
OPERATIONS RESEARCH
Vol. 60, No. 3, May–June 2012, pp. 655–674
ISSN 0030-364X (print) � ISSN 1526-5463 (online) http://dx.doi.org/10.1287/opre.1120.1044

©2012 INFORMS

Approximate Dynamic Programming via
a Smoothed Linear Program

Vijay V. Desai
Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027,

vvd2101@columbia.edu

Vivek F. Farias
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,

vivekf@mit.edu

Ciamac C. Moallemi
Graduate School of Business, Columbia University, New York, New York 10027,

ciamac@gsb.columbia.edu

We present a novel linear program for the approximation of the dynamic programming cost-to-go function in high-
dimensional stochastic control problems. LP approaches to approximate DP have typically relied on a natural “projection”
of a well-studied linear program for exact dynamic programming. Such programs restrict attention to approximations that
are lower bounds to the optimal cost-to-go function. Our program—the “smoothed approximate linear program”—is distinct
from such approaches and relaxes the restriction to lower bounding approximations in an appropriate fashion while remain-
ing computationally tractable. Doing so appears to have several advantages: First, we demonstrate bounds on the quality
of approximation to the optimal cost-to-go function afforded by our approach. These bounds are, in general, no worse
than those available for extant LP approaches and for specific problem instances can be shown to be arbitrarily stronger.
Second, experiments with our approach on a pair of challenging problems (the game of Tetris and a queueing network
control problem) show that the approach outperforms the existing LP approach (which has previously been shown to be
competitive with several ADP algorithms) by a substantial margin.

Subject classifications : optimization; linear programming; stochastic control; Markov decision processes; approximate
dynamic programming.

Area of review : Optimization.
History : Received October 2009; revisions received July 2010, March 2011, June 2011; accepted July 2011.

1. Introduction
Many dynamic optimization problems can be cast as
Markov decision problems (MDPs) and solved, in principle,
via dynamic programming. Unfortunately, this approach is
frequently untenable due to the “curse of dimensionality.”
Approximate dynamic programming (ADP) is an approach
that attempts to address this difficulty. ADP algorithms seek
to compute good approximations to the dynamic program-
ming optimal cost-to-go function within the span of some
pre-specified set of basis functions.

ADP algorithms are typically motivated by exact algo-
rithms for dynamic programming. The approximate linear
programming (ALP) method is one such approach, moti-
vated by the LP used for the computation of the opti-
mal cost-to-go function. Introduced by Schweitzer and
Seidmann (1985) and analyzed and further developed by
de Farias and Van Roy (2003, 2004), this approach is
attractive for a number of reasons. First, the availability
of efficient solvers for linear programming makes the ALP
approach easy to implement. Second, the approach offers
attractive theoretical guarantees. In particular, the quality of

the approximation to the cost-to-go function produced by
the ALP approach can be shown to compete, in an appropri-
ate sense, with the quality of the best possible approxima-
tion afforded by the set of basis functions used. A testament
to the success of the ALP approach is the number of appli-
cations it has seen in recent years in large-scale dynamic
optimization problems. These applications range from the
control of queueing networks to revenue management to
the solution of large-scale stochastic games.
The optimization program employed in the ALP ap-

proach is in some sense the most natural linear pro-
gramming formulation for ADP. In particular, the ALP is
identical to the linear program used for exact computation
of the optimal cost-to-go function, with further constraints
limiting solutions to the low-dimensional subspace spanned
by the basis functions used. The resulting LP implicitly
restricts attention to approximations that are lower bounds
to the optimal cost-to-go function. The structure of this pro-
gram appears crucial in establishing guarantees on the qual-
ity of approximations produced by the approach (de Farias
and Van Roy 2003, 2004); these approximation guarantees
were remarkable and a first for any ADP method. That said,

655

Desai, Farias, and Moallemi: Approximate Dynamic Programming
656 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

the restriction to lower bounds naturally leads one to ask
whether the program employed by the ALP approach is the
“right” math programming formulation for ADP. In partic-
ular, it might be advantageous to consider a generalization
of the ALP approach that relaxes the lower bound require-
ment to allow for a better approximation and ultimately,
better policy performance. Is there an alternative formu-
lation that permits better approximations to the cost-to-go
function while remaining computationally tractable? Moti-
vated by this question, the present paper introduces a new
linear program for ADP we call the “smoothed” approx-
imate linear program (or SALP). This program is a gen-
eralization of the ALP method. We believe that the SALP
represents a useful new math programming formulation for
ADP. In particular, we make the following contributions:

1. We are able to establish strong approximation and
performance guarantees for approximations to the cost-to-
go function produced by the SALP. Our analyses broadly
follow the approach of de Farias and Van Roy (2003, 2004)
for the ALP. The resultant guarantees are no worse than the
corresponding guarantees for the ALP, and we demonstrate
that they can be substantially stronger in certain cases.

2. The number of constraints and variables in the SALP
scale with the size of the MDP state space. We nonetheless
establish sample complexity bounds that demonstrate that
an appropriate “sampled” SALP provides a good approx-
imation to the SALP solution with a tractable number
of sampled MDP states. Moreover, we identify structural
properties of the sampled SALP that can be exploited for
fast optimization. Our sample complexity results and these
structural observations allow us to conclude that the SALP
scales similarly in computational complexity as existing LP
formulations for ADP.

3. We present computational studies demonstrating the
efficacy of our approach in the setting of two different
challenging control problems. In the first study, we con-
sider the game of Tetris. Tetris is a notoriously difficult,
“unstructured” dynamic optimization problem and has been
used as a convenient testbed problem for numerous ADP
approaches. The ALP has been demonstrated to be com-
petitive with other ADP approaches for Tetris, such as tem-
poral difference learning or policy gradient methods (see
Farias and Van Roy 2006). In detailed comparisons with
the ALP, we show that the SALP provides an order-of-
magnitude improvement over controllers designed via that
approach for the game of Tetris. In the second computa-
tional study, we consider the optimal control of a “criss-
cross” queueing network. This is a challenging network
control problem and a difficult test problem, as witnessed
by antecedent literature. Under several distinct parameter
regimes, we show here that the SALP adds substantial value
over the ALP approach.

In addition to these results, the SALP method recently
has been considered in other applications with favor-
able results; this includes work on a high-dimensional
production optimization problem in oil exploration

(Wen et al. 2011) and work studying large-scale dynamic
oligopoly models (Farias et al. 2012).
The literature on ADP algorithms is vast, and we make

no attempt to survey it here. Van Roy (2002) and Bertsekas
(2007, Chap. 6) provide good, brief overviews, while
Bertsekas and Tsitsiklis (1996) and Powell (2007) are ency-
clopedic references on the topic. The exact LP for the solu-
tion of dynamic programs is attributed to Manne (1960).
The ALP approach to ADP was introduced by Schweitzer
and Seidmann (1985) and de Farias and Van Roy (2003,
2004). de Farias and Van Roy (2003) establish approxima-
tion guarantees for the ALP approach. These guarantees are
especially strong if the basis spans suitable “Lyapunov”-
like functions. The approach we present yields strong
bounds if any such Lyapunov function exists, whether or
not it is spanned by the basis. de Farias and Van Roy (2006)
introduce a program for average cost approximate dynamic
programming that resembles the SALP; a critical differ-
ence is that their program requires the relative violation
allowed across ALP constraints be specified as input. Con-
temporaneous with the present work, Petrik and Zilberstein
(2009) propose a relaxed linear program for approximating
the cost-to-go function of a dynamic program. This linear
program is similar to the SALP program (14) herein. The
crucial determinant of performance in either program is a
certain choice of Lagrange multipliers. The present paper
explicitly identifies such a choice and for this choice, devel-
ops concrete approximation guarantees that compare favor-
ably with guarantees available for the ALP. In addition, the
choice of Lagrange multipliers identified also proves to be
practically valuable, as is borne out by our experiments. In
contrast, Petrik and Zilberstein (2009) stop short of iden-
tifying this crucial input and thus provide neither approxi-
mation guarantees nor a “generic” choice of multipliers for
practical applications.
The remainder of this paper is organized as follows.

In §2, we formulate the approximate dynamic programming
setting and describe the ALP approach. The smoothed ALP
is developed as a relaxation of the ALP in §3. Section 4
provides a theoretical analysis of the SALP, in terms of
approximation and performance guarantees, as well as a
sample complexity bound. In §5, we describe the practi-
cal implementation of the SALP method, illustrating how
parameter choices can be made as well as how to efficiently
solve the resulting optimization program. Section 6 con-
tains the computational study of the game Tetris, while the
computational study in §7 considers a queueing application.
We conclude in §8. An electronic companion to this paper
is available as part of the online version at http://dx.doi.org/
10.1287/opre.1120.1044.

2. Problem Formulation
Our setting is that of a discrete-time, discounted infinite-
horizon, cost-minimizing MDP with a finite state space
� and finite action space �. At time t, given the current

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 657

state xt and a choice of action at , a per-stage cost g�xt�at�
is incurred. The subsequent state xt+1 is determined accord-
ing to the transition probability kernel Pat

�xt� · �.
A stationary policy �� � → � is a mapping that deter-

mines the choice of action at each time as a function of
the state. Given each initial state x0 = x, the expected
discounted cost (cost-to-go function) of the policy � is
given by

J��x�� E�

� ��

t=0

�tg�xt���xt��
���x0 = x

�
�

Here, � ∈ �0�1� is the discount factor. The expectation
is taken under the assumption that actions are selected
according to the policy �. In other words, at each time t,
at ���xt�.

Denote by P� ∈ ��×� the transition probability matrix
for the policy �, whose �x�x��th entry is P��x��x�x

��.
Denote by g� ∈ �� the vector whose xth entry is
g�x���x��. Then, the cost-to-go function J� can be written
in vector form as

J� =
��

t=0

�tP t
�g��

Furthermore, the cost-to-go function J� is the unique solu-
tion to the equation T�J = J , where the operator T� is
defined by T�J = g� +�P�J .

Our goal is to find an optimal stationary policy �∗,
that is, a policy that minimizes the expected discounted cost
from every state x. In particular,

�∗�x� ∈ argmin
�

J��x�� ∀x ∈� �

The Bellman operator T is defined component-wise accord-
ing to

�TJ ��x��min
a∈�

g�x�a�+�
�

x�∈�
Pa�x�x

��J �x��� ∀x ∈� �

Bellman’s equation is then the fixed-point equation

TJ = J � (1)

Standard results in dynamic programming establish that
the optimal cost-to-go function J ∗ is the unique solution
to Bellman’s equation (see, for example, Bertsekas 2007,
Chap. 1). Furthermore, if �∗ is a policy that is greedy with
respect to J ∗ (i.e., �∗ satisfies TJ ∗ = T�∗J ∗), then �∗ is an
optimal policy.

2.1. The Linear Programming Approach

A number of computational approaches are available for the
solution of the Bellman equation. One approach involves
solving the optimization program:

maximize
J

��J �

subject to J � TJ �
(2)

Here, � ∈�� is a vector with positive components that are
known as the state-relevance weights. The above program

is indeed an LP since for each state x, the constraint J �x��
�TJ ��x� is equivalent to the set of ��� linear constraints

J �x�� g�x�a�+�
�

x�∈�
Pa�x�x

��J �x��� ∀a ∈��

We refer to (2), which is credited to Manne (1960), as
the exact LP. A simple argument, included here for com-
pleteness, establishes that J ∗ is the unique optimal solution:
suppose that a vector J is feasible for the exact LP (2).
Because J � TJ , monotonicity of the Bellman operator
implies that J � T kJ , for any integer k � 1. Because the
Bellman operator T is a contraction, T kJ must converge to
the unique fixed point J ∗ as k → �. Thus, we have that
J � J ∗. Then it is clear that every feasible point for (2) is
a component-wise lower bound to J ∗. Because J ∗ itself is
feasible for (2), it must be that J ∗ is the unique optimal
solution to the exact LP.

2.2. The Approximate Linear Program

In many problems, the size of the state space is enormous
due to the curse of dimensionality. In such cases, it might
be prohibitive to store, much less compute, the optimal
cost-to-go function J ∗. In approximate dynamic program-
ming (ADP), the goal is to find tractable approximations to
the optimal cost-to-go function J ∗, with the hope that they
will lead to good policies.
Specifically, consider a collection of basis functions

��1� � � � ��K�, where each �i� � →� is a real-valued func-
tion on the state space. ADP algorithms seek to find lin-
ear combinations of the basis functions that provide good
approximations to the optimal cost-to-go function. In par-
ticular, we seek a vector of weights r ∈�K so that

J ∗�x�≈ Jr�x��
K�

i=1

�i�x�ri =�r�x��

Here, we define � � ��1�2 · · ·�K� to be a matrix with
columns consisting of the basis functions. Given a vector
of weights r and the corresponding value function approxi-
mation �r , a policy �r is naturally defined as the “greedy”
policy with respect to �r , i.e., as T�r

�r = T�r .
One way to obtain a set of weights is to solve the

exact LP (2), but restricting to the low-dimensional sub-
space of vectors spanned by the basis functions. This leads
to the approximate linear program (ALP), introduced by
Schweitzer and Seidmann (1985), which is defined by

maximize
r

���r�

subject to �r � T�r �
(3)

For the balance of the paper, we make the following
assumption:

Assumption 1. Assume the � is a probability distribution
(� � 0�1�� = 1), and that the constant function 1 is in the
span of the basis functions �.

