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Abstract

The literature assessing whether mutual fund managers have skill typically regards

market timing or stock picking skills as immutable attributes of a manager or fund.

Yet, measures of these skills appear to vary over the business cycle. This paper offers a

rational explanation, arguing that timing and picking are tasks. A skilled manager can

choose how much of each task to attend to. Using tools from the rational inattention

literature, we show that in booms, a manger should pick stocks and in recessions,

he should pay more attention to his market timing. The model predicts equilibrium

outcomes in a world where a fraction of managers have skill and invest alongside

unskilled investors. The predictions about funds’ covariance with payoff shocks, cross-

fund dispersion, and their excess returns are all supported by the data. In turn,

these findings offer new evidence to support two broader ideas: that some investment

managers have skill and that attention is allocated rationally.



“What information consumes is rather obvious: It consumes the attention of its re-

cipients. Hence a wealth of information creates a poverty of attention, and a need

to allocate that attention efficiently among the overabundance of information sources

that might consume it.” Simon (1971)

The literature that evaluates skills of mutual fund managers typically regards skill as an

immutable attribute of the manager or the fund.1 Yet, many skill measures vary over the

business cycle, such as returns, alphas (Glode 2011), and return-based measures of stock

picking and market timing (Kacperczyk, Van Nieuwerburgh, and Veldkamp 2012). Because

time-varying ability seems far-fetched, these results call into question the existence of skill

itself. This paper examines a rational explanation for time-varying skill, where skill is a

general cognitive ability that can be applied to different tasks, such as picking stocks or

market timing, at different points in time. Each period, skilled managers choose how much

of their time or cognitive ability (call that “attention”) to allocate to each task. When the

economic environment changes, the relative payoffs of paying attention to market timing and

stock selection shift. The resulting fluctuations in attention allocation look like time-varying

skill. While this story might sound plausible, it leaves open three questions. First, why

would a manager want his attention allocation to depend on the state of the business cycle?

Second, do the managers’ attention choices exhibit the same pattern as the time-varying

skill observed in the data? If managers want to allocate more attention to stock picking

in booms, do we see better stock picking in booms? Third, if there are many skilled and

unskilled managers in an asset market, would the time-series and cross-sectional portfolio and

return patterns resemble those in the data? This paper builds a simple theory of attention

allocation and portfolio choice and subjects it to these three tests.

The model uses tools from the rational inattention literature (Sims 2003) to analyze

the trade-off between allocating attention to each task. In recessions, the abundance of

aggregate risk and its high price both work in the same direction to make market timing

more valuable. The model generates indirect predictions for the dispersion and returns

of fund portfolios that distinguish this explanation from other potential explanations for

time-varying skill. It reveals that when skilled managers devote more time to market timing,

portfolio dispersion is higher, both among skilled managers and between skilled and unskilled

1For theoretical models, see e.g., Mamaysky and Spiegel (2002), Berk and Green (2004), Kaniel and
Kondor (2012), Cuoco and Kaniel (2011), Vayanos and Woolley (2010), Chien, Cole, and Lustig (2011),
Chapman, Evans, and Xu (2010), and Pástor and Stambaugh (2012). A number of recent papers in the
empirical mutual fund literature also find that some managers have skill, e.g., Kacperczyk, Sialm, and Zheng
(2005, 2008), Kacperczyk and Seru (2007), Cremers and Petajisto (2009), Huang, Sialm, and Zhang (2011),
Koijen (2012), Baker, Litov, Wachter, and Wurgler (2010).
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managers. It predicts that recessions are times when skilled managers outperform others by

a larger margin. Finally, it predicts that volatility and recessions should each have an

independent effect on attention, dispersion, and performance. All of these predictions are

borne out in the mutual fund data.

