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 criticism of mechanism design theory is that the optimal mechanism designed for one environment can
 produce drastically different actions, outcomes, and payoffs in a second, even slightly different, environ-

 ment. In this sense, the theoretically optimal mechanisms usually studied are not "robust." To study robust
 mechanisms while maintaining an expected utility maximization approach, we study a multiagent model in
 which the mechanism must be designed before the environment is as well understood as is usually assumed.
 The particular model is of an auction setting with binary private values. Our main result is that if the prior
 belief about the correlation in the agents' values is diffuse enough, the optimal Bayesian-Nash auction must also
 satisfy dominant strategy incentive constraints. Furthermore, when the optimal auction does provide dominant
 strategy incentives, it takes one of two forms: (i) if perfect correlation and negative correlation are excluded
 as possibilities, the auction incorporates all information about the prior belief over the possible correlations,
 and (ii) if either perfect correlation or negative correlation is a possibility, the auction does not incorporate any
 correlation information and can be described as a modified Vickrey auction.
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 1. Introduction

 A criticism of mechanism design theory is that the op-
 timal theoretical mechanisms often seem overly fine-
 tuned to the given environment (e.g., Wilson 1987).
 A mechanism tailored for one environment can pro-
 duce drastically different actions, outcomes, and pay-
 offs in a second, even slightly different, environment.
 In this paper, we seek to construct more "robust"
 mechanisms.

 To identify robust mechanisms, we maintain a tra-
 ditional expected utility framework but assume the
 designer knows less at the time she designs the mech-
 anism than is typically assumed. The mechanism is
 designed taking expectations over the variety of pos-
 sible environments (agent characteristics) that might
 subsequently emerge. We assume the mechanism can-
 not later be fine-tuned. It is either impossible or pro-
 hibitively costly to design a different mechanism for
 each environment.

 The particular setting we study is an auction model
 that, other than the early design assumption, is a spe-
 cial case of the model of Cremer and McLean (1988).
 The model also applies to multiagent procurement,

 as in Laffont and Tiróle (1993, chap. 7), because a pro-
 curement model can be viewed as changing the signs
 on the transfers and values of an auction model.

 In the Cremer-McLean model, the auctioneer can
 extract the full surplus from the risk-neutral bidders
 (if the beliefs satisfy a spanning condition), which
 leads to the following observation:

 In "nearly all" auctions, the seller should be able to
 extract the full surplus, which implies that asymme-
 try of information between buyers and sellers should
 be of no practical importance. Economic intuition and
 informal evidence (we know of no way to test such
 a proposition) suggest this result is counterfactual ....
 Costly information gathering, not explicitly modeled
 in auction problems, may result in less profitable but
 vastly simpler auctions being used in practice. (Cremer
 and McLean 1988, p. 1254)

 Correlation in the bidders' values is the key vari-
 able in Cremer-McLean and is assumed to be common
 knowledge in their model at the time of the auction
 design. To extract the full surplus from the bidders,
 the transfers go to negative or positive infinity as
 the correlation goes to zero. This makes the Cremer-
 McLean model particularly well suited to study
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 robustness by assuming that the auction has to be
 designed before the correlation is known, because the
 solution for the known correlation case is so seem-

 ingly lacking in robustness.
 Our early auction design assumption can be viewed

 as a seller who will conduct many sales, each with
 a different set of bidders, using the same auction
 mechanism. The auction is designed to maximize the
 seller's expected utility over the variety of possible
 bidders and bidder correlations that might use the
 auction in the future. To make the early design
 assumption meaningful, we do not allow the mecha-
 nism designer to adapt the auction to the known cor-
 relation once the bidders arrive, either directly from
 her own knowledge of the correlation or by having
 the bidders report the correlation. Instead, the bid-
 ders' messages are restricted to a willingness to pay
 based on their private value for the item being sold.
 Formally, we restrict the message space to have the
 same cardinality as the set of possible valuations. For
 tractability, we assume there are two ex ante identical
 bidders who have private values that can take on one
 of two values, low or high.

 As in the Cremer-McLean model, we assume
 Bayesian-Nash as the behavioral principle. The span-
 ning condition in the Cremer-McLean model ensures
 that any optimal Bayesian-Nash auction can be equiv-
 alently (in terms of expected payoffs) characterized
 as one that satisfies dominant strategy incentive con-
 straints.1 That is, the solution to the Bayesian-Nash
 auction design problem is not unique, and one of the
 solutions also satisfies dominant strategy incentive
 constraints.

 In our model, the early design assumption makes
 the solution unique. Throughout most of the paper,
 we assume the seller's prior belief is that the cor-
 relation in the bidders' values is uniformly dis-
 tributed on a given interval. In particular, p, the
 conditional probability that the bidders' values match,
 is uniformly distributed on [p - e, p + e].2 If the mech-
 anism designer's prior is concentrated (e, the disper-
 sion around the mean, is small), the optimal auction
 is a modified version of the Cremer-McLean auction.

 The modifications are that (i) the known correla-
 tion in the Cremer-McLean model is replaced by the
 lowest possible correlation and (ii) the unique solu-
 tion does not satisfy dominant strategy incentive con-
 straints. Under the modified Cremer-McLean auction,

 only the low-value bidders earn rents (for higher than
 the minimum correlation). If instead the dominant
 strategy version of the Cremer-McLean model were
 used, high-value bidders would also earn rents with-
 out reducing the rents earned by low-value bidders,
 making this a feasible but suboptimal modification.
 That only low-value bidders earn rents is in con-
 trast to the Cremer-McLean result, in which no bid-
 ders earn rents, and in contrast to standard adverse
 selection models in which only high-type agents earn
 rents.

