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1. INTRODUCTION AND SUMMARY

Following the important contribution of Phelps [20], the last ten years
have seen extensive research efforf devoted to problems of multiperiod re-
source allocation in an uncertain setting. Two primary areas of study have
been the theory of optimal growth (e.g., Brock and Mirman [3], Mirrlees [17]
and Mirman and Zilcha [16]) and the multiperiod consumption/savings (port-
folio) problem (e.g., Levhari and Srinivasan [14], Hahn [8], Hakansson [9],
Samuelson [28] and Merton [15]). In both cases, especially the latter, it
has been standard to assume first that the conéumer possesses a complete pre-
ordering over joint distributions for consumption flows which is representa-
ble by a continuous multiattribute expected utility function and second that
the NM (von Neumann-Morgenstern) index is additively separable and station-
ary.l To obtain concrete answers to specific questions such as the effect of
increased capital risk on savings, still another assumption is generally added:
the consumer's conditional risk preferences (for each time-period) exhibit
constant relative risk aversion.

The purpose of this paper is essentially two-fold. First of all, we pre-
sent a preference-utility model which is more general than the additively se-
parable multiperiod expected utility paradigm in that it allows one signifi-
canfly greater freedom in prescribing risk preferences and time preferencés.
Secondly, we utilize this freedom in an application of the resulting theory
to a simple multiperiod consumption/savings problem.

The present papér extends the two—peridd'OCE (Ordirial Certainty Equiva-
lent) representation developed in Selden [30] to T periods. To see what is
involved, let us define c

€ Ct and Pt, G, € §%:to be, respectively, real

y t

generalized consumption in time period t and c.d.f.'s (cumulative distribu-

tion functions) on Ct‘ For more than two periods, we shall Ffurther require



the notion of a "consumption tree™:

c L o)

where T n2 and Wé are simple probabilities. More generally, J will denote
the set of (T+l)-period trees. Then, three different preference settings can
be distinguished

(i) Single-period preferences overjzl

(ii) Two-period preferences over CO x:gl

(iii) (T+1l)-period preferences over J (in general, not expressible

as C, X X; X -...X Xp)

In each case, one would like to obtain a numeric representation of preferences
which is both relatively general and easy to use in standard resource alloca-
tion problems. For case (i), the well-known NM (von Neﬁmamn—Mcrgenstern)
axioms ensure existence of a continuous expected utility representation_(e.g.,

Grandmont [7]).

The essential idea underlying the two—perioﬁ OCE approach is one of

characterizing preferences over C0 x:zl in terms of (1) conditional risk pre-
ferences defined over each "cross section" {co} % zl and (2) basic time pre-

ferences defined over C_ x C, and representable by a continuous ordinal index



U. Assuming orderings over each {co] X Zl
corresponding conditional NM index VC is allowed to depend continuously on
0

time-period zero consumption), the choice between any pair (c 1) and (c

to be NM representable (where the

G;)
in CO p 4 21 can be decomposed into two steps. First, using just the condition-

al risk preferences (VO, and Vc“) convert into equivalent certain current, cer-
tainty equivalent periog-one cogsuﬁption pairs, (c c (c l)) and (c" E (c"
Gl)). Then evaluate the resulting pairs using time preferences: (C6=F1) is
not preferred to (c},G;) if and only if U(c], l( F))) = U(c",&l(c“ G1)).-

Since this representation can be shown to include the standard two-period
expected utility model as a special case, one is led to ask what additional
axiom must be added to obtain the latter? That is, some additional assumptive
input is required in order to go from NM preferences on each "cross section"
[c } x Xl as assumed under the OCE approach to an expected utility representa-

tion over all of C % Xl' This additional axiom, referred to as "coherence®

in Rossman and Selden [24], establishes a strong interdependence between the

agent's conditional risk preference and time preference indices: V(co,cl)
and U(co,el) must be ordinally equivalent. In contrast, the OCE representa-
tion'allows one complete freedom in modelling this relationship. It is fur-

ther shown in [2u] that given (U,V)-pairs, although quite standard, may not

be odmpatible behaviorally even if the coherence axiom is assumed.

In attempting to extend the OCE representation to more than two time-
pefiods, a number of new issues arise. First of all,as suggested above, the
choice space can not, in general, be viewed as simply a product space involv-
ing CO and the sets of marginal c.d.f.'s Xl,X ...,z&.

~introduce the notion of consumption trees (e.g.., (1.1)). Secondly, to avoid

Rather, we need to

significantly complicating our analysis, it is necessary to introduce a "risk
preference independence" axiom which, in essence, states that the choice among

one-period lotteries involving c, can be made independently of both the

t



history (eo,...,ct_l) and the consumption possibilities for the future peri-
ods t+l,...,T. (Most multiperiod growth and consumption/savings (portfolio)
models, such as those cited above, employ expected utility representations
satisfying this axiom.) Thirdly, as noted by Kfeps and Porteus in [13], one
must consider explicitly how multiperiod preferences are affected by the time
of resolution of uncertainty. Impiieit in the multipefiod expected utility
representation is the assumption that the consumer will be indifferent between

any pair of consumption trees which differ only in the time when uncertainty

is resolved. In this paper we make the same assumption explicitly. However,
one might quite naturally ask whether this "temporal resolution indifference"
assumption is consistent with the intuitive idea that early resolution ought
to be desirable because it implies the receipt of additional information which
should be of value to the consumer in his planning process. It is important

to distinguish between a preference for early (or late) resolution in consump-

tion trees, which turns out to be a purely psychological matter, and a pre-

ference for early resolution in gllocation problems, which relates to the pos-
siblity of using the additional information to form a new optimal allocation
that is less constrained to hedge against diverse possibilities. In the con-
text of a simple consumption/savings problem (section 4), we show that the
tempbral resolution indifference for consumption trees, while eliminating the
psychological factor, does not preclude our obtaining a general preference for
e&rly resolution in allocation.

Despite these three important differepces from the two-period case, the
basic idea of an OCE representation extends to a multiperiod sefting. After
'formally-defining the consumption tree structure and introducing the required
set of axioms in the next section, we present our principal preference and
representation results in section 3. Consider a-pair of 3-period trees, simi-

lar in form to (1.1l). Let conditional risk preferences and time preferences



be given. First using just the former, one can convert each tree into a uni-
que indifferent string of the form (00,51,62) where each cerfainty equivalent
at is defined with respect to the appropriate joint probability measure (over
state outcomes for periods one through t). Then time preferences are employed
to order the resulting pair of strings.

We further establish that undér the axioms employed, there exiéts a uni-
que decomposition of the ordering over consumption trees into time and risk
preferences. It is also shown that under risk preference independence the
multiperiod expected utility model is but a special case of the OCE represen-
tation.

Some related issues are addressed by Kreps and Porteus in their interest-
ing paper [13] on dynamic choice theory and the temporal resolution of uncer-
tainty.

In the final section, we apply the multiperiod OCE preference theory to
a simple three-period consumption/savings problem. Our primary focus is on
the respective roles of risk and time preferences in determining the optimal

level of time-period zero savings.

2. CONSUMPTION TREES

Notation and Formulation

Generally, we shall be interested in consumption trees which are defined

for T time-periods and which allow either a finite or infinite number of

. il
-+

branches at each node. C will be the set of all certain consumption

- streams (co,cl,...,cT)_ We shall sometimes find it convenient to express the

plan (co,el,...,cT) as  cn and the truncated sgquence (c ) as

£ 9 Cn +Cten
Denote by @ the set of all possible states of nature which can effect consump-



tion in any period t. 6 is an element in ©@. Let B be a collection of subsets
of @ on which probabilities are defined. B is assumed to be a o-algebra of
subsets of ®. Let P be a probability measure defined on B which assigns a
probability to each element of B. Together, the triple (©,B,P) constitutes
a probability space. Let M be the space of all probability measures on B.
Generally, preceding each time-period t = 1,...,T in a consumption tree
there will be chance nodes. The state uncertainty for a particular node will
be summarized by a probability measure P ¢ M having its support in the univer-
sél state space @. Uncertainty resolves at a given node when the actual state
or branch of the tree becomes known. We shall indicate when this uncértainty
resolves by subscripting the appropriate probability measure. Thus Pt will
denote a measure in M resolving at the beginning of time-period t. In general,
a particular P% will depend on the sequence of previous state outcomes. This
will be made explicit by referring to Pt(e;eclj, ..... 5% B(t-l)) as the proba-
bility measure resolving in time-period t, which is conditional upon the se-

quence of specific state outcomes 8(13,...,8(t_l). The vector B(l’t_l) =

6@ oG

5 e s = 5

) describes the complete history leading up to the time-period
t node corresponding to Pt'
The mapping 3t: 8- R+ is a random variable on the probability space (@,

B,P) which associates to each state 6 a nonnegative consumption value for-

time-period t. (Et is a random variable only when it is measurable with res-

pect to the o-algebra of subsets B.) More generally, the consumption value iﬁ
period t will also depend on state outcomes for earlier periods and will be de-
noted by ct(ﬁ; G(l’t_l)). We shall additionally be concérned with random vec-
tors;.thus let {ET denote the vector (Et""’ET) defined jointly on the sin-
ble probability space (©,B,P). (The symbol ~ will be used to indicate a ran-
dom variable (or vector) only when the state 6 is suppressed.)