Desai, Farias, and Moallemi: Approximate Dynamic Programming
658 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

Figure 1. A cartoon illustrating the feasible set and optimal solution for the ALP and SALP, in the case of a two-
state MDP.

J = Φr J = Φr

ΦrALP

J*

v

J(1) J(1)

J(2)

(a) ALP case

J*

v

J(2)

(b) SALP case

ΦrSALP

Notes. The axes correspond to the components of the value function. The shaded regions correspond to the feasible set in each case. A careful relaxation
from the feasible set of the ALP to that of the SALP can yield an improved approximation. It is easy to construct a concrete two-state example with the
above features.

The geometric intuition behind the ALP is illustrated in
Figure 1(a). Supposed that rALP is a vector that is opti-
mal for the ALP. Then the approximate value function
�rALP will lie on the subspace spanned by the columns
of �, as illustrated by the orange line. �rALP will also
satisfy the constraints of the exact LP, illustrated by the
dark gray region. By the discussion in §2.1, this implies
that �rALP � J ∗. In other words, the approximate cost-to-
go function is necessarily a point-wise lower bound to the
true cost-to-go function in the span of �.

One can thus interpret the ALP solution rALP equivalently
as the optimal solution to the program

minimize
r

�J ∗ −�r�1� ��

subject to �r � T�r �
(4)

Here, the weighted 1-norm in the objective is defined by

�J ∗ −�r�1� � �
�

x∈�
��x�

��J ∗�x�−�r�x�
���

This implies that the approximate LP will find the clos-
est approximation (in the appropriate norm) to the optimal
cost-to-go function, out of all approximations satisfying the
constraints of the exact LP.

3. The Smoothed ALP
The J � TJ constraints in the exact LP, which carry over
to the ALP, impose a strong restriction on the cost-to-go
function approximation: in particular, they restrict us to
approximations that are lower bounds to J ∗ at every point
in the state space. In the case where the state space is very
large and the number of basis functions is (relatively) small,
it might be the case that constraints arising from rarely

visited or pathological states are binding and influence the
optimal solution.
In many cases, the ultimate goal is not to find a lower

bound on the optimal cost-to-go function but rather to find
a good approximation. In these instances, it might be that
relaxing the constraints in the ALP, so as not to require a
uniform lower bound, might allow for better overall approx-
imations to the optimal cost-to-go function. This is also
illustrated in Figure 1. Relaxing the feasible region of the
ALP in Figure 1(a) to the feasible region of the SALP in
Figure 1(b) would yield the point �rSALP as an optimal
solution. The relaxation in this case is clearly beneficial;
it allows us to compute a better approximation to J ∗ than
the point �rSALP.
Can we construct a fruitful relaxation of this sort in gen-

eral? The smoothed approximate linear program (SALP) is
given by

maximize
r� s

���r�

subject to �r � T�r + s�

��s � �� s � 0�

(5)

Here, a vector s ∈ �� of additional decision variables has
been introduced. For each state x, s�x� is a non-negative
decision variable (a slack) that allows for violation of the
corresponding ALP constraint. The parameter � � 0 is a
nonnegative scalar. The parameter � ∈�� is a probability
distribution known as the constraint violation distribution.
The parameter � is thus a violation budget: the expected
violation of the �r � T�r constraint, under the distribu-
tion �, must be less than �.
The SALP can be alternatively written as

maximize
r

���r�

subject to ����r − T�r�+ � ��
(6)

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 659

Here, given a vector J , J+�x� � max�J �x��0� is defined
to be the component-wise positive part. Note that when
� = 0, the SALP is equivalent to the ALP. When � > 0,
the SALP replaces the “hard” constraints of the ALP with
“soft” constraints in the form of a hinge-loss function.

The balance of the paper is concerned with establish-
ing that the SALP forms the basis of a useful approximate
dynamic programming algorithm in large-scale problems:

• We identify a concrete choice of violation budget �
and an idealized constraint violation distribution � for
which the SALP provides a useful relaxation, in that the
optimal solution can be a better approximation to the opti-
mal cost-to-go function. This brings the cartoon improve-
ment in Figure 1 to fruition for general problems.

• We show that the SALP is tractable (i.e., it is well
approximated by an appropriate “sampled” version) and
can provide substantial benefits over ALP as evidenced in
application of SALP to the game of Tetris and the queueing
network control problem.

4. Analysis
This section is dedicated to a theoretical analysis of the
SALP. The overarching objective of this analysis is to pro-
vide some assurance of the soundness of the proposed
approach. In some instances, the bounds we provide will
be directly comparable to bounds that have been developed
for the ALP method. As such, a relative consideration of
the bounds in these two cases can provide a theoretical
comparison between the ALP and SALP methods. In addi-
tion, our analysis will serve as a crucial guide to practical
implementation of the SALP as will be described in §5.
In particular, the theoretical analysis presented here pro-
vides intuition as to how to select parameters such as the
state-relevance weights and the constraint violation distri-
bution. We note that all our bounds are relative to a measure
of how capable the approximation architecture employed
is of approximating the optimal cost-to-go function; it is
unreasonable to expect nontrivial bounds that are indepen-
dent of the architecture used.

Our analysis will present three types of results:
• Approximation guarantees (§§4.2–4.4): We establish

bounds on the distance between approximations computed
by the SALP and the optimal value function J ∗, relative
to the distance between the best possible approximation
afforded by the chosen basis functions and J ∗. These guar-
antees will indicate that the SALP computes approxima-
tions that are of comparable quality to the projection1 of
J ∗ onto the linear span of �. We explicitly demonstrate
our approximation guarantees in the context of a simple,
concrete queueing example, and the show that they can be
much stronger than corresponding guarantees for the ALP.

• Performance bounds (§4.5): While it is desirable to
approximate J ∗ as closely as possible, an important concern
is the quality of the policies generated by acting greedily
according to such approximations, as measured by their

performance. We present bounds on the performance loss
incurred, relative to the optimal policy, in using an SALP
approximation.
• Sample complexity results (§4.6): The SALP is a lin-

ear program with a large number of constraints as well as
variables. In practical implementations, one could consider
a “sampled” version of this program that has a manageable
number of variables and constraints. We present sample
complexity guarantees that establish bounds on the number
of samples required to produce a good approximation to
the solution of the SALP. These bounds scale linearly with
the number of basis function K and are independent of the
size of the state space � .

4.1. Idealized Assumptions

Our analysis of the SALP in this section is predicated on
the knowledge of an idealized probability distribution over
states. In particular, letting �∗ be an optimal policy and P�∗

the associated transition matrix, we will require knowledge
of the distribution ��∗� � given by

��
�∗� � � �1−�����I −�P�∗�−1 = �1−��

��

t=0

�t��P t
�∗ � (7)

Here, � is an initial distribution over states satisfying
Assumption 1. The distribution ��∗� � might be interpreted
as yielding the discounted expected frequency of visits to
a given state when the initial state is distributed according
to � and the system runs under the policy �∗. The distri-
bution ��∗� � will be used as the SALP constraint viola-
tion distribution in order to develop approximation bounds
(Theorems 1–2) and a performance bound (Theorem 3),
and as a sampling distribution in our analysis of sample
complexity (Theorem 4).
We note that assumptions such as knowledge of the ide-

alized distribution, described in the preceding paragraph,
are not unusual in the analysis of ADP algorithms. In the
case of the ALP, one either assumes the ability to solve
a linear program with as many constraints as there are
states, or absent that, the “sampled” ALP introduced by
de Farias and Van Roy (2004) requires access to states
sampled according to precisely this distribution. Theoretical
analyses of other approaches to approximate DP, such as
approximate value iteration and temporal difference learn-
ing, similarly rely on the knowledge of specialized sam-
pling distributions that cannot be obtained tractably (see
de Farias and Van Roy 2000).

4.2. A Simple Approximation Guarantee

This section presents a first, simple approximation guaran-
tee for the following specialization of the SALP in (5):

maximize
r� s

���r�

subject to �r � T�r + s�

��
�∗� �s � �� s � 0�

(8)

Here, the constraint violation distribution is set to be ��∗� � .

Desai, Farias, and Moallemi: Approximate Dynamic Programming
660 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

Before we state our approximation guarantee, consider
the following function:

l�r� ���minimize
s� �

�/�1−���

subject to �r � T�r + s+�1�
��

�∗� �s � �� s � 0�

(9)

We will denote by s�r� �� the s component of the solution
to (9). Armed with this definition, we are now in a position
to state our first, crude approximation guarantee.

Theorem 1. Suppose that rSALP is an optimal solution to
the SALP (8), and let r∗ satisfy

r∗ ∈ argmin
r

�J ∗ −�r���

Then,

�J ∗ −�rSALP�1� � � �J ∗ −�r∗�� + l�r∗� ��+ 2�
1−�

� (10)

As we will see shortly in the proof of Theorem 1, given
a vector r of basis function weights and a violation bud-
get �, the quantity l�r� �� obtained by solving (9) defines
the minimal translation (in the direction of the constant
vector 1) of r that yields a feasible solution for (8). The
above theorem allows us to interpret l�r∗� ��+ 2�/�1−��
as an upper bound to the approximation error (in the � ·�1� �
norm) associated with the SALP solution rSALP, relative to
the error of the best approximation r∗ (in the � ·�� norm).
Note that this upper bound cannot be computed, in general,
because r∗ is unknown.

Theorem 1 provides justification for the intuition,
described in §3, that a relaxation of the feasible region of
the ALP will result in better value function approximations.
To see this, first consider the following lemma (whose proof
can be found in the electronic companion to this paper) that
characterizes the function l�r� ��:

Lemma 1. For any r ∈�K and �� 0:
(i) l�r� �� is a finite-valued, decreasing, piecewise linear,

convex function of �.

(ii) l�r� ��� 1+�

1−�
�J ∗ −�r���

(iii) The right partial derivative of l�r� �� with respect
to � satisfies

�+

��+ l�r�0�=−
�
�1−��

�

x∈��r�

��∗� ��x�

�−1

�

where

��r�� argmax
�x∈� ���∗� � �x�>0�

�r�x�− T�r�x��

Then we have the following corollary:

Corollary 1. Define USALP��� to be the upper bound in
(10), i.e.,

USALP���� �J ∗ −�r∗�� + l�r∗� ��+ 2�
1−�

�

Then:
(i) USALP�0�� 2/�1−���J ∗ −�r∗���
(ii) The right partial derivative of USALP��� with respect

to � satisfies

d+

d�+USALP�0�=
1

1−�

�
2−

� �

x∈��r∗�

��∗� ��x�

�−1�
�

Proof. The result follows immediately from Parts (ii) and
(iii) of Lemma 1. �
Suppose that �= 0, in which case the SALP (8) is iden-

tical to the ALP (3), thus, rSALP = rALP. Applying Part (i)
of Corollary 1, we have, for the ALP, the approximation
error bound

�J ∗ −�rALP�1� � �
2

1−�
�J ∗ −�r∗��� (11)

This is precisely Theorem 2 of de Farias and Van Roy
(2003); we recover their approximation guarantee for
the ALP.
Now observe that, from Part (ii) of Corollary 1, if the set

��r∗� is of very small probability according to the distribu-
tion ��∗� � , we expect that the upper bound USALP��� might
decrease rapidly as � is increased from 0.2 In other words,
if the Bellman error �r∗�x�− T�r∗�x� produced by r∗ is
maximized at states x that are collectively of very small
probability, then we expect to have a choice of � > 0 for
which USALP���<USALP�0�. In this case, the bound (10) on
the SALP solution will be an improvement over the bound
(11) on the ALP solution.
Before we present the proof of Theorem 1, we present an

auxiliary claim that we will have several opportunities to
use. The proof can be found in the electronic companion to
this paper, which is available as part of the online version
that can be found at http://or.journal.informs.org/.

Lemma 2. Suppose that the vectors J ∈ �� and s ∈ ��

satisfy

J � T�∗J + s�

Then,

J � J ∗ +�∗s�

where

�∗ �
��

k=0

��P�∗�k = �I −�P�∗�−1�

and P�∗ is the transition probability matrix corresponding
to an optimal policy.

A feasible solution to the ALP is necessarily a lower
bound to the optimal cost-to-go function, J ∗. This is no

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 661

longer the case for the SALP; the above lemma character-
izes the extent to which this restriction is relaxed. In par-
ticular, if �r� s� is feasible for the SALP (8), then

�r � J ∗ +�∗s�

We now proceed with the proof of Theorem 1.