 If instead the prior about the correlation in the
 bidders' environments is diffuse enough (e > [1/4] •
 [2p - 1]), the uniquely optimal Bayesian-Nash auction
 must satisfy dominant strategy incentive constraints.
 More specifically, for intermediate levels of prior dis-
 persion ([l/4][2p - 1] < e < [l/2][2p - 1]), the auc-
 tion incorporates all information about the prior over
 the possible correlations in providing bidders with
 dominant strategy incentives to bid truthfully. With
 still higher dispersion (e > [1/2] [2p - 1]), the opti-
 mal auction continues to provide dominant strategy
 incentives; in so doing, however, it does not incorpo-
 rate any correlation information (is correlation free)
 and can be described as a modified Vickrey auction.
 Equivalently stated, if the prior is diffuse enough
 (e > [1/4] [2p - 1]) and incorporates either perfect cor-
 relation or negative correlation as a possibility, the
 correlation-free dominant strategy auction is optimal.
 Under this second dominant strategy auction, only
 the high-value bidders earn rents, which can be inter-
 preted as reproducing a standard adverse selection
 result. In contrast, under the first dominant strategy
 auction, both low- and high-value bidders earn rents.
 Low-value bidders earn rents unless the correlation is

 at its minimum. High-value bidders earn rents unless
 the correlation is at its maximum.

 Under a uniform distribution over the possible cor-
 relations, it is optimal to induce all bidders with the
 same value to pool in the sense that they report
 the same message (regardless of their correlation). By
 means of a discrete version of our model (correlation
 with three possible realizations), we relax the uniform
 distribution assumption. As in the earlier uniform
 setup, the modified Cremer-McLean and dominant
 strategy auctions are the only ones that emerge as
 optimal. If a dominant strategy auction turns out to
 be optimal, it is again optimal to induce bidders with
 the same value to report the same message. However,
 when the modified Cremer-McLean auction turns out

 to be optimal, it is sometimes optimal to have high-
 value but low-correlation bidders pool with (all of
 the) low-value bidders - this happens if the proba-
 bility distribution is sufficiently concentrated on the
 middle correlation level.

 1 Mookherjee and Reichelstein (1992) also study settings in which
 Bayesian-Nash incentive constraints can be replaced by dominant
 strategy incentive constraints. Key assumptions are risk neutrality,
 uncorrelated types, and the single crossing property Mookherjee
 and Reichelstein' s model can be thought of as studying settings in
 which second-best outcomes are to be implemented; the first-best
 is implemented in the Cremer-McLean model.

 2 Notice that p is closely related to the correlation in the bidders'
 valuations, which is p2 - (1 - p)2 = 2p - 1.
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 The intuition for our results is as follows. The early
 design assumption (coupled with blocked communi-
 cation to make the early design assumption mean-
 ingful) creates an inextricable information asymmetry
 between the early designer and the future users of
 the auction (including the seller herself). If this infor-
 mation asymmetry is small, the optimal approach is
 "close" to the standard (known correlation) solution
 for the correlated-type case and is a modified Cremer-
 McLean auction. (Assume for the moment it is also
 optimal to induce all bidders with the same value to
 pool.)

 If the auction designer continues to use the modified
 Cremer-McLean auction while the lower bound on the

 correlation goes to zero, the transfers received from
 low-value bidders go to negative or positive infin-
 ity (depending on the other bidder's report). When
 the correlation is higher than the lower bound, these
 transfers result in low-value but high-correlation bid-
 ders earning large rents. To avoid these large rents, it
 becomes optimal for the seller to use the information
 about the correlation less aggressively. The optimal
 less aggressive use of the correlation is a dominant
 strategy auction. In this case, for intermediate levels of
 information asymmetry (moderate e-values), the opti-
 mal approach is to stay close to the standard solu-
 tion for the uncorrelated-type case and use a dominant
 strategy auction. When the information asymmetry is
 sufficiently high (large e-values), any use of informa-
 tion about the correlation becomes infeasible, and the
 optimal approach is exactly the standard one for the
 uncorrelated-type case.

 Finally, the assumed pooling behavior is optimal
 under a uniform distribution over the correlation or

 if the prior is sufficiently diffuse in the discrete ver-
 sion of our model. If instead the prior is sufficiently
 concentrated, it can be optimal to use the Cremer-
 McLean solution with a further modification: high-
 value but low-correlation bidders are induced to pool
 with all low-value bidders. These high-value but low-
 correlation bidders are not fully exploited, so the re-
 maining high- value bidders can be. Again, a dominant
 strategy auction emerges as optimal if the prior is
 sufficiently diffuse. The optimal auction continues
 to be either close to the standard solution for the

 correlated-type case or close to the standard solution
 for the uncorrelated-type case. The broader message
 is that our approach to robustness seems to lead to
 mechanisms that are either modified versions of the

 fine-tuned ones or qualitatively different in a way that
 minimizes the importance of the variable(s) the mech-
 anism has to be robust to (correlation in our model).
 Whether a qualitative middle ground emerges in other
 settings is an open question.

 Existing approaches to robustness in the accounting
 literature include Reichelstein (1997) and Dutta and

 Reichelstein (2002), who study the design of optimal
 performance measures in investment settings. They
 use robustness as a way to choose between multiple
 optimal performance measures. In contrast, we build
 robustness into the objective function of the principal
 by assuming the contract has to be designed at an ear-
 lier point than is typically assumed.3

 Bergemann and Morris (2005) study a general im-
 plementation model and require the mechanism to
 be robust to all possible beliefs that agents might
 have, which leads in "standard" cases to dominant
 strategy mechanisms. Bergemann and Morris (2008)
 study ex post implementation - they confine attention
 to Bayesian-Nash equilibria of games of incomplete
 information that are also Nash equilibria if the agents'
 information is instead complete (i.e., if the agents'
 knew each other's types). Although Bergemann and
 Morris focus on general settings and all possible be-
 liefs, our focus is on a particular setting and optimal
 mechanism that allow for some but not complete vari-
 ation in the agents' beliefs. That is, our approach
 can be viewed as something of an intermediate
 one between the standard (fine-tuned) approach and
 Bergemann and Morris's.

 The Cremer-McLean result on extracting the full
 surplus relies on a link between a bidder's value
 and his beliefs about the other bidders. In large type
 spaces, extracting the full surplus is no longer pos-
 sible. For example, in Parreiras (2005), type includes
 not just the realization of a signal but also the pre-
 cision of the system that generates the signal. Inde-
 pendence along the precision dimension of the type
 forces the seller to leave rents for the bidders. McLean

 and Postlewaite (2001) show that bidders with iden-
 tical beliefs but different valuations will also earn

 rents. Neeman (2003) takes a simple auction (the
 English auction) as given and examines its effective-
 ness (expected price as a percentage of the highest val-
 uation). Neeman studies how the effectiveness of the
 auction changes with assumptions about the seller's
 Bayesian sophistication. Lopomo (1998) also studies
 the English auction and shows it is optimal among
 "simple sequential auctions."