Together, a pair (P ’Et) will be referred to as a "one-period lottery"




where the payoffs {ct(e)} are consumption amounts for time-period t. Each

such pair determines a c.d.f. (cumulative distribution function) on nonnega-

- - —~ - '= < ._;
tive consumption values defined by Ft(qt) Pt[BICt(B) __ct}. Letlét be the

space of time t (one-period) c.d.f.'s.

More generally, a probability measure Pt and a random vector de-

tt+n
fine a vector lottery denoted

~

(Pt’(ct’ct+l"""ct+n))'

n

P> +Ct4n)

Note that for this type of lottery all of the uncertainty concerning the vec-
- ? - ]

tor of consumption payoffs {ct(B), ct+l(9),....,ct+n(8). is resolved at the

beginning of time-period t when the specific state outcome B(t) is known. A

simple example of such a lottery would be the following:

5 - Ce41

T
t Ct+1
The special case of a vector lottery characterized by each of its last T-t

random variables being constant valued will be denoted
(Be> CpsprCp)) = (BesyCp)

where 08(8) =, for s = t+i,....,T.

In this framework a (T+1)-period consumption tree, denoted T, will con-
sist of a certain time-period zero consumption amount fﬁllowed by a single
"one-period lottery" (Pl,gl) each branch of which is in turn followed by a

(PZ,EZ) and so on for T periods. Schematically this can be summarized in the

following way _
(CO, {Pl,cl}, [32,02],...,{PT,0T}),

where

{p ACJt} = def {(Pt(g; e(l:t‘l))’ ct(g; e(l,t—l)))}



represents the collection of one-period lotteries which both pay off and re-
solve at the beginning of time period t. It is important to note that B(l’t_l)
represents a (t-1)-tuple of parameters determining the t-period chance node

(and Pt) while 6 is the "active"™ state variable to be resolved at the begin-

ning of period t. Let J be the set of all (T+l)-period consumption trees.
If,for a given tree,each of the one-period lotteries is characterized by
a one-point or degenerate measure, then the tree will be referred to as a
"string" and denoted T%. It follows from this definition that a string is
essentially identical to a certain consumption stream (co,cl,...,cT) g Es
Letting J #* © 7 denote the set of all “stfings", we shall use C and 5% inter-

changeably.

Assumptions

Let us next set forth the axiomatic structure which will serve as the

foundation for the preference and utility results developed in section 3.

Assumption 1:

The space of all (countably additive) probability measures, M,
is endowed with the topology of weak convergence and the o-algebra on
(@,B) is rich enough to contain all one-point (degenerate) subsets, so

that the set of measures with one-point support is contained in M.

Assumption 2:

There exists a complete preordering on the set of trees J denoted

<.

As suggested in the introduction, we shall assume that the ordering over
e —— - S ; - 1 - s
J exhibits r.p.i. ("risk ppeference independence"). Let (oet—l’ (Pt,tcT))

denote a (T+l)-period tree in which for the first t time periods one has the

consumption vector (00,01,....,ct_l) followed by the vector lottery (Pt +Crp) -



Corresponding to each possible state out~ome B(t) to be resolved in t is a

0 ()5 N

consumptiocn vector (et(a(t)), c T(“

1:_ﬂ_( T

Definition:
The preference ordering < will be said to exhibit r.p.i. iff.

M) o s B0l )) = (13 (Bpa (Chapyyep)))

# LAL 3 B Copg 00)) ~ ol 43 (Bes (81,00 0000)

1 o My £ “Lr < T-
for any oct—l’oet—l’Pt’ct’ct’t+lCT’t+lcT and 1 <t <T;

(1) (Gep13 PBrs Cropyg®d)) < (0513 Qus Clspygend))
% (8 5B Brnpynod)d € (ol 03 By Blown e D))

1 fon Ay T -
for any oct—l’octul’Pt’Qt’ct’ct’t+lcT’t+lcT and 1 <t <T;

and

iii iven an air of trees T,T'e J which are identical except at the
Yy P > Adentical

single chance node defined by the history g {Lat=d]

where, respec-
tively, the one-period lotteries are (Qt’gt) and (Qt93£)’ then

(Q,Et) indifferent to (Q,Eé) (under the restriction of < to one-

period lotteries implied by (ii) above --Cf., Remark below) implies

T ~T",

Assumption 3:

The preordering < exhibits r.p.i.

Remarks. (1) Since under condition (ii) of the risk preference inde-

pendence definition the restriction of the preordering < to the space of trees

Y (o 14410 = def[ (oCpo1s Bps By T)))]
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is independent of (oct—l’t+lcT)’ <lzf(oct—l’t+lcT} induces a preordering

on the space of time t (one-period) c.d.f.'s zt (corresponding to (Pt,Et)—

pairs). Denote this new ordering b5

c ly, if dering - is gi
<- Conversely, if a preordering _ is given

and condition (ii) is assumed, then this preference ordering on'zt induces the

Y (Cpoy>

same ordering on the subset of trees oCt_1°

t+lcT) for any fixed ( ¢
++1°7) -

(2) Condition (i) is closely related to the "independence” axioms of
Fishburn ([6], chapter 11) and Pollak [21] for multiattribute NM preferences.
However, as will become clear shortly, the assumption that < is NM represent-
able automatically carries with it a good deal of structure. In particular,
it implies that consumption trees can be evaluated simply in terms of joint
c.d.f.'s on consumption vectors. In the absence of this assumption, we re-
quire additional properties in our definition of risk preference independence.
(In a similar vein, note that condition (iii) will hold automatically for any

multiperiod expected utility representation of < satisfying (i) and (ii).)

Together, the collection of orderings correspanding to the T sets of
c.d.f.'s (one-period "lotteries™), {E&},_will be referred to as the consumer’'s
"risk preferences™. Next, we assume that each of these "primitive" orderings
£ will,hé said to be "NM representanle"

<

if there exists an order-preserving continuous index A

- -+ R t‘

uous von Neumann-Morgenstern utility Vt defined by

A = [V (D, () = JVf(ct(e))dPt(Gj..

Assumption U:

t _ . =
Each & (t =1,....,T) induced by <|Xt(oet-l’t+lcT

sentable” with the continuous "NM index" Vt being strictly monotonically

) is "NM repre-

increasing.
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Given Vt’ the time-period t certainty equivalent consumption flow asso-

A
c

ciated with the lottery Ft € z £

is defined by the equality

t’
V(&) = fvt(ct)drt(ct) = fvt(et(e))dpt(e). 2.1)

Next, after defining the notion of "temporal resolution indifference",

we assume that the consumer's preference ordering < possesses this property.

Definition:
The preference ordering < will be said to exhibit "temporal reso-

lution indifference" (t.r.i.) iff.

(Oct—k—l 3 (P't—k ] (t—kct-—l s tCT) ) ) e (Oc't-l 5 (P.t. E] ('tCT) ) )
for all oCt_1°+CT and Pt_k(e) = Pt(e).

t—kct-l’tcT)) where cS(G) = c

constant for s = t-k,...,t-1. The condition Pt_k(ej = Pt(9) states that Pt—k

(By (Pt-k’(t—kct-l’tCT) we shall mean (Pt—k’( 5

and Pt are identical measures differing only in the time of resolution.)

Assumption 5:

The preordering < exhibits t.r.i.

Remark. Completely apart from the effect of early resolution of uncer-
tainty on the set of feasible consumption trees discussed in section Y4, one
might reasonably argue on purely psychological grounds that the consumer pre-

fers early (or late) resolution in consumption trees. We consider in [33] the

question of representing preferences over 7 in the absence of (A.5). However,
when one drops the t.r.i. assumption, a kind of "intergenerational" inconsis-
tency results which is akin to that discussed in the certainty setting by

Strotz [34], Peleg and Yaari [19] and Blackorby, Nissen, Primont and Russell
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[2]s
As we saw above, by restricting the consumer's preference ordering on

trees to the subspace Y ( e one induces the set of orderings on

t-1°t+1 T)
one-period lotteries {4}-—termed his "risk preferences". Analogously, the
restriction of < to the set of strings J#CJ induces an ordering on C; denoted

&
< and referred to as the DM's (decision maker's) "time preferences™.

Assumption 6:

The preference ordering 2 is representable by the continuous

(ordinal) utility function U: C - R.

As we shall show over the ensuing sections, the collection of time preference
and risk preference functions y, {v ,....,VT} constitute (under the assumptions
spelled out above) the basic data for representing choices over trees.

Finally in order to establish the preference and representation results
presented in section 3, it will be necessary te invoke the following technical

restriction on the class of admissible consumption trees.