Proof of Theorem 1. Define the weight vector r̃ ∈ �m

according to

�r̃ =�r∗ − l�r∗� ��1�

Note that r̃ is well defined because 1 ∈ span���. Set s̃ =
s�r∗� ��, the s-component of a solution to the LP (9) with
parameters r∗ and �. We will demonstrate that �r̃� s̃� is fea-
sible for (8). Observe that, by the definition of the LP (9),

�r∗ � T�r∗ + s̃+ �1−��l�r∗� ��1�

Then,

T�r̃ = T�r∗ −�l�r∗� ��1

��r∗ − s̃− �1−��l�r∗� ��1−�l�r∗� ��1

=�r̃ − s̃�

Now, let �rSALP� s̄� be a solution to the SALP (8).
By Lemma 2,

�J ∗ −�rSALP�1� � � �J ∗ −�rSALP +�∗s̄�1� � + ��∗s̄�1� �
= ���J ∗ −�rSALP +�∗s̄�+ ���∗s̄

= ���J ∗ −�rSALP�+
2��

�∗� � s̄

1−�

� ���J ∗ −�rSALP�+
2�

1−�
� (12)

Because �r̃� s̃� is feasible for (8), we have that

�J ∗ −�rSALP�1� �
� ���J ∗ −�r̃�+ 2�

1−�

= ���J ∗ −�r∗�+ ����r∗ −�r̃�+ 2�
1−�

= ���J ∗ −�r∗�+ l�r∗� ��+ 2�
1−�

� �J ∗ −�r∗�� + l�r∗� ��+ 2�
1−�

� (13)

as desired. �
While Theorem 1 reinforces the intuition (shown via

Figure 1) that the SALP will permit closer approxima-
tions to J ∗ than the ALP, the bound leaves room for
improvement:

1. The right-hand side of our bound measures projection
error, �J ∗−�r∗�� in the � ·�� norm. Because it is unlikely
that the basis functions � will provide a uniformly good
approximation over the entire state space, the right-hand
side of our bound could be quite large.

2. As suggested by (4), the choice of state-relevance
weights can significantly influence the solution. In particu-
lar, it allows us to choose regions of the state space where
we would like a better approximation of J ∗. The right-hand
side of our bound, however, is independent of �.
3. Our guarantee does not suggest a concrete choice of

the violation budget parameter �.
The next section presents a substantially refined approx-

imation bound that will address these issues.

4.3. A Stronger Approximation Guarantee

With the intent of deriving stronger approximation guaran-
tees, we begin this section by introducing a “nicer” measure
of the quality of approximation afforded by �. In particular,
instead of measuring the approximation error J ∗ −�r∗ in
the � ·�� norm as we did for our previous bounds, we will
use a weighted max norm defined according to

�J���1/� �max
x∈�

�J �x��
��x�

�

Here, �� � → �1��� is a given “weighting” function. The
weighting function � allows us to weight approximation
error in a nonuniform fashion across the state space and
in this manner potentially ignore approximation quality in
regions of the state space that are less relevant. We define
� to be the set of all weighting functions, i.e.,

� � �� ∈�� � � � 1��

Given a particular � ∈� , we define a scalar

�����max
x�a

�
x� Pa�x�x

����x��

��x�
�

Note that ���� is an upper bound on the one-step expected
value of � relative to the current value when evaluated
along a state trajectory under an arbitrary policy, i.e.,

E
�
��xt+1� �xt=x�at=a

�
�������x�� ∀x∈��a∈��

When ���� is small, then ��xt+1� is expected to be small
relative to ��xt�, hence ���� can be interpreted as a mea-
sure of system “stability.”
In addition to specifying the sampling distribution �,

as we did in §4.2, we will specify (implicitly) a particu-
lar choice of the violation budget �. In particular, we will
consider solving the following SALP:

maximize
r� s

���r −
2��

�∗� �s

1−�
�

subject to �r � T�r + s� s � 0�
(14)

Note that (14) is a Lagrangian relaxation of (8). It is clear
that (14) and (8) are equivalent in the sense that there exists
a specific choice of �, so any optimal solution to (14) is an
optimal solution to (8) (for a formal statement and proof of
this fact, see Lemma 4 in the electronic companion to this
paper). We then have Theorem 2.

Desai, Farias, and Moallemi: Approximate Dynamic Programming
662 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

Theorem 2. If rSALP is an optimal solution to (14), then

�J ∗ −�rSALP�1� �

� inf
r��∈�

�J ∗−�r���1/�

�
���+

2���
�∗����������+1�

1−�

�
�

Before presenting a proof for this approximation guaran-
tee, it is worth placing the result in context to understand
its implications. For this, we recall a closely related result
shown by de Farias and Van Roy (2003) for the ALP. They
demonstrate that a solution rALP to the ALP (3) satisfies

�J ∗ −�rALP�1� � � inf
r��∈�̄

�J ∗ −�r���1/�
2���

1−�����
� (15)

where

�̄ � �� ∈�� � ∈ span���� �����< 1��

Note that (15) provides a bound over a collection of weight-
ing functions � that are within the span of the basis � and
satisfy a “Lyapunov” condition ����< 1/�. Suppose there
is a particular Lyapunov function �, such that under the
� ·���1/� norm, J ∗ is well approximated by a function in
the span of � , i.e., inf r �J ∗ −�r���1/� is small. For the
left-hand side of (15) also to be small and hence guarantee
a small approximation error for the ALP, it must be the
case that � is contained in the basis. Hence, being able
to select a basis that spans suitable Lyapunov functions is
viewed to be an important task in ensuring good approxi-
mation guarantees for the ALP. This often requires a good
deal of problem-specific analysis; de Farias and Van Roy
(2003) identify appropriate � for several queueing models.
To contrast with the SALP, the guarantee we present holds
over all possible � (including those � that do not satisfy
the Lyapunov condition ����< 1/� and that are not nec-
essarily in the span of �). As we will see in §4.4, this
difference can be significant.

To provide another comparison, let us focus attention on
a particular choice of �, namely � =��∗ ��∗, the station-
ary distribution induced under an optimal policy �∗. In this
case, restricting attention to the set of weighting functions
�̄ so as to make the two bounds comparable, Theorem 2
guarantees that

�J ∗ −�rSALP�1� � � inf
r��∈�̄

�J ∗ −�r���1/�

·
�
��

∗ �+ 2���
∗ ��������+1�

1−�

�

� inf
r��∈�̄

�J ∗ −�r���1/�
5��

∗ �

1−�
� (16)

On the other hand, observing that ����� 1 for all � ∈� ,
the right-hand side for the ALP bound (15) is at least

inf
r��∈�̄

�J ∗ −�r���1/�
2��

∗ �

1−�
�

Thus, the approximation guarantee of Theorem 2 is at most
a constant factor of 5/2 worse than the guarantee (15) for
the ALP, and it can be significantly better because it allows
for the consideration of weighting functions outside the
span of the basis.

Proof of Theorem 2. Let r ∈�m and � ∈� be arbitrary.
Define the vector s̃ ∈�� component-wise by

s̃�x�� ���r��x�− �T�r��x��+�

Observe that �r� s̃� is feasible for (14). Furthermore,

��
�∗� � s̃ � ���

�∗� ����s̃���1/� � ���
�∗� ����T�r −�r���1/��

Finally, note that

���J ∗ −�r�� ������J ∗ −�r���1/��

Now, suppose that �rSALP� s̄� is an optimal solution to the
SALP (14). We have from the inequalities in (12) in the
proof of Theorem 1 and the above observations,

�J ∗ −�rSALP�1� �

� ���J ∗ −�rSALP�+
2��

�∗� � s̄

1−�

� ���J ∗ −�r�+
2��

�∗� � s̃

1−�

� ������J ∗ −�r���1/�

+ �T�r −�r���1/�

2��
�∗� ��

1−�
� (17)

Because our choice of r and � were arbitrary, we have

�J ∗−�rSALP�1��� inf
r��∈�

������J ∗−�r���1/�

+�T�r−�r���1/�

2��
�∗���

1−�
� (18)

We would like to relate the Bellman error term T�r −�r
on the right-hand side of (18) to the approximation error
J ∗−�r . To do so, first note that for any vectors F1�F2 ∈��

with a1 ∈ argmina F1�a� and a2 ∈ argmina F2�a�,

min
a

F1�a�−min
a

F2�a�= F1�a1�− F2�a2�� F1�a2�− F2�a2�

�max
a

��F1�a�− F2�a�
���

By swapping the roles of F1 and F2, it is easy to see that
���min

a
F1�a�−min

a
F2�a�

����max
a

�F1�a�− F2�a���

Examining the definition of the Bellman operator T , this
implies that for any vectors J � J̄ ∈�� and any x ∈� ,

�TJ �x�− T J̄ �x��� �max
a

�

x�∈�
Pa�x�x

���J �x��− J̄ �x����

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 663

Therefore,

�T�r − J ∗���1/�

� �max
x�a

�
x� Pa�x�x

����r�x��− J ∗�x���
��x�

� �max
x�a

�
x� Pa�x�x

����x�����r�x��− J ∗�x����/��x��

��x�

� ������J ∗ −�r���1/��

Thus,

�T�r −�r���1/�

� �T�r − J ∗���1/� + �J ∗ −�r���1/�

� �J ∗ −�r���1/��1+������� (19)

Combining (18) and (19), we get the desired result. �

4.4. Approximation Guarantee:
A Queueing Example

In this section, we examine the strength of the approxi-
mation guarantee we have provided for the SALP (Theo-
rem 2) in a simple, concrete model studied in the context
of the ALP by de Farias and Van Roy (2003). In particu-
lar, we consider an autonomous queue whose queue-length
dynamics evolve over the state space � � �0�1� � � � �N−1�,
according to

xt+1 =
�
max�xt − 1�0� w.p. 1−p�

min�xt + 1�N − 1� w.p. p�

Here, we assume that p ∈ �0�1/2� and N � 1 is the buffer
size. For convenience, as to avoid integrality issues, we will
assume that N − 1 is a multiple of 4. For 0< x <N − 1,
define the cost function g�x�� x2. As in de Farias and Van
Roy (2003), we may and will select g�0� and g�N − 1� so
that J ∗�x�= �2x

2 + �1x+ �0 for constants �2 > 0, �1, and
�0 > 0 that depend only on p and the discount factor �.
We take � to be the steady-state distribution over states of
the resulting birth-death chain, i.e., for all x ∈� ,

��x�= 1− q

1− qN
qx� where q � p

1−p
�

Note that because this system is uncontrolled, we have
��∗� � = �.

Assume we have a constant basis function and a linear
basis function, i.e., �1�x� � 1 and �2�x� � x, for x ∈� .
Note that this is different than the example studied by
de Farias and Van Roy (2003), which assumed basis func-
tions �1�x�� 1 and �2�x�� x2. Nonetheless, the best pos-
sible approximation to J ∗ within this architecture continues

to have an approximation error that is uniformly bounded
in N . In particular, we have that

inf
r
�J ∗ −�r�1� � � �J ∗ − ��0�1 +�1�2��1� �

= �2
1− q

1− qN

N−1�

x=0

qxx2

� �2

��

x=0

qxx2 = �2q

�1− q�3
�

We make two principal claims for this problem setting:
(a) Theorem 2 in fact shows that the SALP is guaranteed

to find an approximation in the span of the basis functions
with an approximation error that is also uniformly bounded
in N .
(b) We will see that the corresponding guarantee, (15),

for the ALP (de Farias and Van Roy 2003, Theorem 4.2)
can guarantee at best an approximation error that scales
linearly in N .
The broad idea used in establishing the above claims is

as follows. For (a), we utilize a (quadratic) Lyapunov func-
tion identified by de Farias and Van Roy (2003) for the very
problem here to produce an upper bound on the approxi-
mation guarantee we have developed for the SALP; we are
careful to exclude this Lyapunov function from our basis.
We then consider the ALP with the same basis. We show
that the bound in de Farias and Van Roy (2003), without the
ability to utilize the quadratic Lyapunov function alluded
to, must scale at least linearly in N . This establishes (b).
We now present the details.
First, consider claim (a). To see the first claim, we con-

sider the weighting function ��x� � x2 + 2/�1 − ��, for
x ∈� . Notice that this weighting function is not in the span
of � but is still permissible for the bound in Theorem 2.
For this choice of �, we have

inf
r
�J ∗ −�r���1/� � max

0�x<N

�2x
2

x2 + 2/�1−��
� �2� (20)

Moreover, de Farias and Van Roy (2003) show that for this
choice of �,

����� 1+�

2�
�

��� � 1−p

1− 2p

�
2

1−�
+ 2

p2

�1− 2p�2
+ p

1− 2p

�
�

(21)

Combining (20)–(21), Theorem 2, and, in particular, (16)
yields the (uniform in N) upper bound

�J ∗ −�rSALP�1� �

� 5�2�1−p�

�1−���1− 2p�

�
2

1−�
+ 2

p2

�1− 2p�2
+ p

1− 2p

�
�

The analysis of de Farias and Van Roy (2003) applies iden-
tically to the more complex settings considered in that work

Desai, Farias, and Moallemi: Approximate Dynamic Programming
664 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

(namely the controlled queue and queueing network con-
sidered there) to yield uniform approximation guarantees
for SALP approximations.

The following lemma, whose proof can be found in
the electronic companion to this paper, demonstrates that
the right-hand side of (15) must increase linearly with N ,
establishing (b). The proof of the lemma reveals that this
behavior is driven primarily by the fact that the basis does
not span an appropriate weighting function �.

Lemma 3. For the autonomous queue with basis functions
�1�x�� 1 and �2�x�� x, if N is sufficiently large, then

inf
r��∈�̄

2���

1−�����
�J ∗ −�r���1/� �

3�2q

32�1− q�
�N − 1��

4.5. A Performance Bound

The analytical results provided in §§4.2 and 4.3 provide
bounds on the quality of the approximation provided by
the SALP solution to J ∗. In this section, we derive perfor-
mance bounds with the intent of understanding the increase
in expected cost incurred in using a control policy that
is greedy with respect to the SALP approximation in lieu
of the optimal policy. In particular, we will momentarily
present a result that will allow us to interpret the objective
of the SALP (14) as an upper bound on the performance
loss of a greedy policy with respect to the SALP solution.