 Perhaps closest to our paper is the Chung and Ely
 study (2007), which researches the foundations for
 dominant strategy auctions. They emphasize the role
 a maxmin objective function can play in making domi-
 nant strategy auctions optimal. They show that, under
 a regularity condition, a dominant strategy auction
 that completely ignores the correlation is the best way
 to guard against the worst potential buyer beliefs.
 They also study a Bayesian setting, but in a way

 3 Oddly, so-called generally accepted accounting principles (GAAP)
 are thought to be robust, though explicating and verifying this
 claim remains illusive.
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 that essentially reproduces their maxmin result. By
 allowing for subjective beliefs and assigning the seller
 a particular subjective belief that replicates the ear-
 lier maxmin payoff, they directly apply their maxmin
 result to the Bayesian setting.
 In contrast, we maintain the standard expected util-

 ity maximization and common prior framework but
 assume the auction has to be designed earlier than is
 typically assumed. Furthermore, by restricting atten-
 tion to a specific setting, we are able to characterize
 all the possible optimal auctions and the conditions
 under which each is optimal. Our approach yields the
 correlation-free dominant strategy auction only in the
 extreme cases (when the prior is sufficiently diffuse).
 All other times, either a modified Cremer-McLean auc-
 tion (one that does not provide dominant strategy
 incentives) or a correlation-dependent dominant strat-
 egy auction is optimal.
 The remainder of this paper is organized as follows.

 Section 2 presents the model. Section 3 presents the
 results: §3.1 presents the benchmark case in which the
 seller knows the correlation in the bidders' valuations

 at the time of auction design; §3.2 details the optimal
 auction under our early design assumption; §3.3 stud-
 ies the discrete version of our model that allows for

 nonuniform distributions over the set of possible cor-
 relations. Section 4 concludes the paper.

 2. Model
 A risk-neutral seller has one unit of a good that must
 be sold to one of two risk-neutral bidders. The seller

 does not value the object, so her expected utility is the
 expected transfers received from the bidders. Bidder i,
 i = 1,2, values the object being sold at V1, and his
 expected utility is the probability of winning the auc-
 tion times V* less his expected transfer to the seller.
 Bidder i's value for the object takes on one of two
 values - VL or VH, 0 < VL < VH - and this value is pri-
 vately known by bidder i.

 It is common knowledge that V1 is equally likely to
 be VL or VH. The parameter of interest is the proba-
 bility p that V* = Vk given V' = Vk. That is, p is the
 conditional probability that the bidders' values match.

 Before p is known, the seller designs a single auction
 to handle the variety of different possible correlations,
 knowing that p is uniformly distributed on the interval
 [p - e, p + e] and that the average correlation is posi-
 tive; i.e., p > 1/2. The same auction is to be used for
 each correlation. This can be viewed as a seller who

 will conduct many sales, each with a different set of
 bidders, using the same auction mechanism. Design-
 ing an auction for each situation (either by waiting
 until the circumstance arises or by designing a com-
 plex menu of auctions) is prohibitively costly. To make
 the general-purpose auction design meaningful, we

 restrict the message space of each bidder to being
 binary. For ease of interpretation, we use [VL, VH] as
 the message space.

 Although the generic auction has to be designed
 before the correlation in the bidders' environments is

 known, by the time a specific application arises, the
 correlation is common knowledge among all players.
 For bidder i who observes Vk and p, his reporting strat-
 egy is denoted by sl(Vk, p). That is, sl is mapping from
 bidder z's private information to his message space
 {vL,vH'.

 The seller's objective is to maximize the expected
 transfers from the bidders, t l + ï2, while ensuring the
 following: the bidders' reporting strategies comprise
 a Bayesian-Nash equilibrium in their subgame (incen-
 tive compatibility); the equilibrium provides each bid-
 der with an expected utility of at least zero (individual
 rationality); and the probability of the bidders winning
 the item, wl and w2, sums to 1. This design problem
 is formulated in Program (P).

 Program (P)

 MaxEp€[p_C/p+g]E(vi/v2)€(vit/vm)jfcfffI=LfH

 [í1(s1(y1,p),s2(y2,p))+í2(s1(y1,p),s2(y2,p))]

 subject to

 -fi(s/(Vf/p)/s-/(V-i/p))|VI"/p]>0 VV'p,i

 w1(s1(V1,p),s2(V2,p)) + w2(s'V1,p),s2(V2,p)) = l

 w'')>Q Vi

 s'V'V)^[VL9VH) VVf,p,i.

 Throughout the paper, when convenient, we denote
 ^(Vfc, Vm) and tl(Vk, VJ by wkm and tkm, respectively.
 Because of the restriction on communication, the Rev-
 elation Principle cannot be directly applied to our set-
 ting. Instead, a modified version of the Revelation
 Principle applies in which the designer optimally par-
 titions the type space, {VL, VH] x [p - e,p + e], into
 a two-element partition {Pi,P2} message space and
 conditions the transfers and probability of winning
 on the element of the partition reported. (Finding the
 optimal partition is a nontrivial problem.) As under
 the standard Revelation Principle, it is then without
 loss of generality to confine attention to an equilib-
 rium that involves reporting strategies that are truth-
 ful in the sense that the bidders report the element of
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 the partition that contains their underlying true type,
 (Vz,p).4 If the correlation is uniformly distributed
 (which is assumed throughout most of our analysis),
 the optimal partition is to have all bidders with the
 same value report the same message. This claim is
 proved in the appendix and makes the j VL, VH] mes-
 sage space particularly natural. In a later subsection of
 the paper, we provide a discrete version of our model
 in which another partition is sometimes optimal.

 3. Results

 3.1. Benchmark

 Suppose the seller knows p at the time of designing
 the auction mechanism. In this case, despite V1 being
 private, the seller can extract the full surplus (Cremer
 and McLean 1988). An auction that accomplishes this
 is presented in Proposition 1. Because the proposition
 is a special case of Cremer and McLean, the proof is
 omitted.