Integrability Property:

A given consumption tree T e¢ J will be said to possess property (I)

if for each 1 < t < T, the multiple (Lebeégue—Stieltjes) integra183

[ ] v, (c, B(l’t_l))dP ;6 Dyap  e;6 112y | ap (s

exist and are finite.u

An Example

To help clarify the relationship between the assumptions set forth above
and the notion of a consumption tree, we next consider a simple example based

on the following:



r=c / €2
C'I'T

i 2

2
l—ﬁl ///////’
¢
l-'rrz 117
&3

Under (A.1)-(A.5), we can convert T into an indifferent consumption stream

string) by a simple series of steps. Let the "NM indices™ V., and V, be gi-
1 2 L

ven. By Assumptions 3 and 4,

“/'cl “—Véltﬂzvz (e )+ (@A-m)V, ()]
- 2.2)
l-\ﬂ]_‘“e' — VIV, (e + (T Y, (e ]
1 o LToV5(e3 2V, (c;

Defining El: Vil[ﬂlvl(el)+(1_ﬂl)Vi(ci)], we have by Assumptﬁons 3 and 4 and

the first Remark following (A.3) that for any c

2
T T
, ~ c, (2.3)
1-m i
l a e —
Cl (32 1 cj’- Q2

But by r.p.i., (2.3) implies that
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. e :
n{ * PRUAPICA RGP ACY
c ;
0]
1-m

R <l '
1™~ i i " = 171
¢ V5 [n2v2 (e +@-m,)V, (c2 )]

e vgl[w V() + (-, V, (c3)]

"l " T
el V5 [rrzv2 (eh+@-m,)V, (e} 1]

By the temporal resolution indifference assumption

my & ————V3m,Y, (e,) + (1-T) V, (e1) ]

3 V5 IV, (o) + (1-m,)V, (e3) ]

V3 IV, (ep) + (LT V, (cp)]

—l 1" T
v; [n2v2 (02)+(l-1'r2)\="2 (c2 )]
Finally, defining

&, = Vgl{anZ(VQl[ﬁzvz(c2)+[l-w2)V2(cé)])+(l~ﬂl)V2(Vél[ﬂzvz(cg)+(l-W2)V2(C£")])}
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= Vél[nln2V2(c2) * nl(l‘nz)vz(cé)+(l‘ﬂl)“zvzfcg3+(l‘”l)(l-"2)V2(0£')J (2.1

and using r.p.i., we obtain

3 .
::ix//. Vo TV, () + (-m5) V5 ()]
T~ —— &

l—ﬂl

Vél[ﬂ2V2(05)+(l-n2)V2(cg')]

~ (co,cl,cz).

Remarks. (1) Note that in this example {(under (A.l)-(A.5)), risk pre-
ferences CVl and VE) yield a unique (co,ﬁl,az) indifferent to the consumpiion
tree 7. The fact that in this case (as well as in the proof of Lemma 1) cne
does not make recourse to time preferences in the replacement of a tree (or
"one-period lotteries" contained therein) by an indifferent string may at
first seem surprising. However, once the certainty equivalent stream is ob-
tained, say (cé,éi,&é), time preferences can enter in identifying an, in gen-
eral, infinite set of indifferent.consumption triples {(co,cl,cz) € Ri [U(co,
cl,czj = U(éé,ﬁi,aé)}. -This procedure differs significantly from that of‘the
multiperiod expected utility approach. If one adds that extra axiomatic
structure which implies the existence of a multiperiod expected utility func-
tion, then the vector payoff from each (T+l)-period branch is evaluated by

a multiperiod NM utility function which simultaneously embodies risk and time

preferences. (Cf., Rossman and Selden [24] for a discussion of the two-period

case.) Then, for a given tree, an indifference set of certainty equivalent
consumption streams can be determined in a single step. The basic point is

that under the OCE approach we do not add that axiomatic structure which, by
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forcing a specific interdependence between risk and time preferences, requires

both factors to enter into the evaluation simultaneously (Cf., Selden [30]).

(2) In deriving the string (co,é_,aé), the r.p.i. assumption allows us

I
to view the period-iwo consumption possiblitieé °2’0é=c£ and cg‘ independently
from consumption in periods zero and one. We can partially relax this assump-
tion and still obtain a tree paralleling (2.2) which is indifferent to T.

(The pair of "conditional” period-two certainty equivalents would simply be
based on Vcl(c2) and Vci(CZ)’ respectively.) However, if one then tries to .

replace the period-one "lottery" by c difficulties arise in knowing how to

l’
condition the period-two NM index so as to obtain a "joint" certainty equiva-
lent as in (2.4).

(3) Whereas periods zero and one consumpiion do not enter into the deter-

mination of 52, period-one (state) uncertainty does. The total uncertainty

for period-two consumption., when viewed from time zero, is the joint uncertain-

ty attributable to (1) the "lottery" resolving in period one and (2) the "lot-

teries™ resolving in period two, which can be cxpressed as

€2
'ITl'lT
c 1
11
€2
11
)

The t.r.i. assumption, roughly speaking, justifies "pushing" the period-one

marginal probabilities through to period-two so that the joint distribution
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becomes the basis for determining 62 (CEf., egn. (2.4)).
3. PREFERENCE AND REPRESENTATION THEOREMS

Let us first of all show that corresponding to each consumption tree,

the DM's conditional risk preferences determine, under appropriate conditions

-]

‘a unique indifferent string or certainty equivalent consumption stream.

Lemma 1:

Suppose (A.1)-(A.5) hold. Let 7 (I) denote the set of consumption
trees in 7 satisfying Property I. Then for any T € 4 (I), there exists
a unique T* € % (= C) such that T ~ T%* where T% is essentially equivalent
to a certain consumption amount in time-period zero followed by a certain-

ty equivalent stream, (co,lcT) = (co,cl,c2,...,cT).

(The proof is given in Appendix Al)

Remark. Tt should be noted that in the statement of the Lemma, Et refers

to the time-period t certainty equivalent with respect to the joint probabil-

1
ity measure on (e(l),...,e(t)) or equivalently on (8( ),...,B(T)) since c_(8;

.t\ 2
9(l°t'l)) is independent of 8(t+l’T). As we show in Appendix A, Et can readi-
ly be computed according-to

8 =yt ey (t) €y (T) |
&, = Vg fvi(ct(e guore» o8 AT (o o (3.1)
where
5

@) ) .a@) .o (L,T-1)
AIp (87,000 = 4 pdP) (0)aP, (036 ) .. ap (85 ).

It is clear from Lemma 1 that, as was suggested earlier, time preferences

A
c

1 Rather,this unique

do not in any way enter into the determination of (co, T).
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"consumption stream" is determined solely by the set {V.,... ,VT}.
However, by adding U to the collection of NM indices, {Vl,. > ,VT}, we are

next able to show that the given preordering < on JZ (I) is uniquely deter-

mined.

Theorem 1:

Under (A.1)-(A.6), the collection of time and risk preference func-

tions U, {v.,... ,VT} determines the preordering on < (I) uniquely.

(The proof is given in Appendix B.)

The two-period OCE (Ordinal Certainty Equivalent) representation result,

Corollary 2 in [30] ,can now be extended to the case of (T+1) time-periods.

Corollary 1 (OCE Representation) :
Under (A.1)-(A.6), the collection U, {vl,. - ,VT} represents the pre-

ordering < on J (I) in that, for any Ty Ty € 7 (1)
T1 S Tp T Ulegs8p)1) = Ullegsyop),)

where (%’16T31 is the certainty equivalent consumption stream ("string™)

for T, (i = 1,2) obtained by using {vl,..;,vT}.

It is straightforward to show that this OCE representation is unique up to an
increasing monotonic transform of U and positive affine transforms of V.,... ,VT.
Note that Theor'er_n 1 does not rule out the possibility that two different
U, {v B— ,VT}-collections might each uniquelly-determine‘the same < on < (I).
We next establish that under (A.1)-(A.6) this cannot be the case --i.e., there

exists but a single decomposition of < into time and risk preferences.
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Theorem 2:

If at least one pair of utility functions from U', [V',...,Vi} and
uY;, [V",...,VE} differ (by more than an increasing monotone or positive
affine transfbrm, respectively), then under (A.1l)-(A.6) these two sets

of representations produce different orderings on 7 (I).

(See Appendix C for the proof.)

Theorems 1 and 2 can also be interpreted in the following "constructive™

way:

Corollarz‘g:

Suppose that we are given U,{Vl,...,VT} which represent the preor-

i,...,:ﬁ on C, {EEJ"'=Zf}= respectively. Then there

exists a unique, complete preordering < on J(I) which (i) satisfies

derings : s {

(A.3)-(A.6) and (ii) induces preorderings on C, {z',...,z&} that are
C {l T}

identical to <> lgoereag

The proof follows from a straightforward application of (L.1) and (T.1) and
hence is omitted.

We conclude this section with a brief comparison of our multiperiod OCE
representation and the corresponding (T+l)-period expected utility model. For
any‘pair of consumption trees T',T" e J, let cé and cg denote the correspond-
ing period-zero consumption values and G' and G" the corresponding joint
c.d.f.'s defined on the set of T-vectors f(cl,...,cT)}. Then < will be said
to be "NM representable" if there exists a éoﬁfinuous W: C* R such that
jW(co,cl,...,cT)dG(cl,...,cT) exists for all c, € R+, is finite and satisfies

-

for .all 17,7 g .J

]

§
TV < ™" © JW(cé,cl,...,cT)dG'(cl,...,eT) < Iw(cg°cl""’CT)dG"(cl"“’CT)'
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If we continue to assume that < exhibits risk preference independence, then

W will take the following form
T
W(egsCyse-nscq) = (e ) + B(ey) 1E;=1ktwt (cy) (3.2)

(see initial discussion in Appendix D).

We next show that under comparable assumptions the multiperiod expected

utility model is but a special case of the OCE representation.

Theorem 3:
Every (T+1)-period expected utility representation of < satisfying
(A.3) can be transformed into an OCE representation, but the converse

is not true.

