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Asset Demand Tests of Risk Preferences

The classical Arrow-Debreu contingent claims framework has served
as the foundation for asset demand and asset pricing.

I Static models typically assume expected utility (EU) preferences.

Kubler, Selden, and Wei (2014) extend Arrow-Debreu by allowing for
state probabilities which can vary, i.e., which are not necessarily fixed.

⇒ Asset demands are functions of probabilities, prices, and income.

⇒ Asset demands can be generated by ‘EU’ preferences, where the
von Neumann-Morgenstern (NM) index depends on probabilities.
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Asset Demand Tests of Risk Preferences

Kubler, Selden, and Wei (2017) identify the incremental axioms which
are required for an EU representation to have an NM index that is
dependent on rather than independent of state probabilities.

Question: Are asset demands compatible with the maximization of
risk preferences with probability dependent NM indices?

The aim of this paper is to address this question empirically.

I We combine recent advances in

I Revealed preference (Polisson, Quah, and Renou, 2017),

I Experimental design (Choi et al. 2007).

I We compare the empirical performances of EU, probability
dependent NM, and rank dependent utility (RDU).
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Preferences over Contingent Claims – Setting

Classical EU is defined over a full probability space, which is a strong
requirement (von Neumann and Morgenstern, 1947; Aumann, 1962).

Consider two subsets of the full distribution space:

(i) The classical Arrow-Debreu single contingent claim space (called
a “slice”), which is associated with a fixed set of probabilities,

(ii) A set of contingent claim slices with different probabilities, with
different budgets and possibly different utilities on each slice.

Given the setting in (ii), we ask whether an agent is compatible with

(a) EU over all slices with the same NM index,

(b) EU on each slice but with different NM indices corresponding to
the different distributions defining each slice,

(c) RDU over all slices with the same value function and probability
weighting function.
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Preferences over Contingent Claims – Axioms

With S > 2, a consumption plan is given by x = (x1, x2, . . . , xS) ∈ RS+
and ∆(S) = {π ∈ RS++ :

∑
s πs = 1}.

(TC) Tradeoff Consistency: For any given π ∈ ∆(S),

x−s(a) ∼π x′−s(b), x−s(c) ∼π x′−s(d), x′′−s′(a) ∼π x′′′−s′(b)

=⇒

x′′−s′(c) ∼π x′′′−s′(d),

where x−s(y) denotes x with xs is replaced by y ∈ R+.

TC is critical for existence of an EU representation on a single slice.

Furthermore, TC can be modified/strengthened to hold across slices,
which is critical for existence of an EU representation on a set of slices
and with the same NM index on each slice.
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Preferences over Contingent Claims – Example

Consider the utility function given by

U(x;π) = −
3∑
s=1

πs(exp(−π1xs) + exp(−π2xs) + exp(−π3xs))

=
3∑
s=1

πsuπ(xs),

where uπ(y) = −(exp(−π1y) + exp(−π2y) + exp(−π3y)).

If, instead, π = π̄ = (π̄1, π̄2, π̄3) is fixed, then

U(x; π̄) = −
3∑
s=1

π̄s(exp(−π̄1xs) + exp(−π̄2xs) + exp(−π̄3xs))

=
3∑
s=1

π̄su(xs),

where u(y) = −(exp(−π̄1y) + exp(−π̄2y) + exp(−π̄3y)).
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Revealed Preference Analysis

Let O = {(pt, xt)}Tt=1 be a finite set of prices pt = (pt1, p
t
2, . . . , p

t
`)� 0

and demands xt = (xt1, x
t
2, . . . , x

t
`) > 0 drawn on a consumer.

Definition: A utility function U : R`+ → R is said to rationalize the
data set O = {(pt, xt)}Tt=1 if, at every observation t = 1, 2, . . . , T ,

U(xt) > U(x) for any x ∈ {x ∈ R`+ : pt · x 6 pt · xt}.

Afriat’s (1967) Theorem establishes the following equivalence:

(1) O is rationalizable by a locally nonsatiated utility function U ,

(2) O obeys a no-cycling condition (GARP),

(3) There exists a solution to a particular system of linear (Afriat)
inequalities constructed from O,

(4) O is rationalizable by a utility function U , which is increasing,
concave, and continuous.
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Contingent Consumption and Rationalizability

Now suppose that an agent is choosing contingent consumption, i.e.,

pt = (pt1, p
t
2, . . . , p

t
S),

xt = (xt1, x
t
2, . . . , x

t
S),

are vectors of state prices and contingent consumption, respectively.

How might one conduct revealed preference tests analogous to Afriat’s
for different tailor-made models of decision making under risk?

E.g., if we know the probability of state s to be πs > 0, how do we
test for rationalizability by EU, i.e., that there is an increasing and
continuous function u : R+ → R such that, at every t = 1, 2, . . . , T ,

S∑
s=1

πsu(xts) >
S∑
s=1

πsu(xs) for any x ∈ Bt,

where Bt = {x ∈ RS+ : pt · x 6 pt · xt}?
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A Lattice Test for EU-Rationalizability

Given O, define the set X = {xts : (s, t) ∈ {1, . . . , S} × {1, . . . , T}} ∪ 0,
and then the finite lattice L = XS .

E.g., suppose that we observe x1 = (2, 5), p1 = (5, 2), x2 = (6, 1),
p2 = (1, 3), x3 = (4, 3), p3 = (3, 4), π = (1/2, 1/2).

Then, X = {0, 1, 2, 3, 4, 5, 6}, and L = X × X .