 Proposition 1. If the seller knows p at the time of
 designing the auction, an optimal auction is

 wLL = 1/2 wHL = 1
 wLH = 0 wHH = l/2

 _VH p2(VH-VL) P2(Vh-Vl)
 kl " 2 2(2p-l) HL " H~ 2(2p-l)

 = p(l-p)(VH-VL) t =VrH,P(l-p)(VrH-VrL)
 LH 2(2p-l) HH 2 2(2p-l)

 Under Proposition l's auction, the object is awarded
 to the highest bidder, with ties resolved by giving each
 bidder an equal chance of winning.5 Because p is
 known and there is no blocked communication, the
 Revelation Principle can be applied to confine atten-
 tion to direct revelation mechanisms under which

 truthful revelation is an equilibrium. Although the
 equilibrium concept is Bayesian-Nash, Cremer and
 McLean have shown that the combination of risk-

 neutral bidders and the correlation structure make

 it possible for the optimal Bayesian-Nash auction to

 both achieve the first-best solution (extract all the bid-
 ders' information rents) and be equivalently (in terms
 of all expected payoffs) characterized so that truthful
 bidding is also a dominant strategy equilibrium. The
 proposition presents this characterization.

 Notice that Proposition l's auction has the undesir-
 able feature of each bidder having to make a transfer
 even when he is not awarded the object. Furthermore,
 even when a bidder is awarded the object, his trans-
 fer can exceed his value. That is, the transfers do not
 satisfy ex post individual rationality. Finally, as the
 correlation in the bidders' environments approaches
 zero, the transfers for a bidder become arbitrarily
 large when the other bidder reports a high value
 and arbitrarily small when the other bidder reports
 a low value. These observations are summarized

 in Corollary 1.

 Corollary 1. If p is known at the time of auction
 design:

 (i) The optimal Bayesian-Nash auction can be character-
 ized so as to also satisfy dominant strategy incentive con-
 straints.

 (ii) The bidders earn no rents under the truth-telling
 equilibrium.

 (iii) The transfers do not satisfy ex post individual
 rationality.

 (iv) Asp-> 1/2, tkL -> -oo and tkH -> +oo.

 3.2. Quasi-Robust Auctions
 In this subsection, we characterize the optimal
 Bayesian-Nash auction under our original assumption
 that the auction is designed before p is known. The
 solution to Program (P) is presented in Proposition 2.
 The proof is provided in the appendix.

 Proposition 2. If at the time of designing the auction
 the seller does not know p but knows only that p is uni-
 formly distributed on [p - e,p-'- e], the optimal auction is

 wLL = 1/2 wHL = 1
 wLH = 0 wHH = l/2.

 If e<(2p- 1)/4 (BN auction)

 , _Vh (p-e)2(VH-VL)
 , kl - ~2 " 2[2p-2*-l] HL - Vh
 _(p-e)(l-p + e)(VH-VL) _VH

 kH~ 2[2p-2e-l] *hh--2'
 If (2p - 1)/4 < e < (2p - 1)/2 (DS1 auction)

 _[pi-e*]VL-[(l-pr-e*]VH VH
 kL- 2ppT] tHL-hL+Y

 _(p-e)(l-p-e)(VH-VL) VH
 LH " 2[2p-l] HH " LH + T*

 4 Equivalently, one can reformulate the restriction on blocked com-
 munication as a restriction on the outcome set. In this case, one
 allows for full communication and directly applies the Revelation
 Principle but under the added constraint that the mechanism uses
 at most four distinct outcomes.

 5 There are other equilibria in which the bidders are treated asym-
 metrically (for example, bidder 1 is always awarded the object in
 the event of a tie), but these asymmetric equilibria are revenue
 equivalent to treating the ex ante identical agents symmetrically.
 If instead the bidders were not ex ante identical, treating them
 asymmetrically (in some cases, even awarding the object to a bid-
 der who does not have the highest value for the object) can be
 uniquely revenue maximizing (Maskin and Riley 2000).
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 Ife> (2p - l)/2 (DS2 auction)

 Ïlh - 0 Ïhh = tin + "y *

 Given the agents are ex ante identical and that the
 item must be auctioned, the probability that each bid-
 der is awarded the item can be characterized in a sym-
 metric fashion as in the p-known setting: If agent z's
 bid is higher, he is assigned the item with probabil-
 ity 1, but in the event of a tie, he is assigned the item
 with probability 1/2. Also, under the auctions given
 in Proposition 2, a VL -bidder finds it optimal to bid VL
 and the VH-bidder finds it optimal to bid VH for all
 p-values; i.e., sl(Vk, p) = Vk for all p. (As we show later
 in §3.3, a diffuse prior about the correlation is impor-
 tant in ensuring an auction that induces this reporting
 behavior is optimal.)
 The intuition behind the optimal auction is as fol-

 lows. When the prior dispersion is limited (e is small),
 the Cremer-McLean auction is optimal, except for two
 modifications.6 First, the known p is replaced by its
 lowest possible value p - e. Second, it is no longer
 possible to characterize the optimal auction so that it
 satisfies dominant strategy constraints. With the first
 adjustment alone, the Cremer-McLean auction would
 have VH -bidders earning rents whenever p is greater
 than p - e. Instead, the optimal auction sets tHL = VH
 and tHH = VH/2 to ensure that all VH-bidders earn zero
 rents. This characterization is also one possible solu-
 tion for the VH type even when p is known (i.e., an
 alternative solution to the auction given in Proposi-
 tion 1), but it becomes the unique solution when p is
 unknown. The only incentive compatibility constraint
 that binds is for a VH-bidder with the lowest possible p
 oip-e.