(See Appendix D for the proof.)
4. CONSUMPTION/SAVINGS DECISION

We next apply the multiperiod OCE representation to a consumption/savings
allocation problem. For simplicity it will be assumed that T = 2, although
our analysis extends in a étraightforward way to any finite T. Imagine a con-
sumer situated in time-period zero with an initial wealth of Yo He must de-
termine what portion of his initia; wealth to consume and what portion to save,
denoted reséectively coland S, That is, he is constrained to satisfy co:+ 5,
= ¥ The oniy means for investment is a single asset yielding a random (gross)
rate of return xl(e). At time zero our agent will also need to formulate an
"ex ante" allocation' of his period-one wealth, yl(S) = sOXl(B), between con-
sumption and savings, 01(8) and 31(8). Again only a single risky asset will
be available in time-period one. Denote its (gross) rate of return by Xz(B;
8(1)) where the random return in period-two can depend on the B(l)-outcome.
Let both Xl(e) and XE(B;B(l)) be strictly positive and finite for all e(l)

8(2). The probability measures Pl(e)'and Pz(e;e(l)) are defined as in
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section 2. However, for the present discussion it wil @ “e assumed that there
are only a finite number of states i = 1,...,N. Thus, Egt) will denote the
;i.-JE-}1 state in time-period t.

For the special case of two states in perioﬁ one and two states in period
two conditional on each 8(1)—outoome, the consumption/savings allocation pro-
blem is summarized schematically iﬁ Figure (la).

Thus in determining his optimal allocation of Yoo the consumer will make
one decision at t = 0 and formulate an ex ante allocation for t = 1. We ex-

press this decision problem in terms of the savings allocations

Ao = So/yo (4.1)
By (0) =) (8)/y; (8 1=1,....N, (4.2)

where A ¢ [0,1] and the function CIRC [0,1], ¥ 6, € 8.
For each vector (AO,Al(Sl),...,Al(BN)) there will be a 3-period consump-
tion tree. Thus, for instance, corresponding to the consumption/savings problem

sumnarized in Figure (la) there will be a tree of the form given in Figure (1b)

More generally, one can express T's dependence on AO and Al(S) as

TBgsBy ) = (e, [By () .cy 03,12, 038 M) o, 030 Dy

(ERSARENONRE Y GLERSO%DE NS I PR 09

0™, gy @ a0 ®yx, ;61

Hence the consumer's problem is one of picking that current allocation

and ex ante plan (Ag,Al(Gl)o,...,Al(SN)O) which in time-period zero produces

the most preferred consumption tree 7° under < or, in terms of the OCE repre-

sentation, maximizes U(co,laz). We next show that such a maximizing allocation

exists.7



cz[Blgsfl)) =

5 61 )% 61381 ™)

n(
s X, (8,)  s,(8))
O}L_L 1 | 11 1T2(2)
0 (0381 ) =

5 (057)%, (8,30.1)

yO —) (CC)’SO) |

| °2(9139§l)3 =
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i
\ 1
\3’1(923 = (cp (65, 5
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cz(ezgefl))

T(A 3A (B)) = L
1 o
o o ; ‘ ‘Qz(elgeél))
01(92) “:::::::::::::::
02(92;85133
(b)

Figure 1
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Proposition 1:

Suppose that (A.1)-(A.6) hold so that < is "OCE representable.
Restrict each Ao,Al(Bi)e [0,1]. Then an optimal time-period zero

(@]

o O .
(Ao,_ﬁl(el) ,...,Al(SNp ) exists.
(The proof is given in Appendix E+)

Remark. It should be stressed that in this paper we are only addressing
the question of an optimal current allocation. The Al(G)O is thus a type of
"instrumental policy" which is optimal in the sense that it (together with
the current action AO) yields the most preferre& consumption tree at time zero.
Once the period-one uncertainty is resolved and the consumer considers anew
the question of how inuch to save in the then current period, he faces an allo-
cation problem which is different in two respects: (i) state Bgl) has occur-
red and a known wealth of yl(ei) is available for allocation and (A1) the un-
certainty regarding period-two consumption (as well as 03,...,0T in the more
general case) has changed in that the period-one marginal probabilities have
"dropped off". Suppose that in period-one, the consumer, paralleling the pre-
vious period's analysié, determines what portion of his (then known) wealth
yl(Bi) to éave. The resulting allocation, denoted Bl(ei)O, which produces
the most preferred consumption tree in period Eﬁg will, in-general, be differ-
ent from the "ex ante" Al(ﬁl)o obtained in conjunction with Ag in period zero.
The reason for this is quite simple: whereas tastes haven't changed (the V

2
and U (cl,c2) used in the period one analysis are equivalent to the corres-

o
ponding representatlons used in period zero) the allocation problem has.
‘While the Al(e) takes into account the period-one state uncertainty Pl(B),

the optimal allocation Bl(B)O does not because the uncertainty surrounding 8(1)

has been resolved. This and other related issues are considered at length for
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the general (T+l)-period case in Selden and Stux [32].

To go further and characterize key properties of the optimal current allo-
cation, we shall follow the standard practice of specializing the assumed form

of utility. Thus, let

2
. _ )
U(eg:epaey) = & -a o’ (4. 1)
t=0
-Y‘t
Ve = -c, v, £=1,2 (4.5)
where 0 <a, < 5 £ Z!at =1 and -1 < 5°Yt < @, Then it follows from Corol-
4

lary 1 (and egn. (3.1)) that the OCE utility for any 3-period consumption tree
is given by

o0

C ~¥ =8/y o! - -y
-5 - == [[ley®) tar @] - g2 [[Tre,@:0™)1 2ap, 850 My
(4. 6)

8/Y
-dP, (8 (l))] &

Following Selden [31), we shall interpret the constant elasticity of sub-

stitution for (U4.4)

n = 1/(6+1)

as a measure of intuitive intertemporal complementarity. The common sense

everyday usage of "complementarity" refers to the property of "belonging to™
or "going with". The stronger or more intense the (preference) association
between a pair of eohmodities, the greater their complementarity. Irving
Fisher [5] referred to a pair of goods as perfect complements if they cannot
be used separately but only in a fixed ratio and perfect substitutes if they
can be substituted for one another in a constant ratio. It is in this spirit

that we shall interpret CyeCq and c, as being {complements, independents, sub-



24

stitutes} as M { <,=,> } 1. (See Katzner [10].)
The specification of risk preferences (4.5) exhibits constant relative

risk aversion (Arrow [1], Pratt [22])
Pr = ger ~CVilepdVilep) = vy + L.

Now it is easy to show that the only multiperiod expected utility repre-
sentation of < consistent with the above specification of time and condition-
al risk preferences is the standard form defined by the 3-period "NM index"

=y

2 N
W(CO,Cl,Cz) — izo_ a_tct /Y, (4.7)

£ t

employed extensively in the study of consumption/savings (portfolio) problems

where 0 <a_<1, Za_=1and -1 <y <=, This form of utility has been

+—
(e.g., Phelps [20], Levhari and Srinivasan [14], Hakansson [9], Samuelson [28],
Merton [15], Rothschild and Stiglitz [25), Mirrlees [17] and Kihlstrom and
Mirman [123). In terms of the OCE representation (4.6), assuming < to be

"NM representable™ implies that the Arrow-Pratt measure of relative risk

aversion must be the same in periods one and two and must equal the reciprocal

of the measure of complementarity, i.e.,

Py = p2 = 1/M. (4.8)

Under the more general OCE representation Pq> p2 and M can be prescribed inde-
pendently (restrictions are, of course, indirectly implied by the reasonable-
ness of the corrESponding'consumption and savings behavior).

It is well-known that if the consumer is a multipériod expected utility
maximizer with W defined by (4.7), then both optimal initial consumption and
savings are linear in Vg The following establishes that this result general-

izes to the OCE representation defined by CES time preferences and constant
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relative risk aversion risk preferences. We further show that the optimal

4 s . o T ; 5
initial allocation AO is unique and lies between zero and one.

Proposition 2:

Let < be OCE representable where U is defined by egqn. (4.4) and
. o o o
Vl and V2 by (4.5). Then the optlmal (AO, Al(ql) ,...,Al(BN) )
(1) can be obtained by a two-stage optimization and
(ii) is independent of Yor
Furthermore, Ag

(iii) is unique and an interior solution.

(See Appendix F for the proof.)

Before investigating the effects of changes in certain of the preference
parameters and the degree of uncertainty in the single asset's rate of return
on optimal initial savings (consumption), let us consider whether assuming that

the preordering over consumption trees exhibits temporal resolution indiffer-

ence necessarily implies that the consumer is indifferent to the time of re-

solution in an allocation problem. In the context of the consumption/savings

problem portrayed in Figure (la), we shall interpret "early resolution" to
mean that the 9(2)-0utcome becomes known at t = 1 and consequently, the per-
iod-one savings decision wiil not be made under uncertainty. Al will thus de-
pend on both 8(1) and 6(2) and will be denoted Al(ﬁ(l),a(z)). Under early
resolution there will be a 3-period consumption tree T corresponding to each
(AO,Al(Bfl),8{2%,..,Al(e£;),8§2)),...,Al(Bél),eéz?)). Paralleling the non-

early resolution expression (4.3) we can write

TBerh €07 = (el 0@ Myr 0 D), 0@,

9(2)),02(9(1)59(2)))})
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= ((1-a ]y .{P, (8 (2);6(13)]91 © @)y,
Ay %, 6 yri-a @ 0@y,
vty 0 D, 6@ 6 @)

-, 6 ®)50 Myy1 (4.9)

Thus under early recolution T(AO,Al(G(l),8(2))) takes the form of a vector
lottery. Following Proposition 1, maximization of OCE utility will yield a
time-zero optimal vector denoted (Ago,Al(B(l),e(z))oo) and a correSpoﬁding
optimal consumption tree 790,

Suppose that the trees defined by (4.3) and (4.9) are identical in every
way except for the time at which 8(2) is known. Also suppose that the consu-
mer's preordering < is OCE representable according to (4.6). Then the fol-
lowing gives sufficient conditions for the early resolution optimum 790 +o

always be preferred to the non-early resolution optimum T° corresponding to

@°,a, )% .