To begin, we briefly introduce some relevant notation.
For a given policy �, we denote

�� �
��

k=0

��P��
k = �I −�P��

−1�

Thus, �∗ = ��∗ . Given a vector J ∈ �� , let �J denote
the greedy policy with respect to J . That is, �J satisfies
T�J

J = TJ . Recall that the policy of interest to us will be
��rSALP

for a solution rSALP to the SALP. Finally, for an arbi-
trary starting distribution over states �, we define ���� J �
to be the “discounted” expected frequency of visits to each
state under the policy �J , i.e.,

���� J �� � �1−����
��

k=0

��P�J
�k = �1−������J

�

We have the following upper bound on the increase in
cost incurred by using �J in place of �∗:

Theorem 3.

�J�J
−J ∗�1��

� 1
1−�

�
����J ���J ∗−J �+ 2

1−�
��

�∗�����J ��J−TJ �+
�
�

Theorem 3 applies to general approximations J and is
not specific to approximations produced by the SALP. The-
orem 3 indicates that if J is close to J ∗, so that �J − TJ �+

is also small, then the expected cost incurred in using a

control policy that is greedy with respect to J will be close
to optimal. The bound indicates the impact of approxima-
tion errors over differing parts of the state space on perfor-
mance loss.
Suppose that �rSALP� s̄� is an optimal solution to the

SALP (14). Then, examining the proof of Theorem 2 and,
in particular, (17), reveals that

���J ∗ −�rSALP�+
2

1−�
��

�∗� � s̄

� inf
r��∈�

�J ∗ −�r���1/�

·
�
���+

2���
�∗� ���������+ 1�

1−�

�
� (22)

Assume that the state-relevance weights � in the SALP (14)
satisfy

� = �����rSALP�� (23)

Then, combining Theorem 3 and (22) yields

��J��rSALP
− J ∗��

1��

� 1
1−�

�
inf

r��∈�
�J ∗ −�r���1/�

·
�
���+

2���
�∗� ���������+ 1�

1−�

��
� (24)

This bound directly relates the performance loss of the
SALP policy to the ability of the basis function architecture
� to approximate J ∗. Moreover, assuming (23), we can
interpret the SALP as minimizing the upper bound on per-
formance loss given by Theorem 3.
Unfortunately, it is not clear how to make an a pri-

ori choice of the state-relevance weights � to satisfy (23),
because the choice of � determines the solution to the
SALP rSALP; this is essentially the situation one faces in
performance analyses for approximate dynamic program-
ming algorithms such as approximate value iteration and
temporal difference learning (de Farias and Van Roy 2000).
Indeed, it is not clear that there exists a � that solves the
fixed-point equation (23). On the other hand, given a choice
of � so that � ≈ �����rSALP�, in the sense of a bounded
Radon-Nikodym derivative between the two distributions,
then the performance bound (24) will hold, inflated by the
quantity

max
x∈�

��x�

�����rSALP��x�
�

As suggested by de Farias and Van Roy (2003) in the ALP
case, one possibility for finding such a choice of state-
relevance weights is to iteratively re-solve the SALP, and
at each time using the policy from the prior iteration to
generate state-relevance weights for the next iteration.

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 665

Proof of Theorem 3. Define s � �J − TJ �+. From
Lemma 2, we know that

J � J ∗ +�∗s�

Using the fact that the operator T�∗ is monotonic, we can
apply T�∗ to both sides to obtain

T�∗J � T�∗�J ∗ +�∗s�= g�∗ +�P�∗�J ∗ +�∗s�

= J ∗ +�P�∗�∗s = J ∗ +�P�∗�I −�P�∗�−1s

= J ∗ +�∗s− s � J ∗ +�∗s�

so that

TJ � T�∗J � J ∗ +�∗s� (25)

Then,

���J�J
− J �= ��

��

k=0

�kP k
�J
�g�J

+�P�J
J − J �

= ����J
�TJ − J �

� ����J
�J ∗ − J +�∗s�

= 1
1−�

���� J ���J ∗ − J +�∗s�� (26)

where the second equality is from the fact that g�J
+

�P�J
J = T�J

J = TJ , and the inequality follows from (25).
Furthermore,

���J − J ∗�� ���∗s

� ����J
�∗s

= 1
1−�

���� J ���∗s� (27)

where the second inequality follows from the fact that
�∗s � 0 and ��J

= I +��
k=1�

kP k
�J
.

It follows from (26) and (27) that

���J�J
− J ∗�

= ���J�J
− J �+���J − J ∗�

� 1
1−�

���� J ���J ∗ − J + 2�∗s�

= 1
1−�

�
���� J ���J ∗ − J �+ 2

1−�
��

�∗� ���� J �s

�
�

which is the result. �

4.6. Sample Complexity

Our analysis thus far has assumed we have the ability to
solve the SALP. The number of constraints and variables in
the SALP grows linearly with the size of the state space � .
Hence, this program typically will be intractable for prob-
lems of interest. One solution, which we describe here, is

to consider a sampled variation of the SALP, where states
and constraints are sampled rather than exhaustively con-
sidered. In this section, we argue that the solution to the
SALP is well approximated by the solution to a tractable,
sampled variation.
In particular, let �̂ be a collection of S states drawn inde-

pendently from the state space � according to the distribu-
tion ��∗� � . Consider the following optimization program:

maximize
r� s

���r − 2
�1−��S

�

x∈�̂
s�x�

subject to �r�x�� T�r�x�+ s�x�� ∀x ∈ �̂�

s � 0� r ∈� �

(28)

Here, � ⊂�K is a bounding set that restricts the magnitude
of the sampled SALP solution; we will discuss the role of
� shortly. Notice that (28) is a variation of (14), where
only the decision variables and constraints corresponding
to the sampled subset of states are retained. The result-
ing optimization program has K+S decision variables and
S��� linear constraints. For a moderate number of sam-
ples S, this is easily solved. Even in scenarios where the
size of the action space � is large, it is frequently possi-
ble to rewrite (28) as a compact linear program (Farias and
Van Roy 2007, Moallemi et al. 2008). The natural ques-
tion, however, is whether the solution to the sampled SALP
(28) is a good approximation to the solution provided by
the SALP (14) for a “tractable” number of samples S.
Here, we answer this question in the affirmative. We will

provide a sample complexity bound that indicates that, for
a number of samples S that scale linearly with the dimen-
sion of �, K, and that need not depend on the size of the
state space, the solution to the sampled SALP nearly sat-
isfies, with high probability, the approximation guarantee
presented for the SALP solution in Theorem 2.
To establish a sample complexity result, we require con-

trol over the magnitude of optimal solutions to the SALP
(14). This control is provided by the bounding set � . In
particular, we will assume that � is large enough so that
it contains an optimal solution to the SALP (14), and we
define the constant

B� sup
r∈�

���r − T�r�+��� (29)

This quantity is closely related to the diameter of the
region � . Our main sample complexity result can then be
stated as follows.

Theorem 4. Under the conditions of Theorem 2, let rSALP
be an optimal solution to the SALP (14), and let r̂SALP be
an optimal solution to the sampled SALP (28). Assume that
rSALP ∈� . Furthermore, given � ∈ �0�B� and � ∈ �0�1/2�,
suppose that the number of sampled states S satisfies

S � 64B2

�2

�
2�K+ 2� log

16eB
�

+ log
8
�

�
�

Desai, Farias, and Moallemi: Approximate Dynamic Programming
666 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

Then, with probability at least 1− �− 2−383�128,

�J ∗ −�r̂SALP�1� � � inf
r∈�
�∈�

�J ∗ −�r���1/�

·
�
���+

2���
�∗����������+1�

1−�

�
+ 4�
1−�

�

The proof of Theorem 4 is based on bounding the
pseudo-dimension of a certain class of functions and is pro-
vided in the electronic companion to this paper.

Theorem 4 establishes that the sampled SALP (28) pro-
vides a close approximation to the solution of the SALP
(14), in the sense that the approximation guarantee we
established for the SALP in Theorem 2 is approximately
valid for the solution to the sampled SALP, with high prob-
ability. The theorem precisely specifies the number of sam-
ples required to accomplish this task. This number depends
linearly on the number of basis functions and the diameter
of the feasible region, but it is otherwise independent of the
size of the state space for the MDP under consideration.

It is worth juxtaposing our sample complexity result
with that available for the ALP (3). Recall that the ALP
has a large number of constraints but a small number of
variables;3 the SALP is thus, at least superficially, a sig-
nificantly more complex program. Exploiting the fact that
the ALP has a small number of variables, de Farias and
Van Roy (2004) establish a sample complexity bound for
a sampled version of the ALP analogous to the sampled
SALP (28). The number of samples required for this sam-
pled ALP to produce a good approximation to the ALP can
be shown to depend on the same problem parameters we
have identified here, viz.: the constant B and the number
of basis functions K. The sample complexity in the ALP
case is identical to the sample complexity bound estab-
lished here, up to constants and a linear dependence on the
ratio B/�. This is as opposed to the quadratic dependence
on B/� of the sampled SALP. Although the two sample
complexity bounds are within polynomial terms of each
other, one might rightfully worry abut the practical implica-
tions of an additional factor of B/� in the required number
of samples. In the numerical study of §6, we attempt to
address this concern computationally.

Finally, note that the sampled SALP has K+S variables
and S��� linear constraints, whereas the sampled ALP has
merely K variables and S��� linear constraints. Nonethe-
less, we will show in the §5.1 that the special structure of
the Hessian associated with the sampled SALP affords us
a linear computational complexity dependence on S when
applying interior point methods.

An alternative sample complexity bound of a similar fla-
vor can be developed using results from the stochastic pro-
gramming literature. The key idea is that the SALP (14)
can be reformulated as the following convex stochastic pro-
gramming problem:

maximize
r∈�

E����∗� �

�
�r�x0�−

2
1−�

��r�x�− T�r�x��+
�
�

(30)

where x0, x ∈ � have distributions � and ��∗� � , respec-
tively. Interpreting the sampled SALP (28) as a sample
average approximation of (30), a sample complexity bound
can be developed using the methodology of Shapiro et al.
(2009, Chap. 5), for example. This proof is simpler than
the one presented here but yields a cruder estimate that is
not as easily compared with those available for the ALP.

5. Practical Implementation
The analysis in §4 applies to certain “idealized” SALP vari-
ants, as discussed in §4.1. In particular, our main approx-
imation guarantees focused on the linear program (14),
and the “sampled” version on that program (28). Linear
program (14) is equivalent to the SALP (5) for a spe-
cialized choice of the violation budget � and an idealized
choice of the distribution �, namely ��∗� � . As such (14)
is not implementable: ��∗� � is not available, and the num-
ber of constraints and variables scales linearly with the
size of � , which will typically be prohibitively large for
interesting problems. The sampled variant of that program,
(28), requires access to the same idealized sampling dis-
tribution, and the guarantees pertaining to that program
require knowledge of a bounding set for the optimal solu-
tion to (14), � . As such, this program is not directly
implementable, either. Finally, the specialized choice of
� implicit in both (14) and (28) might not yield the
best policies.
Thus, the bounds in §4 do not apply directly in the prac-

tical settings we will consider. Nonetheless, they do provide
some insights that allow us to codify a recipe for a practical
and implementable variation that we discuss below.
Consider the following algorithm:
1. Sample S states independently from the state space �

according to a sampling distribution �. Denote the set
of sampled states by �̂ .
2. Perform a line search over increasing choices of

�� 0. For each choice of �,
(a) Solve the sampled SALP:

maximize
r� s

1
S

�

x∈�̂
��r��x��

subject to �r�x�� T�r�x�+ s�x�� ∀x ∈ �̂�

1
S

�

x∈�̂
s�x�� ��

s � 0�

(31)

(b) Evaluate the performance of the policy resulting
from (31) via Monte Carlo simulation.
3. Select the best of the evaluated policies over different

choices of �.

Note that our algorithm does not require the specific
choice of the violation budget � implicit in the program
(14), because we optimize with a line search so as to guar-
antee the best possible choice of �. Note that in such a line

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 667

search, the sampled SALP (31) can be efficiently re-solved
for increasing values of � via a “warm-start” procedure.
Here, the optimal solution of the sampled SALP given pre-
vious value of � is used as a starting point for the solver
in a subsequent round of optimization. Using this method
we observe that, in practice, the total solution time for a
series of sampled SALP instances that vary by their val-
ues of � grows sublinearly with the number of instances.
However, the policy for each solution instance must be
evaluated via Monte Carlo simulation, which might be a
time-consuming task.

Barring a line search, however, note that a reasonable
choice of � is implicitly suggested by the SALP (14)
considered in §4.3. Thus, alternatively, the line search in
Steps 2 and 3 can be replaced with the solution of single
LP as follows:

2�. Solve the sampled SALP:

maximize
r� s

1
S

�

x∈�̂
��r��x�− 2

�1−��S

�

x∈�̂
s�x��

subject to �r�x�� T�r�x�+ s�x�� ∀x ∈ �̂�

s � 0�

(32)

Note that the sampled SALP (32) is equivalent to (31) for
a specific, implicitly determined choice of � (cf. Lemma 4
in the electronic companion to this paper).