For EU-rationalizability, it is clearly necessary that there are real
numbers ū(0) < ū(1) < · · · < ū(6), such that, at every t ∈ {1, 2, 3},

1

2
ū(xt1) +

1

2
ū(xt2) >

1

2
ū(x1) +

1

2
ū(x2) for any x ∈ Bt ∩ L,

1

2
ū(xt1) +

1

2
ū(xt2) >

1

2
ū(x1) +

1

2
ū(x2) for any x ∈ (Bt\∂Bt) ∩ L.

It is also sufficient to guarantee EU-rationalizability by an increasing
and continuous function u : R+ → R that extends ū : X → R.

So we only need to check for EU-rationalizability on a finite lattice,
which is a straightforward linear test.
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ū(x2) for any x ∈ (Bt\∂Bt) ∩ L.

It is also sufficient to guarantee EU-rationalizability by an increasing
and continuous function u : R+ → R that extends ū : X → R.
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ū(xt1) +

1

2
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ū(x1) +

1

2
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A Lattice Test for EU-Rationalizability

Theorem: The data set O = {(pt, xt)}Tt=1 is EU-rationalizable with
π = {πs}Ss=1 if there is an increasing utility function ū : X → R such
that, at every observation t = 1, 2, . . . , T ,

S∑
s=1

πsū(xts) >
S∑
s=1

πsū(xs) for any x ∈ Bt ∩ L,

S∑
s=1

πsū(xts) >

S∑
s=1

πsū(xs) for any x ∈ (Bt\∂Bt) ∩ L.

Intuition: First we replace ū with the step function û : R+ → R such
that û(y) = ū(y) for all y ∈ X and û is constant between values of X .
Clearly, û rationalizes the data in the sense that

S∑
s=1

πsû(xts) >
S∑
s=1

πsû(xs) for any x ∈ Bt.

The only problem is that û is neither increasing nor continuous. But
it is possible to find another utility function u, arbitrarily close to û,
that is increasing and continuous which also rationalizes the data.
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πsū(xts) >

S∑
s=1
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that, at every observation t = 1, 2, . . . , T ,

S∑
s=1
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Clearly, û rationalizes the data in the sense that

S∑
s=1
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The Lattice Test of EU-Rationalizability
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Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 10/17



The Lattice Test of EU-Rationalizability
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The Lattice Test in More General Settings

Suppose now that xt is instead chosen from a compact constraint set
Bt ⊂ RS+, so the data set is now O = {(xt, Bt)}Tt=1.

Typically, the utility function in particular model of choice under risk
or under uncertainty takes the form

U(x) = φ(u(x1), u(x2), . . . , u(xS)),

where u : R+ → R is again an increasing and continuous function, and
where φ : RS → R is an increasing and continuous function that is
drawn from the family Φ, which is specific to the model.

Many models of choice under risk and uncertainty can be described
within this framework, with each model leading to a different φ.

E.g., objective and subjective expected utility, rank dependent utility,
disappointment aversion, choice acclimating personal equilibrium,
maxmin expected utility, and variational preferences.
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The Lattice Test in More General Settings

The lattice test can be further extended in two important directions.

(1) We can allow for probability dependence in the NM index.

I Given the finite set of probability weights {πt}Tt=1, we can check
for rationalizabilty by φ : RS → R and a finite collection {uπ}π∈Π,
where for each π ∈ Π = {π ∈ ∆(S) : π = πt for some t}, the
function uπ : R+ → R is strictly increasing and continuous.

(2) We can accommodate departures from rationality in the form of
cost inefficiencies, as in Afriat (1972, 1973) and Varian (1990).

I We find U : RS+ → R such that U(xt) > U(x) for any x ∈ Bt(e),
where e ∈ [0, 1), and where

Bt(e) = {x ∈ RS+ : pt · x 6 e pt · xt} ∪ {xt}.

I The largest e at which a data set passes the test is known as the
critical cost efficiency index (CCEI).
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Implementation on Asset Demands

We implement an array of tests using data collected from a portfolio
choice experiment that extends Choi, Fisman, Gale, and Kariv (2007).

61 undergraduates participated in the experiment at the University of
Leicester, each completing 80 decision problems under risk.

There were two states of the world, each occurring with some known
probability, and two Arrow-Debreu securities, one for each state.

I We faced subjects with four different probability distributions:
π ∈ Π = {(1/8, 7/8), (1/4, 3/4), (3/8, 5/8), (1/2, 1/2)}.

I For each distribution, there were 20 decision problems; the order
was randomized and balanced.

I The within-subject variation in probabilities (as opposed to the
between-subject variation in Choi et al. (2007)) is essential in
order to test for probability dependence.

In each decision problem, every subject was given a budget; income
was normalized to one, and state prices were chosen at random.
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Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Implementation on Asset Demands

We conduct a set of nonparametric empirical analyses.

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function which obeys first order stochastic dominance.

I We apply the lattice method in order to test for

I Expected utility,

I Probability dependent NM (Kubler, Selden, and Wei, 2014),

I Rank dependent utility (Quiggin, 1982).

We also conduct a set of parametric empirical analyses.

Introduction Contingent Claims Revealed Preference Empirical Implementation Conclusions 14/17



Rationalizability Results
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Summary of Empirical Findings and Conclusions

(1) At a cost efficiency threshold of 0.9, nearly 74% of subjects are
consistent with stochastically monotone utility maximization.

(2) About 34% of all subjects are rationalizable by EU, and about
66% by probability dependent NM.

(3) Roughly 52% of all subjects are rationalizable by RDU, more
than EU, but fewer than probability dependent NM.

(4) All models/tests are extremely powerful (Bronars, 1987).

(5) Basic rationalizability results hold even after controlling for the
empirical permissiveness/stringency of the different models . . .
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