Result A:

If pl,p2 > 0 and m < 1, then r° < TOO.

(The proof is given in Appendix G.)

Remark. The above result shows that if the consumer's OCE preferences
exhibit risk aversion and intertemporal complementarity, early resolution of
uncertainty is, in general, preferred (TOO is strictly preferred to © except

for a set of quite special cases --e.g., when X, is independent of 8(2))‘

2

Thus, as indicated in section 1, while the temporal resolution indifference

assumption eliminates the purely psychological preference for early resolution
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in consumption trees, it nevertheless is consistent with a preference for ear-
ly resolution in allocation problems. As suggested from the discussion pre-
ceding Result A (and the proof), the value of early resolution in an alloca-
tion context arises from the use of this added information by the consumer to
achieve a better consumption/savings decision. Kreps and Porteus [13) make a
significant contribution in demonstrating explicitly the important role played
by time of resolution in dynamic choice theory. What we do here is distin-
guish its role in choices among consumption trces from its role in allocation

problems.

Increased Risk Aversion and Risk

Virtually all previous efforts at studying the effects of both increased
risk aversion and risk on optimal savings have been cast in terms of a multi-
period expected utility model. Most often, the "NM index" is assumed to be
a two-period version of (4.7). But in this case since, as noted above in con-
nection with (4.8), the consumer's degree of relative risk aversion (pl or p2)
cannot be altered independently of his méasure of intertemporal complementari-
ty, the question of how the optimal sg varies with increased risk aversion is
not well-posed. (Cf., the two-period discussions of Selden [31] and Kihlstrom
énd Mirman [12].) However under the OCE representation (%.6), Py and p, re-
present natural and unambiguous risk aversion shift paramters. We next show
that whether an increase in (either period-one or period;two) risk aversion
(in general) produces increased, unchanged or decreased initial savings depends

on whether Cy>Cy and c, are complements, independent or substitutes.

Result B:
Assume that Py (t = 1,2) is strictly positive and not equal to unity.
Then in response to a small increase in pt; optimal initial saving will,

in general



28

s : 9
[1ncrease, remain constant, decreasel} as n {<,=,>} Ay

(The proof is provided in Appendix H.)

One would expect that increases in riék aversion and increases in risk,
appropriately defined, should have similar qualitative effects on the solutions
to multi-period resource allocation problems (Diamond and Stiglitz [4]). We
next show that this is, in fact, the case for the (CES time preference, con-
stant relative risk aversion) OCE representation. To simplify matters, the
Arrow-Sandmo ([1],[29]) notion of a mean preserving increase in capital risk
is employed.lO That is, write the (net) rate of return on investment as At§£
+ €y (t = 1,2) where Kt and €, are, respectively, multiplicative and additive

shift parameters and x, = Xt -1. In order for a multiplicative shift around

t

zero to keep the mean constant, we must have

dey/ah, = -EX) (4.10)

Result C:

Assume that Py >0 (t=1,2), the period—fwo (gross) rate of return
%2 is independent of B(l) and the optimal Al(ei)o e (0,1), Vv Bi e @.
Then a mean preserving increase in period t capital risk has the same

qualitative effect on optimal initial saving as a small increase in pe-

period t risk aversion.

(See Appendix I for the proof.)

Thus, whether optimal initial saving will finerease, remain constant,
decreasel} in response to a mean preserving ingrease in éapital risk will de-
pend on whether a (risk averse) consumer views CysCy and c, as intertemporal
{complements, independents, substitutes). Despite the apparent similarity
between Results B and C, one caveat is in order. It will be observed from

their respective proofs that increases .in period-one risk aversion and capital
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risk differ in that the effect of the former is restricted to just period-one
whereas the latter will, in general, impact both on 61 and 62, Thus for multi-
period problems, some care should be taken in drawing parallels between the

effects of increases in risk aversion and in risk.



APPENDTIX

A. Proof of Lemma 1

Let T be expressed schematically once again as

(Cos{Pl:Cl} :{P2502}3'0-3{PT)CT}) (a.l)

where
il T .o (1,t-1) g @d,t-1)

(B0 = pp F (B, (00 Yy, (650 N}
Consider the collection {PT’ET}‘ Corresponding to each specific sequence of
parameters B(l’T_l) there will be a T-period consumption stream and a single
one-period lottery, (Co’cl""’CT—l’(PT’cT))‘ Given Assumption 4, we can com-
pute a T-period certainty equivalent for the pair (PT(B), cT(G)):

e(l,T—l)

N R o A A CHGE ))apy (636 Ty,

Now it follows from the continuity and strict monotonicity of VT and the se-

cond Mean Value Theorem (for integrals) that for each Q(l’T_l) a ET exists
and is unique.

B(l’T_l)): viewed as a function of G(T_l)s will be a

By Property I, ET(
measurable random variable with respect to the measure PT_l(B;B(l’T'2)). It
follows from r.p.i. (risk preference independence) that

T ~ (co,{Pl,cl} RN | (By_q> (cT_l,cT))}) (a.2)
where (Pf-l’(ET—l’ET)) is a vector lottery characterized by all of the uncer-

tainty resolving at the beginning of time-period T-1 when B(T'l) becomes known.
(l:T"z)

Here again, assume a specific sequence of parameters 8 Corresponding
thereto will be the branch
N .(coscl:'-'acT_Zs(PT_la‘(cT_lscT)))9 . (3‘3)

which we shall "resolve™ in a series of steps paralleling the Example in sec-
tion 2. First, using VT—l’ given by (A.4), and applying (A.3) we have that

(ocT-2’(PT—1’(ETHl’CT))) ~ (OCT—2’(PT-1’(ET-1’CT)))

for any choice of Cop and where
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(1,1-2), _ -1
1@ ) = Vo erT 1(er g

Now r.p.i. implies that the following is indifferent to the expression (a.3)

@0 T Dyyap, 850 -T2y,

(o Cr_p° Bp_35(Cp_15Cp))) - ‘
Since ET-l is the same for all values of B(T_l), we can next apply t.r.i. (tem-

poral resolution indifference) to change the time of resolution of PT_l from
T-1 to T. This yields the following which is indifferent to the expression
(a.w) " o

(oCp_p°Cr 1> (Pp_1-Cq))
(note that to avoid possible notational confusion, we have not altered the
subscript on the measure from T-1 to T as perfect consisténcy with the defini-

tion of t.r.i. would require). The third step in "resolving" (a.3) is to use

VT and r.p.i. again to convert the above to the indifferent string

~

(OCT—Z’CT-l’cT) (a.5)
where z

PR I s ks ki) o (1,T-2)

8y = W JVT(CT(B,S ))ar,_; (836 ).
Note that under (A.4), VT—l and VT are strictly monotonically increasing and

hence (a.5) is uniquely determined.
Proceeding as above for each possible G(l’T'3) yields
T~ (e, ,{P c | P .,{(PT_z,(VT Z,QT 1,6 )3
where Property I ensures that QT_l and ET’ when viewed as functions of G(T'Z),
are measurable random vairables with respect to the measure PT_Z(E;B(I’T_3)).

Now we can apply the above argument for each possible B(l’T_g) sequence. Do-

ing so yields

~

nZ

~ 2
(oCr3° (Br_ps (eq_ Z’CT 1°¢p)) ~ (Cp_3-Cp_p>Cp_1:Cp)
where 1

ai‘—2 = VT_ZJ\VT_Z (CT—2 (CH: (l’T—?’)))dPT-—Z (e -0 CL-,-T—?)))

._]_ -
-1 = Voo 1IVT 1 (e

n»
|

.o (1,T-3) .o @,T-3)
158 ))yae, ,(@;6 )

N>

 © v}ljvT(aT(e;e(1°T'3)))dPT_2(e;e(l’T‘3)).
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(A.4) ensures that each of these certainty equivalents 1s uniquely determined.

Finally, repeating this process for each of the T time-periods character-

ized by uncertain consumption yields »
(oo,al,az,...,aT) = TR~ T, (a.6)
(A.4) ensures the uniqueness of the T#% obtained. Ezgggfj

Now to verify our claim concerning egn. (3.1) in the Remark, simply ob-

serve that (for t = 2)

¢, = Véljvz(vélfvz(cg(ese(l)))sz(e;e(l)))dpl(e)
| = Véljfvz (02 (8 (l) .8 (2)))(1.]2 (B (l) ,e (2))
or more generally
at i V-—tljvt (c.t(e (l) 5 e ... ,e (t))th(e (l) i B ,e (t)) (3,7)

where integration is over the B(l’t) space.

L

To avoid introducing the quite unaesthetic notation ¢, in the text, we

g
instead use simply Et (see note (5)). Thus in the statement of the Lemma, edqn.

. A = a pa = 7%
(a.6) is expressed as (co,leT) (Co’cl’f"’cT) T, Q:E:D:

B. Proof of Theorem 1

Consider any pair of consumption trees, Tl’T2 e J(I). We have from (L.1)
: > T pa = A~ i & = 7% ~
thatlthere exists a unique (Co’lcT 1 T Tl_and a unique (co,lcT)2 Tk
T,. But clearly given that U represents <>

2
) A ~ ~ C A~

| UClegsep)y) = 0((eg0180)5) © (egsiCp)y < (eg0187) 5
It follows immediately that

& %
_Tl < 72 o Tl < T2.

