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Abstract

Precautionary saving typically refers to the additional investment in a

risk free asset when exogenous labor income is risky versus certain. When

risky income results endogenously from the investment in a risky asset,

the meaning and characterization of precautionary saving change and far

less is known about this case. Capital risk is important for macro and

�nance models as risk often arises from the variability in asset returns,

and precautionary saving plays a key role in interpreting the results. We

assume KPS (Kreps-Porteus-Selden) preferences with additively separable

time preferences and HARA (hyperbolic absolute risk aversion) risk pref-

erences. Necessary and su¢ cient conditions are derived for saving to in-

crease when investment is in a portfolio of risky and risk free assets versus

just a risk free asset. Time preferences play an essential role whereas the

frequently referenced risk preference property prudence is irrelevant. In

macro�nance analyses, the equilibrium risk free rate is often shown to be

less in the presence versus absence of capital risk and this is interpreted as

re�ecting a precautionary motive. However this interpretation is not in

consonance with the corresponding partial equilibrium demand analysis.
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Leland (1968) and Kimball (1990) introduced and re�ned the notion of pre-

cautionary saving in a two period setting with exogenous risky (labor) income

where individuals have EU (expected utility) preferences. The basic idea is that

a consumer will save more in the form of a risk free asset when period two in-

come is risky than when it is certain. This additional saving is precautionary in

the sense that it creates a bu¤er stock of certain period two income to o¤set the

possible occurrence of a bad outcome for risky income.1 It follows from Leland

(1968) and Kimball (1990) that a consumer will exhibit precautionary saving if and

only if the individual�s risk preferences satisfy a property referred to as prudence

which corresponds to the NM (von Neumann-Morgenstern) index of the assumed

EU representation having a positive third derivative. Kimball and Weil (2009)

extend this analysis of income risk to the more general KPS (Kreps and Porteus

1978 and Selden 1978) preference structure where time and risk preferences can be

fully separated.2 The characterization of when a consumer exhibits precautionary

saving becomes more complicated, but prudence continues to play an important

role.

In recent years, a number of authors working on asset pricing and macro issues

have characterized their �ndings in terms of precautionary saving e¤ects. These

papers typically assume that individuals face risk emanating from the presence of

risky assets rather than exogenous risky income. (Examples include Barsky 1989,

Campbell and Cochrane 1999, Yi and Choi 2006, Reis 2009, Gomes and Ribeiro

2015 and Cochrane 2017.) Often formulas for the equilibrium risk free rate are

derived which contain risk terms that reduce the risk free return and are inter-

preted as re�ecting "precautionary saving e¤ects" or "precautionary motives".3

However for the capital risk case these papers are considering, relatively little

work has been done on the underlying microfoundations.4 In this paper, we seek

to make progress in �lling this void by �rst examining asset demand and saving

behavior in the classic consumption-portfolio setting, second deriving expressions

for the equilibrium risk free rate based on the same underlying speci�cation of

consumer preferences and third comparing the implications for saving behavior of

1See, for example, Carroll, Hall and Zeldes (1992).
2See Selden (1978, 1979).
3Other models derive expressions for consumption growth which contain a risk term. If

the coe¢ cient of this term is positive, then the increase in growth is interpreted as re�ecting

"precautionary" saving.
4Exceptions which do consider precautionary saving in the presence of capital risk include

Weil (1990), Langlais (1995), Gollier (2001, chapter 19) and Eeckhoudt and Schlesinger (2008).

Each of these assume special cases of the KPS preference model such as EU and are discussed

in later sections.
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the equilibrium and partial equilibrium demand analyses. (A similar analysis of

saving behavior for the simpler single risky asset consumption-saving problem is

provided in Supplemental Appendix B.2.)

As Sandmo (1970) warned, characterizing saving behavior is more complicated

in the presence of capital risk than income risk. A key di¤erence as emphasized by

Gollier (2001, Chapter 19) is that income risk is typically exogenous while capital

risk is endogenous.5 For the latter, the individual�s own actions create risk rather

than just bu¤ering against risk and thus it does not seem appropriate, at least to

us, to refer to saving in this case as being "precautionary". However, it is still of

interest to ask whether in a consumption-portfolio setting, saving is larger when

there is both a risky asset and risk free asset versus just a risk free asset. This

di¤erence in saving will be referred to as (positive) excess saving. One can also
ask whether the consumer�s demand for the risk free asset is larger in the portfolio

versus certainty case. Because the extra demand for the risk free asset can be

viewed as serving as a bu¤er against bad outcomes for the simultaneously chosen

risky asset, we will refer it as precautionary saving.
In addressing the microfoundation analysis of excess and precautionary sav-

ing, we seek to separate the e¤ects of time and risk preferences and follow Kimball

and Weil (2009) in assuming KPS preferences as well as two time periods. The

latter assumption allows us to derive results which hold for arbitrary risky asset

return distributions and for additively separable time and HARA (hyperbolic ab-

solute risk aversion) risk preferences.6 Assuming that the representation of time

preferences is additively separable rather than the typical, more restrictive CES

(constant elasticity of substitution) form allows us to introduce a generalization of

the EIS (elasticity of intertemporal substitution) which we refer to as the EMRS

(elasticity of the intertemporal marginal rate of substitution). The latter time

preference measure is shown to have a quite intuitive geometric interpretation

and plays a central role in this paper.7 For dynamic demand and equilibrium

analyses, in order to obtain tractable solutions, researchers typically make strong

assumptions on both the form of preferences and asset return distributions and

also introduce small risk approximations. Our use of KPS utility enables us to

avoid such strong restrictions but at the cost of considering only two periods.

5Recently, however, some work has been done in a consumption-leisure setting where the level

of income risk becomes endogenous. See, for instance, Nocetti and Smith (2011).
6See Gollier (2001) for a discussion of this class of utilities and their properties.
7Our generalization suggests that the assumption of CES or more generally stationary time

preferences is overly strong. Additive separability of the time preference utility is all that is

required. Indeed the EMRS result highlights that the speci�c form of the period one utility

u1(c1) is irrelevant, although u01 > 0 and u
00
1 < 0 are required.
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Assuming a standard exchange economy in our consumption-portfolio setting, we

solve for the equilibrium risk free rate in the absence and presence of a risky asset

and characterize when the latter rate is smaller or larger than the former rate.

We show that whether saving is larger or smaller in the presence versus absence

of a risky asset involves restrictions only on the time preference EMRS for all

but one member of the HARA (hyperbolic absolute risk aversion) class of risk

preferences. For the CARA (constant absolute risk aversion) member, excess

saving is always negative. The restrictions on the EMRS can be interpreted

as a competition between the classic substitution and smoothing e¤ects and a

second smoothing e¤ect. For the special case of CES time and CRRA (constant

relative risk aversion) risk preferences, positive excess saving requires that the

EIS > 1. If one assumes the EU special case of KPS preferences, then as Gollier

(2001, p. 289) observes this condition implies that the Arrow-Pratt relative risk

aversion measure must be less than 1 which is inconsistent with much higher values

typically assumed. A similar issue arises for the condition for positive excess

saving for the EU external habit model of Campbell and Cochrane (1999).8 In

both of these instances, the KPS generalization of EU preferences accommodates

positive excess saving when a quite reasonable restriction on the time preference

EMRS holds and virtually no restriction is required on the degree of relative risk

aversion. In contrast to the case of income risk where prudence plays a central role

in determining whether the consumer exhibits precautionary saving, we provide

examples showing that for capital risk, prudence is largely irrelevant.9 This is

at odds with assertions in the literature based on EU preferences that prudence

is also important for capital risk.10 We show that the con�icting views on the

relevance of prudence result from the well-known confounding of time and risk

preference e¤ects by EU preferences.11

As observed above, we also investigate the conditions under which the level

of demand for the risk free asset (as opposed to saving in the form of both the

risky and risk free asset) is larger in the consumption-portfolio or risky setting

versus the certainty setting. This form of precautionary demand can only occur

if excess saving is positive. Thus the restrictions are even more stringent. An

example is given where for CES time and CRRA risk preferences, excess saving is

guaranteed if the EIS > 1 but precautionary saving requires that the EIS equal

8See the discussion following Corollary 2 in Subsection 4.2.
9For instance, see the analysis in Example 1.
10It is not uncommon to �nd suggestions in a capital risk setting even when EZ (Epstein and

Zin 1989) preferences are assumed that if the third derivative of the risk preference index is

positive, a precautionary motive exists. (See, for example, Gomes and Ribeiro 2015, p. 110.)
11See the discussions of this issue in Section 4, following Theorem 4 and Corollary 2.
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an unrealistic value of about 5.

Comparing the equilibrium risk free rates derived in the risky and certainty

settings, we show that the former is always smaller than the latter for the DARA

(decreasing absolute risk aversion) and CARA members of the HARA class of

time and risk preferences.12 This result does not depend on the EMRS, which

plays a pivotal role in the demand conditions for positive excess saving and pre-

cautionary saving. Also, our equilibrium result implies that the risk free asset

price and demand are larger in the risky setting. However this conclusion is

at odds with the partial equilibrium demand analysis which proves that for the

same forms of preferences, individual consumers have negative excess and nega-

tive precautionary saving. This lack of consonance between the equilibrium and

underlying demand conditions for precautionary saving arises due to di¤erences

in the de�nition of precautionary saving and several incompatible assumptions.13

Finally, to our knowledge all existing results in the literature have the equilibrium

risk free rate being lower in the risky versus certainty setting. In contrast, we

show that for a speci�c characterization of HARA time and risk preferences, the

equilibrium risk free rate in the risky setting can also be larger than or equal to

the rate in the certainty setting.

In the next section, we �rst review KPS preferences and then introduce nota-

tion and de�nitions associated with the consumption-portfolio optimization. Sec-

tion 2 provides a motivating example which illustrates key di¤erences between

the capital and income risk cases and between assuming EU and KPS prefer-

ences. Section 3 considers the certainty consumption-saving problem and derives

an important comparative static result characterizing when for an additively sep-

arable utility and a linear constraint, saving increases or decreases with the as-

sociated rate of return. Section 4 examines excess and precautionary saving in

the consumption-portfolio setting. Section 5 analyzes the relationship between

the equilibrium risk free rate in the risky versus certainty setting and compares

the results with those obtained for excess and precautionary saving in Section 4.

The �nal section o¤ers concluding comments. Proofs are given in Appendix A.

Supporting calculations and the analysis of excess saving for the single risky asset

consumption-saving problem are provided in the Supplemental Appendix B.

12See Theorem 5 for a more complete statement of the result.
13See the discussion near the end of Section 5.
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1 Preliminaries

In this section, we �rst review KPS preferences and then formally introduce the

consumption-portfolio choice problem.

1.1 KPS preferences

The consumer has preferences over certain �rst period and random second period

consumption pairs, (c1;ec2), which can be represented in two equivalent ways. First
following Kreps and Porteus (1978), the utility can take the form

U(c1; EV (ec2)): (1)

The expression EV (ec2) is the standard single period state independent EU rep-
resentation over risky period two consumption, where V is the NM index. In

general, the representation (1) fails to be linear in probabilities and diverges from

the classic two period EU

EW (c1;ec2): (2)

The index U in (1) can be viewed as a utility over period one consumption and
period two EU values.

The second representation, due to Selden (1978), is given by

U(c;bc2) = U �c1; V �1EV (ec2)� ; (3)

where U represents time preferences over certain (c1; c2)-pairs and EV (ec2) is a
standard one period EU representation of risk preferences de�ned over distribu-

tions of risky period two consumption corresponding to the random variable ec2.
The NM index V is continuous and strictly increasing in c2. In general the index

V can depend on c1, but in this paper we will focus on the standard case where

V (c2) is independent of c1. The second argument of U in (3) is the period two

certainty equivalent associated with random second period consumption

bc2 = V �1 (EV (ec2)) : (4)

The representation (3) is fully de�ned by the (U; V )-pair.14

Clearly (1) and (3) are equivalent if one de�nes

Uc1(�) = Uc1 � V �1(�): (5)

14See Selden (1978) for the corresponding axiomatic development and representation theorem

for (3). He considers the more general case where the NM index can depend on period one

consumption.
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Since in the ensuing analysis of precautionary saving, considerable attention will

be given to the separate roles of risk preferences de�ned over risky period two con-

sumption and time preferences de�ned over certain consumption pairs, the repre-

sentation (3) is more natural than (1) given that U is de�ned over consumption-
utility pairs. Also, the form (3) is also more intuitive for the two stage opti-

mization process used extensively in Section 4 below. However because the two

preference models are fully equivalent, (3) will be referred to as the KPS utility.

The KPS representation can converge to the two period EU (2) as a special

case. To see this, suppose

U (c1; c2) = u1 (c1) + u2 (c2) and V (c2) = u2(c2): (6)

Then U (c1;bc2) is ordinally equivalent to the additively separable two period EU
function

U(c1;bc2) = u1 (c1) + u2 � V �1 (EV (ec2)) = u1 (c1) + Eu2 (ec2)
= E [u1 (c1) + u2(ec2)] : (7)

Throughout the rest of this paper, the time or certainty preference represen-

tation will take the form

U (c1; c2) = u1 (c1) + u2 (c2) ; (8)

where u0i > 0 and u
00
i < 0 (i = 1; 2) and (c1; c2) 2 R2+.15 It is also assumed that

the NM index V satis�es V 0 > 0 and V 00 < 0. Denote the classic Arrow-Pratt

measures of absolute and relative risk aversion, respectively, by

�A(c2) = �
V 00(c2)

V 0(c2)
and �R = �

c2V
00(c2)

V 0(c2)
: (9)

We will refer to risk preferences satisfying (i) � 0A <;=; > 0 as exhibiting DARA,

CARA and IARA (increasing absolution risk aversion), respectively and (ii) � 0R <

;=; > 0 as exhibiting DRRA (decreasing relative risk aversion), CRRA and IRRA

(increasing relative risk aversion), respectively. It is understood that conditions

involving � 0A(c2) and �
0
R(c2) hold for all c2.