These findings offer useful evidence to support a variety of theories that use rational

attention allocation to explain phenomena in many economic environments. Recent work

has shown that introducing attention constraints into decision problems can help explain ob-

served consumption, price-setting, and investment patterns as well as the timing of govern-

ment announcements and the propensity for governments to be unprepared for rare events.2

An obstacle to the progress of this line of work is that information is not directly observable,

precluding a direct test of whether decision makers actually allocate their attention in a

value-maximizing way.3

To surmount the problem that attention is unobservable, our model uses an observable

variable – the state of the business cycle – to predict attention allocation. Attention, in turn,

predicts aggregate investment patterns. Because the theory begins and ends with observable

variables, it becomes testable. To carry out these tests, we use data on actively managed

equity mutual funds. A wealth of detailed data on portfolio holdings and returns makes

this industry an ideal setting in which to test whether decision makers allocate attention

optimally.

To explore whether a rational attention allocation can explain the behavior of mutual

fund managers, we build a general equilibrium model in which a fraction of investment

managers have skill. These skilled managers can observe a fixed number of signals about

asset payoffs and choose what fraction of those signals will contain aggregate versus stock-

specific information. We think of aggregate signals as macroeconomic data that affect future

cash flows of all firms, and of stock-specific signals as firm-level data that forecast the part of

firms’ future cash flows that is independent of the aggregate shocks. Based on their signals,

skilled managers form portfolios, choosing larger portfolio weights for assets that are more

likely to have high returns.

2See, for example, Sims (2003) on consumption, Maćkowiak and Wiederholt (2010, 2009), and Matejka
(2011) on price setting, and Van Nieuwerburgh and Veldkamp (2009, 2010) and Kondor (2012) on financial
investment. Reis (2011) considers the optimal timing of government announcements and Maćkowiak and
Wiederholt (2012) use rational inattention constraint to model the allocation of cognitive energy to planning
for rare events. A related attention constraint called inattentiveness is explored in Reis (2006). Veldkamp
(2011) provides a survey of this literature.

3While papers such as Klenow and Willis (2007), Mondria, Wu, and Zhang (2010) and Maćkowiak,
Moench, and Wiederholt (2009) have also tested predictions of rational inattention models, none has looked
for evidence that attention is reallocated, arguably a more stringent test of the theory.
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The model produces four main predictions. The first prediction is that attention should

be reallocated over the business cycle. In the data, recessions are times when unexpected

returns are low, aggregate volatility rises, and the price of risk surges. When we embed

these three forces in our model, the first has little effect on attention allocation, but the

second and third forces both draw attention to aggregate shocks in recessions. The increased

volatility of aggregate shocks makes it optimal to allocate more attention to them, because

it is more valuable to pay attention to more uncertain outcomes. The elevated price of risk

amplifies this reallocation: Since aggregate shocks affect a large fraction of the portfolio’s

value, paying attention to aggregate shocks resolves more portfolio risk than learning about

stock-specific risks. When the price of risk is high, such risk-minimizing attention choices

become more valuable. While the idea that it is more valuable to shift attention to more

volatile shocks may not be all that surprising, whether changes in the price of risk would

amplify or counteract this effect is not obvious.

The second and third predictions do not come from the reallocation of attention. Rather,

they help to distinguish this theory from non-informational alternatives and support the idea

that at least some portfolio managers are engaging in value-maximizing behavior. The sec-

ond prediction is counter-cyclical dispersion in portfolio holdings and profits. In recessions,

when aggregate shocks to asset payoffs are larger in magnitude, asset payoffs exhibit more

comovement. Thus, any passive portfolio strategies that put exogenously fixed weights on

assets would have returns that also comove more in recessions, which would imply less dis-

persion. In contrast, when investment managers learn about asset payoffs and manage their

portfolios according to what they learn, fund returns comove less and dispersion increases

in recessions. The reason is that when aggregate shocks become more volatile, managers

who learn about aggregate shocks put less weight on their common prior beliefs, which have

less predictive power, and more weight on their heterogeneous signals. This generates more

heterogeneous beliefs in recessions and therefore more heterogeneous investment strategies

and fund returns.

Third, the model predicts time variation in fund performance. Since the average fund

can only outperform the market if there are other, non-fund investors who underperform, the

model also includes unskilled non-fund investors. Because asset payoffs are more uncertain,

recessions are times when information is more valuable. Therefore, the informational ad-

vantage of the skilled over the unskilled increases and generates higher returns for informed

managers. The average fund’s outperformance rises.