That < is uniquely determined is an immediate consequence of the uniqueness

~ C A
(epe1p)1 < (ep0160)5

~ of the string, (CO,IET). Q.B.Ds

C. Proof of Theorem 2

Let <' and <" denote, respectively, the orderings corresponding to the
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sets U', {V],...,vz} and U", {V},...,Vi}. Clearly for <' and <" to be dif-
ferent they will have to disagree over some subset of J. The thrust of the
proof will be to show that this must, in fact, be the case.

Case 1. Suppose U' and U" are essentially'different. Then there will

n

exist some = Tf and cl

o T
1 T 1 ." " 1 1 s it "
U'(eq) £ U'(gel) and U"(el) > U(.eh).

ocT TE such that

2 is obtained by restricting < to J%,

But given (A.6) and the fact that
this implies that

# <1 T > e
b S &nd 7§ T3

Hence <' and <" are different -- this is true without regard to {Vi,...,Vi}

and {V“, R 1415
T .
Case 2. Suppose U' and U" are essentially the same, but Vé and VE differ

for at least some t e {l,...,T}. That is, 3 Ft’G

T

t
1 >-fl'
. Ft < Gt and Ft G_t

' o
where <' and <" are the preorderings correspcnding respectively, under (A.4),

. € E’t such that

to Vé and V;. But as noted in the Remark (1) following (A.3), F,_ and Gt cor-

E
respond respectively to the one-period lotteries (Pt,Zé) and (Qt,E;). Thus,

if we consider the fbllowing specific pair of trees in J

]

. Al
L il GRS R ChEMI S D I

= - T

we have (via risk preference independence) that

<t "
Tl T2 and Tl > T2

where <' and <" are, respectively, the preorderings on 7 (I) corresponding to

Vs {V‘,...,Vé,....,V%} and U", [V",...,V;,...,V;}. Hence <' and <" are

3 - > s = | T 1 L T
different --this being true without regard to U', {V ""’Vt-l’vt+l""’VT}

1 1" " b14 1" - ’
and U", {V ""’Vt-l’vt+l”"’v'l‘}' : 0.E.D.
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D. Proof of Theorem 3

To verify the first claim, let us begin by showing that if < is "NM
representable” and exhibits risk preference independence then the multiperiod
NM index W will be given by egn. (3.2). (As noted in the text, Assumption 5
will hold automatically for multiperiod NM preferences.)

To establish that there exists a continuous additively separable NM index
defined on Cl R ww aw K CT’ we have only to show that our assumptions imply the
hypothesis of Theorem 11.1 in Fishburn ([6], p.149). We shall do this in

terms of the following generic example

L S Eo C3
CO

1 1 1 1

R | 25 C3

for some fixed c,- The key hypothesis in Fishburn's theorem is essentially

that the pair (ct,c%) for any t can be "flipped" and the new tree (or joint
distribution) will be indifferent to the original one. Now clearly, V cg,eg
1. o T o *
1.8 ¢2 €3 | & €3
c ~ c (d.1)
°% °3
i % * 2 * ®
cy c3 c% cq c¥ cf
and then by r.p.i. (condition i)
(e 1
! °z °3 55/ °1 ©2 °3
c ~ c (@.2)
OX 9%,
2 1 T 1 T t
! 3 &3 Sy 2 3

Next, we want to show that (cz,cé) [or (CB,Qé)]'can also be "flipped"™. Using

r.p.i. (condition ii), (A.4) and (A.5) yields

X L
/j/’cl c, g ’j>/02 03
e ~ c c (d.3)
0\_5\ Ci Cé .-.é (o} ]_E\C ' cé
C > 5

Then proceeding as in (d.l) and (d.2) yields
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L 5 cq ;5/ c Cg
c c ~ & (d.w)

1 % 1 1 2 l& '

(22—— 03 2 QZ 03 -
But clearly (as in (d.3))
%/Cl “2 3 i %/ " €
o N ” ‘o cl\
T | ‘I/ T
Cl 02 03 3 cz 03

<éi::Cl ? e - & 4 e C3

i i i <

(a] (e}

;é c c! o! 1 o! o C' 5

2 3 2 L 2 3

= -

This implies (via Fishburn's result) that there exists a continuous additively
separable NM index defined on Cl B e s X CT. Finally, the r.p.i. property
also implies that the ordering over lotteries involving consumption for periods
one through T does not depend on the level of c, and hence the additively se-
parable NM index on Cl X .oae xCT can depend on c, only up to a positive affine
transform. Thus, if an NM utility defined on CO X Cl o S | CT exists and ex-
hibits r.p.i., it will take the form (3.2).

We next construct an OCE representation by defining U(OCT) = W(OQT) and
Vt(ct) = wt(ct), for t+ = 1,...,T. Then showing that for any T e J(I), U(CU’
lET) = EW(&O,El,...,ET) will clearly verify our first claim.

Let Pt(G;G(l’t'l)) for all t ¢ {1,...,T} be defined as before. Denote
the joint probability measure by Jt(e(l’t)) = Pt(B;Bcl’t'l))Pt_l(B;G(lftfz))...

. Pl(e). Using the w

t's defined above and the observation following eqn.

(a.6) (in Appendix A)

S X, (8;8(l,T—l)))dPT(e;e(l,T-l))

T r ¥ (Cp
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& =w l”wT(cT(e(T -1) (M, @,T- 2)))dP @0 &sT- l))dP (9;9(1,1‘-2))

or, more generally for any time-period t, we obtain
¢

&, = th (e, 6@, ....0®yaz 6@, .. 6®),

where Jt is the joint measure. Furthermore, since under risk preference inde-

pendencetvt(ct) does not depend on 8(t+l),...,8(Th, we can integrate it as a

constant with respect tothe measures PT(G;e(l’T'D) G RAaiad & ,P ;e(l;t)}

and obtain

~

: o=
Ct t J wt(ct

Following Corollary 1, if < is OCE representable then

(ﬂDeQ)”wﬂﬂnMﬂﬁhﬂy

Ty ST, ®U(eys18p)1) = U((eys180),) s

where, as in the text, we follow the notational simplification of using laT

2

A 2
for (cl,cz,...,cT) In the present case we have
Uleysq T) = U(c ,el,...,aT)

T
Gleg) +Ble) Bk @

T
aleg) *Bley) = lk w vl o, @ @)y a0, D))

[l (e + B z b Sy (e, @ F5))]ag, 0 o)

= EW[co,lcT).

To see that the converse is false, consider the case in which U(co,...,cT} =
T -y ’

@ = t © i # -
thic /6 (-1 <6 <) and Vt(ct) -c, /Yy (-1 < yg< ®) with v, 7 6 Cf.,
Theorem 2 in Selden [30]. _ ' Q.E.D.

E. Proof of Proposition 1

Each feasible allocation on,Al(Bl),...,Al(BN)} results in a consumption

tree T in which -
A-2))y,
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e, 0,) = By % (Bi)[l—Al(Bi)] 2§ IS
2052 =g OO e e g

Following (L.l) and egn. (3.1), we have that

. N
& : Vil,i V, (c; (8))dP, (8) = Vil §=lvl (cy 0,))B; B)
and
&, = V31V, (e, 0:0 M)yap, 0:0 Myap, @)
N N
| a3 () @)
VI E vy, @panr o8 pef)

where cl(e) and cé(Bge(l)) are defined above and Stieltjes integrals are em-

ployed to accomodate the discrete probability measures P, and Pl produced by

2

the finite state assumption. Given that < on < (I) is OCE representable, the
utility of any tree T corresponding to a feasible {AO,Al(Bl),...,Al(BN)} can

be written as
U((L-3) vl V, (A y X, 6.)[1-3, 6.)1)P (e)v'lg ng x. (6.1
Lo M St B Ll T L FRE Sy ey 2 oY1 ¥4

.Al(aél))xz(ej;ei(l3))p2(ej;ei(l)) p e @y,

Following (A.4) and (A.6), Vl,Vil,VEl,vz and U are continuous. But then U will

be continuous in AO,Al(el),..., and Al(BN) since the composition of continuous
functions is continuous. = Furthermore, (AO,Al(él),...,Al(BN]) € [D,l]N+l by
assumption. Finally since we have a continuous function on a compact subset

pN+1

of , the Weierstrass Theorem assures us that a maximum exists. 0.E.D.