One popular version of KPS utility that will be frequently referenced below is

de�ned by the following CES certainty and CRRA NM risk preference forms

U(c1; c2) = �
c��11

�1
� � c

��1
2

�1
and V (c2) = �

c��22

�2
; (10)

15It should be observed that we generalize the commonly assumed discounted utility

U (c1; c2) = u (c1) + �u (c2)

by allowing the period one and two utilities to di¤er. If there is a discount function, it is

embedded in the function u2.
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where �i > �1 (i = 1; 2).

1.2 Consumption-Portfolio Problems

In subsequent sections, we assume that there is one risky asset and one risk free

asset when analyzing the consumption-portfolio problem. At the beginning of

period one, the consumer chooses a level of certain �rst period consumption c1
and a set of asset holdings, where the returns on the latter fund consumption in

period two. In the portfolio setting, markets will generally be incomplete with

more states than the number of assets. The random variable e� > 0 denotes the
period two payo¤ on the risky asset and �f is the payo¤ for the risk free asset.

The prices of the risky and risk free assets are denoted respectively by p and pf .

To ensure that there is no arbitrage,

min
�e��
p

<
�f
pf
<
max

�e��
p

: (11)

The condition that the risk free (gross) rate of return is less than the expected

(gross) rate of return for the risky asset

Rf =
�f
pf
<
Ee�
p
= E eR (12)

guarantees a positive demand for the risky asset. The number of units of the

risky and risk free assets is denoted by n and nf , respectively. It follows that

random period two consumption is given by

ec2 = e�n+ �fnf : (13)

The consumption-portfolio optimization problem is given by16

max
c1;n;nf

U (c1;bc2) = u1(c1) + u2(bc2) (14)

subject to bc2 = V �1EV �e�n+ �fnf� (15)

and

c1 + pn+ pfnf � I; (16)

16A general su¢ cient condition for the existence of a unique solution to the consumption-

saving problem is that u2 be more concave than V (see Kimball and Weil 2009, Appendix A, for

a more detailed discussion). A similar restriction can be applied to the consumption-portfolio

problem. But if the bc2(c1) constraint is linear as is typically considered below, it is enough for
U to be strictly quasiconcave.
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where period one consumption is the numeraire and p1 � 1.
In the next section, we consider a simple example of saving in the presence of

risky labor income. Investing in a risk free asset provides certain second period

income to o¤set the risky labor income which naturally �ts the classic notion

of precautionary saving. However in the consumption-portfolio problem where

both a risky asset and a risk free asset are available, investing in the risky asset

doesn�t match the intuition of precautionary saving. Nevertheless as in the risky

income case, it is interesting and important to characterize when in the capital

risk setting saving is larger or smaller in the presence of period two risk compared

to its absence. Suppose �rst that one considers optimal saving where there is

only a risk free asset paying the (gross) return Rf . Assuming initial income of I,

the consumer maximizes her two period utility and solves for optimal period one

saving, denoted by scertain1 . Period two consumption is determined by the product

scertain1 Rf . Next suppose the same I, but the consumer has the possibility to

invest, or save, in a portfolio containing a risky asset. Let srisky1 denote optimal

saving for the consumption-portfolio problem. Following Gollier (2001, Chapter

19), we adopt the following convention.17

De�nition 1 The quantity � denotes (positive) excess saving in the risky versus
certainty setting

� = srisky1 � scertain1 (> 0) : (17)

For the case of income risk, � corresponds exactly to the traditional notion

of precautionary saving. For capital risk since the decision to invest in a risky

asset is endogenous, � does not �t the intuition of providing period two insurance

against a bad consumption outcome. However in Section 4, we will suggest one

natural way to modify � in order to accommodate the intuition of precautionary

saving in the presence of risky investment.

2 A Motivating Example

In this section, we demonstrate that the conditions for � > 0 can be quite di¤erent

for the income and capital risk cases. We also show that whereas the sign of V 000

(or prudence) is central to the EU analysis of income risk, it (i) need not be crucial

for income risk assuming more general KPS preferences and (ii) is irrelevant for

17Gollier (2001, Chapter 19) is careful never to refer to � as precautionary saving. Instead in a

consumption-portfolio problem, he suggests that in going from only investing in a risk free asset

to investing in both a risk free and risky asset, a precautionary motive is key in determining

when � > 0.
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capital risk assuming KPS preferences with standard representations of time and

risk preferences.

Example 1 Assume that

U (c1; c2) = q1c1 � c21 + �
�
q1c2 � c22

�
(18)

and

V (c2) = q2c2 � c22; (19)

where q1; q2 > 2c2 > 0. First, consider the two state case of income risk where

I21 and I22 denote di¤erent values of risky period two (labor) income. The KPS

utility is given by

u1 (c1) + u2 � V �1 (�21V (Rf (I � c1) + I21) + �22V (Rf (I � c1) + I22)) ; (20)

where

�21I21 + �22I22 = 0: (21)

It can be veri�ed that

� T 0, q1 S q2: (22)

This result is very di¤erent from the EU analysis of Leland (1968), where V 000 = 0

implies that � = 0 always holds. Here both positive and negative precautionary

saving are possible depending on the relationship between the time and risk prefer-

ence parameters q1 and q2.18 Next consider the capital risk case of a single risky

asset where the risky (gross) rate of return eR2 realizes values R21 and R22 in states
one and two, respectively. The KPS utility function is

u1 (c1) + u2 � V �1 (�21V (R21 (I � c1)) + �22V (R22 (I � c1))) ; (23)

where

�21R21 + �22R22 = Rf : (24)

As shown in Figure 1(a), the sign of � still depends on the values of q1 and q2.

However, unlike the income risk case, q1 = q2 does not imply � = 0. Actually, it

18This is consistent with the result given by Kimball and Weil (2009). We have V 000 = 0 and

IARA. They state that a su¢ cient condition for positive precautionary saving is that u2 is more

concave than V . Based on (18)-(19), this implies

�u
00
2(c2)

u02(c2)
=

2

q1 � 2c2
> �V

00(c2)

V 0(c2)
=

2

q2 � 2c2
;

or equivalently,

q1 < q2:
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Figure 1:

can be proved that for the EU case corresponding to q1 = q2, s
risky
1 is always smaller

than scertain1 , implying that � < 0.19 Finally consider the consumption-portfolio

setting. The KPS utility function is

u1 (c1) + u2 � V �1
�
�21V

�
�21n+ �fnf

�
+ �22V

�
�22n+ �fnf

��
; (25)

where
�21�21 + �22�22

p
> Rf : (26)

As shown in Figure 1(b), for the parameters we choose, � is always negative.

Therefore for KPS quadratic preferences, prudence seems not to play a role in

determining the sign of � for both the income and capital risk cases. (See Appendix

B.1 for supporting calculations).

Given that (i) the capital risk case is so di¤erent from that of income risk

and (ii) the EU conditions for � > 0 obtained by Gollier (2001) will be seen not

to extend to the more general case of KPS preferences, we derive in Section 4

conditions for positive excess saving for the important class of KPS preferences

corresponding to additively separable time preferences and HARA risk preferences

in the consumption-portfolio setup.

19In contrast to our result, Eeckhoudt and Schlesinger (2008, Example 1) argue that for

quadratic EU preferences, saving does not change with a mean preserving spread in the risky

interest rate. This conclusion seems inconsistent with their Corollary 2 statement that saving is

unchanged for a mean preserving spread if V 00 = 0 since this is not satis�ed by quadratic utility.
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3 Certainty Case

In this paper, we focus predominantly on cases where the consumption-portfoliobc2 (c1) constraint (15) is linear. This enables us to exploit key properties of the

certainty case. We �rst review the familiar income and substitution e¤ects and

then introduce a comparative static result for this case that will prove to be quite

useful.

3.1 Smoothing and Substitution E¤ects

For the certainty consumption-saving case, assume the consumer solves for the

optimal period one consumption which maximizes her additively separable two

period utility (8) subject to the budget constraint

c2 = Rf (I � c1) = Rfs1: (27)

Given additive utility, the e¤ect of an increase in Rf on optimal period one

consumption can be expressed as

@c1
@Rf

=
u02 (c2) + c2u

00
2 (c2)

u001 (c1) +R
2
fu

00
2 (c2)

: (28)

Following Dreze and Modigliani (1972, Appendix A), the corresponding income

and substitution e¤ects are respectively given by20

(I � c1)
Rf

�
@c1
@I

�
Rf=Const:

=
c2u

00
2 (c2)

u001 (c1) +R
2
fu

00
2 (c2)

> 0 (29)

and�
@c1
@Rf

�
U=Const:

=
@c1
@Rf

� (I � c1)
Rf

�
@c1
@I

�
Rf=Const:

=
u02 (c2)

u001 (c1) +R
2
fu

00
2 (c2)

< 0:

(30)

Increases in Rf make the consumer feel richer and this income e¤ect results in

increased period one consumption and decreased saving.21 This is the smoothing

e¤ect.22 In the next section when considering whether saving is larger or smaller

in the presence of risky versus risk free asset returns, we will continue to interpret

the income e¤ect generated by a change in asset returns as a smoothing e¤ect. In

20As is well-known, the assumed additive separability of U implies that both period one and

two consumption are normal goods.
21Because s1 = I � c1, the sign of a change in s1 with respect to Rf is the reverse of that for

a change in c1.
22See Gollier (2001, p. 236).
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addition to the income e¤ect, increasing Rf makes period two consumption more

attractive and the consumer substitutes period two consumption for period one

consumption by saving more. The saving substitution e¤ect, in contrast to the

smoothing e¤ect, results in increased saving.

In general, the sign of the overall e¤ect (28) is ambiguous. In the next sub-

section, we show that in fact for additive utility, one can obtain a very intuitive

condition which determines whether the smoothing e¤ect or substitution e¤ect

dominates.

3.2 A Comparative Static Result for Additive Utility

The following theorem will play a central role in determining whether srisky1 T
scertain1 for the consumption-portfolio problem.23

Theorem 1 Assume the optimization problem

max
c1;c2

U (c1; c2) = u1 (c1) + u2 (c2) (31)

S:T: c2 = (I � c1)R; (32)

where u0i > 0; u
00
i < 0 (i = 1; 2).

24 Then

@c1
@R

T 0, @s1
@R

S 0, �c2u
00
2 (c2)

u02 (c2)
T 1: (33)

For additively separable U , it is easy to see from eqns. (29) and (30) that

(33) provides the necessary and su¢ cient condition for when the c1 income or

smoothing e¤ect dominates (equals, is dominated by) the substitution e¤ect. A

simple geometric intuition can be given for Theorem 1. De�ne the marginal rate

of substitution and minus the slope of the constraint (32), respectively, by

m1 =def
u01 (c1)

u02 (c2)
and m2 =def �

c2
c1 � I

: (34)

In Figure 2, consider the two constraint lines anchored at a common point. At the

tangency between the lower constraint and indi¤erence curve, m1 = m2. Increas-

ing R in eqn. (32) corresponds to a rotation of the lower constraint line upward

23The result in Theorem 1 stated in the context of gross substitutes and complements was

given by Wald (1936) and a modern proof was provided by Varian (1985). For completeness,

we provide the proof in Appendix A.1. The simple geometric interpretation given below seems

to be new. We thank Federico Echenique for pointing out these references to us.
24In the constraint (32), R can refer to either Rf or bRp, where the latter is de�ned below for

consumption-portfolio problem.
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to the right and can be viewed as changing c2 for a �xed c1. The elasticities of

the two slope changes with respect to c2 are given by

�1 =def
@ lnm1

@ ln c2
= �c2u

00
2 (c2)

u02 (c2)
and �2 =def

@ lnm2

@ ln c2
=
c2
c2
= 1; (35)

where �1 will be referred to as the EMRS with respect to period two consumption.

If �1 T �2 for all c2-values then we have @c1
@R
T 0 and hence the results in Theorem

1. Returning to the case in Figure 2, because �1 > �2 in response to an increase

in R, the higher indi¤erence curve intersects the shifted constraint at the initial

optimal c1, implying that the tangent to the indi¤erence curve is steeper than the

shifted constraint. Therefore, the new optimal c1 is to the right of the initial

c1-value, implying that c1 increases and s1 decreases with R.

Three important observations should be made relating to the EMRS condition

(33). First, the EMRS condition depends only on u2 and is independent of u1.

Second, it should be emphasized that the EMRS is in general distinct from the

familiar EIS, where the reciprocal of the latter is de�ned by

1

EIS
=
d lnm1

d ln( c2
c1
)
: (36)

The quantity 1=EIS is often interpreted as an aversion to intertemporal substitu-

tion. One special case where the EMRS and EIS are closely related is when U

takes the popular CES form in eqn. (10). For this utility, EMRS = 1
EIS

= 1+ �1

and the condition in Theorem 1 can be expressed as

@s1
@R

S 0, �c2u
00
2 (c2)

u02 (c2)
T 1, �1 T 0: (37)
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Thus if �1 > 0, the aversion to intertemporal substitution is greater than the

benchmark log utility (�1 = 0) resulting in the positive smoothing e¤ect domi-

nating the negative substitution e¤ect and c1 increases and s1 decreases with an

increase in R.25 Third, although the formula for the EMRS �1 in eqn. (35) takes

the same mathematical form as the Arrow-Pratt measure of relative risk aversion,

these notions are in general quite di¤erent. This is true even for the case for the

two period EU representation where the indices u1, u2 and V are a¢ nely equiva-

lent. The relative risk aversion measure relates to the curvature properties of the

NM utility V (c2), whereas the EMRS measure relates to the change in the MRS

for the certainty U corresponding to changes in the value of c2 with c1 being held

�xed.