The fourth prediction is that all three of the above effects of recessions come in part from
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high aggregate volatility, and in part from the high price of risk. Therefore, periods of high

aggregate volatility should be periods in which attention is allocated to aggregate shocks.

Furthermore, these high-volatility periods should also be times when portfolio dispersion is

high and skilled funds outperform. Then, after controlling for volatility and as long as prices

are sufficiently noisy, there should also be an additional positive effect of recessions on all

three measures. This additional effect comes from the fact that recessions are also times

when the price of risk is high. In other words, both volatility and the price of risk have

separate effects on skill, dispersion, and performance.

We test the model’s four main predictions on the universe of actively managed U.S.

mutual funds. To test the first prediction, a key insight is that managers can only choose

portfolios that covary with shocks they pay attention to. Thus, to detect cyclical changes

in attention, we should look for changes in covariances. We estimate the covariance of each

fund’s portfolio holdings with the aggregate payoff shock, proxied by innovations in indus-

trial production growth. This covariance measures a manager’s ability to time the market by

increasing (decreasing) her portfolio positions in anticipation of good (bad) macroeconomic

news. This timing covariance rises in recessions. We also calculate the covariance of a fund’s

portfolio holdings with asset-specific shocks, proxied by innovations in firms’ earnings. This

covariance measures managers’ ability to pick stocks that subsequently experience unex-

pectedly high earnings. Consistent with the theory, this stock-picking covariance increases

in expansions.

Second, we test for cyclical changes in portfolio dispersion. We find that, in recessions,

funds hold portfolios that differ more from one another. As a result, their cross-sectional

return dispersion increases, consistent with the theory. In the model, much of this dispersion

comes from taking different bets on market outcomes, which should show up as dispersion

in CAPM betas. We find evidence in the data for higher beta dispersion in recessions.

Third, we document fund outperformance in recessions, extending earlier results in the

literature. Risk-adjusted excess fund returns (alphas) are around 1.6 to 4.6% per year higher

in recessions, depending on the specification. Gross alphas (before fees) are not statistically

different from zero in expansions, but they are significantly positive in recessions.4 These

cyclical differences are statistically and economically significant.

Fourth, we document an effect of recessions on covariance, dispersion, and performance,

4Net alphas (after fees) are negative in expansions (-0.6%) and positive (1.0%) in recessions for our most
conservative metric. Gross alphas are higher by about 1% point per year. Since funds do not set fees in our
model, we have no predictions about after-fee alphas. For a theory about why we should expect net alphas
to be zero, see Berk and Green (2004). For recent empirical work, see Berk and van Binsbergen (2012).
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above and beyond that which comes from volatility alone. When we use both a recession

indicator and aggregate volatility as explanatory variables, we find that both contribute

about equally to our three main results. Showing that these results are truly business-cycle

phenomena – as opposed to merely high volatility phenomena – is interesting because it

connects these results with the existing macroeconomics literature on rational inattention,

e.g., Maćkowiak and Wiederholt (2010, 2009).

The rest of the paper is organized as follows. Section 1 lays out our model. After

describing the setup, we characterize the optimal information and investment choices of

skilled and unskilled investors. We show how equilibrium asset prices are formed. We derive

theoretical predictions for funds’ attention allocation, portfolio dispersion, and performance.

Section 2 explains how we bring the model to the data. Section 3 tests the model’s predictions

using the context of actively managed mutual funds. Section 4 concludes.

1 Model

We develop a model whose purpose is to understand how the optimal attention allocation of

investment managers depends on the business cycle, and how attention affects asset holdings

and asset prices. Most of the complexity of the model comes from the fact that it is an

equilibrium model. But in order to study the effects of attention on asset holdings, asset

prices and fund performance, having an equilibrium model is a necessity. In particular, an

equilibrium model ensures that for every investor that outperforms, there is someone who

under-performs.