F. Proof of Proposition 2

It follows by straightforward calculation from the expressions in Appen-

dix E and the assumed forms of V., and V2 (egn. (4.5)) that

1
i e Aoyar
c, = Aoydﬂ

where
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N -y -1/y
- 1 1
L= def[ };:l([l"b’l CRRMICHY Pl(ei)]
N —;—l/Y
be gl T e @i eMix, €508 2ry6.:0Dyp 0 D) T2
er- - J -
i=1l j=1
Defining
_ -8 -6
M = def i? + a2ﬁ | 8 #0
L=dfo:l£n1"+ azna 6 =0
we have that for any feasible consumption tree T
1 -0 " =85 -6
Ule,,8,8,) = - —,rcx @-a) 5 AO v M:I 5 # 0
U(e 901,02) =adn(@-A)y, + (@) +a,)inAy + L 6 =0

The consumer's maximization problem can then be expressed for the case § # 0

das

1 -5 -8 -5 -8
0 22251 {— 5 [a"(l_AO) Yo ¥ %o Vo M-l}
0 ={a; (8;)3=1
- %y /M) .
= y06 max - 6 (1-A ) 6 min [M)J’ (£.1)
0 <A <1 °0 ={a, (6 )}51
and for the case 6§ = 0 as
max {(cc +a.+a_)4ny +0a 4n(1-A )+ (a.,+a,)4nA +L
0 shoﬁl < o 1 2 o 0 0 1 2 o } (£.2)

0 ={a) (6))1

= 4ny + max 1& Zn (1-A )+(cx *+ az)znA + max L}'

o 8] o g
0 <A <1 0 <{a; (68,)3}=1

Clearly, in both instances the optimal allocation {Ag,Al (Sl)o,...,Al (BN) D}

does not depend on Vg Also claim (i) is satisfied, since in the cgse of the

problem (f.1) one can first min (%) and- then max {— -5—0-(1-‘A,0)_6—
0 s{A (e.)}Sl : 0 <A <1

Aab( )} where M° is optimal (as in Proposition l the existence of M° follows

from the Weierstrass Theorem). A similar argument applies for the log additive

problem (f.2).

To prove condition (iii) of the Proposition, we start by assuming that _MO



Al0
has been optimally valued by the appropriate choice of the vector [Al(el)D,...,
Al(GN)O}. Now it clearly follows from our assumptions that 0 < M° < » and
0 <a0, al,o.2. We have two cases.

Case (1): & = 0. Here it follows from (f.2) that we need to

{ X
Jmex  (aginQe) + @ o) 4na _}.
(8]

Differentiating and. solving for Ao vields

+ Q
o _ %1 2
o] o +a +a_ -
o o 1 2
Thus in this case, A  is interior and unique.

Case (2): -1 <86 <0 and 8§ > 0. Here we need to solve

! i, )
max {—_0 1-A - K% dia U
U SAosl k- 5 ( O) (8] 5 J .

Calling the expression to be maximized f(AO), we have
-6-1 0,-0-1

£'A) = -a (1-3) + M°A

and thus 9 - © ©
£1(e) = -a_(-e)" O 41 1/6)°H
£'(l-€) = - a_@/e)°" + W -e)” D)

But the latter imply, since 6+1 > 0, that for ¢ > 0 but small enoucgh, f'(e) >

0 while f'(l-¢) < 0. Hence the max f(AO) must occur in the interior, i.e.,
0 < A% < 1. Solving the above expression f'(A®) = 0 yields the following

=1
Ag - [(U.O/Mo)l/(5+l)+lj . (f.3)

Q.E-.D-

unique solution

G. Proof of Result A

Following our development in Appendices E and F and using egn. (4.9) in

the text, we have that the "early resolution certainty equivalents, E; and 3;,

are given by

N N
2 = vyt };21 }j:=l v (e, 0D ,ej(z)))P2 (e:.fz) 0y () = ay T
N N
ae _ -1 L) @ (2) ., @) 1), - e
“x= % 2, §=1 Vol (057,057 00, (85738 )P (B57) = Ay A
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where i '141
N 1
R §l Z (f2-a, 6.0 0 6 )) 2,025 ae 0]
" , -y, (g.1)
p® = def[ I I ey 08 Px 0 Mx, 0360 e, 0830
o g
_l/YZ
. (1) g.2)
P (8 )]
Next define
5 <%
M = 4@ T+ o, (%) Lok

Given the same U, Vl and.Vz, the only difference between the early and non-
early resolution cases is in the definition of I" and A. Rewriting thé non-
early resolution expressions from Appendix F, we have

-Yl -1/ Y

1
-2 @ e®) o ree®e ™))
T i (-3)
N
(since ¢ P(e,euh =1 )
=1 , ._1/Y2
N N ) .o @) (1)
A = [ T I @ (B(lJ)X (e(l))x (8 ef”)) P, (8538577 Py (8 )]
=1 5=1 -
"6 _6 (g_l]l.)
M = alT + aza 8 # 0.

Restricting ourselves to the case § > 0 (n < 1), the early-resolution optim-
ization problem becomes one of
: o}

- —201-a )% 58 M&/ 1
0 sﬁfx; 1 { 5 (Ao ° 0« Ay (e(l),a(z)) s( ®)

It is clear from egns. (g.1l)-(g.4) that the class of functions A; (S(l) (2))
over which M€ is optimized contains the class_Al(B(l)) over which the non-
early resolution M is optimized; furthermore, for any fixed Al(B(l)), the
resulting M® and M will be equal. From this we can immediately conclude that
optimal (M%/§) < optimal (/8). (g.5)

But we have from Appendix F that the OCE utility conditional on the
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optimal A (8 (1)30 3¢ given by

6

where 1

- B+1 =1
Ag = I_(U.O/Mc’) + .'LJ . (g.6)

o4
= %0 =brq_n 178 _a=b,"8 0
Vo L1-a 17 -a Py R 017/8)

Substituting and then rearranging yields

_y—b I S 1 1 18 -
0 o §+1 §+1 0,6 (6+1) 0,8
o o100 BT ]+ [5 TR TED + o] )

which is clearly decreasing in M° assuming § > 0. But then combining this

result with (g.5), we have that for § > 0 (n < 1)

o]

00
T < 7T

where e and TO denote, respectively, the early and non-early resolution
optimal consumption trees.

A similar argument applies for the § = 0 case. Q.E.D.

H. Proof of Result B

We shall require the following result.

Lemma:

If a<8g<0 or O<ase<m,IdP(a)=1,
®

E() 20V €@ and [ £(8)dP(8) # 0, then
@

1o /8
{rrorem}  {frz@fem)
Q) ®
Proof. See Rudin [27], problem 5, p. 70, for the case of 0 < g < B < =,

Assume now that ¢ 5-5 < 0. But this impliés that 0 < -8 = 0. Hence

. "1/8 -1/
{Jre@17Pare)} s{tL[g(e)]‘“dP(a)} )
@ .

where this is in the form of the case covered by;Rudin; setting g(g) = 1/£(8)

yields
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{th(e)]“dme)}w < {jcf(s)JBdP(a)}w
® ®

where a < B < 0. _ ::EEE;J

Case 1. Letn <1 (8§ > 0) and suppose that increases to p; > . By def-
et P1 1 7 P

inition py = v; + 1, and so y; increases to yi > Yqe By the above Lemma and
the definition of T in Appendix F, we have that |

OB IERNHORY VA, (8).-
Thus, from the definition of M (§ > 0)

M@, (0)5y]) = MG (6).y;) VA, (6). (h-1)
But if A;(8)° denotes the minimizing (b > 0) function,

M@y (8)sy;) =M@, (8)°,y;) va, (6)
and hence |

M@, (0),y]) 2 M@ (@)%y;) va, (8) -
But since this holds for any Al(e), M(Al(e)+,yi) 2_M(Al(e)°,yl) where Al(e)+
denotes the optimizing function for M(Al(e),yi). However this implies, given
eqn. (£f.3) in Appendix F, that AZ Z_Ag. ' That is, the optimal A correspond-
ing to p' will exceed that corresponding to the lower initial level of risk
aversion, p (see the qualifications in note 9)).

A similar argument applies when Py increases to pé > 0,3 the only dif-
ference being that A is altered instead of T.
Case 2. Letn>1 (6 <0) and again suppose that Py increases to pi > py-
Since § < 0, (h.l) becomes

M2, (8)>v]) = M@, (8)5yy) vA,.(8) o
Letting Al(e)° and Al(8)+ denote, respectively, ﬁhe maximizing (§ < 0) func-
tions for M(Al(e),yl) and_M(Al(e),yi), and arguing as in Case 1 we have
M(Al(e)o,yl) 2.M(Al(8)+,yi)..But this implies via eqn. (f.3)that Ag z_AZ. A

similar argument holds for a small increase in Poe
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Case 3. Letm =1 (6§ = 0) and again suppose that p; increases to pi > pq-
But this can have no effect on the optimal initial allocation since, as was

" . 0
= + .
shown in Appendix F, A = aq¥ Q5. Q.E.D.

I. Proof of Result C

We shall only consider the case of a mean preserving increase in peri-
od one capital risk--leaving the simpler proof for a period-two increase to

the interested reader. Result C is implied by the following Lemma:

Lemma:

Let M be defined as in Appendix F and‘suppose that the assumptions
of Result C hold. Then the effect of a mean preserving increase in
period-one risk on the optimal (-M°/8), defined in terms of Altel)°,...,

Al(eN)o, can be expressed as

ax( ) = 0.

ael/dxl = -E &1)

Proof. First of all, performing the maximization (f.1l) in Appendix F, noting
the assumption that §2 is independent of B(l), yields for the optimal Al(el)°

(o]
L ,Al (BN)

N -y -1 ¥t
r
@1[§£51‘Al(9131(1+X1(9i)3) e (o, )]Yl (1, (8)) |
"Yl N N
[ (8] T =a,[T _, B0 (601, (0, T, (5 2 (1.1)
M |
-1 N

~y,-1 = s
P, (8;) Py (8 )]Yz Z a6 2 T (80) PL1¥x, (85)] 2 P, (&)

. 1’0..’N¢

Define 5

N — -1
= 1
K = a1[§=£[1—al(ei)°] (1 (8) Ry (6) N1
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oI T ([ (818 ()19, (8)]) 2R, (80P, 6 )]%2'1
%o i=1 =1 1% 37951 Vg 2473 2 gy e
Next, write (-Mo/b) in terms of hl§1 + €1 and then differentiate with res-

pect to 11 (evaluating all derivatives at kl =1, ¢
de,/dN; = -E 1))

3 (ﬁ) |

Bll b .

e)/d\, = -E &1)

1= 0 and setting

-1 -y -0A. (8.)