4 Consumption-Portfolio Problem

This section focuses on the consumption-portfolio problem where saving takes

place via risky and risk free assets. After introducing a useful two stage optimiza-

tion process, we derive conditions such that excess saving � T 0. As mentioned

earlier, it is natural to say that saving is precautionary if the demand for the risk

free asset is larger in the consumption-portfolio versus the certainty setting. In

addition to being interesting in their own right, we show that the conditions for

positive excess saving also are necessary for precautionary saving. We illustrate

the applicability of the latter for the important case of CES and CRRA utilities

(10).

4.1 Two Stage Optimization

It will be useful to express the consumption-portfolio problem (14)-(16) in the

form of an equivalent two stage optimization problem. Without loss of generality,

assume that there is one risk free asset and one risky asset. The �rst stage

portfolio problem conditional on c1 is de�ned by

(n(c1); nf (c1)) = argmax
n;nf

EV
�e�n+ �fnf� (38)

subject to

pn+ pfnf � I � c1: (39)

25It should be emphasized that the popular EIS interpretation for the CES U is potentially

misleading since, in fact, saving behavior depends for the more general additive utility U solely

on the properties of u2 and the form of u1 is irrelevant.
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The second stage consumption-saving problem corresponds to

c1 = argmax
c1

u1 (c1) + u2 (bc2 (c1)) ; (40)

where bc2(c1) = V �1 �EV �e�n(c1) + �fnf (c1)�� : (41)

If the bc2(c1) constraint for the second stage consumption-saving optimization
is linear in c1, the analysis can be signi�cantly simpli�ed. We will show that this

is the case if and only if the period two conditional NM index V is a member of

the HARA class. But �rst, note that the NM indices of the DARA, CARA and

IARA members of this class respectively are given by

V (c2) = �
1

�2
(c2 � b)��2 (b T 0; c2 > max (0; b) ; �2 > �1); (42)

V (c2) = �
exp(��c2)

�
(� > 0) (43)

and

V (c2) =
1

�2
(b� c2)��2 (b > c2 > 0; �2 < �1): (44)

For the popular DARA case, it is standard to interpret b > 0 as a certain sub-

sistence requirement.26 For the two period EU representation incorporating the

DARA case, Campbell and Cochrane (1999) interpret b > 0 as an external habit

parameter.

As we discuss below, for the DARA, CARA and IARA cases the consumer in

general forms two portfolios. The �rst portfolio�s asset demands are dependent

on period one investable income I � c1 while the second portfolio is based on a
�xed quantity of assets. The �rst portfolio is comprised of risky and risk free

assets depending on which member of the HARA class we are considering and

the certainty equivalent return on this portfolio is denoted by bRp.27 The term

� denotes an implicit period one income translation component (which can be

positive or negative) and its precise de�nition and sign depend on the HARA

class member.

26For the DARA case we can have b < 0, but then the subsistence interpretation does not

make sense (see Pollak 1970, p. 748). For the IARA case, b can be interpreted as a bliss point.
27It will be important to remember that for HARA preferences, the risky portfolio in general

(i) contains both the risky and risk free asset and (ii) has a �xed mixture of assets which is

independent of I � c1.
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Theorem 2 bc2 is a linear function of c1 for any distribution e� if and only if the
NM index V (c2) is a member of the HARA class of utility functions.28

Based on this theorem, we can always write the bc2 (c1) constraint as
bc2 = bRp (I � c1 ��) : (45)

In the next subsection, we give exact de�nitions for bRp and � depending on

the speci�c member of the HARA class and the return distribution for the risky

asset. Given Theorem 2 and the two stage optimization facilitated by the KPS

separation of time and risk preferences, the analysis of excess saving is greatly

simpli�ed. The consumption-portfolio and certainty cases both have the same

certainty indi¤erence curves corresponding to U and linear budget constraints.

Thus any di¤erence in saving, corresponding to �, depends on a comparison of the

two constraints�slopes, bRp versus Rf , and the translation �.
4.2 Excess Saving

Before giving our main results characterizing when excess saving � T 0, we provide
some intuition for the important roles played by bRp and � in comparing how

optimal saving changes when a risky asset is added to the possibility of investing

in a risk free asset. Since these roles di¤er for the DARA, CARA and IARA

cases, we will consider them separately.

Given that for HARA risk preferences, the bc2(c1) constraint always takes the
linear form (45), the following establishes its relationship to the certainty con-

straint c2 = Rf (I � c1) where there is just a risk free asset. In particular, it

speci�es how the constraints di¤er in terms of a rotation based on bRp T Rf

and/or a parallel translation or shift corresponding to �. This result will play a

key role in characterizing necessary and su¢ cient (or su¢ cient) conditions for the

existence of positive excess saving.

Theorem 3 The consumer solves the consumption-portfolio problem (38)-(41),

where V is a strictly concave member of the HARA class.

(i) If V takes the DARA form (42), then

bRp > Rf and � =
b

Rf
� bbRp ; (46)

28It should be noted that Theorem 2 can be applied for the case of multiple risky assets even

when markets are incomplete. Since V is a member of the HARA class, following Rubinstein

(1974), markets are e¤ectively complete and the �nancial asset setting can naturally be trans-

formed into the contingent claim setting. Since each conditional contingent claim demand c2s
(s = 1; 2; :::; S) is linear in c1, the certainty equivalent function bc2 is also linear in c1.
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(ii) If V takes the CARA form (43), then29

bRp = Rf and � < 0; (47)

and

(iii) If V takes the IARA form (44), then

bRp < Rf and � =
b

Rf
� bbRp < 0: (48)

Remark 1 It may appear counterintuitive that in the above theorem bRp can be
less than or equal to Rf . Since both risky and risk free assets are available, it

would seem that if bRp � Rf the consumer should just hold the risk free asset.

For the CARA and IARA members of the HARA class, it is shown in the proof

of Theorem 3 that the bc2(c1) constraint (45) contains a negative � term. As a

result, �� corresponds to an additional source of income in period two arising

from the presence of the risky asset and even though bRp � Rf it can be optimal

for the consumer to hold the risky asset.

Before stating our result characterizing when excess saving for the consumption-

portfolio case is positive, equal to zero or negative, it will prove useful to provide

some additional intuition and simple geometry for comparisons of the DARA and

CARA bc2(c1) linear constraints with the constraint for the certainty saving prob-
lem.

First assume the DARA utility (42), where b > 0. When solving the con-

ditional portfolio problem, a consumer will form a risk free portfolio to fund the

period two subsistence requirement c2 = b and form a separate risky portfolio com-

prised of both risky and risk free assets to fund supernumerary consumption (i.e.,

consumption in excess of the subsistence requirement). Then following Kubler,

Selden and Wei (2013, pp. 1043-1044), the minimum level of income such that the

period two subsistence requirement can be met is

Imin =
b

Rf
: (49)

Let I � c1 � b
Rf
and bRp denote respectively the amount of period one income

invested in the risky portfolio and the certainty equivalent return on the risky

portfolio. Then the bc2(c1) constraint is given by
bc2 = bRp(I � c1 � b

Rf
) + b; (50)

29The CARA formula for � depends on the form of the risky asset payo¤ distribution. See

eqn. (A.38) in the proof of this theorem in Appendix A.3.
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or equivalently, bc2 = bRp (I � c1 ��) ; (51)

where

� =
b

Rf
� bbRp : (52)

Given the assumed DARA utility, we show in the proof of Theorem 3 that it is

always optimal for n > 0. Risk being larger in the risky portfolio versus holding

just a risk free asset, implies that bRp > Rf . It then follows from eqns. (51) and

(52) that � results from the funding of the period two subsistence requirement

with the risk free asset rather than the risky portfolio, is positive and can be

viewed as an opportunity loss reducing period one investable income I � c1.
The KPS two stage optimization facilitates a very clear geometric distinction

between saving when there is just a risk free asset and when there is both a risky

asset and a risk free asset. The key is to compare the portfolio bc2(c1) constraint
with the certainty constraint as is illustrated in Figure 3. First there is a rota-

tion of the constraint resulting in its slope steepening corresponding to the change

from �Rf to � bRp. Then second there is a southwesterly parallel shift in thebc2(c1) constraint corresponding to �� which follows from the subsistence term b

in V . Without the term b, introducing capital risk results in the bc2(c1) constraint
becoming steeper. This change in slope can be decomposed into the income and

substitution e¤ects (29) and (30) discussed above in Section 3.1. For the case

in Figure 3, since �1 = �0:5 < 0, the EMRS < 1 and the negative substitu-

tion e¤ect dominates and optimal c1 is less than in the certainty case, implying
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larger savings. So far this would correspond to the CRRA special case of DARA

preferences where b = 0. However when including the e¤ect of the opportunity

loss, since �� = �
�

b
Rf
� bbRp

�
< 0, this e¤ectively reduces the investable period

one income and creates a new negative income e¤ect. As a result, optimal c1
will decrease more as can be seen from comparing the tangencies of the highest

and lowest indi¤erence curves in Figure 3. Overall, excess saving � is given by

the corresponding di¤erence in I � c1 for the DARA tangency with the lowest

indi¤erence curve and the certainty tangency with the middle indi¤erence curve.

The geometry for CARA utility di¤ers from that of DARA utility since for the

former unlike the latter, the risky asset holding is �xed, independent of income.

Thus the portfolio that depends on I � c1 is risk free and bRp = Rf . However

expressing period two consumption as Rf (I � c1) ignores the fact that part of
period one income is actually invested in the higher return risky asset. It will be

noted that in Figure 4 unlike Figure 3, bRp = Rf and hence there is no rotation

of the constraint leading to the standard income and substitution e¤ects. The

only e¤ect is a smoothing e¤ect resulting from the increase in period two income

due to �. That is, in order to ensure that the implicit increase in period two

income doesn�t result in just an increase in period two consumption, the consumer

smoothes this increase by consuming more in period one and saves less implying

that � < 0.

The IARA case can be analyzed similarly and will not be discussed here.

We next show that by combining Theorems 1 and 3, the sign of � depends
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crucially on the time preference EMRS except for the case of CARA risk prefer-

ences.

Theorem 4 Consider the consumption-portfolio optimization problem (38)-(41)

where V is a strictly concave member of the HARA class. If V takes the DARA

form (42), then

(i) assuming V is also DRRA, where b > 0,

� > 0 if � c2u
00
2 (c2)

u02 (c2)
� 1; (53)

(ii) assuming V is also CRRA, where b = 0,

� T 0, �c2u
00
2 (c2)

u02 (c2)
S 1; and (54)

(iii) assuming V is also IRRA, where b < 0,

� < 0 if � c2u
00
2 (c2)

u02 (c2)
� 1: (55)

If V takes the CARA form (43), then

� < 0: (56)

If V takes the IARA form (44), then

� < 0 if � c2u
00
2 (c2)

u02 (c2)
� 1: (57)

Remark 2 Although risk preferences do not a¤ect the sign of �, they can a¤ect
the size of excess saving. Consider the CRRA case, Theorem 4(ii) corresponding

to Figure 3 where b = 0. If the risk preference parameter �2 increases, the

northeasterly rotation of the bc2 constraint from the certainty constraint is less.

As a result, optimal c1 decreases by less compared to the certainty case and excess

saving srisky1 � scertain1 declines.

A key contribution of Theorem 4 is showing that when risk preferences are

represented by the HARA class (excluding the CARA case) and time preferences

are additively separable, the existence of excess saving depends on the EMRS

instead of, as widely believed, prudence. De�ne absolute prudence by

PA (c2) = �
V 000 (c2)

V 00 (c2)
: (58)
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Then if the KPS utility takes the special case of EU where u2 and V are equivalent

up to a positive a¢ ne transformation, Gollier (2001, Proposition 75) proves that

there will be positive excess saving if and only if

PA (c2) > 2�A (c2) ; (59)

where �A is de�ned by (9). If one assumes that the EU NM index and time

preference u2 take the following CRRA form

V (c2) = u2 (c2) = �
c��2
�

(� > �1) ; (60)

then a necessary and su¢ cient condition for positive excess saving is that relative

risk aversion �R(c2) = �+1 < 1. Gollier (2001, p. 289) observes, based on empir-

ical data, that relative risk aversion will not be this small and hence excess saving

would be negative. However from the DARA condition in Theorem 4(ii), where

risk preferences and time preferences are distinguished, the actual requirement for

positive excess saving is that the EIS > 1. For the case where u2 takes the same

power utility form as V but with a di¤erent exponent

u2 (c2) = ��
c��12

�1
(�1 > �1) ; (61)

the necessary and su¢ cient condition for positive excess saving is �1 < 0 which

has nothing to do with the risk aversion parameter �2 and corresponding value of

�R(c2). Moreover in terms of empirical estimates, the assumption that �1 < 0 or

the EIS > 1 seems much less objectionable. In fact, Bansal and Yaron (2004) and

Epstein, Farhi and Strzalecki (2014) in their discussion of long-run risk argue for

an EIS > 1 implying that �1 < 0. For KPS preferences, there is no requirement

that relative risk aversion be unnaturally low. Hence for the important case of CES

time preferences and CRRA risk preferences, it seems reasonable to suppose that

excess saving is positive (also see Corollary 2(ii)). In summary, the conclusions

deriving from a comparison between absolute prudence and absolute risk aversion

are the result of the well-known confounding of time and risk preferences inherent

in EU preferences.