 When the auction is to serve a wider range of cor-
 relations (e > (2p - l)/4), the optimal auction pro-
 vides dominant strategy incentives. For intermediate
 levels of prior dispersion, the optimal such auction
 is (DS1). In this case, the incentive compatibility con-
 straints bind for all VH-bidders. The least expensive
 way to ensure that incentive compatibility just holds
 for VH-bidders is to have them pay what they would
 have paid had they instead bid VL plus VH/2 for the
 extra half a chance they have of winning the object
 by increasing their bids from VL to VH. As a result,

 6 With e = 0, the seller's expected revenue under the Bayesian-
 Nash auction is the same as under the Cremer-McLean auction

 in Proposition 1 - the expected revenue in either case is [p/2]VL +
 [1 -p/2]VH. In effect, in the p-known case, there are multiple ways
 to characterize the optimal transfers, and the transfers we chose to
 present in Proposition 1 were those that provided dominant strategy
 incentives.

 the optimal auction (DS1) satisfies dominant strategy
 incentive constraints. The solution is again unique.
 Note that DS1 depends on both p and e. That is, DS1
 incorporates the common prior information about the
 correlation.

 If dominant strategy incentives are optimal (so
 e > (2p - 1)/4), but the range of possible p-values is
 large and includes 1/2 or 1 (correlation of 0 or 1),
 the demands on the auction to be effective lead the

 seller to give up on the fine-tuned dominant strategy
 auction (DS1) and to instead use DS2. DS2 is correla-
 tion free (independent of p and e) and provides each
 bidder with dominant strategy incentives. DS2 can be
 thought of as a modified second-price (Vickrey) auc-
 tion, where the modification is only to take the known
 binary set of values [VL, VH) into account. If one bid-
 der reports VL and the other VH/ the winner does not
 just pay VL (the Vickrey price). Instead, he pays VL plus
 a premium (VH - VL)/2, which is arrived at from the
 seller's knowledge of the values of VL and VH. That
 is, if the bidding reveals that one bidder values the
 object more than the other, the seller knows how much
 more.

 From an information rents perspective, the DS2 auc-
 tion is familiar - only V^-bidders earn rents. Under
 the Bayesian-Nash auction, it is only the VL -bidders
 who earn rents. Under the DS1 auction, both VL-
 bidders and VH-bidders earn rents. VL-bidders earn
 rents unless the correlation is at its minimum. yH-
 bidders earn rents unless the correlation is at its max-

 imum. A way to reconcile these results with standard
 adverse selection models is to recognize that a full
 representation of a bidder's type in our model is two
 dimensional (V1 ,p).

 For p = 2/3, Figure 1 plots the seller's expected
 revenue as a function of e. The figure is plotted for
 normalized V-values of VL = 0 and VH = 1, or,
 equivalently, the y-axis in the figure can be viewed
 as the weight placed on VH in calculating the seller's

 Figure 1 Seller's Expected Revenue as a Function of e

 Seller's payoff

 2_

 3 ^S~

 ' BN

 Ì >s- DS1

 1 ! ^'

 2 ¡ ¡

 1111
 12 6 4 3
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 revenue. That is, the seller's revenue equals VH times
 y-axis coordinate plus VL times (1 - y)-axis coordinate.
 In the p-known case, from Proposition 1, this is the
 first-best (FB) solution. In the p-unknown case, Propo-
 sition 2 applies.
 The optimal auction in the p-unknown case has the

 following properties.

 Corollary 2. If at the time of designing the auction the
 seller does not know p but knows only that p is uniformly
 distributed on [p - e, p + e], then:
 (i) When e < (2p - 1)/4, the uniquely optimal Bayesian-

 Nash auction does not satisfy dominant strategy incentive
 compatibility constraints. When e > (2p - l)/4, the
 uniquely optimal Bayesian-Nash auction satisfies dominant
 strategy incentive compatibility constraints.
 (ii) When e < (2p - l)/4, only VL-bidders earn rents.

 When e > (2p - 1)/2, only VH-bidders earn rents.
 (iii) The transfers satisfy ex post individual rationality

 if and only if DS2 is optimal?
 (iv) The transfers are bounded from above and below.

 A special case of our model is when the seller
 knows only the lower bound on correlation, i.e., when
 p is uniformly distributed on [p', 1]. In this case, the
 optimal auction is BN if the seller's information is
 "good" (i.e., p' > 2/3) and DS2 otherwise. In effect, the
 requirement that the auction be effective even when
 the correlation is perfect (p = 1) necessitates that the
 seller provide dominant strategy incentives only via
 the correlation-free auction.

 Corollary 3. If at the time of designing the auction the
 seller does not know p but knows only that p is uniformly
 distributed on 'p' , 1], the optimal auction is

 wLL = 1/2 wHL = 1
 wLH = 0 wHH = 1/2.

 If pf> 2/3 (BN auction)

 LL~ 2 2[2p'-l] hn-Vn
 _p'{l-p'){VH-VL) _VH

 kH~ 2[2p'-l] *hh--2'
 If p'< 2/3 (DS2 auction)

 VL VH
 lLL - ~2~ lHL - tLL + -Z-

 7 If e = 1 - p, the (DS1) auction reduces to the (DS2) auction. Thus,
 the ex post individual rationality constraints are satisfied if and
 only if (i) e > (2p - l)/4 and e = 1 - p or (ii) e>(2p- l)/2.

 One issue we have suppressed thus far in the analy-
 sis is the multiple equilibria problem. Under BN, there
 is a pressing multiple equilibrium problem in that the
 bidders would both be better off playing an equilib-
 rium that has them always reporting VL (for all V
 and p). One could turn to an expanded message space
 in the hope of eliminating the undesirable equilibrium
 without creating new equilibria. If an approach simi-
 lar to that of Ma et al. (1988) is feasible and were used,
 a large message space would be needed to deal with
 possible mixed strategy equilibrium, which is incon-
 sistent with our blocked communication assumption.
 Under either DS1 or DS2, although the equilibrium
 the auction designer intends the bidders to play is
 again not unique, it can easily be made unique by
 reducing the VH transfers tHL and tHH by an arbitrar-
 ily small amount. Hence, the multiple equilibria prob-
 lem is another reason dominant strategy auctions may
 be favored, as Demski and Sappington (1984) argue.
 When the mechanism has to be designed early, turn-
 ing to a (strict) dominant strategy mechanism will not
 only deal with the multiple equilibria problem, but it
 may also do so at little or even no cost to the seller,
 because such mechanisms can be optimal as general-
 purpose ones in Bayesian environments.

 3.3. Nonuniform Distributions Can Make

 Pooling Optimal
 Under nonuniform seller beliefs, the optimal auction
 no longer necessarily induces all VH-bidders to bid VH.
 To see this, consider the following discrete version of
 our model.