1.1 Setup

The model has three periods. At time 1, skilled investment managers choose how to allocate

their attention across different assets. At time 2, all investors choose their portfolios of risky

and riskless assets. At time 3, asset payoffs and utility are realized.

Assets The model features 1 riskless and n risky assets. The price of the riskless asset is

normalized to 1 and it pays off r at time 3. Risky assets i ∈ {1, ..., n−1} have random payoffs

fi with respective loadings bi, ..., bn−1 on an aggregate shock za, and face stock-specific shocks

z1, ..., zn−1. The n-th asset, is a composite asset whose payoff has no stock-specific shock

and a loading of one on the aggregate shock. We use this composite asset as a stand-in for

all other assets. Formally,
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fi = µi + biza + zi, i ∈ {1, . . . , n− 1} (1)

fn = µn + za (2)

where the risk factors za ∼ N(0, σa) and zi ∼ N(0, σi), are mutually independent for i ∈
{1, . . . , n− 1}. We define the n× 1 vector f = [f1, f2, ..fn]

′.

Risk factors The vector of risk factor shocks, z = [z1, z2, ..., zn−1, za]
′, is normally dis-

tributed as: z ∼ N (0,Σ) where Σ is a diagonal matrix. Stacking the equations above,

we can write f = µ + Γz, where Γ is a n × n invertible matrix of loadings that map risk

factors, z, into the mean-zero payoffs (f − µ). We define the payoff of the risk factors as

f̃ ≡ Γ−1f = Γ−1µ + z. Thus, payoffs of risk factors are linear combinations of payoffs of

the underlying assets. In other words, they are a payoff to a particular portfolio of assets.

Working with risk factor payoffs and prices (denoted with tildes) allows us to solve the model

in a tractable way.5

Each risk factor has a stochastic supply given by x̄i + xi, where noise xi is normally-

distributed, with mean zero, variance σx, and no correlation with other noises: x ∼ N (0, σxI).

The vector of noisy asset supplies is Γ(x̄ + x). As in the standard noisy rational expecta-

tions equilibrium model, the supply is random to prevent the price from fully revealing the

information of informed investors.

Portfolio Choice Problem There is a continuum of atomless investors. Investors are each

endowed with initial wealth, W0. They have mean-variance preferences over time-3 wealth,

with a risk-aversion coefficient, ρ. Let Ej and Vj denote j’s expectations and variances

conditioned on all information known at time 2, which includes prices and signals. Thus,

investor j chooses how many shares of each asset to hold qj to maximize time-2 expected

utility, U2j:

U2j = ρEj[Wj]−
ρ2

2
Vj[Wj] (3)

subject to the budget constraint: Wj = rW0 + q′j(f − pr), where qj, p are n × 1 vectors of

prices and quantities of each asset held by investor j. Since there are no wealth effects with

5The existence of the composite asset ensures that the assets span the shocks, which allows Γ to be
invertible. An invertible mapping Γ allows us to solve for prices and quantities of risk factors z and then
map them back into asset prices and quantities. This solution approach is what keeps the model analytically
tractable.
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mean-variance utility, we normalize W0 to zero for the theoretical results. Furthermore, we

can rewrite the budget constraint in terms of risk factor prices and quantities by defining

p̃j ≡ Γ−1pj, q̃j ≡ Γ′qj and substituting f = Γf̃ to get

Wj = q̃′j(f̃ − p̃r). (4)

Prices Equilibrium prices are determined by market clearing:∫
q̃jdj = x̄+ x, (5)

where the left-hand side of the equation is the vector of aggregate demand and the right-hand

side is the vector of aggregate supply of each risk factor.

Information, updating, and attention allocation At time 1, a skilled investment

manager j chooses the precisions of signals that she will receive at time 2. Allocating

attention to a risk factor means that a manager gets a more precise signal about that risky

outcome. Mathematically, manager j’s vector of signals is ηj = z + εj, where the vector

of signal noise is distributed as εj ∼ N (0,Σηj). The variance matrix Σηj is diagonal with

ith diagonal element K−1
ij . Thus, Kij is the precision of investor j’s signal about risk i.