Remark 3 It may be natural to think that the question of whether saving increases
when there is both a risky and risk free asset versus just a risk free asset is analo-

gous to whether saving increases when there is an increase in the risk of the risky

asset. If one considers the CES and CRRA utilities (10), then it follows from

Theorem 4(ii) that saving increases if and only if �1 < 0. However, assuming

the same preferences Selden (1979, p. 80) shows that corresponding to an increase

22



in risk saving increases if and only if �1 > 0. The key to resolving this seeming

paradox is to recognize that Selden considers a mean preserving increase in risk,

whereas for the excess saving analysis in Theorem 4 both the expected return and

risk are larger for the risky portfolio versus the certainty case. Thus in terms

of Figure 3 assuming b = 0 (implying that � = 0), the excess saving analysis

corresponds to northeasterly rotation of the bc2 constraint whereas the mean pre-
serving increase in risk corresponds to a southwesterly rotation. Hence it is not

surprising, that the necessary and su¢ cient conditions for increased saving are op-

posite. One important implication of this observation, is that if a consumer with

CES time and CRRA risk preferences were to be observed based on market data

or experiments increasing her saving in response to a mean preserving increase

in risk in the consumption-saving problem, then it would be impossible for her to

also exhibit positive excess saving (and precautionary saving introduced in the next

subsection) in the consumption-portfolio problem.30

As noted earlier for DARA utility (42), the risk preference parameter b > 0

is often interpreted as an external habit formation parameter. It is then quite

natural to ask whether external habit formation increases precautionary saving.

Diaz, Pijoan-Mas and Rios-Rull (2003) found that this is indeed the case for an

EU, multiplicative habit model. Although our setting is quite di¤erent, we reach

the conclusion that excess saving increases with the risk preference parameter b.

Corollary 1 Consider the consumption-portfolio optimization problem (38)-(41)

where V is strictly concave and takes the DARA form (42), then

@�=@b > 0: (62)

Finally since some of the Theorem 4 conditions are only su¢ cient, one might

argue that other su¢ cient conditions could depend on prudence. However the

following corollary shows that if one assumes a translated origin power utility for

the certainty utility u2, the su¢ cient conditions in Theorem 4 become necessary

and su¢ cient. This would seem to further argue that at least for the very impor-

tant HARA class of risk preferences, the test for positive excess saving depends on

the time preference measures of EMRS and EIS and not on the risk preference

measure of prudence.

30Assuming a consumption-saving setting with a single risky asset in Appendix B.2, we show in

Theorem 7 that �1 > 0 is necessary and su¢ cient for the positive excess saving. This is consistent

with the mean preserving spread result in Selden (1979), since in Theorem 7 we assume E eR = Rf .
The latter is di¤erent from the assumption that E eR > Rf in the consumption-portfolio results
in this section.
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Corollary 2 Consider the consumption-portfolio (38)-(41), where V is strictly

concave.

(i) If V takes the DARA form (42), b T 0 and

u2 (c2) = �
(c2 � b)��1

�1
(�1 > �1); (63)

then

� T 0, �1 S 0 and (64)

(ii) If V takes the IARA form (44) and

u2 (c2) =
(b� c2)��1

�1
(�1 < �1); (65)

then

� < 0: (66)

Campbell and Cochrane (1999) introduce external habit formation preferences

as part of their equilibrium analysis. They assume an EU representation which for

two periods can be viewed as a special case of the utility in Corollary 2(i), where

b > 0 and �1 = �2. The preference parameter b is interpreted as an external habit.

Corollary 2(i) shows that consumers with the KPS generalization of the external

habit model will save more in a risky versus certainty settings only when �1 < 0.

For the Campbell and Cochrane formulation, the assumption that �1 = �2 requires

that the consumer�s risk preferences also must satisfy �2 < 0. This is inconsistent

with the �2-value of 1 used in Campbell and Cochrane (1999, pp. 218 and 225)

and also with typically assumed estimates of 4� 6. Using the same KPS utility
as in Corollary 2(i), we derive in Proposition 3, in Supplemental Appendix B.4,

the closed form expression (B.85) for the equilibrium risk free rate. This formula

can be viewed as a two period KPS version of eqn. (3) in Cochrane (2017), where

�1 and �2 can be fully distinguished.

4.3 Precautionary Saving

To de�ne precautionary saving in the consumption-portfolio setting, �rst denote

investment in the risk free asset for the certainty and risky cases, respectively, as

ncertainf and nriskyf . Then we have the following de�nition.

De�nition 2 For the consumption-portfolio problem (38)-(41), let # denote the

di¤erence in saving in the risk free asset

# = pfnf
risky � pfnf certain: (67)
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Assuming pf is the same for the certainty and risky cases, precautionary saving

corresponds to

# T 0, nriskyf T ncertainf : (68)

When # > 0, this is consistent with the intuition of precautionary savings

being the additional investment in a risk free asset to provide certain period two

insurance or a bu¤er against a bad return outcome from the risky asset. The

following connects precautionary saving to excess saving.

Proposition 1 A necessary condition for positive precautionary saving is positive
excess saving, i.e.,

# > 0) � > 0: (69)

In Theorem 4, the necessary condition for precautionary saving is shown to

always be violated for CARA risk preferences assuming an additively separable U

and it follows from the contrapositive of Proposition 1 that # < 0 holds.

For the popular CES and CRRA utilities (10), it follows from Theorem 4(ii)

that the necessary condition for # > 0 is violated when �1 � 0 or EIS < 1.

Next we demonstrate that depending on the asset return payo¤s and the value

of the risk preference parameter �2, precautionary saving can hold or fail when

�1 < �1 < 0. Some intuition for why this is the case can be gleamed from the

two stage formulation of the consumption-portfolio problem. An increase in risk

can be thought of as having two potentially con�icting e¤ects on nriskyf . First,

there is an investment or saving e¤ect which assumes the portfolio composition is

�xed. Second, there is a portfolio reallocation e¤ect. The competition between

these two e¤ects is illustrated in the example below.

Example 2 Assume the CES and CRRA utilities corresponding to (10). It fol-

lows from Theorem 4(ii) and Proposition 1 that a necessary condition for nriskyf >

ncertainf is srisky1 > scertain1 , or �1 < 0. Although this is also a su¢ cient condition

for positive excess saving, it is not a su¢ cient condition for positive precautionary

saving. Consider the complete market, two state case as in Kubler, Selden and

Wei (2013). Let the random asset payo¤ e� take the values �21 with probability
1 > �21 > 0 and �22 with probability �22 = 1 � �21. Assume �21 > �22 > 0 and

the risk free asset has payo¤ �f > 0. Assume the following parameter values

� = 1; �2 = 5 or 9; �21 = 4; �22 = 0:2; �f = 1; �21 = 0:5; p = pf = 1; I = 10: (70)

In Figure 5(a), nriskyf � ncertainf is plotted versus �1. Precautionary saving occurs

only when �1 is su¢ ciently negative. Although positive excess saving is realized
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Figure 5:

when �1 < 0 and EIS > 1, for the parameters (70), precautionary saving can

occur only if the EIS takes the unreasonably high value of about 5. As argued

in Appendix B.3, a necessary condition for positive precautionary savings is that

optimal asset demands satisfy n < nf . For the return distribution in (70), it

can be veri�ed that there exists a special �2-value equal to �0:07 such that optimal
n = nf . For �2 > �0:07, the greater risk aversion ensures that n < nf and

hence # > 0 is possible. Conversely if �2 = �0:10, then as illustrated in Figure
5(b) # can never be positive. It should be noted that in Figure 5(a) conditional

on �1 being low enough that # > 0, an increase in the risk aversion parameter

�2 results in a decrease in #. The intuition for this result can be understood in

terms of the saving and reallocation e¤ects discussed above. As the consumer

becomes more risk averse, bRp decreases and the positive excess saving � decreases
(see Figure 3, where b = 0). This results in a decrease in the demand for both

the risky and risk free assets. But the increase in risk aversion also causes a

portfolio reallocation with the consumer reducing her holdings of the risky asset

and increasing her demand for the risk free asset. For the case in Figure 5(a),

the negative saving e¤ect dominates the positive reallocation e¤ect and nriskyf and

# both decline. (For a more complete discussion of the example and for supporting

calculations, see Appendix B.3.)

In the prior subsection, we showed that excess saving increases with the exter-

nal habit risk parameter b. The following proves that the conclusion in Corollary

1 extends to precautionary saving #.
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Result 1 Consider the consumption-portfolio optimization problem (38)-(41) where
V is strictly concave and takes the DARA form (42), where b > 0. Further assume

that optimal risk free asset holdings satisfy nf > b=�f . Then

@#=@b > 0: (71)

Intuitively, one can think of the requirement that nf > b=�f as implying that

the consumer not only �nances her period two consumption requirement b by the

risk free asset, but also is long the risk free asset in her risky portfolio. This will

be the case if she is su¢ ciently risk averse.

5 Equilibrium Analysis

As argued in the prior subsection, the assumption of additively separable time

preferences and CARA risk preferences implies that the presence of a risky asset

in the consumption-portfolio problem always results in the demand for the risk

free asset being less versus when there is only a risk free asset, i.e., # < 0. This

would seem to imply that in a representative agent equilibrium the price for the

risk free asset in the risky setting should be less than in the certainty case and

hence the risky equilibrium risk free rate Rriskyf should be larger than the certainty

Rcertainf . A similar implication should apply as well for the case in Example 2

where time and risk preferences are represented by CES and CRRA utilities un-

less the EIS is unreasonably large. However this inference about the relationship

between the risky and certainty equilibrium risk free rates is not consistent with

standard equilibrium analyses. Assuming the same forms of time and risk prefer-

ences are possessed by a representative agent, Theorem 5 show that the opposite

conclusion Rriskyf < Rcertainf holds. Indeed it is standard in the micro�nance

literature to suggest that the precautionary motive holds when the equilibrium

Rriskyf is decreasing with risk.31 After �rst presenting the equilibrium results, we

then discuss the source of this seeming inconsonance between the demand and

equilibrium analyses.

Assume the standard representative agent exchange economy setting, where

the agent solves the following consumption-portfolio problem32

max
c1;n;nf

u1 (c1) + u2

�
V �1EV (e�n+ �fnf )� (72)

31For example, Campbell and Cochrane (1999, p. 212) interpret a "precautionary saving"

term in the expression for Rriskyf as showing that �as uncertainty increases, consumers are more

willing to save, and this willingness drives down the equilibrium risk free interest rate".
32Barsky (1989), Weil (1990), Campbell and Cochrane (1999), Yi and Choi (2006) and Gomes

and Ribeiro (2015) all assume a representative agent exchange economy.
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subject to

c1 + pn+ pfnf = c1 + pn+ pfnf ; (73)

where c1, n and nf denote, respectively, endowments of period one consumption,

the risky asset and the risk free asset. Using period one consumption as the

numeraire, equilibrium prices (p; pf ) ensure that markets clear,33

c1 = c1; n = n and nf = nf : (74)

Given the single agent setting, it is clear that there will be a unique equilibrium

de�ned by (c1; n; nf ; p; pf ). This equilibrium corresponds to the �xed parame-

ter set (c1; n; nf ;e�; �f ) where equilibrium prices are endogenous. To make the

certainty and risky cases comparable, we assume that Ee� = �f and
ccertain1 = crisky1 and nt = n

certain
f = nrisky + nriskyf ; (75)

where the superscripts "risky" and "certain" are respectively used to distinguish

the portfolio setting with a risky asset versus the certainty case with only a risk free

asset. Similar notation is used when distinguishing the equilibrium Rf in the two

settings. Given that Ee� = �f , our assumption for endowments is necessary and
su¢ cient such that when the random return e� in each state goes to �f , the risky
case converges to the certainty case as in Barsky (1989), Campbell and Cochrane

(1999), Yi and Choi (2006) and Gomes and Ribeiro (2015).34 It should be noted

that Ee� = �f does not imply E eR = Rf . In the equilibrium setting, assuming

n > 0, it can easily be veri�ed that one always has p < pf , implying that

E eR = Ee�
p
>
�f
pf
= Rf : (76)

Then we have the following theorem.

Theorem 5 Assume (i)

U (c1; c2) = �
(c1 � b)��1

�1
� � (c2 � b)

��1

�1
(�1 > �1; b T 0) (77)

33It should be noted that the equilibrium results in this section are independent of the endow-

ments of assets. In other words, whether nf T 0 does not change our conclusions.
34To see that the conditions in (75) are necessary and su¢ cient, assume that e� converges in

every state to �f . Then we have

e�nrisky + �fnriskyf = �f

�
nrisky + nriskyf

�
;

which is equal to �fn
certain
f if and only if ncertainf = nrisky + nriskyf .
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and

V (c2) = �
(c2 � b)��2

�2
(�2 > �1); (78)

or (ii)

U (c1; c2) = �
exp (��1c1)

�1
� � exp (��1c2)

�1
(�1 > 0) (79)

and

V (c2) = �
exp (��2c2)

�2
(�2 > 0): (80)

Then,

Rriskyf < Rcertainf : (81)

(In Appendix B.4, we derive analytic expressions for Rriskyf based on speci�c

distributions for the consumption ratio ec2=c1 as is done for instance in Campbell
and Cochrane 1999, Yi and Choi 2006 and Gomes and Ribeiro 2015. However

unlike these papers, given our simpler two period setting the formulas are obtained

without having to make approximations.)