The programs (31) and (32) do not employ a specialized
choice of �, and the use of the bounding set � is omit-
ted. In addition, (31) does not require the specific choice
of violation budget � implicit in (14) and (28). As such,
our main approximation guarantees do not apply to these
programs.

Our algorithm takes as inputs the following parameters:
• �, a collection of K basis functions.
• S, the number of states to sample. By sampling

S states, we limit the number of variables and constraints in
the sampled SALP (31). Thus, by keeping S small, the sam-
pled SALP becomes tractable to solve numerically. On the
other hand, the quality of the approximation provided by
the sampled SALP might suffer if S is chosen to be too
small. The sample complexity theory developed in §4.6
suggests that S can be chosen to grow linearly with K, the
size of the basis set. In particular, a reasonable choice of S
need not depend on the size of the underlying state space.

In practice, we choose S �K to be as large as possible,
subject to limits on the CPU time and memory required to
solve (31). In §5.1, we discuss how the program (31) can
be solved efficiently via barrier methods for large choices
of S. Finally, note that a larger sample size can be used in
the evaluation of the objective of the sampled SALP (31)
than in the construction of constraints. In other words, the
objective in (31) can be constructed from a set of states
distinct from �̂ , because this does not increase the size of
the LP.

• �, a sampling distribution on the state space � . The
distribution � is used, via Monte Carlo sampling, in place
of both the distributions � and � in the SALP (5).
Recall that the bounds in Theorems 1 and 2 provide

approximation guarantees in a �-weighted 1-norm. This
suggests that � should be chosen to emphasize regions of
the state space where the quality of approximation is most
important. The important regions could be, for example,
regions of the state space where the process spends the
most time under a baseline policy, and they could empha-
sized by setting � to be the stationary distribution induced
by the baseline policy. Similarly, the theory in §4 also sug-
gests that the distribution � should be chosen to be the dis-
counted expected frequency of visits to each state given an
initial distribution � under the optimal policy. Such a choice
of distribution is clearly impossible to compute. In its place,
however, if � is the stationary distribution under a base-
line policy, it seems reasonable to use the same distribution
for �.
In practice, we choose � to be the stationary distribu-

tion under some baseline policy. States are then sampled
from � via Monte Carlo simulation of the baseline pol-
icy. This baseline policy can correspond, for example, to a
heuristic control policy for the system. More sophisticated
procedures such as “bootstrapping” can also be considered
(Farias and Van Roy 2006). Here, one starts with a heuris-
tic policy to be used for sampling states. Given the sampled
states, the application of our algorithm will result in a new
control policy. The new control policy can then be used for
state sampling in a subsequent round of optimization, and
the process can be repeated.

5.1. Efficient Linear Programming Solution

In this section, we will discuss the efficient solution of the
sampled SALP (31) via linear programming. Note that the
discussion here applies to the variant (32) as well. To begin,
note that (31) can be written explicitly in the form of a
linear program as

maximize
r� s

c�r�

subject to

�
A11 A12

0 d�

��
r
s

�
� b�

s � 0�

(33)

Here, b ∈ �S���+1, c ∈ �K , and d ∈ �S are vectors; A11 ∈
�S���×K is a dense matrix; and A12 ∈ �S���×S is a sparse
matrix. This LP has K+S decision variables and S���+ 1
linear constraints.
Typically, the number of sampled states S will be large.

For example, in §6, we will discuss an example where
K = 22 and S = 300�000. The resulting LP has approx-
imately 300�000 variables and 6�600�000 constraints. In
such cases, with many variables and many constraints, one
might expect the LP to be difficult to solve. However, the

Desai, Farias, and Moallemi: Approximate Dynamic Programming
668 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

sparsity structure of the constraint matrix in (33), and espe-
cially that of the submatrix A12, allows efficient optimiza-
tion of this LP.

In particular, imagine solving the LP (33) with a barrier
method. The computational bottleneck of such a method is
the inner Newton step to compute a central point (see, for
example, Boyd and Vandenberghe 2004). This step involves
the solution of a system of linear equations of the form

H

�
�r
�s

�
=−g� (34)

Here, g ∈ �K+S is a vector and H ∈ ��K+S�×�K+S� is the
Hessian matrix of the barrier function. Without exploit-
ing the structure of the matrix H , this linear system can
be solved with O��K + S�3� floating point operations. For
large values of S, this might be prohibitive.

Fortunately, the Hessian matrix H can be decomposed
according to the block structure

H �
�
H11 H12

H�
12 H22

�
�

where H11 ∈ �K×K , H12 ∈ �K×S , and H22 ∈ �S×S . In the
case of the LP (33), it is not difficult to see that the sparsity
structure of the submatrix A12 ensures that the submatrix
H22 takes the form of a diagonal matrix plus a rank-one
matrix. This allows the linear system (34) to be solved
with O�K2S+K3� floating point operations. This is linear
in S, the number of sampled states. Note that this is the
same computational complexity as that of an inner Newton
step for the ALP, despite the fact that the SALP has more
variables than the ALP. This is because the added slack
variables in the SALP are “local” and effectively do not
contribute to the dimension of the problem.

6. Case Study: Tetris
Tetris is a popular video game designed and developed by
Alexey Pazhitnov in 1985. The Tetris board, illustrated in
Figure 2, consists of a two-dimensional grid of 20 rows
and 10 columns. The game starts with an empty grid, and
pieces fall randomly, one after another. Each piece consists
of four blocks, and the player can rotate and translate it in
the plane before it touches the “floor.” The pieces come in
seven different shapes, and the next piece to fall is chosen
from among these with equal probability. Whenever the
pieces are placed such that there is an entire horizontal row
or line of contiguous blocks formed, a point is earned, and
the line gets cleared. Once the board has enough blocks so
that the incoming piece cannot be placed for all translations
and rotations, the game terminates. Hence the goal of the
player is to clear the maximum number of lines before the
board gets full.

Our interest in Tetris as a case study for the SALP
algorithm is motivated by several facts. First, theoretical
results suggest that design of an optimal Tetris player is a

Figure 2. Example of a Tetris board configuration.

difficult problem. Brzustowski (1992) and Burgiel (1997)
have shown that the game of Tetris has to end with proba-
bility one, under all policies. They demonstrate a sequence
of pieces, which leads to the termination state of the game
for all possible actions. Demaine et al. (2003) consider the
offline version of Tetris and provide computational com-
plexity results for “optimally” playing Tetris. They show
that when the sequence of pieces is known beforehand, it is
NP-complete to maximize the number of cleared lines, min-
imize the maximum height of an occupied square, or max-
imize the number of pieces placed before the game ends.
This suggests that the online version should be computa-
tionally difficult.
Second, Tetris represents precisely the kind of large and

unstructured MDP for which it is difficult to design heuris-
tic controllers, and hence policies designed by ADP algo-
rithms are particularly relevant. Moreover, Tetris has been
employed by a number of researchers as a testbed problem.
One of the important steps in applying these techniques is
the choice of basis functions. Fortunately, there is a fixed set
of basis functions, to be described shortly, that have been
used by researchers while applying temporal-difference
learning (Bertsekas and Ioffe 1996, Bertsekas and Tsitsiklis
1996), policy gradient methods (Kakade 2002), and approx-
imate linear programming (Farias and Van Roy 2006).
Hence, application of SALP to Tetris allows us to make a
clear comparison to other ADP methods.

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 669

The SALP methodology described in §5 was applied as
follows:

• MDP formulation. We used the formulation of Tetris
as a Markov decision problem of Farias and Van Roy
(2006). Here, the “state” at a particular time encodes the
current board configuration and the shape of the next falling
piece, while the “action” determines the placement of the
falling piece. Thus, given a state and an action, the subse-
quent state is determined by the new configuration of the
board following placement and the shape of a new falling
piece that is selected uniformly at random.

• Reward structure. The objective of Tetris is to maxi-
mize reward, where—given a state and an action—the per-
stage reward is defined as the number of rows that are
cleared following the placement of the falling piece.

Note that because every game of Tetris must ultimately
end, Tetris is most naturally formulated, with the objective
of maximizing the expected total number of rows cleared,
i.e., a maximum total reward formulation. Indeed, in the
existing literature, performance is reported in terms of total
reward. To accommodate the SALP setting, we will apply
our methodology to a maximum discounted reward formu-
lation with a discount factor4 of � = 0�9. When evaluat-
ing the performance of resulting policies, however, we will
report both total reward (To allow comparison with the lit-
erature) and discounted reward (to be consistent with the
SALP objective).

• Basis functions. We employed the 22 basis functions
originally introduced by Bertsekas and Ioffe (1996). Each
basis function takes a Tetris board configuration as its argu-
ment. The functions are as follows:

—Ten basis functions, �0� � � � ��9, mapping the state to
the height hk of each of the ten columns.

—Nine basis functions, �10� � � � ��18, each mapping the
state to the absolute difference between heights of succes-
sive columns: �hk+1 −hk�, k= 1� � � � �9.

—One basis function, �19, that maps state to the max-
imum column height: maxk hk

—One basis function, �20, that maps state to the num-
ber of “holes” in the board.

—One basis function, �21, that is equal to 1 in every
state.

• State sampling. Given a sample size S, a collection
�̂ ⊂� of S states was sampled. These samples were gen-
erated in an i.i.d. fashion from the stationary distribution
of a (rather poor) baseline policy.5 For each choice of
sample size S, 10 different collections of S samples were
generated.

• Optimization. Given the collection �̂ of sampled
states, an increasing sequence of choices of the violation
budget � � 0 is considered. For each choice of �, the
optimization program (31) was solved. Separately, the opti-
mization program (32), which implicitly defines a reason-
able choice of �, was also employed. The CPLEX 11.0.0
optimization package was used to solve the resulting linear
programs.

• Policy evaluation. Given a vector of weights r̂ , the per-
formance of the corresponding policy was evaluated using
Monte Carlo simulation. We estimate the expected reward
of the policy �r̂ over a series of 3�000 games. The sequence
of pieces in each of the 3�000 games was fixed across the
evaluation of different policies in order to reduce the Monte
Carlo error in estimated performance differences.
Performance is measured in two ways, starting from

empty board configuration. The total reward is computed,
as the expected total number of lines eliminated in a
single game and the discounted reward is computed, as
the expected discounted number of lines eliminated in a
single game.
For each pair �S� ��, the resulting average performance

(averaged over each of the 10 policies arising from the dif-
ferent sets of sampled states) in terms of expected total
lines cleared is shown in Figure 3. Note that the � = 0
curve in Figure 3 corresponds to the original ALP algo-
rithm. Figure 3 provides experimental evidence for the
intuition expressed in §3 and the analytic result of Theo-
rem 1: Relaxing the constraints of the ALP even slightly,
by allowing for a small slack budget, allows for better
policy performance. As the slack budget � is increased
from 0, performance dramatically improves. At the peak
value of �= 0�0205, the SALP generates policies with per-
formance that is an order of magnitude better than ALP.
Beyond this value, the performance of the SALP begins to
degrade, as shown by the � = 0�041 curve. Hence, we did
not explore larger values of �.

Figure 3. Expected total reward of the average SALP
policy for different values of the number of
sampled states S and the violation budget �.

50 100 150 200 250 300

0

1

2

3

4

5

Sample size S

A
ve

ra
ge

 p
er

fo
rm

an
ce

 (t
ot

al
 li

ne
s

cl
ea

re
d)

! = !
! = 0.04100
! = 0.02050

! = 0.00256
! = 0.00128
! = 0.00064

! = 0.00032
! = 0.00016
! = 0 (ALP)

×103

×103

Notes. Values for � were chosen in an increasing fashion starting from 0,
until the resulting average performance began to degrade. The � = �∗

curve corresponds to the implicit choice of � made by solving (32).

Desai, Farias, and Moallemi: Approximate Dynamic Programming
670 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

Table 1. Comparison of the performance of the best
policy found with various ADP methods.

Best performance CPU
Algorithm (total lines cleared) time

ALP 698.4 Hours
TD-learning 3�183 Minutes
(Bertsekas and Ioffe 1996)

ALP with bootstrapping 4�274 Hours
(Farias and Van Roy 2006)

TD-learning 4�471 Minutes
(Bertsekas and Tsitsiklis 1996)

Policy gradient 5�500 Days
(Kakade 2002)

SALP 11�574 Hours

As suggested in §5, instead of doing a line search over
�, one can consider solving the sampled SALP (32), which
implicitly makes a choice of �. We denote this implicit
choice by � = �∗ in Figure 3. The results of solving (32)
are given by the �= �∗ curve in Figure 3. We observe that
in our experiments, the results obtained by solving (32) are
similar to the best results obtained by doing a line search
over choices of �. In fact, across these experiments, �∗ is
observed to be roughly constant as a function of the sample
size S and approximately equal to 0�02. This is very close
to the best values of � found via line search.

To allow a comparison of our results with those re-
ported elsewhere in the literature, Table 1 summarizes the
expected total reward of the best policies obtained by vari-
ous ADP algorithms. Note that all these algorithms employ
the same basis function architecture. The ALP and SALP
results are from our experiments, while the other results are
from the literature. Here, the reported ALP and SALP per-
formance corresponds to that of the best performing policy
among all of policies computed for Figure 3. Note that the

Table 2. Expected discounted reward and expected total reward for different values
of the discount factor � and the violation budget �.