 Supposepe{p-(l-p),p,p + (l-p)) = {2p-l,p,l}
 with probabilities {(1 - z)/2, z, (1 - zj/2}. The param-
 eter z captures how diffuse the prior is; z = 1/3 is
 our earlier uniform prior. In this setting, if z is large
 enough (so the prior is concentrated), then the opti-
 mal auction always entails pooling, in that VH-bidders
 with the lowest p-value pool with all VL -bidders.

 In particular, let BN denote the auction that is the
 same as BN except that p - e is replaced by p, so
 the optimal transfers are tLL = VH/2 - p2(VH - VL)/

 (2[2p - 1]), tLH = p(l - p)(VH - Vh)/(2[2p - 1]),
 tHL = VH, and tHH = VH/2. Under this auction, the
 yH-bidders with p of 2p - 1 pool with all VL -bidders.
 To reinterpret the problem as one in which the
 modified Revelation Principle discussed at the end
 of §2 is applied, we can interpret the binary mes-
 sage space as {"My value is VL or my p is 2p - 1, "
 "My value is VH and my p is p or greater"}.

 The optimal auction then takes the following form:
 For p < 5/6:

 BN is optimal.
 For p > 5/6:

 If z < (4 - 22p + 31p2 - 12p3)/((-6 + lip - 4p2)p),
 BN is optimal; else, BN is optimal.
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 Note that the form of the optimal auction remains
 unchanged (BN or DS2), but the reporting (pooling)
 strategies change when the prior is less diffuse. Intu-
 itively, a prior more concentrated on p = p makes
 the p = 2p - 1 case less significant for the seller, and
 the optimal auction lets the VH -bidder with p = 2p - l
 earn rents by pooling with the VL-bidders. In the
 proof of Proposition 2, we allow for arbitrary pooling
 strategies, but the diffuse (uniform) prior assumption
 ensures that having VL -bidders bid VL and VH-bidders
 bid VH is optimal.

 4. Concluding Remarks
 This paper addresses the design of mechanisms when
 the characteristics of the environments in which the

 mechanisms are to be employed are not (yet) pre-
 cisely nailed down. In particular, the paper studies the
 design of a generic auction to be used for a variety of
 possible bidder pairs and correlations in the bidders'
 valuations. When there is sufficient uncertainty about
 the correlation, the seller finds it optimal to provide
 dominant strategy incentives to the bidders. The early
 design assumption creates an information asymmetry
 between the early designer and the future bidders who
 will arrive to use the in-place auction format. It is this
 information asymmetry that leads to the optimality of
 dominant strategy incentives in a fully Bayesian set-
 ting. Our search for robust mechanisms can be viewed
 as part of the Wilson Program:

 This brings me to a point I wish to emphasize: The opti-
 mal trading rule for a direct revelation game is special-
 ized to a particular environment. For example, the rule
 generally depends on the agents' probability assess-
 ments about each other's private information. If left in
 this form, therefore, the theory is mute on one of the
 most basic problems challenging theory. I refer to the
 problem of explaining the prevalence of a few simple
 trading rules in most of the commerce conducted ....
 The rules of these markets are not changed daily as
 the environment changes; rather they persist as stable,
 viable institutions. As a believer that practice advances
 before theory, and that the task of theory is to explain
 how it is that practitioners are (usually) right, I see a
 plausible conjecture: These institutions survive because
 they employ trading rules that are efficient for a wide
 class of environments. (Wilson 1987, pp. 36-37)

 Correlation is only one of many possible aspects
 of the environment that might not be as well under-
 stood at the time of mechanism design as is typically
 assumed. In this sense, our auctions can be viewed
 as "quasi-robust" rather than robust. Allowing for a
 greater variety of possible environments (e.g., the set
 of possible values may be uncertain, the number of
 bidders may be indeterminate, and private values may
 be correlated with each other as well as with com-

 monly observed macro variables) reveals interesting
 and important avenues that are left out of our
 analysis. The implied underutilization of information

 in the face of robustness considerations also surfaces

 in Evans' (2008) contracting setting, where unbounded
 renegotiation possibilities are introduced. In broader
 terms, organizational arrangements, including sourc-
 ing, human resource policies, and accounting itself all
 have a robustness dimension, a dimension that to date
 largely escapes the mechanism design orientation.

 We expect our approach to robust mechanism de-
 sign - expected utility maximization under blocked
 communication - to lend itself quite naturally to a
 variety of settings. Furthermore, we conjecture that
 the optimal robust mechanism will continue to be
 either a modified version of the standard solution or a

 qualitatively different one that minimizes the impor-
 tance of the information asymmetry (although not nec-
 essarily a dominant strategy mechanism).8 Close to
 the present paper is the principal-multiagent model
 of Demski and Sappington (1984), which again has
 binary cost/value parameters but allows for agent risk
 aversion. From numerical examples, similar results to
 those obtained in this paper appear to arise in the
 modified Demski-Sappington model.

 Glover et al. (2006) study the robustness problem
 in a moral hazard setting under agent risk neutral-
 ity and limited liability. The information asymme-
 try is about the informativeness of the performance
 measures. When robustness is a minor concern, the
 solution is a modified version of the standard one:

 a bang-bang contract in which a large bonus payment
 is made when the best realization of the performance
 measures occurs; otherwise, the bonus payment is
 zero. The main result is that it can be optimal to
 ignore performance measures that are informative but
 subject to a larger robustness concern. The standard
 condition involving likelihood ratios is replaced by
 one involving both likelihood ratios and the agent's
 marginal productivity in the performance measures.
 Under agent risk aversion, this revised condition
 leads to nonmonotonic contracts when they would be
 monotonie in the standard model.
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 Appendix
 Proof of Proposition 2. We first characterize the opti-

 mal auction among those that have each bidder reporting VL
 when his type is VL and VH when his type is VH. We then
 verify that no auction that has the bidders reporting differ-
 ently increases the seller's expected revenue.