Although Rriskyf < Rcertainf holds for many common forms of time and risk

preferences, the following shows that this is not always the case.35

Proposition 2 Assume that

U (c1; c2) =
(b� c1)��1

�1
+ �

(b� c2)��1
�1

(82)

and quadratic IARA risk preferences de�ned by

V (c2) = �
(b� c2)2

2
; (83)

where �1 < �1, b > 0 and c1; c2 < b.36 Then we have37

Rriskyf S Rcertainf , �1 S �2: (84)

35It should be noted that, also in a two period setting, Barsky (1989) obtains a similar conclu-

sion to Theorem 5(i) where b = 0. However, he requires the risky asset return distribution to be

lognormal and zero risk free asset endowments. Elul (1997) reaches similar conclusions to The-

orem 5(ii) and Proposition 2. However, his setting di¤ers in several important ways from what

we assume in this section. First, two period EU is assumed rather than our more general KPS

utility. Hence he is unable to distinguish the separate roles of risk and time preferences as in the

Proposition 2, condition (84). Second, he does not consider the case of DARA risk preferences

in Theorem 5(i). Third, he allows for multiple agents with some heterogeneity in contrast to

our assumption of a single agent. Fourth, he assumes a di¤erent endowment structure which

would be incompatible with our representative agent case.
36The condition �1 < �1 ensures that the utility U is strictly quasiconcave.
37The condition (84) would seem to suggest that the prudence measure for u2 is necessary and
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The conclusion in Proposition 2 di¤ers from that of Theorem 5 in two important

ways. First, Rriskyf can be larger than or equal to Rcertainf in contrast to Theorem 5.

Second, the comparison between Rriskyf and Rcertainf depends on the representative

agent�s time preferences where it does not in Theorem 5. The result (84) has

another surprising implication. To see this most clearly, consider the following

expression for the equilibrium Rriskyf derived in the proof of Proposition 2

Rriskyf =
(b� c1)��1�1

�

�
E
�
b� e�n� �fnf�2�� �1

2
�1

E
�
b� e�n� �fnf�

: (85)

When �1 = �2, the KPS utility de�ned by (82)-(83) converges to the special EU
case and Rriskyf converges to the certain risk free return

Rcertainf =
b� c1

�
�
b� �fnf

� : (86)

This does not happen for any of the other HARA class members.

Although Rriskyf < Rcertainf is often interpreted in equilibrium analyses as evi-

dence of a precautionary motive, one cannot use partial equilibrium saving behav-

ior of the representative agent to support this result for two reasons. First, there

is an important di¤erence in letting risk go to zero in the equilibrium and demand

analyses. For the equilibrium analysis, the assumptions that Ee� = �f and
ccertain1 = crisky1 and nt = n

certain
f = nrisky + nriskyf ; (87)

ensure that if the risk goes to zero, the risky case will converge to the certainty

case. However for the demand analysis, partial equilibrium requires that

Ee�
p
>
�f
pf

(88)

su¢ cient for the risky equilibrium risk free rate to be less than the certainty rate since

u0002 T 0, �1 S �2:

Also, the u2 corresponding to the two cases in Theorem 5 where Rriskyf < Rcertainf satis�es the

condition for prudence. However, the following example demonstrates that this inequality is

not implied by the prudence of u2. Assume

U (c1; c2) = � (q1 � c1)2 � � (q1 � c2)2 and V (c2) = � (q2 � c2)2 ;

where q1; q2 > 0 and c1; c2 < q1, c2 < q2, then

Rriskyf T Rcertainf , q1 T q2:
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be assumed to ensure positive risky asset holdings. If risk goes to zero, the risky

asset becomes a risk free asset with a higher return, which introduces arbitrage

opportunities. As a result, we cannot take the zero risk limit for demand analysis

and the zero risk case must be considered separately. Second, partial equilibrium

demand analysis assumes that the exogenously given market risk free rate Rf is

the same in the risky and risk free settings, whereas this is not possible in the

equilibria for cases (i) and (ii) in Theorem 5. As we show below, these di¤erences

play a critical role in explaining the inconsonance in the demand and equilibrium

analyses.

Example 3 Assume that

U (c1; c2) = �
exp (��1c1)

�1
� � exp (��1c2)

�1
(�1 > 0) (89)

and

V (c2) = �
exp (��2c2)

�2
(�2 > 0): (90)

We have proved in Theorem 5 that

Rriskyf < Rcertainf : (91)

Further assume that e� is normally distributed with mean Ee� = �f and variance

�2. Since the certainty case can be viewed as the limit case with zero risk, this

condition also implies that38

@Rriskyf

@�2
< 0: (92)

Next consider the partial equilibrium demand analysis. Assume e�=p is normally
distributed with variance �2 and mean E eR > Rf , where as suggested above the

inequality is required to ensure that n > 0. It can be veri�ed that

nf =
I � 1

2

(E eR�Rf)(E eR+Rf+2)
�2�2

+
ln(�Rf)
�1

(1 +Rf ) pf
(93)

and
@nriskyf

@�2
> 0: (94)

Thus, consistent with the equilibrium story, the equilibrium risk free asset return

decreases with risk and at the demand level, the consumer�s demand for the risk

free asset increases. However in the demand analysis when comparing nriskyf and

38This conclusion is con�rmed by di¤erentiating the equilibrium Rf expression (B.97) in Sup-

plemental Appendix B.4 with respect to �2.
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ncertainf , for the reason indicated above we cannot use the limit argument to show

that ncertainf < nriskyf is implied. In fact, as we have proved in Theorem 4 and

Proposition 1, when considering the certainty and risky cases separately for the

CARA NM index, we always have ncertainf > nriskyf , implying that # < 0. (See

Appendix B.5 for supporting calculations.)

6 Conclusion

In this paper, the KPS preference model is used to analyze excess and precau-

tionary savings when the consumer faces capital rather than income risk. When

risk preferences are represented by the widely assumed HARA class, prudence,

contrary to comments in the literature, is neither necessary nor su¢ cient for pos-

itive excess saving behavior. Instead the necessary and su¢ cient and su¢ cient

conditions depend on the pure time preference measure EMRS. The source of

this misperception is the use of EU and its inability to separate time and risk

preferences. For the popular cases of EU CRRA and external habit formation

(translated origin CRRA) risk preferences, the resulting required conditions for

positive excess saving impose unreasonable restrictions on risk preferences. How-

ever for the corresponding KPS generalizations, positive excess saving can be

achieved with separate restrictions on both time and risk preference parameters

that are fully consistent with standard empirical and experimental results. We

show in a standard pure exchange representative equilibrium model that for com-

mon forms of time and risk preferences, the equilibrium risk free rate is less in the

risky portfolio setting than in the certainty case. This implies that the represen-

tative agent demands more of the risk free asset in the risky setting. However,

the demand analysis indicates that for the same forms of utility one obtains the

opposite conclusion. This inconsonance results from di¤erences in the de�nitions

of precautionary saving and associated underlying assumptions in the demand and

equilibrium settings.

Several extensions of this work seem natural. The �rst would be to relax

one or both of the assumptions that U is additively separable and the second

period EU NM index is independent of period one consumption. One potentially

interesting way to do this would be to generalize the KPS preference model to

incorporate a simple linear habit formation model and a form of risk preference

dependence. We have already shown in Corollary 1 and Result 1 that varying the

DARA risk preference parameter b increases excess and precautionary saving. It

would be interesting to investigate whether � and # continue increase in versions

of the linear habit model and risk preference dependence where respectively both
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u2 and V depend on period one consumption. A second extension would be to

merge the consumption-portfolio and consumption-leisure optimizations. In this

case, the introduction of capital risk and labor risk would both be endogenous.

Although clearly desirable, this would seem to be a challenging problem.

Appendix

A Proofs

A.1 Proof of Theorem 1

Di¤erentiating the �rst order condition

u01 (c1)

u02 (c2)
= R (A.1)

with respect to R, yields

u001 (c1)
@c1
@R

= Ru002 (c2)
@c2
@R

+ u02 (c2) : (A.2)

Di¤erentiating the constraint

c2 = (I � c1)R (A.3)

with respect to R, it follows that

@c2
@R

= (I � c1)�R
@c1
@R
: (A.4)

Substituting eqn. (A.4) into (A.2) yields�
u001 (c1) +R

2u002 (c2)
� @c1
@R

= Ru002 (c2) (I � c1) + u02 (c2) : (A.5)

Since we require that the optimal point given by the �rst order condition be a

local maximum, the second order condition ensures that

u001 (c1) +R
2u002 (c2) < 0: (A.6)

Therefore,
@c1
@R

T 0, Ru002 (c2) (I � c1) + u02 (c2) S 0: (A.7)

Notice that

Ru002 (c2) (I � c1) + u02 (c2) S 0, �c2u
00
2 (c2)

u02 (c2)
T 1: (A.8)

Then we have
@c1
@R

T 0, �c2u
00
2 (c2)

u02 (c2)
T 1: (A.9)
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A.2 Proof of Theorem 2

First prove necessity. Since we require that bc2 be a linear function of c1 for any e�,
consider the two state case. Thus bc2 is a linear function of c1 only if each state c2i
is a linear function of c1. It follows from Pollak (1971) that the NM index must

be a HARA member.39 Next prove su¢ ciency. If V is a HARA member, it can

be easily veri�ed that (Gollier 2001)

�@
2V=@c22
@V=@c2

=
1

a+ bc2
; (A.10)

where a and b are arbitrary constants. It follows from Selden (1980, Corollary, p.

440) that bc2 is a linear function of c1.
A.3 Proof of Theorem 3

In this appendix, we prove Theorem 3 without assuming complete markets. We

discuss the DARA, CARA and IARA cases separately.

(i) Consider the DARA case

V (c2) = �
(c2 � b)��2

�2
: (A.11)

First, assume b = 0. The �rst order condition gives

E

��e� � p

pf
�f

��e�n+ �fnf��1��2� = 0: (A.12)

Following the covariance inequality, we have

0 = E

��e� � p

pf
�f

��e�n+ �fnf��1��2�
T E

�e� � p

pf
�f

�
E

��e�n+ �fnf��1��2�, n S 0: (A.13)

Since

E

�e� � p

pf
�f

�
> 0 and E

��e�n+ �fnf��1��2� > 0; (A.14)

optimal demand denoted by n� is positive. De�ne

bRp = bc2
I � c1

=

�
E

��e�n+ �fnf���2��� 1
�2

I � c1
: (A.15)

39It should be noted that the modi�ed Bergson family de�ned in Pollak (1971) corresponds

to the HARA class of NM indices (Gollier 2001 and Rubinstein 1976).
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If n = 0, then bRp = �fnf

I � c1
=
�f (I � c1)
(I � c1) pf

= Rf : (A.16)

In the second stage optimization, we consider the problem

max
n;nf

�
E

��e�n+ �fnf���2��� 1
�2

S:T: pn+ pfnf � I � c1: (A.17)

Since the preferences are homothetic, the optimal demand
�
n�; n�f

�
must satisfy

n� = �1 (I � c1) > 0 and n�f = �2 (I � c1) : (A.18)

Because
�
n�; n�f

�
is the optimal demand where n� > 0, the resulting bc2 must be

larger than the case with n = 0. Therefore, we have

bRp = bc2
I � c1

= const >
bc2jn=0
I � c1

= Rf ; (A.19)

where bc2jn=0 denotes bc2 evaluated at n = 0. Next, assuming b 6= 0 and de�ning
nnewf = nf �

b

�f
; (A.20)

the optimization problem

max
n;nf

�
E

��e�n+ �fnf � b���2��� 1
�2

S:T: pn+ pfnf � I � c1 (A.21)

can be converted into

max
n;nf

�
E

��e�n+ �fnnewf

���2��� 1
�2

S:T: pn+ pfn
new
f � I � b

Rf
� c1: (A.22)

Using a similar argument as in the b = 0 case, it follows that

bRp = const > Rf ; (A.23)

where bcnew2 =

�
E

��e�n+ �fnnewf

���2��� 1
�2

(A.24)

and

bRp = bcnew2

I � b
Rf
� c1

=

�
E

��e�n+ �fnnewf

���2��� 1
�2

I � b
Rf
� c1

: (A.25)

Since bc2 = �E ��e�n+ �fnf � b���2��� 1
�2

+ b; (A.26)
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following eqn. (A.25), the bc2 (c1) constraint is given by
bRp = bc2 � b

I � b
Rf
� c1

; (A.27)

or equivalently, bc2 = bRp (I � c1 ��) ; (A.28)

where

� =
b

Rf
� bbRp : (A.29)

(ii) Consider the CARA case

V (c2) = �
exp (��c2)

�
: (A.30)

Based on the �rst order condition,

E

��e� � p

pf
�f

�
exp

�
��
�e�n+ �fnf��� = 0; (A.31)

which is also equivalent to

E

��e� � p

pf
�f

�
exp

�
��e�n�� = 0: (A.32)

Since the �rst order condition is independent of nf , the optimal demand n� =

const. Following the covariance inequality, we also have n� > 0. Then

bc2 = � ln
�
E
h
exp

�
��
�e�n+ �fnf��i�
�

: (A.33)

If n = 0, then bc2 = �fnf ; (A.34)

implying that bRp = �fnf

I � c1
=
�f (I � c1)
(I � c1) pf

= Rf : (A.35)

Otherwise, since n� = const, we have

bc2 = �
ln
�
E
h
exp

�
��e�n��i�+ ln (��Rf (I � c1 � pn�))

�

= Rf (I � c1)�

0@pRfn� + ln
�
E
h
exp

�
��e�n��i�
�

1A (A.36)

Therefore, the bc2 (c1) constraint is given by
bc2 = Rf (I � c1 ��) ; (A.37)
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where

� = pn� +
ln
�
E
h
exp

�
��e�n��i�

�Rf
: (A.38)

Because
�
n�; n�f

�
is the optimal portfolio and n� > 0, the resulting bc2 must be

larger than the case with n = 0. Thus we have � < 0.