Expected total reward Expected discounted reward
Violation
budget Discount factor � Discount factor �

� 0.9 0.95 0.99 0.999 0.9 0.95 0.99 0.999

0 (ALP) 169�1 367�9 240�0 1�9 2�150 5�454 30�410 1�870
0.00002 201�7 844�6 295�9 44�1 2�111 5�767 34�063 39�317
0.00008 308�5 1�091�7 355�7 93�9 2�249 5�943 34�603 79�086
0.00032 380�2 1�460�2 792�1 137�4 2�261 6�011 35�969 108�554
0.00128 1�587�4 2�750�4 752�1 189�0 2�351 6�055 36�032 138�329
0.00512 5�023�9 4�069�9 612�5 355�1 2�356 6�116 35�954 202�640
0.01024 5�149�7 4�607�7 1�198�6 1�342�5 2�281 6�115 36�472 318�532
0.02048 4�664�6 3�662�3 1�844�6 2�227�4 2�216 6�081 36�552 340�718
0.04096 4�089�9 2�959�7 1�523�3 694�5 2�200 6�044 36�324 262�462
0.08192 3�085�9 2�236�8 901�7 360�5 2�192 5�975 35�772 200�861
0.32768 1�601�6 855�4 357�5 145�4 2�247 5�613 34�025 112�427
�∗ 4�739�2 4�473�7 663�5 138�7 2�213 6�114 35�827 109�341
Average �∗ 0.0204 0.0062 0.0008 0.0003 0�0204 0�0062 0.0008 0.0003

Notes. Here, the policies were constructed using S = 200�000 sampled states. The last row reports

average value of the implicit violation budget �∗
for different values of the discount factor �.

best performance result of SALP is a factor of 2 better than
the nearest competitors.
Note that significantly better policies are possible with

this basis function architecture than any of the ADP
algorithms in Table 1 discover. Using a heuristic global
optimization method, Szita and Lőrincz (2006) report find-
ing policies with a remarkable average performance of
350�000. Their method is very computationally intensive,
however, requiring one month of CPU time. In addition,
the approach employs a number of rather arbitrary Tetris
specific “modifications” that are ultimately seen to be crit-
ical to performance—in the absence of these modifica-
tions, the method is unable to find a policy for Tetris that
scores above a few hundred points. More generally, global
optimization methods typically require significant trial and
error and other problem-specific experimentation in order
to work well.
In Table 2, we see the effect of the choice of the dis-

count factor � on the performance of the ALP and SALP
methods. Here, we show both the expected discounted
reward and the expected total reward for different values
of the discount factor � and the violation budget �. Here,
the policies were constructed using S = 200�000 sampled
states. We find that
1. For all discount factors, the SALP dominates the ALP.

The performance improvement of the SALP relative to the
ALP increases dramatically at high discount factors.
2. The absolute performance of both schemes degrades

at high discount factors. This is consistent with our approx-
imation guarantees, which degrade as � → 1, as well as
prior theory that has been developed for the average cost
ALP (de Farias and Van Roy 2006). However, observe
that the ALP degradation is drastic (scores in single dig-
its) while the SALP degradation is relatively mild (scores
remain in the thousands).

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 671

7. Case Study: A Queueing Network
In this section, we study the application of SALP and ALP
to control of queueing networks. In particular, we consider
a criss-cross queueing network, which has been consid-
ered extensively in the literature (e.g., Harrison and Wein
1989, Kushner and Martins 1996, Martins et al. 1996).
Optimal control of a crisscross network is a standard exam-
ple of a challenging network control problem and has
eluded attempts to find an analytical solution (Kumar and
Muthuraman 2004).

The crosscross queueing network consists of two servers
and three queues connected as shown in Figure 4. There
are two classes of jobs in this system. The first class of
jobs takes a vertical path through the system, arriving at
queue 1 according to a Poisson process of rate �1. The
second class of jobs takes a horizontal path through the
system, arriving at queue 2 according to a Poisson process
of rate �2. Server 1 can work on jobs in either queue 1
or queue 2, with service times distributed exponentially
with rate �1 � 2 and �2 � 2, respectively. Vertical jobs exit
the system after service, while horizontal jobs proceed to
queue 3. There they await service by server 2. The ser-
vice times at server 2 are exponentially distributed with
rate �3 � 1. Given a common arrival rate �1 � �2 � �, by
analysis of the static planning LP (Harrison 1988) associ-
ated with the network, it is straightforward to derive that
the load of the network takes the form

�=max
�
�1

�1
+ �2

�2
�
�2

�3

�
= ��

The SALP and ALP methodologies were applied to this
queueing network as follows:

• MDP formulation. The evolution of this queuing net-
work is described by a continuous time Markov chain
with the state q ∈ �3

+ corresponding to the queue lengths.
Via a standard uniformization construction,6 we consider

Figure 4. A crisscross queueing network consisting of
three queues and two servers.

Server 1q2!2

!1

q1

Server 2q3
"3"2

"1

Notes. One class of jobs arrives at the system at queue 1 and departs
after service by server 1. The second class of jobs arrives at the system
at queue 2 and departs after sequential service from server 1 followed by
server 2.

an equivalent discrete time formulation, where qt ∈ �3
+

is the vector of queue lengths after the tth event, for
t ∈ �0�1� � � ��. At each time, the choice of action corre-
sponds to an assignment of each server to an associated
nonempty queue, and idling is allowed.
• Reward structure. We seek to find a control policy that

optimizes the discounted infinite horizon cost objective

minimizeE
� ��

t=0

�tc�qt

�
�

Here, the vector c ∈ �3
+ denotes the holding costs associ-

ated with each queue, and � is a discount factor. We use
�= 0�98 in our numerical experiments.
• Basis functions. Four basis functions were used: the

constant function and, for each queue, a quadratic func-
tion in the queue length. In other words, our basis function
architecture is given by ��q�� �1 q2

1 q2
2 q2

3 �.
• State sampling. States were sampled from the station-

ary distribution of a policy that acts greedily according to
the value function surrogate7 V �q�� �q�22. We use a col-
lection �̂ of S = 40�000 sampled states as input to SALP.
The results are averaged over 10 different collections of
S samples.
• Optimization. The sampled states �̂ were used as

input to optimization program (31). For increasing choices
of violation budget � � 0, the linear program was solved
to obtain policies. A policy corresponding to the implicit
choice � = �∗ was obtained by separately solving linear
program (32). Our implementation used CPLEX 11.0.0 to
solve the resulting linear programs.
• Policy evaluation. Given a value function approxima-

tion, the expected discounted performance of the corre-
sponding policy was evaluated by simulating 100 sample
paths starting from an empty state (q = 0). Each sample
path was evaluated over 50�000�000 time steps to compute
the discounted cost.
We first consider the case where the holding costs are

given by the vector c � �1�1�3�. This corresponds to
Case IIB as considered by Martins et al. (1996), and the
associated stochastic control problem is known to be chal-
lenging (Kumar and Muthuraman 2004). These particular
parameter settings are difficult because the holding costs
for queue 3 are so much higher than those for queue 2.
Hence, it might be optimal for server 1 to idle even if there
are jobs in queue 2 so as to keep jobs in the cheaper buffer.
On the other hand, too much idling at server 1 could lead
to an empty queue 3, which would force idling at server 2.
Hence, the policy decision for server 1 also depends on the
downstream queue length.
Observe that our queueing problem has a countably infi-

nite state space, and it is not possible to exactly determine
the optimal cost via a standard dynamic programming
approach. We compute lower bounds on the optimal cost
by considering a problem with a truncated state space,
obtained by limiting the maximum queue length to size 30.

Desai, Farias, and Moallemi: Approximate Dynamic Programming
672 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

Furthermore, the transition probabilities are modified so
that arrivals to a queue at maximum capacity result in self-
transitions. For this modified problem, we enumerate all
possible states and solve the exact linear program given
by (2). The solution to this linear program yields the opti-
mal cost, starting from the empty state. It is not hard to
argue that this value should be a lower bound on the orig-
inal, untruncated problem.

In Table 3(a), we see the resulting performance of
policies by solving SALP for various values of � and
for the ALP (i.e., � = 0). We also compute lower bounds
on the optimal cost by solving the exact dynamic pro-
gram for the aforementioned truncated state space problem.

Table 3. Expected discounted cost for different values of the violation budget �,
load �, and holding costs c.

(a) Expected discounted cost for varying values of the load �, with holding costs c= �1�1�3�.

Expected discounted cost

Violation budget �= 0�98 �= 0�95 �= 0�90

� Cost Normalized Cost Normalized Cost Normalized

0 (ALP) 560�0 1�940 542�8 1�960 514�3 1�996
0.0001 560�0 1�940 542�8 1�959 514�4 1�996
0.0010 559�7 1�939 542�5 1�959 514�2 1�995
0.0100 588�7 2�039 570�7 2�060 541�2 2�100
0.1000 584�3 2�024 566�9 2�046 538�1 2�088
1.0000 502�8 1�742 486�1 1�755 459�0 1�781
�∗ 412�5 1�429 398�2 1�437 373�0 1�447
25.000 332�2 1�151 318�7 1�151 295�8 1�148
50.000 334�0 1�157 320�5 1�157 296�8 1�152
75.000 337�5 1�169 323�6 1�168 301�4 1�170
100.00 337�5 1�169 323�6 1�168 301�4 1�170

Lower bound 288�7 1�000 277�0 1�000 257�7 1�000
Average �∗ 17.79 17.73 17.67

(b) Expected discounted cost for load �= 0�98, with holding costs c= �1�1�1�.

Expected discounted cost

Violation budget �= 0�98

� Cost Normalized

0 (ALP) 334�5 1�581
0.0001 334�5 1�581
0.0010 381�1 1�801
0.0100 284�4 1�344
0.1000 237�9 1�124
1.0000 246�7 1�166
�∗ 245�9 1�162
25.000 250�4 1�183
50.000 254�4 1�202
75.000 254�4 1�202
100.00 254�4 1�202

Lower bound 211�6 1�000
Average �∗ 11.81

Notes. Lower bounds are computed by solving the exact dynamic program for a problem truncated to

a maximum queue length of 30. An optimality gap is reported by normalizing the cost by the truncated

lower bound. Here, the expected discounted cost is measured starting from an empty state. The last

row reports the average value of the implicit violation budget �∗
, for different values of the load �.

We report an optimality gap, defined as the performance
normalized relative to the truncated lower bound. The
results are shown for various levels of the load �. Overall,
we observe a significant reduction in cost by policies gen-
erated via SALP in comparison to ALP. Using a line search
to find the best choice of � yields an SALP policy with 15%
optimality gap as opposed to ALP policy, which results
in 95% optimality gap. The policy corresponding to the
implicit choice of �= �∗, obtained by solving LP (32), has
an optimality gap of 40%.
In Table 3(b), we consider the case when the holding

costs are given by the vector c � �1�1�1�. This is a
considerably easier control problem, because there is no

Desai, Farias, and Moallemi: Approximate Dynamic Programming
Operations Research 60(3), pp. 655–674, © 2012 INFORMS 673

need for server 1 to idle. In this case, the SALP is still a
significant improvement over the ALP; however, the mag-
nitude of the improvement is smaller.

8. Conclusion
The approximate linear programming (ALP) approach to
approximate DP is interesting at the outset for two reasons.
First, it gives us the ability to leverage commercial linear
programming software to solve large ADP problems; and
second, the ability to prove rigorous approximation guar-
antees and performance bounds. This paper asked whether
the formulation considered in the ALP approach was the
ideal formulation. In particular, we asked whether certain
strong restrictions imposed on approximations produced by
the approach can be relaxed in a tractable fashion and
whether such a relaxation has a beneficial impact on the
quality of the approximation produced. We have answered
both of these questions in the affirmative. In particular,
we have presented a novel linear programming formulation
that, while remaining tractable, appears to yield substan-
tial performance gains relative to the ALP. Furthermore,
our formulation permits us to prove approximation guaran-
tees that are in general as strong as those available for the
ALP while being substantially stronger in particular prob-
lem instances.

There are a number of interesting algorithmic direc-
tions that warrant exploration. For instance, notice that
from (30), that the SALP may be written as an uncon-
strained stochastic optimization problem. Such problems
suggest natural online update rules for the weights r , based
on stochastic gradient methods, yielding “data-driven” ADP
methods. The menagerie of online ADP algorithms avail-
able at present are effectively iterative methods for solv-
ing a projected version of Bellman’s equation. TD-learning
is a good representative of this type of approach and, as
can be seen from Table 1, is not among the highest per-
forming algorithms in our computational study. An online
update rule that effectively solves the SALP promises poli-
cies that will perform on par with the SALP solution,
while at the same time retaining the benefits of an online
ADP algorithm. A second interesting algorithmic direction
worth exploring is an extension of the smoothed linear pro-
gramming approach to average cost dynamic programming
problems.

As discussed in §4, theoretical guarantees for ADP algo-
rithms typically rely on some sort of idealized assumption.
For instance, in the case of the ALP, it is the ability to
solve an LP with a potentially intractable number of states
or else access to a set of sampled states, sampled according
to some idealized sampling distribution. For the SALP, it is
the latter of the two assumptions. It would be interesting to
see whether this assumption can be loosened for some spe-
cific class of MDPs. An interesting class of MDPs in this
vein are high-dimensional optimal stopping problems. Yet
another direction for research is understanding the dynam-
ics of “bootstrapping” procedures that solve a sequence of

sampled versions of the SALP with samples for a given
SALP in the sequence drawn according to a policy pro-
duced by the previous SALP in the sequence.