Private signal noise is independent across risks i and managers j. Managers combine signal

realizations with priors and information extracted from asset prices to update their beliefs,

using Bayes’ law.

Signal precision choices {Kij} maximize time-1 expected utility, U1j, of the fund’s termi-

nal wealth Wj:

U1j = E1

[
ρE2[Wj]−

ρ2

2
V2[Wj]

]
, (6)

subject to two constraints.6

The first constraint is the information capacity constraint. It states that the sum of the

signal precisions must not exceed the information capacity:

Kaj +
n−1∑
i=1

Kij ≤ K. (7)

6See Veldkamp (2011) for a discussion of the use of expected mean-variance utility in information choice
problems. The supplementary appendix proves versions of the main propositions for the expected exponential
utility model.
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In Bayesian updating with normal variables, observing one signal with precision Ki or two

signals, each with precision Ki/2, is equivalent. Therefore, one interpretation of the capacity

constraint is that it allows the manager to observe N signal draws, each with precision Ki/N ,

for large N . The investment manager then chooses how many of those N signals will be

about each shock.7 Note that our model holds each manager’s total attention fixed and

studies its allocation in recessions and expansions. In Section 1.7, we consider a manager

who chooses how much capacity for attention to acquire.

The second constraint is the no-forgetting constraint, which ensures that the chosen

precisions are non-negative:

Kij ≥ 0 i ∈ {1, ..., n− 1, a} (8)

It prevents the manager from erasing any prior information, to make room to gather new

information about another shock.

Skilled and Unskilled Investors The only ex-ante difference between investors is that

a fraction χ of them have skill, meaning that they can choose to observe a set of informative

private signals about the risk factor shocks zi. Unskilled investors are ones with zero signal

precision: Σ−1
ηj = 0, or equivalently, Kij = 0, ∀i. Both unskilled and skilled investors observe

the information in prices, which are public signals, costlessly.

When we bring the model to the data, we will call all skilled investors mutual funds.

Furthermore, we will distinguish between two types of unskilled investors: unskilled mutual

funds and non-fund investors.8 In the model, these two types are identical. The reason for

modeling non-fund investors is that without them, we cannot talk about average fund per-

formance. The sum of all funds’ holdings would have to equal the market (market clearing)

and therefore, the average fund return would have to equal the market return. There could

be no excess return in expansions or recessions.

7The results are not sensitive to the additive nature of the information capacity constraint. They also hold,
for example, for a product constraint on precisions. The entropy constraints often used in information theory
take this multiplicative form. Results available upon request. See also Van Nieuwerburgh and Veldkamp
(2010).

8For our results to hold, it is sufficient to assume that the fraction of non-fund investors that are unskilled
is higher than that for the mutual funds.
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Modeling recessions Since this is a static model, the investment world is either in the

recession (R) or in the expansion state (E).9 The asset pricing literature identifies three

principal effects of recessions: (1) returns are unexpectedly low, (2) returns are more volatile,

and (3) the price of risk is high. Section 3 discusses the empirical evidence supporting the

latter two effects. To capture the return volatility effect (2) in the model, we assume that the

prior variance of the aggregate shock in recessions (R) is higher than the one in expansions

(E): σa(R) > σa(E). To capture the varying price of risk (3), we vary the parameter that

governs the price of risk, which is risk aversion. We assume ρ(R) > ρ(E). We continue to

use σa and ρ to denote aggregate shock variance and risk aversion in the current business

cycle state.

The first effect of recessions, unexpectedly low returns, cannot affect attention allocation

because attention must be allocated before returns are observed. Yet, unexpected returns

could affect managers’ return covariances. The difficulty in analyzing this effect is that since

agents in our model always know the current state of the business cycle, they cannot be

systematically surprised by low asset payoffs in recessions. When low payoffs are expected,

asset prices fall right away, leaving subsequent returns unaffected. Therefore, exploring (1)

requires a slightly modified model that relaxes rational expectations. The Supplementary

Appendix explores this model numerically and shows that the unexpectedly low returns have

little effect on the results. The main body of the paper explores the volatility and price of

risk effects.