(iii) Consider the IARA case

V (c2) =
(b� c2)��2

�2
: (A.39)

De�ning

nnew = �n and nnewf =
b

�f
� nf ; (A.40)

the optimization problem

max
n;nf

"
b�

�
E

��
b� e�n� �fnf���2��� 1

�2

#
S:T: pn+ pfnf � I � c1 (A.41)

can be converted into

min
n;nf

�
E

��e�nnew + �fnnewf

���2��� 1
�2

S:T: pnnew + pfn
new
f � b

Rf
� (I � c1) :

(A.42)

Since c2 < b, we havee�nnew + �fnnewf = b�
�e�n� �fnf� > 0: (A.43)

Using a similar argument as in the DARA case where b = 0 and noticing that we

consider the minimum value instead of maximum value, we have

bcnew2 =

�
E

��e�nnew + �fnnewf

���2��� 1
�2

(A.44)

and bRp = bcnew2
b
Rf
� (I � c1)

< Rf : (A.45)

Since bc2 = b� �E ��b� e�n� �fnf���2��� 1
�2

; (A.46)

following eqn. (A.45), the bc2 (c1) constraint is given bybRp = b� bc2
b
Rf
� (I � c1)

; (A.47)

or equivalently, bc2 = bRp (I � c1 ��) ; (A.48)

where

� =
b

Rf
� bbRp < 0: (A.49)
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A.4 Proof of Theorem 4

For the DARA case, it follows from Theorem 3 that

bc2 = bRp (I � c1 ��) ; (A.50)

where bRp > Rf and � =
b

Rf
� bbRp : (A.51)

If b = 0, comparing the constraints

bc2 = bRp (I � c1) and c2 = Rf (I � c1) ; (A.52)

Theorem 1 implies that

� T 0, �c2u
00
2 (c2)

u02 (c2)
S 1: (A.53)

If b > 0, compare the constraints

bc2 = bRp (I � c1 ��) and (A.54)

and bc2 = bRp (I � c1) : (A.55)

The corresponding �rst order conditions are

u01 (c1) =
bRpu02 � bRp (I � c1 ��)� and u01 (c1) =

bRpu02 � bRp (I � c1)� :
(A.56)

Since u001; u
00
2 < 0, c1 for the constraint (A.54) is smaller than c1 for the constraint

(A.55). Comparing the constraints

bc2 = bRp (I � c1) and c2 = Rf (I � c1) ; (A.57)

it follows from Theorem 1 that

� T 0, �c2u
00
2 (c2)

u02 (c2)
S 1: (A.58)

Therefore, we have

� > 0 if � c2u
00
2 (c2)

u02 (c2)
� 1: (A.59)

If b < 0, the c1-value corresponding to the constraint (A.54) is smaller than the

c1-value corresponding to (A.55). Therefore, we have

� < 0 if � c2u
00
2 (c2)

u02 (c2)
� 1: (A.60)
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For the CARA case, it follows from Theorem 3 that

bc2 = Rf (I � c1 ��) ; (A.61)

where

� < 0: (A.62)

Compare the constraints

bc2 = Rf (I � c1 ��) and c2 = Rf (I � c1) : (A.63)

The corresponding �rst order conditions are

u01 (c1) = Rfu
0
2 (Rf (I � c1 ��)) and u01 (c1) = Rfu

0
2 (Rf (I � c1)) : (A.64)

Since u001; u
00
2 < 0, the value of c1 corresponding to the constraint (A.54) is larger

than the value corresponding to (A.55). Therefore, we always have � < 0. For

the IARA case, it follows from Theorem 3 that

bc2 = bRp (I � c1 ��) ; (A.65)

where bRp < Rf and � =
b

Rf
� bbRp < 0: (A.66)

Clearly, c1 is larger for the constraint (A.54) than for (A.55). Comparing the

constraints bc2 = bRp (I � c1) and c2 = Rf (I � c1) ; (A.67)

it follows from Theorem 1 that

� S 0, �c2u
00
2 (c2)

u02 (c2)
S 1: (A.68)

Therefore, we have

� < 0 if � c2u
00
2 (c2)

u02 (c2)
� 1: (A.69)

A.5 Proof of Corollary 1

It follows from Theorem 3 that the bc2 constraint is given by
bc2 = bRp (I � c1 ��) : (A.70)

The �rst order condition is

u01 (c1) =
bRpu02 � bRp (I � c1 ��)� : (A.71)
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Since
@ bRp
@b

= 0 and
@�

@b
> 0 (A.72)

and u00i < 0 (i = 1; 2), we have
@crisky1

@b
< 0: (A.73)

Noticing that
@ccertain1

@b
= 0; (A.74)

we have

@�

@b
=
@
�
srisky1 � scertain1

�
@b

=
@
�
ccertain1 � crisky1

�
@b

> 0: (A.75)

A.6 Proof of Corollary 2

For (i), as proved in Theorem 3, the constraint is given by

bc2 = bRp (I � c1 ��) ; (A.76)

where bRp > Rf and � =
b

Rf
� bbRp : (A.77)

De�ning bcnew2 = bc2 � b; (A.78)

we have

u1 (c1)�
(bcnew2 )��1

�1
(A.79)

and the constraint is given by

bcnew2 = bRp�I � c1 � b

Rf

�
: (A.80)

For the certainty case, the constraint can be rewritten as

cnew2 = Rf

�
I � c1 �

b

Rf

�
: (A.81)

Since bRp > Rf , it follows from Theorem 1 that

� T 0, �1 S 0: (A.82)

For (ii), it follows from Theorem 3 that the constraint is given by

bc2 = bRp (I � c1 ��) ; (A.83)
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where bRp < Rf and � =
b

Rf
� bbRp < 0: (A.84)

De�ning bcnew2 = � (b� bc2) < 0; (A.85)

we have

U (c1;bcnew2 ) = u1 (c1) +
(�bcnew2 )��1

�1
(A.86)

and the constraint is given by

bcnew2 = bRp�I � c1 � b

Rf

�
: (A.87)

It can be easily veri�ed that U (c1;bcnew2 ) is strictly increasing and strictly concave

in bcnew2 . For the certainty case, the constraint can be rewritten as

cnew2 = Rf

�
I � c1 �

b

Rf

�
: (A.88)

Since bRp < Rf and
�c

new
2 u002 (c

new
2 )

u02 (c
new
2 )

= 1 + �1 < 0; (A.89)

it follows from Theorem 1 that40

� < 0: (A.90)

A.7 Proof of Proposition 1

Noting that

pfn
certain
f = scertain1 ; (A.91)

we have

# = pfnf
risky � scertain1 : (A.92)

Observe that

srisky1 = I � c1 = pn+ pfnriskyf ; (A.93)

V 00 < 0 and E eR > Rf imply n > 0 (Kubler, Selden and Wei 2013, p. 1036).

It then follows that pfn
risky
f < srisky1 . Therefore for precautionary saving to be

positive in the consumption-portfolio setting, excess saving must be positive.

40Note that the proof of Theorem 1 works even if c2 < 0.
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A.8 Proof of Result 1

Since for a given c1, increasing b will increase the risk aversion, we have

@nrisky (c1)

@b
< 0 and

@nriskyf (c1)

@b
> 0: (A.94)

If the risk free asset holdings satisfy nf > b=�f , then it follows from Proposition 2

and Proposition 5(ii) in Kubler, Selden and Wei (2014) that

@nriskyf (c1)

@I
> 0)

@nriskyf (c1)

@c1
< 0: (A.95)

Moreover,
@ncertainf

@b
= 0: (A.96)

Therefore,

@#

@b
=
@
�
pfn

risky
f � pfncertainf

�
@b

= pf
@nriskyf (c1)

@b

@nriskyf (c1)

@c1

@crisky1

@b
> 0: (A.97)

A.9 Proof of Theorem 5

For (i), the �rst order condition is

pf =

��f

�
E
�e�n+ �fnf � b���2� �1

�2
�1

E
�e�n+ �fnf � b���2�1

(c1 � b)��1�1
; (A.98)

implying that

Rriskyf =
(c1 � b)��1�1

�

�
E
�e�n+ �fnf � b���2� �1

�2
�1

E
�e�n+ �fnf � b���2�1

: (A.99)

Without the risky asset, we have

Rcertainf =
(c1 � b)��1�1

�
�
�fnf � b

���1�1 : (A.100)

Since�
E
�e�n+ �fnf � b���2�� 1

�2

>

�
E
�e�n+ �fnf � b���2�1�� 1

1+�2

; (A.101)

we have

E
�e�n+ �fnf � b���2�1 > �E �e�n+ �fnf � b���2� 1+�2

�2

: (A.102)
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Therefore,�
E
�e�n+ �fnf � b���2� �1

�2
�1

E
�e�n+ �fnf � b���2�1 > �E �e�n+ �fnf � b���2� 1+�1

�2

:

(A.103)

Since �
E
�e�n+ �fnf � b���2�� 1

�2

< �fnf � b; (A.104)

we have �
E
�e�n+ �fnf � b���2� 1+�1

�2

>
�
�fnf � b

���1�1 : (A.105)

Noticing that

Rcertainf =
(c1 � b)��1�1

�
�
�fnf � b

���1�1 ; (A.106)

we always have

Rriskyf < Rcertainf : (A.107)

For (ii), it follows from the �rst order condition that

Rriskyf =
exp (��1c1)

� (E exp (��2ec2))�1�2 : (A.108)

Without the risky asset, we have

Rcertainf =
exp (��1c1)

� exp
�
��1�fnf

� : (A.109)

It follows from Jensen�s inequality that

E exp (��2ec2) > exp (��2Eec2) = exp ���2�fnf� : (A.110)

Therefore, we have

(E exp (��2ec2))�1�2 > �exp ���2�fnf���1�2 = exp ���1�fnf� : (A.111)

Thus, the following always holds

Rriskyf < Rcertainf : (A.112)

A.10 Proof of Proposition 2

It follows from the �rst order condition that

Rriskyf =
(b� c1)��1�1

�

�
E
�
b� e�n� �fnf�2�� �1

2
�1

E
�
b� e�n� �fnf�

: (A.113)
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Without the risky asset, we have

Rcertainf =
(b� c1)��1�1

�
�
b� �fnf

���1�1 : (A.114)

Since

E
�
b� e�n� �fnf�2 > �E �b� e�n� �fnf��2 = �b� �fnf�2 ; (A.115)

we have�
E
�
b� e�n� �fnf�2�� �1

2
�1

T
�
b� �fnf

��2��1 , �1 S �2: (A.116)

Therefore,�
E
�
b� e�n� �fnf�2�� �1

2
�1

E
�
b� e�n� �fnf� T �b� �fnf��1��1 (A.117)

if and only if

�1 S �2: (A.118)

Thus,

Rriskyf S Rcertainf , �1 S �2: (A.119)

B Supplemental Appendix

B.1 Supporting Calculations for Example 1

For the income risk case, the �rst order condition is

u01 (c1) =
q1 � 2bc2
q2 � 2bc2�Rf (�1 (q2 � 2 (Rf (I � c1) + I21)) + �2 (q2 � 2 (Rf (I � c1) + I22)))

=
q1 � 2bc2
q2 � 2bc2�Rf (q2 � 2 (Rf (I � c1))) ; (B.1)

where

bc2 = V �1 (�1V (Rf (I � c1) + I21) + �2V (Rf (I � c1) + I22)) : (B.2)

For the certainty case, the �rst order condition is

u01 (c1) = �Rf (q1 � 2 (Rf (I � c1))) : (B.3)

Noticing that

(q2 � 2 (Rf (I � c1))) (q1 � 2bc2)� (q1 � 2 (Rf (I � c1))) (q2 � 2bc2)
= 2 (q1 � q2) (bc2 �Rf (I � c1)) (B.4)
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and bc2 < Rf (I � c1) ; (B.5)

we have

q1 � 2bc2
q2 � 2bc2�Rf (q2 � 2 (Rf (I � c1))) T �Rf (q1 � 2 (Rf (I � c1))), q1 S q2: (B.6)

Since u001 (c1) < 0, we have

� T 0, q1 S q2: (B.7)

For the capital risk case, the �rst order condition is

u01 (c1) =
u02 (bc2)
V 0 (bc2) (�21R21V 0 (R21 (I � c1)) + �22R22V 0 (R22 (I � c1))) ; (B.8)

where bc2 = V �1 (�21V (R21 (I � c1)) + �22V (R22 (I � c1))) : (B.9)

Noticing that

u02 (c2) = � (q1 � 2c2) and V 0 (c2) = q2 � 2c2; (B.10)

the �rst order condition can be rewritten as

u01 (c1) =
q1 � 2bc2
q2 � 2bc2� (�1R21 (q2 � 2R21 (I � c1)) + �2R22 (q2 � 2R22 (I � c1)))

=
q1 � 2bc2
q2 � 2bc2� �Rfq2 � 2 ��21R221 + �22R222� (I � c1)� : (B.11)

For the certainty case, the �rst order condition is

u01 (c1) = �
�
Rfq1 � 2R2f (I � c1)

�
: (B.12)

If q1 = q2, then since

�21R
2
21 + �22R

2
22 > (�21R21 + �22R22)

2 = R2f ; (B.13)

c1 in the certainty case is less than c1 in the risky case, implying that the investor

will reduce saving when facing risk, i.e., srisky1 is always smaller than scertain1 . For

the consumption-portfolio setting, the �rst order condition for the conditional

portfolio problem is
q2 � 2c21
q2 � 2c22

= k; (B.14)

implying that

c21 =
k (I � c1)� 0:5 (k � 1) q2p22

kp21 + p22
and c22 =

I � c1 + 0:5 (k � 1) q2p21
kp21 + p22

:

(B.15)
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Therefore, the period one optimization problem can be rewritten as

max
c1;bc2

�
q1c1 � c21 + �

�
q1bc2 � bc22�� (B.16)

subject to

bc2 = p
�21k2 + �22
p21k + p22

�
I � c1 �

q2
2

�
1

Rf
� p21k + p22p

�21k2 + �22

��
: (B.17)

The �rst order condition is

u01 (c1) = �

�p
�21k2 + �22
p21k + p22

q1 � 2
�21k

2 + �22

(p21k + p22)
2

�
I � c1 �

q2
2

�
1

Rf
� p21k + p22p

�21k2 + �22

���
:

(B.18)

For the certainty case, the �rst order condition is still

u01 (c1) = �Rf (q1 � 2 (Rf (I � c1))) : (B.19)

There seems to be no simple condition to compare the right hand sides of eqns.