Electronic Companion
An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1044.

Acknowledgments
The authors thank the anonymous reviewers for a number of help-
ful suggestions, in particular, a strengthening of Theorem 2.

Endnotes
1. Note that it is intractable to directly compute the projection
because J ∗ is unknown.
2. Already if ��∗� ����r∗��< 1/2, then �d+/d�+�USALP�0�< 0.
3. Because the ALP has a small number of variables, it might be

possible to solve exactly the ALP without resorting to constraint
sampling by using a cutting-plane method or by applying column
generation to the dual problem. In general, this would require
some form of problem-specific analysis. The SALP, on the other
hand, has many variables and constraints, and thus some form of
sampling seems necessary.
4. The introduction of an artificial discount factor into an aver-

age cost problem is akin to analyzing a perturbed problem with
a limited time horizon, a common feature in many ADP schemes
(e.g., de Farias and Van Roy 2006).
5. Our baseline policy had an expected total reward of 113 lines

cleared.
6. See, for example, Bertsekas (2007) or Moallemi et al. (2008)

for an explicit construction in this context.
7. This corresponds approximately to a “maximum pressure”

policy (Tassiulas and Ephremides 1992, 1993; Dai and Lin 2005).

References
Bertsekas DP (2007) Dynamic Programming and Optimal Control, 3rd ed.

Vol. 2 (Athena Scientific, Belmont, MA).
Bertsekas DP, Ioffe S (1996) Temporal differences-based policy iter-

ation and applications in neuro-dynamic programming. Technical
Report LIDS-P-2349, MIT Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA.

Bertsekas DP, Tsitsiklis JN (1996) Neuro-Dynamic Programming (Athena
Scientific, Belmont, MA).

Boyd S, Vandenberghe L (2004) Convex Optimization (Cambridge Uni-
versity Press, Cambridge, UK).

Brzustowski J (1992) Can you win at Tetris? Master’s thesis, University
of British Columbia, Vancouver, British Columbia, Canada.

Burgiel H (1997) How to lose at Tetris. Math. Gazette 81(491):194–200.
Dai JG, Lin W (2005) Maximum pressure policies in stochastic processing

networks. Oper. Res. 53(2):197–218.
de Farias DP, Van Roy B (2000) On the existence of fixed points

for approximate value iteration and temporal-difference learning.
J. Optim. Theory Appl. 105(3):589–608.

de Farias DP, Van Roy B (2003) The linear programming approach to
approximate dynamic programming. Oper. Res. 51(6):850–865.

de Farias DP, Van Roy B (2004) On constraint sampling in the linear
programming approach to approximate dynamic programming. Math.
Oper. Res. 293(3):462–478.

de Farias DP, Van Roy B (2006) A cost-shaping linear program for
average-cost approximate dynamic programming with performance
guarantees. Math. Oper. Res. 31(3):597–620.

Desai, Farias, and Moallemi: Approximate Dynamic Programming
674 Operations Research 60(3), pp. 655–674, © 2012 INFORMS

Demaine ED, Hohenberger S, Liben-Nowell D (2003) Tetris is hard, even
to approximate. Proc. 9th Internat. Comput. Combinatorics Conf.

Farias VF, Van Roy B (2006) Tetris: A study of randomized constraint
sampling. Probabilistic and Randomized Methods for Design Under
Uncertainty (Springer-Verlag, London), 189–201.

Farias VF, Van Roy B (2007) An approximate dynamic programming
approach to network revenue management. Working paper, Stanford
University, Stanford, CA.

Farias VF, Saure D, Weintraub GY (2012) An approximate dynamic pro-
gramming approach to solving dynamic oligopoly models. RAND J.
Econom. Forthcoming.

Harrison JM (1988) Brownian models of queueing networks with het-
erogeneous customer populations. Stochastic Differential Systems,
Stochastic Control Theory and Applications IMA Math. Appl. Vol. 10
(Springer, New York) 147–186.

Harrison JM, Wein LM (1989) Scheduling network of queues: Heavy
traffic analysis of a simple open network. Queueing Systems 5:
265–280.

Kakade S (2002) A natural policy gradient. Advances in Neural Informa-
tion Processing Systems 14 (MIT Press, Cambridge, MA).

Kumar S, Muthuraman K (2004) A numerical method for solving singular
stochastic control problems. Oper. Res. 52(4):563–582.

Kushner HJ, Martins LF (1996) Heavy traffic analysis of a controlled
multiclass queueing network via weak convergence methods. SIAM
J. Control Optim. 34(5):1781–1797.

Manne AS (1960) Linear programming and sequential decisions.
Management Sci. 60(3):259–267.

Martins LF, Shreve SE, Soner HM (1996) Heavy traffic convergence of
a controlled multiclass queueing network. SIAM J. Control Optim.
34(6):2133–2171.

Moallemi CC, Kumar S, Van Roy B (2008) Approximate and data-driven
dynamic programming for queueing networks. Working paper, Grad-
uate School of Business, Columbia University, New York.

Petrik M, Zilberstein S (2009) Constraint relaxation in approximate linear
programs. Proc. 26th Internat. Conf. Machine Learning, Montreal,
Quebec, Canada (ACM, New York).

Powell WB (2007) Approximate Dynamic Programming: Solving the
Curses of Dimensionality (John Wiley & Sons, New York).

Schweitzer P, Seidmann A (1985) Generalized polynomial approxi-
mations in Markovian decision processes. J. Math. Anal. Appl.
110(2):568–582.

Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on Stochastic
Programming: Modeling and Theory (SIAM, Philadelphia).

Szita I, Lőrincz A (2006) Learning Tetris using the noisy cross-entropy
method. Neural Comput. 18(12):2936–2941.

Tassiulas L, Ephremides A (1992) Stability properties of constrained
queueing systems and scheduling policies for maximum through-
put in multihop radio networks. IEEE Trans. Automatic Control
37(12):1936–1948.

Tassiulas L, Ephremides A (1993) Dynamic server allocation to paral-
lel queues with randomly varying connectivity. IEEE Trans. Inform.
Theory 39(2):466–478.

Van Roy B (2002) Neuro-dynamic programming: Overview and recent
trends. Shwartz A, Feinberg E, eds. Handbook of Markov Decision
Processes (Kluwer, Boston), 431–459.

Wen Z, Durlofsky LJ, Van Roy B, Aziz K (2011) Use of approximate
dynamic programming for production optimization. SPE Reservoir
Simulation Symposium, The Woodlands, TX.

Vijay V. Desai is an operations research specialist at
SAS Institute, Inc. During his doctoral work, his research
was in the area of approximate dynamic programming and
revenue management.
Vivek F. Farias is the Robert N. Noyce Career

Development Associate Professor of Management at the
Sloan School and the Operations Research Center at the
Massachusetts Institute of Technology. He works on rev-
enue management, dynamic optimization, and the analysis
of complex stochastic systems.
Ciamac C. Moallemi is an associate professor in the

Decision, Risk, and Operations Division of the Gradu-
ate School of Business at Columbia University. He is the
recipient of a British Marshall Scholarship (1996) and
a Benchmark Stanford Graduate Fellowship (2003). His
research interests are in the area of the optimization and
control of large-scale stochastic systems, with an emphasis
on applications in financial engineering.

OPERATIONS RESEARCH
http://dx.doi.org/10.1287/opre.1120.1044ec

© 2012 INFORMS

e - c o m p a n i o n

ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion—“Approximate Dynamic Programming via a Smoothed

Linear Program” by Vijay V. Desai, Vivek F. Farias, and Ciamac C. Moallemi,

Operations Research, http://dx.doi.org/10.1287/opre.1120.1044.

Approximate Dynamic Programming
via a Smoothed Linear Program

(Electronic Companion)

Vijay V. Desai
Industrial Engineering and Operations Research

Columbia University

email: vvd2101@columbia.edu
Vivek F. Farias

Sloan School of Management

Massachusetts Institute of Technology

email: vivekf@mit.edu

Ciamac C. Moallemi
Graduate School of Business

Columbia University

email: ciamac@gsb.columbia.edu

November 22, 2011

A. Proofs for Sections 4.2–4.4

Lemma 1. For any r ∈ RK and θ ≥ 0:

(i) �(r, θ) is a finite-valued, decreasing, piecewise linear, convex function of θ.

(ii)
�(r, θ) ≤ 1 + α

1 − α
�J∗ − Φr�∞.

(iii) The right partial derivative of �(r, θ) with respect to θ satisfies

∂+

∂θ+ �(r, 0) = −



(1 − α)
�

x∈Ω(r)
πµ∗,ν(x)




−1

,

where
Ω(r) � argmax

{x∈X : πµ∗,ν(x)>0}
Φr(x) − TΦr(x).

Proof. (i) Given any r, clearly γ � �Φr − TΦr�∞, s � 0 is a feasible point for (9), so �(r, θ) is
feasible. To see that the LP is bounded, suppose (s, γ) is feasible. Then, for any x ∈ X with
πµ∗,ν(x) > 0,

γ ≥ Φr(x) − TΦr(x) − s(x) ≥ Φr(x) − TΦr(x) − θ/πµ∗,ν(x) > −∞.

1

mailto:vvd2101@columbia.edu
mailto:vivekf@mit.edu
mailto:ciamac@gsb.columbia.edu

Letting (γ1, s1) and (γ2, s2) represent optimal solutions for the LP (9) with parameters (r, θ1) and
(r, θ2) respectively, it is easy to see that ((γ1 + γ2)/2, (s1 + s2)/2) is feasible for the LP with
parameters (r, (θ1 + θ2)/2). It follows that �(r, (θ1 + θ2)/2) ≤ (�(r, θ1) + �(r, θ2))/2. The remaining
properties are simple to check.

(ii) Let � � �J∗ − Φr�∞. Then, since T is an α-contraction under the � · �∞ norm,

�TΦr − Φr�∞ ≤ �J∗ − TΦr�∞ + �J∗ − Φr�∞ ≤ α�J∗ − Φr�∞ + � = (1 + α)�.

Since γ � �TΦr − Φr�∞, s � 0 is feasible for (9), the result follows.
(iii) Fix r ∈ RK , and define

∆ � max
{x∈X : πµ∗,ν(x)>0}

�
Φr(x) − TΦr(x)

�
− max

{x∈X \Ω(r) : πµ∗,ν(x)>0}

�
Φr(x) − TΦr(x)

�
> 0.

Consider the program for �(r, δ). It is easy to verify that for δ ≥ 0 and sufficiently small, viz.
δ ≤ ∆ �

x∈Ω(r) πµ∗,ν(x), (s̄δ, γ̄δ) is an optimal solution to the program, where

s̄δ(x) �






δ�
x∈Ω(r) πµ∗,ν(x) if x ∈ Ω(r),

0 otherwise,

and
γ̄δ � γ0 − δ

�
x∈Ω(r) πµ∗,ν(x) ,

so that
�(r, δ) = �(r, 0) − δ

(1 − α) �
x∈Ω(r) πµ∗,ν(x) .

Thus,
�(r, δ) − �(r, 0)

δ
= −



(1 − α)
�

x∈Ω(r)
πµ∗,ν(x)




−1

.

Taking a limit as δ � 0 yields the result. �

Lemma 2. Suppose that the vectors J ∈ RX and s ∈ RX satisfy

J ≤ Tµ∗J + s.

Then,
J ≤ J∗ + ∆∗s,

where
∆∗ �

∞�

k=0
(αPµ∗)k = (I − αPµ∗)−1,

2

and Pµ∗ is the transition probability matrix corresponding to an optimal policy.

Proof. Note that the Tµ∗ , the Bellman operator corresponding to the optimal policy µ∗, is mono-
tonic and is a contraction. Then, repeatedly applying Tµ∗ to the inequality J ≤ Tµ∗J + s and using
the fact that T k

µ∗J → J∗, we obtain

J ≤ J∗ +
∞�

k=0
(αPµ∗)ks = J∗ + ∆∗s.

�

Lemma 3. For the autonomous queue with basis functions φ1(x) � 1 and φ2(x) � x, if N is
sufficiently large, then

inf
r,ψ∈Ψ̄

2ν�ψ

1 − αβ(ψ)�J∗ − Φr�∞,1/ψ ≥ 3ρ2q

32(1 − q)(N − 1).

Proof. We have:

inf
r,ψ∈Ψ̄

2ν�ψ

1 − αβ(ψ)�J∗ − Φr�∞,1/ψ ≥ inf
ψ∈Ψ̄

2ν�ψ

�ψ�∞
inf

r
�J∗ − Φr�∞.

We will produce lower bounds on the two infima on the right-hand side above. Observe that

inf
r

�J∗ − Φr�∞ = inf
r

max
x

|ρ2x2 + ρ1x + ρ0 − r1x − r0|

≥ inf
r

max
�
max

x
|ρ2x2 + (ρ1 − r1)x| − |ρ0 − r0|, |ρ0 − r0|

�

= inf
r0

max
�

inf
r1

max
x

|ρ2x2 + (ρ1 − r1)x| − |ρ0 − r0|, |ρ0 − r0|
�

,

which follows from the triangle inequality and the fact that

max
x

|ρ2x2 + ρ1x + ρ0 − r1x − r0| ≥ |ρ0 − r0|.