_ g 1 i s

i=1 1

: “Ya 1y

Tz 6] " )101%%, (8,)1) 2R, (80P, ( )aAl(e)
+ K E n A B 1+x. (6. 1+x., (6. P 8. P 8. )—s—

2 i=1 3=1 11 { 273 l

N N 2 l
*EE ?-{A 1 80 [1%x,, (85 ) (1, (8, )3 2 P, (80P (8,)[x; (8)-EG)]
(or using the first-order conditions (i.1l) since M° is optimal)
= N B r _YZ-l -YZ e
=X, §=1 §=1 (@, (8,)[1+x, (65)1) [1#x, (8501 “Ix (8;)-E(x;)]P;(85) Py (85).

Thus to verify the assertion of the Lemma we need to show that

N N
T T 0600, R "1, (801 2lxy (6,)-EG;) P, (80P (8)
i=l j= '

<0 (i.2)

since K2 > 0.

Step 1. In order to establish (i.2), we first shall require the re-

sult that
-y,=-1 N
2 .
(3, (8;) (1%, (8,)D) z [y )1 "2 , @) (i-3)

is a decreasing function of xl(ei) (where the Al(ei) were obtained using the

- first-order conditions). This will be accomplished by proving that the more
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general expression

-Y,-1 -Y,-1 N
S (1+2) Z [1+ x,(8 )J P2 ®.) (i.4)
j=1 .
is a decreasing function of Z where Z lies in the closed interval [min xl(Bi),
: i
max xl(Bi)] and S is implicitly defined as a function of Z by
i
Y1 Y-t ¥g Y-l N
K, (1+2) ~(1-8) -K, (1+2) S >: [1+x, (s )J P2 (ej) = i (i.5)
=1

Note that I(.l and K2 are defined as above and egns. (i.4) and (i.5) are, res-
pectively, functional extensions of the N-state expression (i.3) and the first-
order conditions (i.l) (i.e., egns. (i.4) and (i.5) include (i.3) and (i.l) as
special cases when 7 = xl(ﬁi) and S = Al(Bi)). Further observe with respect
to (i.5) that as S # 0 one term in the expression goes to zero while the other
is strictly positive and vice versa as S @ 1. This implies the existence of
an S ¢ (0,1) which satisfies (i.5).

First, observe that the function defined by (i.5) is continuously differ-

entiable in Z and S. Also the partial derivative with respect to S is

pLA TR § Vg TR

- (y,+VK, (1+2) (1-5) + (Yo+1L)K, (1+2) S Z [1+x (8 )] P,(8.) # 0.
4 i ) 2 2 3=1 243

It then follows from the implicit function theorem that S is a continuously

differentiable function of Z, denoted S(Z). Next, to show that (i.4) is de-

creasing in 7Z, we need to establish that
N =y N n-2: =Yi5-2 :
. 2 2 2 ds
- (Y,+1) ?zfl-rxz (ej)J B, (ej) (1+2) S [s+ (1+z)d—ZJ < 0.

But since S > 0 and y.+1 = p. > 0, we only need to show that [S+(l+z)ds I > 0.
2 2

Implicitly differentiating (i.5) with respect to Z yields
-Y;-1 =¥ i 0 =¥ ~Y
ds _ T Y1 2 2 2 ]
(+2) 7z = 1 Y1¥; (1-9) (1+2) © -y5K;S (1+2) ? [14x, 8] 2P, 6)
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—yq =2

Y1 -2

i Yz Y -Y e
[ 4y # 0K a-s) @42) Ty, DKS (142) 2§Il+x2(8j)] 2P2(ej)]

(or substituting from (i.5) into the nqmerator)
| Yo~ . "o Y2
i (Y1 Y5) K,S (1+2) §[1+x2(ej)] P2(Bj)
= =2 -y e
- 1 1 2
(v, DKy (1-S) (l+§) +(y, 1)K,

2 Y2 ~Y2
(1+2) §[1+x2(aj)3 P, (8 5)

If ¥; = Ypo then (l+Z)%%-= 0 and [S + (1+Z)%%J > 0. Assuming Y, # Y,, Tear-

ranging the above expression yields

1
as -
w2

. (i.6)
Y1-2 ~¥4 Y
1 a+z) L2

(D) 1, D K 0-9)
(y1-vp) 8 (yp=vp) K S‘Yz'l

v

2
?[1+X2(9j)] Pz(ej)
If y, > Y, then (1+z)E > 0 and [s+@+2)E > 0. on the other hand if

Y1 < Yo since Py > 0, we have =1 < Y1 < Yo and thus (i.6) becomes

ds ' -1
1E) =S S .
( )dZ l: ""Yl"'2 ""Yl-hl’z :\
(vt (y*1) K (1-9) (1+42)
[ IS Y,-2 Y
Yo=Yp) Yo=Y =y~ =
2 'L 2 '1 2 S 2 s[1+x. (8 )] 2P 6.)
Y5+1 i e 273
But now Y;iY > 1, which implies that the denominator of the bracket > 1 and
2 1

thus l(l+Z)%%\ <Sor S +'(l+Z)%% > 0. Eqn. (i.4) is thus a decreasing func-
- tion of Z; therefore the special case (i.3) , where Z = xl(si) and S = Al(ei),
must also be decreasing in xl[ei). This completes step 1.

Step 2. We are now ready to prove the inequality (i.2). Define Ei =

Ségl), i.e.,E%‘is the value of S when Z is set egual to ;l = E(;l). It fol-.

lows from (i.4) being decreasing in Z lor (i.3) being decreasing in xl] that

N L e Y, N
Z <(>) x = [a; Q%] _§=£1+x2(ej33 P,(65) <(>) [s(+2)]

N "Y2
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But then
ok - T Y2
[Al(ei)(l+xl(8i))] [xl(ei)—xll §=£l xzcaj)] P2(8j) <

= — b -
[, 1+;)]

-1 _ N \ Yo
I=1,eeeesN

and hence

N —Yz—l _ I\i g
§=£A1(61J (4, (85))] [x; (8;)-%; 1P, (8 i)5=£1+x2(ej)] P,(85) <
_ s -Yz—l N _ N =Y5 -
(2, (#x;)] §=E"1(913'°‘13P1(913 §=§1+x2 61 “By(e5) = 0.
=l
Now to prove Result C, note that
am° . C(-8)2_ (ﬁ)
EII = g\ 8
de .. de
1
EI% = -EGY) ax, - EeD)
and thus
o
'g%%’ {Z==QS}D .._5.5{>s==<}0=01‘
l a
de
i T as n{ <, =, >} 1.
Dy EG) |

Finally, since A® is increasing in M° (Cf., eqn. (£f.3)) in Appendix F), the

assertions in Result C follow immediatelye. . _ 0.E.D.



NOTES

l.

One exception is Pye's paper [23] in which the NM representation is assum-
ed to be affinely multiplicative.

Note that under risk preference independence, the set of Vt's are well de-
fined in that each is independent, up to a positive affine transform, of
consumption payoffs occuring before period t and of lotteries after t.
Here, after the first integration, we view the parameter B(t-l) as a new
variable and integrate with respect to it. We continue in this fashion.

g (t-2) g (D

for . Thus, in the T = 2 case, we first integrate with res-

3o
pect to 6 ,yielding £6Y) = [V, (c,@:0 P))ap, ©:6 1)), and then with
respect to B(l), s SR - [ jf(e)dPl(Gj.
When T = 1, this condition reduces to the existence and finiteness of per-
iod-one expected utility,

[V, e @8R, @) = [V, (ear(e)) <=
If the random variable El has a finite mean, then a sufficient condition
for this to hoid is that 3 some constant K such that lVl(cl)l < Key, Vcl.
Thus essentially, Property I will be satisfied if ct(B;B(l’t_l)), viewed
as a function of each its parameters sequentially, is measurable and has
a finite mean with respect to each of the corresponding measures Pl""’Pt'
In order to simplify notation, the same symbol Et is used in egns. (3.1)
and (2.1) even though (within the context of a consumption tree) it has
two different meanings. That is, in egn. (2.1) Et denotes the certainty
equivalent of a one-period lottery (Pt,ztj resolved at time t given that
B(l),...,e(t"l) has occurred, while in (3.1) it refers to the certainty

equivalent with respect to the Jjoint measure J (or J

t T)'

We wish to thank Andy Postlewaite for raising the question of a unique

decomposition.



7. We are indebted to Arjun Ray for pointing out, in an earlier version of
this paper, an error in our analysis of the optimal allocation.

8. 1In [33]), we address this same question where the preordering < is per-
mitted to exhibit temporal resolution dependence. -However, this. in-
crease in generality greatly complicates the analysis of optimal be-
havior in allocation problems.

9. Two technical points should be noted. First to simplify the proof, we
assume that in the process of undergoing a small increase, Pt never
equals unity (the log case). Secondly, some clarification of the phrase
"in general” is required. As can be seen from the proof, if n < ) 1
the change in sg will be, strictly speaking, > (<) 0. But since the set
of cases in which actual equality holds is both gquite special and unin-
teresting, we ignore them.

10. More general definitions of increased risk can be found in Rothschild

and Stiglitz [25] and Diamond and Stiglitz [U4].
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