(B.18) and (B.19). Thus we consider simulations based on the above �rst order

conditions as shown in the text for Example 1.

B.2 Consumption-Saving Problem

In this appendix, we consider the single risky asset consumption-saving problem

for KPS preferences, which is given by

max
c1

U (c1;bc2) = u1(c1) + u2(bc2); (B.20)

subject to bc2 = V �1EV �(I � c1) eR� ; (B.21)

where eR = e�=p denotes the return on the single risky asset. We derive conditions
for when saving is larger in the presence of a single risky asset versus a risk free

asset both where the certainty equivalent constraint (B.21) is linear and several

cases where it is not. The sign of �, as de�ned in De�nition 1, is shown in

general to be independent of the risk preference property prudence. For instance

in Theorem 7 and Example 4 below, the NM indices always satisfy V 000 > 0 and

yet � can be positive or negative.41

41Kimball and Weil (2009) also assume two period KPS preference. In the context of income

risk, they show that V 000 > 0 is not necessary for positive precautionary saving. A consumer will

exhibit precautionary saving if her risk preferences satisfy (i) DARA which implies that V 000 > 0

exhibits prudence or (ii) V 000 > 0 along with other assumptions. Clearly, DARA can be violated

and the consumer can exhibit negative precautionary saving even though V 000 > 0.
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In order to characterize when a consumer saves more in a setting with a single

risky asset versus a risk free asset, the most straightforward case is where the

period two certainty equivalent constraint is linear in c1 since then Theorem 1 can

be directly used. The following establishes that the certainty equivalent constraint

is linear when and only when the NM index takes the CRRA form (B.23).

Theorem 6 For the optimization (B.20)-(B.21), the period two certainty equiva-
lent constraint satis�es

bc2 = V �1EV �e�n� = V �1EV � eR (I � c1)� = mc1 + k (B.22)

for any eR if and only if
V (c2) = �

c��22

�2
(�2 > �1) ; (B.23)

where V is de�ned up to a positive a¢ ne transformation.42

Proof. First prove su¢ ciency. Assuming that V takes the CRRA form (B.23)

we have

bc2 =  V �1EV  e�
p

!!
(I � c1) =

�
V �1EV

� eR�� (I � c1) ; (B.24)

which is linear in I. Next prove necessity. De�ne s1 = I � c1. Since we require
that the condition works for any distribution, for necessity, it is enough to consider

the two state case. If the bc2 (c1) constraint is linear in I, we have
bc2 = V �1 (�21V (R21s1) + �22V (R22s1)) = as1 + b; (B.25)

where a and b are constants which can depend on eR. First letting s1 ! 0, one

obtains

V (0) = V (b) : (B.26)

Since V 0 > 0, we have b = 0. Thus

�21V (R21s1) + �22V (R22s1) = V (as1) : (B.27)

Di¤erentiating both sides of eqn. (B.27) with respect to s1, yields

�21R21V
0 (R21s1) + �22R22V

0 (R22s1) = aV
0 (as1) : (B.28)

42The assumption that V takes the CRRA form (B.23) together with U being strictly quasi-

concave ensures that the problem (B.20)-(B.21) has a unique solution.
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Di¤erentiating both sides of eqn. (B.27) with respect to R21, yields

�21s1V
0 (R21s1) = s1

@a

@R21
V 0 (as1) : (B.29)

Di¤erentiating both sides of eqn. (B.28) with respect to R21, yields

�21V
0 (R21s1) + �21R21s1V

00 (R21s1) =
@a

@R21
V 0 (as1) + as1

@a

@R21
V 00 (as1) : (B.30)

Since V 0 > 0, dividing eqn. (B.30) by (B.29), one obtains

1

s1
+
R21V

00 (R21s1)

V 0 (R21s1)
=
1

s1
+
aV 00 (as1)

V 0 (as1)
; (B.31)

or equivalently
R21s1V

00 (R21s1)

V 0 (R21s1)
=
as1V

00 (as1)

V 0 (as1)
: (B.32)

Similarly, one can obtain

R22s1V
00 (R22s1)

V 0 (R22s1)
=
as1V

00 (as1)

V 0 (as1)
: (B.33)

Therefore,
R21s1V

00 (R21s1)

V 0 (R21s1)
=
R22s1V

00 (R22s1)

V 0 (R22s1)
: (B.34)

Since eqn. (B.34) holds for any R21, R22 and s1, we have

c2V
00 (c2)

V 0 (c2)
= const; (B.35)

implying that

V (c2) = �
c��22

�2
(�2 > �1) ; (B.36)

which is de�ned up to an a¢ ne transformation.

When the NM index is de�ned by (B.23), the certainty equivalent constraint

takes the speci�c form bc2 = (I � c1) bR; (B.37)

where bR = �E h eR��2i�� 1
�2 : (B.38)

We next characterize when excess saving is positive for (i) the popular CRRA

risk preference case where the certainty equivalent constraint (B.37) is linear and

(ii) the KPS generalization of the important external habit formation EU rep-

resentation of Campbell and Cochrane (1999).43 In both instances, the sign of

excess saving is shown to depend on the time preference EMRS.
43The Campbell and Cochrane (1999) representation is a special case of the KPS utility as-

sumed in Theorem 7(ii) where up to suitable a¢ ne transformations both the certainty u2 and

risk preference V take the translated CRRA form (B.41). The parameter b is interpreted as a

re�ection of an external habit.
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Theorem 7 Assume a single risky asset where E eR = Rf and KPS preferences,
where U takes the additively separable form (8). Then

(i) if

V (c2) = �
c��22

�2
(�2 > �1); (B.39)

we have

� T 0, �c2u
00
2 (c2)

u02 (c2)
T 1 (B.40)

and

(ii) if

V (c2) = �
(c2 � b)��2

�2
(b > 0; �2 > �1); (B.41)

we have

� > 0 if � c2u
00
2 (c2)

u02 (c2)
� 1: (B.42)

Proof. For (i), it follows from Theorem 1 that

@c1
@R

T 0, �c2u
00
2 (c2)

u02 (c2)
T 1: (B.43)

Since bR < Rf ,
� T 0, crisk1 S ccertain1 , @c1

@R
T 0, �c2u

00
2 (c2)

u02 (c2)
T 1: (B.44)

For (ii), �rst we need to argue that the optimization problem based on (c1;bc2) is
well-de�ned. Thus we prove that the period two certainty equivalent constraint

bc2 = �E �� eR (I � c1)� b���2��� 1
�2

+ b (B.45)

is always concave. Note that

dbc2
dc1

= �
�
E

�� eR (I � c1)� b���2��� 1
�2
�1

E

� eR� eR (I � c1)� b���2�1� < 0
(B.46)

and

d2bc2
dc21

= (1 + �2)

�
E

�� eR (I � c1)� b���2��� 1
�2
�2

�0BB@
�
E

� eR� eR (I � c1)� b���2�1��2�
E

� eR2 � eR (I � c1)� b���2�2�E �� eR (I � c1)� b���2�
1CCA :(B.47)
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Following the Cauchy�Schwarz inequality, we have�
E

� eR� eR (I � c1)� b���2�1��2 < E � eR2 � eR (I � c1)� b���2�2�E �� eR (I � c1)� b���2� ;
(B.48)

implying that
d2bc2
dc21

< 0 (B.49)

and hence the constraint (B.45) is always concave. Next we show that the slope

of the curve (B.45) decreases with the preference parameter b, i.e.,

@ dbc2
dc1

@b
< 0: (B.50)

Note that

@ dbc2
dc1

@b
= (1 + �2)

�
E

�� eR (I � c1)� b���2��� 1
�2
�2

0BB@ E

� eR� eR (I � c1)� b���2�1�E �� eR (I � c1)� b���2�1��
E

� eR� eR (I � c1)� b���2�2�E �� eR (I � c1)� b���2�
1CCA

=

b (1 + �2)

�
E

�� eR (I � c1)� b���2��� 1
�2
�2

0BB@
�
E

�� eR (I � c1)� b���2�1��2�
E

�� eR (I � c1)� b���2�2�E �� eR (I � c1)� b���2�
1CCA

I � c1
: (B.51)

Following the Cauchy�Schwarz inequality,�
E

�� eR (I � c1)� b���2�1��2 < E �� eR (I � c1)� b���2�2�E �� eR (I � c1)� b���2� ;
(B.52)

implying that
@ dbc2
dc1

@b
< 0: (B.53)

Therefore, the introduction of b makes the bc2 (c1) constraint steeper at each value
of c1. Moreover, the relative risk aversion measure �R de�ned by (9) is given by

�R =
(1 + �2) c2
c2 � b

; (B.54)

which is an increasing function of b. It follows that

@bc2
@b

< 0: (B.55)
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Figure 6:

Therefore, the introduction of b makes the bc2 (c1) constraint lower for each value
of c1. For the additively separable utility U , the slope of the indi¤erence curve

is �atter when �xing c1 and decreasing c2. As a result, the introduction of b will

decrease the optimal c1 and increase s1. Thus the excess saving � increases and

the result directly follows from part (i) of Theorem 7.

The intuition for case (i) in Theorem 7 has a very appealing geometric inter-

pretation. To characterize when � is positive or negative, it is only necessary to

compare the certainty budget constraint

c2 = (I � c1)Rf : (B.56)

with the risky constraint (B.37). These constraints have the same c1-intercept and

di¤er just in their slope. Since we have assumed that the risky asset E eR = Rf ,
it follows that bR < Rf and the risk constraint will rotate southwest from the

certainty constraint. Moreover in both instances, we have the same additively

separable certainty utility U . This is illustrated in Figure 6, where U takes the

CES form in (10) and the condition (B.40) specializes to

� T 0, �1 T 0, EIS S 1: (B.57)

Figures 6(a) and (b) di¤er only in whether �1 is less or greater than 0. Figure

6(b) illustrates that when �1 > 0 and EIS < 1, optimal c1 decreases in the risky

versus certainty case and srisky1 > scertain1 . Here the consumption smoothing e¤ect

is dominated by the negative substitution e¤ect.
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In contrast to Theorem 7(i), the bc2(c1) constraint in Theorem 7(ii) fails to be

linear as can be seen from (B.59) in Example 4 below. Nevertheless, the intuition

for why precautionary savings is positive is consistent with that of Theorem 7(i).

Introduction of the shift parameter b > 0 results in the bc2 (c1) constraint always
being concave and having steeper slope than that of the CRRA constraint � bR,
as illustrated in Figure 7(a). As a result, optimal c1 decreases, s1 increases and

� increases. It follows from Theorem 7(i) that when b = 0 and �1 � 0, we have
� � 0. Therefore, if b > 0 and �1 � 0, we must have � > 0, which is consistent

with Theorem 7(ii). The following illustrates an application of Theorem 7(ii).

Example 4 Assume

U (c1; c2) = �
c��11

�1
� � c

��1
2

�1
and V (c2) = �

(c2 � b)��2
�2

(�1; �2 > �1):
(B.58)

The bc2 constraint is given by
bc2 = �E �� eR (I � c1)� b���2��� 1

�2

+ b: (B.59)

Assume the following speci�c parameter values

� = 0:97; �2 = 6; R21 = 1:6; R22 = 0:4; Rf = 1; �21 = 0:5; b = 0:1; I = 1: (B.60)

Since eqn. (B.59) is not linear in c1, we use numerical simulation to compare the

optimal srisky1 and scertain1 in Figure 7(b). Note that scertain1 is not a¤ected by b

and srisky1 with b is always larger than without b. Thus if � � 0 for the case with
b = 0, we must have � > 0 for the case with b > 0. This conclusion is consistent

with Theorem 7(ii).44

Remark 4 Weil (1990) considers a dynamic version of the consumption-saving
problem where the consumer is assumed to have generalized isoelastic preferences

which in the two period case is equivalent to the KPS utility (10). There is a

single risky asset the distribution of which is assumed to be i.i.d. (identically and

independently distributed) and takes the lognormal form where E eR = Rf . Weil

(1990) derives a formula, eqn. (10), for consumption growth, where the second

term on the right hand side is interpreted as corresponding to the in�uence of

consumption variance on consumption growth. The coe¢ cient of variance is

44For the speci�c utility assumed in this example, V 000 > 0 and prudence always holds. How-

ever for this case prudence does not imply that � is always positive. For instance from Figure

7, we see that for �1-values in excess of approximately 0:5 the translated CRRA utility results

in � < 0.
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Figure 7:

�1�2=(�1 + 1), restated in our notation. Weil argues that this coe¢ cient must

be positive in order for increased saving on the part of the consumer to generate

both increased consumption growth and correspondingly increased risk. There is

substantial evidence to support that �2 > 0 and this implies that �1 > 0 must hold.

This latter conclusion is consistent with the special case of Theorem 7(i) where U

takes the CES form.

Remark 5 Langlais (1995) investigates what he refers to as "precautionary" sav-
ing in a consumption-saving setting with KPS preferences and assumes E eR = Rf .
However in contrast to our results which hold globally, the analysis of Langlais

(1995, Section 3) only holds for a small risk approximation.

Remark 6 Using arguments similar to those in Theorem 7, it is possible to gen-

eralize the well-known result that when preferences take the CES time and CRRA

risk preference KPS form (10), the e¤ect of a mean preserving increase in risk on

saving depends on the EIS relative to 1.45 If U takes the far less restrictive addi-

tively separable form, then for both CRRA and translated CRRA risk preferences,

the e¤ect of a mean preserving increase in risk depends on the EMRS relative

to 1. However, it should be stressed that evaluating how changes in risk a¤ect

saving behavior is quite di¤erent from analyses of excess saving since the former

depends on a comparison of particular distributions (such as a mean preserving

shift) whereas the latter applies for general distributions.