Routine algebra verifies that

inf
r1

max
x

|ρ2x2 + (ρ1 − r1)x| ≥ 3
16ρ2(N − 1)2.

It thus follows that

inf
r

�J∗ − Φr�∞ ≥ inf
r0

max
�

3
16ρ2(N − 1)2 − |ρ0 − r0|, |ρ0 − r0|

�
≥ 3

32ρ2(N − 1)2.

We next note that any ψ ∈ Ψ̃ must satisfy ψ ∈ span(Φ) and ψ ≥ 1. Thus, ψ ∈ Ψ̃ must take the
form ψ(x) = α1x + α0 with α0 ≥ 1 and α1 ≥ (1 − α0)/(N − 1). Thus, �ψ�∞ = max(α1(N − 1) +

3

α0, α0). Define κ(N) to be the expected queue length under the distribution ν, i.e.,

κ(N) �
N−1�

x=0
ν(x)x = 1 − q

1 − qN

N−1�

x=0
xqx = q

1 − q

�
1 − NqN−1(1 − q) − qN

1 − qN

�

,

so that ν�ψ = α1κ(N) + α0, Thus,

inf
ψ∈Ψ̃

2ν�ψ

�ψ�∞
inf

r
�J∗ − Φr�∞ ≥ 3

16ρ2 inf
α0≥1

α1≥ 1−α0
N−1

α1κ(N) + α0
max(α1(N − 1) + α0, α0)(N − 1)2

When (1 − α0)/(N − 1) ≤ α1 ≤ 0, we have

α1κ(N) + α0
max(α1(N − 1) + α0, α0)(N − 1)2 = α1κ(N) + α0

α0
(N − 1)2

≥ (1 − α0)κ(N)/(N − 1) + α0
α0

(N − 1)2

≥
�

1 − κ(N)
N − 1

�
(N − 1)2.

When α1 > 0, we have

α1κ(N) + α0
max(α1(N − 1) + α0, α0)(N − 1)2 = α1κ(N) + α0

α1(N − 1) + α0
(N − 1)2 ≥ (N − 1)κ(N),

where the inequality follows from the fact that κ(N) ≤ N − 1 and α0 > 0. It then follows that

inf
ψ∈Ψ̃

2ν�ψ

�ψ�∞
inf

r
�J∗ − Φr�∞ ≥ 3

16ρ2 min
�

κ(N)(N − 1),
�

1 − κ(N)
N − 1

�
(N − 1)2

�
.

Now, observe that κ(N) is increasing in N . Also, by assumption, p < 1/2, so q < 1 and thus
κ(N) → q/(1 − q) as N → ∞. Then, for N sufficiently large, 1

2q/(1 − q) ≤ κ(N) ≤ q/(1 − q).
Therefore, for N sufficiently large,

inf
ψ∈Ψ̃

2ν�ψ

�ψ�∞
inf

r
�J∗ − Φr�∞ ≥ 3ρ2q

32(1 − q)(N − 1),

as desired. �

Lemma 4. For every λ ≥ 0, there exists a θ̂ ≥ 0 such that an optimal solution (r∗, s∗) to

(A.1)
maximize

r,s
ν�Φr − λπ�

µ∗,νs

subject to Φr ≤ TΦr + s, s ≥ 0.

is also an optimal solution the SALP (8) with θ = θ̂.

4

Proof. Let θ̂ � π�
µ∗,νs∗. It is then clear that (r∗, s∗) is a feasible solution to (8) with θ = θ̂. We

claim that it is also an optimal solution. To see this, assume to the contrary that it is not an optimal
solution, and let (r̃, s̃) be an optimal solution to (8). It must then be that π�

µ∗,ν s̃ ≤ θ̂ = π�
µ∗,νs∗ and

moreover, ν�Φr̃ > ν�Φr∗ so that

ν�Φr∗ − λπ�
µ∗,νs∗ < ν�Φr̃ − λπ�

µ∗,ν s̃.

This, in turn, contradicts the optimality of (r∗, s∗) for (A.1) and yields the result. �

B. Proof of Theorem 4

Our proof of Theorem 4 is based on uniformly bounding the rate of convergence of sample averages
of a certain class of functions. We begin with some definitions: consider a family F of functions from
a set S to {0, 1}. Define the Vapnik-Chervonenkis (VC) dimension dimVC(F) to be the cardinality
d of the largest set {x1, x2, . . . , xd} ⊂ S satisfying:

∀ e ∈ {0, 1}d, ∃f ∈ F such that ∀ i, f(xi) = 1 iff ei = 1.

Now, let F be some set of real-valued functions mapping S to [0, B]. The pseudo-dimension
dimP (F) is the following generalization of VC dimension: for each function f ∈ F and scalar c ∈ R,
define a function g : S × R → {0, 1} according to:

g(x, c) � I{f(x)−c≥0}.

Let G denote the set of all such functions. Then, we define dimP (F) � dimVC(G).
In order to prove Theorem 4, define the F to be the set of functions f : RK ×R → [0, B], where,

for all x ∈ RK and y ∈ R,
f(y, z) � ζ

�
r�y + z

�
.

Here, ζ(t) � max (min(t, B), 0), and r ∈ RK is a vector that parameterizes f . We will show that
dimP (F) ≤ K + 2. We will use the following standard result from convex geometry:

Lemma 5 (Radon’s Lemma). A set A ⊂ Rm of m +2 points can be partitioned into two disjoint sets
A1 and A2, such that the convex hulls of A1 and A2 intersect.

Lemma 6. dimP (F) ≤ K + 2

Proof. Assume, for the sake of contradiction, that dimP (F) > K + 2. It must be that there exists
a ‘shattered’ set

��
y(1), z(1), c(1)�,

�
y(2), z(2), c(2)�, . . . ,

�
y(K+3), z(K+3), c(K+3)��

⊂ RK × R × R,

5

such that, for all e ∈ {0, 1}K+3, there exists a vector re ∈ RK with

ζ
�
r�

e y(i) + z(i)
�

≥ c(i) iff ei = 1, ∀ 1 ≤ i ≤ K + 3.

Observe that we must have c(i) ∈ (0, B] for all i, since if c(i) ≤ 0 or c(i) > B, then no such
shattered set can be demonstrated. But if c(i) ∈ (0, B], for all r ∈ RK ,

ζ
�
r�y(i) + z(i)

�
≥ c(i) =⇒ r�

e y(i) ≥ c(i) − z(i),

and
ζ

�
r�y(i) + z(i)

�
< c(i) =⇒ r�

e y(i) < c(i) − z(i).

For each 1 ≤ i ≤ K + 3, define x(i) ∈ RK+1 component-wise according to

x(i)
j �





y(i)

j if j < K + 1,

c(i) − z(i) if j = K + 1.

Let A = {x(1), x(2), . . . , x(K+3)} ⊂ RK+1, and let A1 and A2 be subsets of A satisfying the conditions
of Radon’s lemma. Define a vector ẽ ∈ {0, 1}K+3 component-wise according to

ẽi � I{x(i)∈A1}.

Define the vector r̃ � rẽ. Then, we have

K�

j=1
r̃jxj ≥ xK+1, ∀ x ∈ A1,

K�

j=1
r̃jxj < xK+1, ∀ x ∈ A2.

Now, let x̄ ∈ RK+1 be a point contained in both the convex hull of A1 and the convex hull of
A2. Such a point must exist by Radon’s lemma. By virtue of being contained in the convex hull of
A1, we must have

K�

j=1
r̃j x̄j ≥ x̄K+1.

Yet, by virtue of being contained in the convex hull of A2, we must have

K�

j=1
r̃j x̄j < x̄K+1,

which is impossible. �

6

With the above pseudo-dimension estimate, we can establish the following lemma, which pro-
vides a Chernoff bound for the uniform convergence of a certain class of functions:

Lemma 7. Given a constant B > 0, define the function ζ : R → [0, B] by

ζ(t) � max (min(t, B), 0) .

Consider a pair of random variables (Y, Z) ∈ RK ×R. For each i = 1, . . . , n, let the pair
�
Y (i), Z(i)�

be an i.i.d. sample drawn according to the distribution of (Y, Z). Then, for all � ∈ (0, B],

P
�

sup
r∈RK

�����
1
n

n�

i=1
ζ

�
r�Y (i) + Z(i)

�
− E

�
ζ

�
r�Y + Z

������� > �

�

≤ 8
�32eB

�
log 32eB

�

�K+2
exp

�

− �2n

64B2

�

.

Moreover, given δ ∈ (0, 1), if

n ≥ 64B2

�2

�
2(K + 2) log 16eB

�
+ log 8

δ

�
,

then this probability is at most δ.

Proof. Given Lemma 6, this follows immediately from Corollary 2 of of Haussler (1992, Section 4).
�

We are now ready to prove Theorem 4.

Theorem 4. Under the conditions of Theorem 2, let rSALP be an optimal solution to the SALP
(14), and let r̂SALP be an optimal solution to the sampled SALP (28). Assume that rSALP ∈ N .
Further, given � ∈ (0, B] and δ ∈ (0, 1/2], suppose that the number of sampled states S satisfies

S ≥ 64B2

�2

�
2(K + 2) log 16eB

�
+ log 8

δ

�
.

Then, with probability at least 1 − δ − 2−383δ128,

�J∗ − Φr̂SALP�1,ν ≤ inf
r∈N
ψ∈Ψ

�J∗ − Φr�∞,1/ψ

�

ν�ψ +
2(π�

µ∗,νψ)(αβ(ψ) + 1)
1 − α

�

+ 4�

1 − α
.

Proof. Define the vectors

ŝµ∗ � (Φr̂SALP − Tµ∗Φr̂SALP)+ , and ŝ � (Φr̂SALP − TΦr̂SALP)+ .

7

Note that ŝµ∗ ≤ ŝ. One has, via Lemma 2, that

Φr̂SALP − J∗ ≤ ∆∗ŝµ∗

Thus, as in the last set of inequalities in the proof of Theorem 1, we have

(B.1) �J∗ − Φr̂SALP�1,ν ≤ ν�(J∗ − Φr̂SALP) +
2π�

µ∗,ν ŝµ∗

1 − α
.

Now, let π̂µ∗,ν be the empirical measure induced by the collection of sampled states X̂ . Given
a state x ∈ X , define a vector Y (x) ∈ RK and a scalar Z(x) ∈ R according to

Y (x) � Φ(x)� − αPµ∗Φ(x)�, Z(x) � −g(x, µ∗(x)),

so that, for any vector of weights r ∈ N ,

(Φr(x) − Tµ∗Φr(x))+ = ζ
�
r�Y (x) + Z(x)

�
.

Then,

���π̂�
µ∗,ν ŝµ∗ − π�

µ∗,ν ŝµ∗

��� ≤ sup
r∈N

������
1
S

�

x∈X̂

ζ
�
r�Y (x) + Z(x)

�
−

�

x∈X
πµ∗,ν(x)ζ

�
r�Y (x) + Z(x)

�
������
.

Applying Lemma 7, we have that

(B.2) P
����π̂�

µ∗,ν ŝµ∗ − π�
µ∗,ν ŝµ∗

��� > �
�

≤ δ.

Next, suppose (rSALP, s̄) is an optimal solution to the SALP (14). Then, with probability at
least 1 − δ,

ν�(J∗ − Φr̂SALP) +
2π�

µ∗,ν ŝµ∗

1 − α
≤ ν�(J∗ − Φr̂SALP) +

2π̂�
µ∗,ν ŝµ∗

1 − α
+ 2�

1 − α

≤ ν�(J∗ − Φr̂SALP) +
2π̂�

µ∗,ν ŝ

1 − α
+ 2�

1 − α

≤ ν�(J∗ − ΦrSALP) +
2π̂�

µ∗,ν s̄

1 − α
+ 2�

1 − α
,

(B.3)

where the first inequality follows from (B.2), and the final inequality follows from the optimality
of (r̂SALP, ŝ) for the sampled SALP (28).

Notice that, without loss of generality, we can assume that s̄(x) = (ΦrSALP(x)−TΦrSALP(x))+,

8

for each x ∈ X . Thus, 0 ≤ s̄(x) ≤ B. Further,

π̂�
µ∗,ν s̄ − π�

µ∗,ν s̄ = 1
S

�

x∈X̂

�
s̄(x) − π�

µ∗,ν s̄
�

,

where the right-hand-side is of a sum of zero-mean bounded i.i.d. random variables. Applying
Hoeffding’s inequality,

P
����π̂�

µ∗,ν s̄ − π�
µ∗,ν s̄

��� ≥ �
�

≤ 2 exp
�

−2S�2

B2

�

< 2−383δ128,

where final inequality follows from our choice of S. Combining this with (B.1) and (B.3), with
probability at least 1 − δ − 2−383δ128, we have

�J∗ − Φr̂SALP�1,ν ≤ ν�(J∗ − ΦrSALP) +
2π̂�

µ∗,ν s̄

1 − α
+ 2�

1 − α

≤ ν�(J∗ − ΦrSALP) +
2π�

µ∗,ν s̄

1 − α
+ 4�

1 − α
.

The result then follows from (17)–(19) in the proof of Theorem 2. �

References
D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applica-

tions. Information and Computation, 100:78–150, 1992.

9