 Given the symmetric agent setup and the fact that the
 item must be auctioned, the probability of each bidder being
 awarded the item can be characterized in a symmetric fash-
 ion: if agent z's bid is higher, he is assigned the item with
 probability 1, and in the event of a tie, he is assigned the
 item with probability 1/2. To determine the optimal trans-
 fers among the auctions we initially restrict attention to,
 we reformulate (P) in two ways. First, we replace sl(Vk/p)
 with Vk. This yields the familiar individual rationality (IR^)
 and incentive compatibility (IQ) constraints for the fc-value
 bidder. Second, we delete redundant constraints using
 the fact that satisfying the (IR*.) and (IQ) constraints for
 p = p - e and p = p + e ensures that the constraints hold for
 all other p. The resulting program (P) is given below:

 Max 2x(JfLL + ^fLH + ^fHL + îfHH)

 s.t. [p-e](y-íu) + [l-(í>-e)](0-fiH)>0 TRttf-e)

 [p-e](y-fLL) + [l-(p-<0](O-fLH)

 >[p-e](VL-fHL) + [l-(p-e)](^-fHH) lCL(p-e)

 [p+e](y-fu) + [l-(P+e)](0-tui)>0 IMP+e)

 [p+e](y-ÍLi) + [l-(P+e)](O-f1H)

 >'P+e](VL-tHL) + [í-(P+e)]Çj-tHH^ lCL(p+e)

 [p-e](y-iHH) + [l-(p-e)](VH-fHL)>0
 lRH(p-e)

 [p-e](^-tHHy[l-(p-e)](VH-tHL)

 >[p-e](0-fiH) + [l-(p-e)](y-ÍLL) lCH(p-e)

 [P+e](y-fHH) + [l-(p+e)](V„-tHL)>0
 IRH(ß+e)

 lP+e](jl-tHH^ + [l-(P+e)](VH-tHL)

 >[P+e](0-fLH) + [l-(p+e)](y-ff.L) lCH(p + e).

 Denoting the objective function of (P) by f(t), the left-
 hand side less the right-hand side of the ith constraint
 by gj(t), and the Lagrange multiplier on the ith constraint
 by A,, the Lagrangian is f(t) + ¿f=1 'ig¡(t). The first-order
 condition (FOC) of the Lagrangian with respect to each of
 the four transfers are as follows:

 V - (Ai + A2)(p - e) - (A3 + A4)(p + e) + A6(l - p + e)

 + Xs(l-p-e)=0 FOC-tLL

 (l_p)_(A1 + A2)(l-p + e)-(A3 + A4)(l-p-e)

 + '6(p-e) + '8(p + e) = 0 FOC-fLH

 (1 - p) + X2{p - e) + A4(p + e) - (A5 + A6)(l - p + e)

 -(A7 + A8)(l-p-e)=0 FOC-fHL

 p + Á2(l-p + e) + '¿l-p-e)-('5 + '6)(p-e)

 -(A7 + A8)(p + e) = 0 FOC-iHH.

 The optimal solution is one that (i) satisfies the eight con-
 straints in (P), (ii) satisfies the four first-order conditions,
 (iii) satisfies the eight complementary slackness conditions
 A;g;(£) =0/ and (iv) prescribes nonnegative multipliers.

 The solution listed below satisfies (i)-(iv) for e < (2p- 1)/4;
 hence, for these e-values, it is optimal. Under this solu-
 tion, denoted BN, the four transfers are obtained by solving
 the following four (binding) constraints in (P): ÏRL(p - e),

 IRH(p - e), ICH(p - e), and IRH(p + è).
 The BN solution

 ^VH (p-enVq-Vt) ■
 LL 2 2[2p-2e-l] HL H

 _(p-e)(l-p + e)(VH-VL) =Vh
 LH 2[2p-2e-l] HH 2

 ^ = 1¡Z¡^-1 A^ = ° A3 = ° A^=°

 ^ = 2[2jX-'] A^2F^T A? = 1/2 A8=0-

 Notice that under BN the condition A5 > 0 yields the
 upper bound on e. Thus, when e > (2p - 1)/4, the optimal
 solution changes. For (2p - 1)/4 < e < (2p - 1)/2, the solution
 listed below is optimal - it satisfies (i)-(iv). Under this solu-
 tion, denoted DS1, the four transfers are obtained by solving
 the following four (binding) constraints in (P): lRL(p - e),
 lCH(p - e), lRH(p + e), and 'CH{p + e).

 The DS1 solution

 [p2_e2]VL_l{1_p)2_e2]VH yH
 hi- 2[2p-l] ^HL-kL + -

 (p-e)(l-p-e)(VH-VL) VH
 ÍLH= 2[2F1]

 Xl = 1P2^-'l À2 = 0 À3=0 A4 = 0
 A5=0 AO A6 A = l/2 1/2 A7= A PP-V-2* A8= x 4g-[2p-l]
 A5=0 AO A6 A = 1/2 l/2 A7= A 2__l A8= x 2{l__x] .

 Under DS1, the conditions A7 > 0 and A8 > 0 yield the
 upper and lower bounds on e, respectively. Thus, when
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 e>(2p- l)/2, A7 < 0, and the solution again changes. For
 these values of e, the solution listed next, denoted DS2, is
 optimal - it satisfies (i)-(iv). Under this solution, the four
 transfers are obtained by solving the following four (bind-
 ing) constraints in (P): lRL(p - e), IRL(p + e), lCH(p - e), and
 ICH(p + e).

 The DS2 solution

 ki = ~2 ^1 = ki + ~Y

 kn - 0 Íhh - ku + ~y~

 Ai-

 A5 = 0 A6 = l/2 A7 = 0 A8 = l/2.

 Having encompassed the entire range of e-values, we
 have identified the solution assuming inducing truthful
 reporting by the bidders is optimal. We still need to verify
 that there is no auction that induces a bidder to report VL
 when his value is VH or vice versa for some realizations of p
 that improves the seller's expected revenue.