45See, for instance, Selden (1979).
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B.3 Supporting Calculations for Example 2

Let c21 and c22 denote the contingent claim demands for period two consumption

and p21 and p22 denote the corresponding prices, where

p21 =
�fp� �22pf
(�21 � �22)�f

and p22 =
�21pf � �fp
(�21 � �22)�f

: (B.61)

De�ne

k =
�22p21
�21p22

and bRp =
�
�21 + k

��2
1+�2 �22

�� 1
�2

p21 + k
1

1+�2 p22
: (B.62)

It can be veri�ed that bc2 = bRp (I � c1) : (B.63)

Therefore,

crisky1 =
I

1 + bR� �1
1+�1

p

: (B.64)

For the certainty case, we have

ccertain1 =
I

1 +R
� �1
1+�1

f

: (B.65)

Then

srisky1 T scertain1 , �1 S 0: (B.66)

Since

pfn
certain
f = scertain1 and pnrisky + pfn

risky
f = srisky1 (B.67)

and

nrisky > 0; (B.68)

it is clear that a necessary condition for nriskyf > ncertainf is srisky1 > scertain1 , or

�1 < 0 for this example. But since nrisky > 0, �1 < 0 is not a su¢ cient condition

for nriskyf > ncertainf . This is con�rmed by the following calculation. We have

ncertainf =
I

pf

�
1 + �

� 1
1+�1R

�1
1+�1
f

� (B.69)

and

nriskyf =

�
�21k

1
1+�2 � �22

�
I�

1 + �
� 1
1+�1 bR �1

1+�1
p

��
p21 + p22k

1
1+�2

�
(�21 � �22) �f

: (B.70)
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Since �
p21 + p22k

1
1+�2

�
(�21 � �22) �f

�21k
1

1+�2 � �22
= pf +

�
1� k

1
1+�2

�
�fp

�21k
1

1+�2 � �22
; (B.71)

assuming �21k
1

1+�2 � �22 > 0, we have

nriskyf T ncertainf , pf�
� 1
1+�1R

�1
1+�1
f T

0BBBBB@

0@pf +
�
1�k

1
1+�2

�
�fp

�21k
1

1+�2 ��22

1A �� 1
1+�1 bR �1

1+�1
p

+

�
1�k

1
1+�2

�
�fp

�21k
1

1+�2 ��22

1CCCCCA :
(B.72)

Since this condition is complicated, another simpler necessary condition for pre-

cautionary saving is

(�Rf )
� 1
1+�1 >

�
1� k

1
1+�2

�
p

�21k
1

1+�2 � �22
: (B.73)

Note that the optimal portfolio satis�es

n�

n�f
=

�
1� k

1
1+�2

�
�f

�21k
1

1+�2 � �22
: (B.74)

If we assume that � = �f = p = pf = 1, the condition (B.73) implies that

n�

n�f
< 1: (B.75)

Thus precautionary saving can occur only if the consumer is risk averse enough.

Moreover, the condition (B.73) can be simpli�ed to

1 >

 
1 +

n�

n�f

! bR �1
1+�1
p +

n�

n�f
; (B.76)

implying that �1 must be less than the threshold value �
�
1

�1 < �
�
1 =

1
ln bRp

ln

��
1� n�

n�
f

�
=

�
1+ n�

n�
f

�� � 1 : (B.77)

Therefore, if �2 is su¢ ciently large, i.e., condition (B.75) is satis�ed, then there

exists a ��1 such that positive precautionary saving # will occur if and only if

�1 < �
�
1. Another interesting special case is where the consumer shorts the risk

free asset, which corresponds to

�21k
1

1+�2 � �22 � 0 or k
1

1+�2 � �22
�21
: (B.78)
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In this case since nriskyf � 0, by de�nition precautionary saving can never occur.
Thus for some distributions, there is no �1 that can make precautionary saving

positive.

B.4 Equilibrium Risk Free Rate

In this appendix, we derive analytic forms for Rf which are then compared to

formulas for the equilibrium risk free rate in the literature. Following Camp-

bell and Cochrane (1999) and Yi and Choi (2006), speci�c distributions for the

consumption ratio ec2=c1 will be assumed, where
ec2 = e�n+ �fnf : (B.79)

For Propositions 3 and 4 below, respectively46

ln

�ec2 � b
c1 � b

�
s N

�
ln
c�2 � b
c�1 � b

� �
2

2
; �2
�
;

�ec2
c1
s N

�
c�2
c�1
; �2
��

; (B.80)

where

(c�1; c
�
2) = argmax

c1;c2

U(c1; c2) S:T: c2 = (I � c1)Rf : (B.81)

Thus when risk goes to zero, the optimal risky consumption growth converges to

the optimal certain consumption growth.

Proposition 3 Assume that

U (c1; c2) = �
(c1 � b)��1

�1
� � (c2 � b)

��1

�1
(�1 > �1; b T 0); (B.82)

and

V (c2) = �
(c2 � b)��2

�2
(�2 > �1): (B.83)

Then,

lnRcertainf = ln
1

�
+ (1 + �1) ln

�
c�2 � b
c�1 � b

�
(B.84)

and

lnRriskyf = ln
1

�
+ (1 + �1) ln

�
c�2 � b
c�1 � b

�
� (�1 + 2) (�2 + 1)

2
�2; (B.85)

46We take this speci�c mean value for the lognormal distribution since we want to ensure that

the mean of the distribution corresponds to the certain consumption growth c�2=c
�
1

E

�ec2 � b
c1 � b

�
= exp

�
�1
2

�
��2 � 2 ln c

�
2 � b
c�1 � b

+ �2
��

=
c�2 � b
c�1 � b

:

The mean value compensation follows from Barsky (1989).
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implying that47

Rriskyf < Rcertainf : (B.86)

Proof. Notice that

Rf =
1

�

�
E
�ec2�b
c1�b

���2� �1
�2
�1

E
�ec2�b
c1�b

���2�1 : (B.87)

Since

E

"�ec2 � b
c1 � b

���2#
= exp

�
�2
2

�
(�2 + 1)�

2 � 2 ln c
�
2 � b
c�1 � b

��
(B.88)

and

E

"�ec2 � b
c1 � b

���2�1#
= exp

�
�2 + 1

2

�
(�2 + 2)�

2 � 2 ln c
�
2 � b
c�1 � b

��
; (B.89)

we have

Rriskyf =
1

�

�
E
�ec2�b
c1�b

���2� �1
�2
�1

E
�ec2�b
c1�b

���2�1
=

1

� exp
�
�1��2
2

�
(�2 + 1)�2 � 2 ln c

�
2�b
c�1�b

�
+ �2+1

2

�
(�2 + 2)�2 � 2 ln c

�
2�b
c�1�b

��
=

1

�
exp

�
(1 + �1) ln

c�2 � b
c�1 � b

� (�1 + 2) (�2 + 1)
2

�2
�

=
1

�

�
c�2 � b
c�1 � b

�1+�1
exp

�
�(�1 + 2) (�2 + 1)

2
�2
�
; (B.90)

implying that

lnRriskyf = ln
1

�
+ (1 + �1) ln

�
c�2 � b
c�1 � b

�
� (�1 + 2) (�2 + 1)

2
�2: (B.91)

For the certainty case, it can easily be veri�ed that

lnRcertainf = ln
1

�
+ (1 + �1) ln

�
c�2 � b
c�1 � b

�
: (B.92)

Thus, we always have

Rriskyf < Rcertainf : (B.93)

47Although the distributional assumptions are di¤erent, Proposition 3 is consistent with eqn.

(23) in Barsky (1989) where b = 0.
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Proposition 4 Assume that

U (c1; c2) = �
exp (��1c1)

�1
� � exp (��1c2)

�1
(�1 > 0); (B.94)

and

V (c2) = �
exp (��2c2)

�2
(�2 > 0): (B.95)

Then,

lnRcertainf = ln
1

�
+ �1 (c

�
2 � c�1) (B.96)

and

lnRriskyf = ln
1

�
+ �1 (c

�
2 � c�1)�

1

2
�1�2c

�2
1 �

2; (B.97)

implying that

Rriskyf < Rcertainf : (B.98)

Proof. Notice that
Rf =

exp (��1c1)
� (E exp (��2ec2))�1�2 : (B.99)

Since

E exp (��2ec2) = exp�1
2
�2
�
�2c

�2
1 �

2 � 2c�2
��
; (B.100)

we have

Rriskyf =
exp (��1c1)

� exp
�
1
2
�1 (�2c�21 �

2 � 2c�2)
� = 1

�
exp

�
�1 (c

�
2 � c�1)�

1

2
�1�2�

2c�21

�
;

(B.101)

implying that

lnRriskyf = ln
1

�
+ �1 (c

�
2 � c�1)�

1

2
�1�2�

2c�21 : (B.102)

For the certainty case, it can easily be veri�ed that

lnRcertainf = ln
1

�
+ �1 (c

�
2 � c�1) : (B.103)

Thus, we always have

Rriskyf < Rcertainf : (B.104)

In both propositions, the �rst two terms in the expression for lnRriskyf corre-

spond to lnRcertainf and the last term depends on the risk �2 and the preference

parameters. In eqns. (B.85) and (B.97), the last term is negative and reduces

lnRriskyf and for this reason it is standard in the literature to refer to it as re�ecting

the "precautionary" saving e¤ect or motive. The intuition for this interpretation

is that if the the equilibrium risk free rate is less in the risky versus certainty case,
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then presumably the consumer is saving more in the risky case, driving up the

price pf and lowering the risk free rate. However this interpretation illustrates an

inconsonance between the equilibrium and demand results in Proposition 3 and

Corollary 2(i), respectively. The latter requires that �1 < 0 in order for an indi-

vidual consumer to save more in the risky versus certainty setting, but the former

holds for for any value of �1.

For the CARA case considered in Proposition 4 and Theorem 4, the inconsis-

tency between the demand and equilibrium results is even more extreme since both

Rriskyf < Rcertainf and # < 0 hold generally without any restrictions on preference

parameters. One reason for this inconsonance is that our endowment assumption

(75) that ncertainf > nriskyf implies that at equilibrium prices the demand for the

risk free asset in the risky setting can never be larger than in the certainty setting

as required by the precautionary intuition.

The next remark discusses speci�c applications in the literature where the "pre-

cautionary" demand interpretation is given for equilibrium risk free rate formulas.

Remark 7 Gomes and Ribeiro (2015) (and Yi and Choi 2006) assume a repre-
sentative agent with EZ (Epstein and Zin 1989) preferences, which in a two period

setting converge to the KPS case in Corollary 2(i) where b = 0. They derive a

log-linear form for the Euler equation where log(ct+1=ct) is expressed as a function

of the variance of the error term based on a second-order Taylor expansion. The

authors interpret this term as re�ecting the consumer�s "precautionary" motive

since if it is positive, consumption growth increases due to lower ct and increased

saving. If one rearranges eqn. (4) in Yi and Choi (2006) or eqn. (8) in Gomes

and Ribeiro (2015) to express lnRti as a function of �
2 and considers the risk free

asset return, it can be easily seen that the variance term is always negative, imply-

ing that Rriskyf < Rcertainf . This is consistent with our result in Proposition 3.48

Again, this seems to be at odds with our Corollary 2(i) demand conclusion that

positive excess saving for a consumer occurs if and only if �1 < 0.49

48Yi and Choi (2006) and Gomes and Ribeiro (2015) both assume the EZ recursive preference

model. In this framework, second consumption is not simply the investment return from period

one asset holdings. Unlike our two period analysis, consumption growth and portfolio allocation

need to be handled separately. This di¤erence results in the recursive expression for the risk

free rate containing additional terms (such as the market portfolio return) from those in the

formula derived in Proposition 3.
49Suppose alternatively one de�nes precautionary saving at the demand level in terms of # > 0.

Then it follows from Example 2, that precautionary saving will be positive only if �1 << 0.
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B.5 Supporting Calculations for Example 3

Since

E
h
exp

�
��2

�e�n+ �fnf��i = exp���2�fnf + 12�2np��2np�2 � 2E eR�
�
;

(B.105)

the �rst order condition is

exp
�
��2�fnf + 1

2
�2np

�
�2np�

2 � 2E eR���pE eR� �2np2�2�
�f exp

�
��2�fnf + 1

2
�2np

�
�2np�2 � 2E eR�� =

p

pf
; (B.106)

implying that

n =
E eR�Rf
�2p�2

: (B.107)

Thus

bc2 = �fnf �
1

2
np
�
�2np�

2 � 2E eR�
= Rf
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E eR�Rf
�2�2

!
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1
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�
E eR +Rf�

= Rf (I � c1) +
1
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�
E eR�Rf�2
�2�2

: (B.108)

Therefore,

U (c1;bc2) = �exp (��1c1)
�1

� �
exp

�
��1

�
Rf (I � c1) + 1

2

(E eR�Rf)2
�2�2

��
�1

: (B.109)

Di¤erentiating the above equation with respect to c1 and setting it to zero yields

exp (��1c1) = �Rf exp

0B@��1
0B@Rf (I � c1) + 1

2

�
E eR�Rf�2
�2�2

1CA
1CA : (B.110)

Therefore, we have

c1 =
RfI +

1
2

(E eR�Rf)2
�2�2

� ln(�Rf)
�1

1 +Rf
: (B.111)

Combining the above equation with eqn. (B.107) yields

nf =
I � 1

2

(E eR�Rf)(E eR+Rf+2)
�2�2

+
ln(�Rf)
�1

(1 +Rf ) pf
: (B.112)
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