1.2 Model Solution

We begin by working through the mechanics of Bayesian updating. There are three types of

information that are aggregated in time-2 posteriors beliefs: prior beliefs, price information

and (private) signals. We conjecture and later verify that a transformation of prices p̃

generates an unbiased signal about the risk factor payoffs, ηp = z + ϵp, where ϵp ∼ N(0,Σp),

for some diagonal variance matrix Σp. Then, by Bayes’ law, the posterior beliefs about z

are normally-distributed with mean ẑj = Σ̂j(Σ
−1
ηj ηj + Σ−1

p ηp) and posterior precision Σ̂−1
j =

Σ−1 + Σ−1
p + Σ−1

ηj . Using the definition f̃ = Γ−1µ + z, we find that posterior beliefs about

9We do not consider transitions between recessions and expansions, although such an extension would be
easy in our setting because assets are short lived and their payoffs are realized and known to all investors
at the end of each period. Thus, a dynamic model would amount to a succession of static models that are
either in the expansion or in the recession state.
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risk factor payoffs are f̃ ∼ N(Ej[f̃ ], Σ̂
−1
j ) where

Ej[f̃ ] = Γ−1µ+ Σ̂j(Σ
−1
ηj ηj + Σ−1

p ηp). (9)

Next, we solve the model in four steps.

Step 1: Solve for the optimal portfolios, given information sets. Substituting the budget

constraint (4) into the objective function (3) and taking the first-order condition with respect

to q̃j reveals that optimal holdings are increasing in the investor’s risk tolerance, precision

of beliefs, and expected return:

q̃j =
1

ρ
Σ̂−1
j (Ej[f̃ ]− p̃r). (10)

Step 2: Clear the asset market. Substitute each agent j’s optimal portfolio (10) into

the market-clearing condition (5). Collecting terms and simplifying reveals that equilibrium

asset prices are linear in payoff risk shocks and in supply shocks:

Lemma 1. p̃ = 1
r
(A+Bz + Cx)

A detailed derivation of coefficients A, B and C, expected utility, and the proofs of this

and all further propositions are in the appendix.

In this model, agents learn from prices because prices are informative about the payoff

shocks z. Next, we deduce what information is implied by Lemma 1. Price information is the

signal about z contained in prices. The transformation of the price vector p̃ that yields an

unbiased signal about z is ηp ≡ B−1(p̃r−A). Note that applying the formula for ηp to Lemma

1 reveals that ηp = z+ εp, where the signal noise in prices is εp = B−1Cx. Since we assumed

x ∼ N(0, σxI), the price noise is distributed εp ∼ N(0,Σp), where Σp ≡ σxB
−1CC ′B−1′ .

Substituting in the coefficients B and C from the proof of Lemma 1 shows that public signal

precision Σ−1
p is a diagonal matrix with ith diagonal element σ−1

pi =
K̄2
i

ρ2σx
, where K̄i ≡

∫
Kijdj

is the average capacity allocated to shock i.

Step 3: Compute ex-ante expected utility. Substitute optimal risky asset holdings from

equation (10) into the first-period objective function (6) to get: U1j =
1
2
E1

[
(Ej[f̃ ]− p̃r)Σ̂−1

j (Ej[f̃ ]− p̃r)
]
.

Note that the expected excess returns (Ej[f̃ ] − p̃r) depends on signals and prices, both of

which are unknown at time 1. Because asset prices are linear functions of normally dis-

tributed shocks, Ej[f̃ ]− p̃r, is normally distributed as well.

Thus, (Ej[f̃ ] − p̃r)Σ̂−1
j (Ej[f̃ ] − p̃r) is a non-central χ2-distributed variable. Computing

10



its mean yields:

U1j =
1

2
trace(Σ̂−1

j V1[Ej[f̃ ]− p̃r]) +
1

2
E1[Ej[f̃ ]− p̃r]′Σ̂−1

j E1[Ej[f̃ ]− p̃r]. (11)

Step 4: Solve for information choices. Note that in expected utility (11), the choice

variables Kij enter only through the posterior variance Σ̂j and through V1[Ej[f̃ ] − p̃r] =

V1[f̃−p̃r]−Σ̂j. Since there is a continuum of investors, and since V1[f̃−p̃r] and E1[Ej[f̃ ]−p̃r]

depend only on parameters and on aggregate information choices, each investor takes them

as given.