 The preferences are such that if a Vk -bidder finds it opti-
 mal to report Vk for p and Vm for p' > p, then he will also
 prefer to report Vm for all p" > p' . Similarly, if a Vk -bidder
 finds it optimal to report Vk for p and Vm for p' < p, then
 he will also prefer to report Vm for all p" < p' . Hence, one
 can confine attention to cutoff pooling strategies. Because
 the pressing incentive problem is one in which a VH -bidder
 wants to mimic the VL -bidders for all p below a cutoff,
 we focus on that case providing the optimal contracts for
 each parameter region and arguing that each is dominated
 by one of the contracts we have presented above. We have
 also derived the optimal contracts for the other pooling
 cases and verified that they are dominated by one of the
 above contracts but have not included these other cases in

 the proof. These other pooling cases are less interesting than
 the one we present next in the sense that the solutions are
 more obviously dominated. (The solutions for these other
 cases are available from the authors upon request.)

 Suppose the VL -bidder reports VL for all p, and the
 VH -bidder reports VL for p e [p - e,p) and reports VH
 for pe[p,p + e]. For any given p, the optimal transfers
 that induce such reporting are determined by solving pro-
 gram (P), presented next; the program uses the fact that sat-
 isfying (IRfc) and (ICfc) for p = p - e, p + e, and p ensures the
 constraints hold for all other p. Also, in (P), p = (p + e + p)/2,
 i.e., p is the mean p-value over the interval p e [p,p + e]
 where the bidders report truthfully:

 l-ô 1-p p ~|'

 s.t. y-íLL>0 lRL(p-e)

 Y-hL>VL-tHL lCL(p-e)

 [p+e](y-tu.) + [l-(P + e)](0-fLH)>0 IRL(p+e)

 [P + e](y-iLL) + [l-(p+e)](0-fLH)

 >IP + e](Vl-fHI) + [l-(p+e)](y--íHfí) lCL(p+e)

 p(y-ftL)+[l-p](0-tLH)>0 IMP)

 p(y -■'/.£.) + [l-p](0-tLH)

 >P(^-ÍHL) + [l-p](y-íHH) IQ(p)

 ^-iLL>0 lRH(p-e)

 ^r-hL>vH-tHL icH(p-e)

 [p+e](y-fHH) + [l-(P+e)](VH-iHL)>0
 lRH(p+e)

 [P+e](y-fHH) + [l-(P+e)](VH-fHL)

 >[p+e](0-tLH) + [l-(P+e)](^--tL^ ICH(P+e)

 p(y-ÍHH)+[l-p](VH-ÍHL)>0 IR„(p)

 p(^-íhh)+[1-P](Vh-íhi.)

 >P(0-tLH) + [l-p](^-íu.) ICh(p).
 For any given p, the above program is linear; thus, the

 solution to (P) can be characterized using the standard
 Lagrangian approach as before. In presenting this solution,
 we make use of the critical multiplier values of Q and C2.
 In particular, let Q = (e2 - 3p + p2 + e (5 + 2p - Sp) + (3 - p)p)/
 (4e(l - If)) and C2 = (p-J-e(3- 4p))/(2e(p + p + e - 1)).

 If Q > 0 and C2 > 0 (BN auction)

 t _Vh P2(Vh-Vl) tHL-VH _v t kL--J- 2[2-_1] tHL-VH _v
 _p(l-p)(VH-VL) _VH

 If Q < 0 and C2 > 0 (DS1 auction)

 kl~ 2[p + e + p-l] tHL-kL + T
 _p(l-p-e)(VH-VL) _ VH

 ^ - 2[p + e + p-l] tHH - _ kH + ~2'

 If C2 < 0 (DS2 auction)

 _ vl y h
 kL _ = ~y Ìrl - kh + ~^~

 kn - 0 Íhh = kH + ~Y •

This content downloaded from 128.59.222.107 on Thu, 15 Feb 2018 17:29:41 UTC
All use subject to http://about.jstor.org/terms



 Arya et al.: Quasi-Robust Multiagent Contracts
 762 Management Science 55(5), pp. 752-762, ©2009 INFORMS

 As expected, the above reduces to the solution under (P)
 for p = p - e. In fact, this boundary choice of p is optimal for
 the seller in each of the three cases listed above. To see this,
 consider the first case. Substituting BN into the objective
 function of (P) and taking the derivative of this payoff with
 respect to p yields

 [p2 + e2-2e[l-p-6p(l-p)]-2p[l+2p(l-p)]+pmi-p2)-p]][VH-VL]
 8e[2p-l]2

 Tedious algebra then verifies that the term in the numera-
 tor before [ VH - VL] is negative forpe(p - e,p + e] and valid
 parameter values. Because the other terms are all positive,
 the overall expression is negative. Thus, the sellers' payoff
 is decreasing in p, so the principal optimally setsj? = p - e.

 Next consider the second case. Substituting DS1 into the
 objective function of (P) and taking the derivative of this
 payoff with respect to p yields

 [-p(l-p)-4e3-e2(8p-5)-2pp+(2-p)p-e(l-6p+4p2+2p)][VH-VL]
 4e[p + e+p-l]2

 Again, the first term in the numerator is negative for p e
 (p - e,p + e] and valid parameter values, and all other terms
 are positive. Thus, the sellers' payoff is again decreasing
 in p, so the principal optimally sets p = p - e in this case as
 well.

 Finally, consider the last case. Substituting DS2 into the
 objective function of (P) and taking the derivative of the
 function with respect to p yields

 Vh-Vl

 Clearly, the above term is negative, so the principal sets p =
 p - e. Thus, the auction in Proposition 2 that has VL -bidders
 reporting VL and VH -bidders reporting VH for all p is rev-
 enue maximizing when p is uniformly distributed. D

 Proof of Corollary 2. The proof follows directly
 from the characterization of transfers provided in Proposi-
 tion 2. D

 Proof of Corollary 3. Define p = (1 + p')/2 and
 e = (1 - p')/2. Because p > 1/2, these choices are permissi-
 ble in our base model. With these choices, the lower bound
 on p, p - e, is simply p' , whereas the upper bound on p,
 p + e, is just 1. This is precisely the setup in Corollary 3, so
 substituting p = (1 + p')/2 and e = (l-p')/2 in Proposition 2
 yields the result.

 In particular, notice that with the above choice of p and e,
 (i) the transfers in DS1 reduce to those in the correlation-free

 DS2, and (ii) the condition e < (2p - 1)/4 is equivalent to
 the condition p' > 2/3. Hence, the principal offers the BN
 auction if p' > 2/3 and the DS2 auction otherwise. D
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