260 Yes Yes
ZNGA 1.0337 0.0404 0.8984 0.0308 Yes Yes

Table 13. Linear Regression Results of Equation (35) and Hypothesis Testing Results on
Whether the Slope Decreases After the Fee Change on NASDAQ

Slope (before) Standard error Slope (after) Standard error Decrease? One-sided 5% test

AAL 0.6742 0.0308 0.5981 0.0392 Yes No
BAC 0.6176 0.0299 0.3245 0.0269 Yes Yes
FEYE 0.8773 0.0761 0.7950 0.0543 Yes No
GE 0.7851 0.0384 0.4859 0.0349 Yes Yes
GPRO 0.3744 0.0458 0.3314 0.0624 Yes No
GRPN 0.9570 0.0418 0.8223 0.0234 Yes Yes
KMI 0.8764 0.0289 0.5400 0.0255 Yes Yes
MU 0.8313 0.0277 0.5741 0.0274 Yes Yes
RAD 0.9439 0.0611 0.3090 0.0482 Yes Yes
RIG 0.6571 0.0286 0.5360 0.0282 Yes Yes
S 0.5740 0.1151 0.5406 0.0395 Yes No
SIRI 1.3337 0.2686 (0.0001) 0.0135 Yes Yes
TWTR 0.8406 0.0679 0.7470 0.0724 Yes No
ZNGA 0.0546 0.0087 0.0425 0.0174 Yes No

Table 14. Results in Parallel to Those in Table 13 when the Linear Regressions Are
Performed Without Intercept

Slope (before) Standard error Slope (after) Standard error Decrease? One-sided 5% test

AAL 0.7960 0.0149 0.8121 0.0188 No No
BAC 0.6774 0.0154 0.3789 0.0138 Yes Yes
FEYE 1.3292 0.0428 1.0828 0.0288 Yes Yes
GE 0.8285 0.0221 0.5942 0.0194 Yes Yes
GPRO 0.7147 0.0375 0.6852 0.0453 Yes No
GRPN 0.9706 0.0294 0.8040 0.0207 Yes Yes
KMI 0.9253 0.0150 0.6436 0.0123 Yes Yes
MU 0.9034 0.0152 0.6440 0.0140 Yes Yes
RAD 1.0516 0.0440 0.4285 0.0366 Yes Yes
RIG 0.7851 0.0199 0.6453 0.0177 Yes Yes
S 0.6519 0.1113 0.6650 0.0299 No No
SIRI 1.4071 0.2435 0.0017 0.0134 Yes Yes
TWTR 1.1070 0.0354 0.8970 0.0390 Yes Yes
ZNGA 0.0584 0.0091 0.0550 0.0178 Yes No
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The magnitudes of the estimated coefficients for
the test set indicator variable for the two regressions
correspond to roughly a 30% increase in attractive-
ness and a 24% reduction in (normalized) delay. Fi-
nally, the fractions of the control set securities that
experienced an increase in attractiveness and a re-
duction in their expected delays from pre- to postfee
change periods were 48% and 40%, respectively.

Endnotes
1This paper will adopt the terminology encountered in financial
markets, both to help describe this domain that may be of inde-
pendent interest to the stochastic modeling community and to
highlight the close connection between the model, the associated
results, and the underlying application.
2The bid is the highest price level at which limit orders to buy stock
of a particular security are represented at an exchange; the offer or the
ask is the lowest price level at which limit order to sell stock are
represented at the exchange; the bid price is less than the offered
price. The difference between the offer and the bid is referred to as the
spread. Exchanges may differ in their bid and offer price levels, and at
any point in time, the highest bid and the lowest offer among all
exchanges comprise the national best bid and offer (NBBO).
3Negative fees occur on inverted exchangeswhere payments aremade
to liquidity takers.
4 Investors differ in the urgency with which they seek to execute their
orders, which is, in turn, captured by the parameters of their selected
execution algorithm, for example, an algorithm with a target par-
ticipation rate, perhaps 5%, 10%, or 20% of the market volume. Such
an urgency parameter affects how longwill a trader bewilling to wait
until a limit order would be filled, which would affect the order
placement decision.
5Regulation NMS, see http://www.sec.gov/spotlight/regnms.htm.
6A simpler version of this effect is the familiar picture we encounter
in highway toll booths or supermarket checkout lines, where people
join the shortest queue; in our model choice behavior is more in-
tricate, and depends on economics, anticipated delays, and trader
heterogeneity.

7Cancellations are common. Typical models of cancellations assume
either that orders cancel according to an exponential alarm clock
leading to a cancelation process that is proportional to the queue
length or that there is constant drift out of the bid queue because of
cancelations, independent of the queue length. The first offers a
reasonable model for orders generated by algorithmic trading
strategies used by institutional investors, such as Volume Weighted
Average Price (VWAP), Percent of Volume (POV), etc., but it is not a
good way to model the behavior of orders posted by market makers.
The latter account for most of the orders in the queue, and indeed,
they tend to cancel using a state-dependent criterion as opposed to a
time-based one. The simple cancellation models described previously
would underestimate the expected delay until an order will get filled
in liquid securities. The incorporation of the different cancellation
behaviors, timer based and state dependent, complicates the dy-
namics of the queue but leads to better agreement with data
(Kukanov and Maglaras 2015).
8Criterion (2) is static. In practice, order-routing decisions are dynamic,
that is, done and updated over the lifetime of the order in the market.
9Here, we use a snapshot estimate of expected delays that is con-
sistent with our definition (1) and is often used in practice. This
disregards the fact thatQ(t), and as a result, μi(Q(t))may change over
time, which would naturally affect the delay estimate. In what fol-
lows, we will mainly be concerned with the behavior of the system in
equilibrium,whereQ(t) is constant and this distinction is not relevant.
10We will typically expect that πi(γ) ∈ {0, 1}, that is, all type γ in-
vestors will prefer a single exchange, unless there are ties be-
tween exchanges.
11 Strictly speaking, the informal definition (8) may not deal properly
with situationswhere agents are indifferent betweenmultiple routing
decisions, whereas the formal Definition 1 handles this correctly.
Undermild technical conditions wewill adopt shortly (Assumption 1
and the hypothesis of Theorem 3), however, themass of such agents is
zero and the two definitions coincide.
12The NASDAQ listed stocks in our sample (CSCO, INTC, MSFT) do
not trade on the NYSE; hence, for these stocks, only N � 5 exchanges
were considered.
13The time intervals should be sufficiently long to get reliable esti-
mates of the event rates and also long compared with the event
interarrival times, so that one could expect that the transient dy-
namics of the market because changes in these rates settle down
during these time intervals.
14For example, with 15-minute periods, the first principle component
still explains 69% of the overall variability of the vector of delay
trajectories (that are themselves four times longer), whereas the first
two principle components explains 82% of the variability.
15The subset of stocks participating in the experiment are as follows:
AAL, BAC, FEYE, GE, GPRO, GRPN, KMI, MU, RAD, RIG, S, SIRI,
TWTR, ZNGA.
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