Since Σ̂−1
j and V1[Ej[f̃ ]− p̃r] are both diagonal matrices and E1[Ej[f̃ ]− p̃r] is a vector,

both terms of (11) are weighted sums of the diagonal elements of Σ̂−1
j . Thus, (11) can

be rewritten as U1j =
∑

i λiΣ̂
−1
j (i, i) − N/2, for positive coefficients λi. Since Σ̂−1

j (i, i) =

Σ−1(i, i) + Σ−1
p (i, i) +Kij, we can write the information choice problem as:

max
K1j ,...,K(n−1)j ,Kaj

∑
i

λiKij + constant (12)

s.t. Kaj +
n−1∑
i=1

Kij ≤ K (13)

where λi = σ̄i[1 + (ρ2σx + K̄i)σ̄i] + ρ2x̄2
i σ̄

2
i , (14)

K̄i =
∫
Kijdj is the average signal precision across investors and σ̄−1

i =
∫
Σ̂−1
j (i, i)dj is

the average precision of posterior beliefs about risk i. Its inverse, average variance σ̄i is

decreasing in K̄i. Equation (14) is derived in the appendix.

To maximize a weighted sum subject to an unweighted sum, the manager optimally

assigns all capacity to the risk(s) with the highest weight. If there is a unique i∗ = argmaxiλi,

then the solution is to set Ki∗j = K and Klj = 0, ∀l ̸= i∗.

In many cases, there will be multiple risks with identical λ weights. That is because

λi is decreasing in K̄i, the average investor’s signal precision. This is the same strategic

substitutability effect first noted by Grossman and Stiglitz (1980). The more others learn

about a risk, the more informative prices are and the less valuable it is for others to learn

about the same risk. When there exist risks i, l s.t. λi = λl, then investors are indifferent

about which risk to learn about. For simplicity, we restrict attention to the unique symmetric

equilibrium where all skilled investors choose the same information precisions. However, none

of the propositions depend on this restriction.

The following sections explain the model’s key predictions: attention allocation, disper-
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sion in investors’ portfolios, average performance, and the effect of recessions on these objects

beyond that of aggregate volatility. For each prediction, we state and prove a hypothesis.

The next section explains how we test the hypothesis in the data.

1.3 Prediction 1: Cyclical Attention Reallocation

First, we derive from the model the prediction that the optimal attention allocation in

expansions differs from that in recessions. Specifically, there should be more attention paid to

aggregate shocks in recessions and more attention paid to stock-specific shocks in expansions.

Recessions involve changes in the volatility of aggregate shocks and changes in the price of

risk. In order to see the effect of each aspect of a recession, we consider each separately,

beginning with the rise in volatility.

Proposition 1. For a given investor j, the optimal choice of attention allocation to risk i

is weakly increasing in its variance σi: ∂Kij/∂σi ≥ 0.

Intuitively, investors prefer to learn about large shocks that are an important component

of the overall asset supply, and volatile shocks that have high prior payoff variance. Aggregate

shocks are larger in scale, but are less volatile than stock-specific shocks. Recessions are times

when aggregate volatility increases, which makes aggregate shocks more valuable to learn

about. The converse is true in expansions.

Note that this is a partial derivative result. It holds information choices fixed. In any

interior equilibrium, attention will be reallocated until the marginal utility of learning about

aggregate and stock-specific shocks is equalized.10 But it is the initial increase in marginal

utility which drives this reallocation.

Next, we consider the effect of an increase in the price of risk. An increase in the price of

risk induces managers to allocate even more attention to the aggregate shock in recessions.

The additional price of risk effect should show up as an effect of recessions, above and beyond

what aggregate volatility alone can explain. The parameter that governs the price of risk

in our model is risk aversion. The following result shows that an increase in the price of

risk (risk aversion) in recessions is an independent force driving the reallocation of attention

from stock-specific to aggregate shocks.

10Mathematically, λi = λa, ∀i ∈ {1, · · · , n − 1}. Full equalization across all risk factors only takes place
provided that there is enough aggregate capacity (χK exceeds some threshold). If not, equalization takes
place among a subset of risk factors.
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Proposition 2. For a given investor j, an increase in risk aversion ρ weakly increases the

attention allocated to risk i if its supply x̄i is sufficiently high: ∂Kij/∂ρ ≥ 0 if x̄i ≥ x∗.

The intuition for this result rests on the fact that we defined the aggregate shock to

be the shock in the greatest supply. Therefore, it affects a large fraction of the value of

one’s portfolio. Therefore, a marginal reduction in the uncertainty about an aggregate shock

reduces total portfolio risk by more than the same-sized reduction in the uncertainty about a

stock-specific shock. In other words, learning about the aggregate shock is the most efficient

way to reduce portfolio risk. The more risk averse an agent is, the more attractive aggregate

attention allocation becomes.

Investors’ optimal attention allocation decisions are reflected in their portfolio holdings.

In recessions, skilled investors predominantly allocate attention to the aggregate payoff shock,

za. They use the information they observe to form a portfolio that covaries with za. In times

when they learn that za will be high, they hold more risky assets whose returns are increasing

in za. This positive covariance can be seen from equation (10) in which q̃ is increasing in

Ej[f̃ ] and from equation (9) in which Ej[f̃ ] is increasing in ηj, which is further increasing

in za. The positive covariances between the aggregate shock and funds’ portfolio holdings

in recessions, on the one hand, and between stock-specific shocks and the portfolio holdings

in expansions, on the other hand, directly follow from optimal attention allocation decisions

switching over the business cycle. As such, these covariances are the key moments that

enable us to test the attention allocation predictions of the model. We define the empirical

counterparts to these covariances in Section 2.

1.4 Prediction 2: Dispersion

Since many studies detect no skill, perhaps the most controversial implication of the attention

reallocation result is that investment managers are processing information at all. Our second

and third predictions speak directly to that implication. They do not identify changes in

attention allocation, but they help to distinguish our theory from non-information-based

alternatives.

In recessions, as aggregate shocks become more volatile, the firm-specific shocks to as-

sets’ payoffs account for less of the variation, and the comovement in stock payoffs rises.

Since asset payoffs comove more, the payoffs to all passive investment strategies that put

fixed weights on assets should also comove more. Dispersion across investor portfolios and

portfolio returns should fall. But when investment managers are processing information,
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this prediction is reversed. To see why, consider a simple example where there is no learning

from prices. A skilled agent is updating beliefs about a random variable f̃ ∼ N(µ,Σ), using

a signal ηj|f̃ ∼ N(f̃ ,Ση). Bayes’ law says that the posterior mean is a weighted average of

the prior mean µ and the signal, where each is weighted by their relative precision:

E[f̃ |ηj] =
(
Σ−1 + Σ−1

η

)−1 (
Σ−1µ+ Σ−1

η ηj
)

(15)

If in recessions, aggregate shock variance σa rises, then the prior beliefs about asset payoffs

become more uncertain: Σ rises and Σ−1 falls. This makes the weight on prior beliefs µ de-

crease and the weight on the signal ηj increase. The prior µ is common across agents, while

the signal realization ηj is heterogeneous. When informed managers weigh their heteroge-

neous signals more, their resulting posterior beliefs become more different from each other

and more different from the beliefs of uninformed managers or investors. More disagreement

about asset payoffs results in more heterogeneous portfolios and portfolio returns.

Thus, the model’s second prediction is that in recessions, the cross-sectional dispersion

in funds’ investment strategies and returns should rise. The following Proposition shows

that funds’ portfolio holdings, q, and portfolio excess returns, q′j(f − pr), display higher

cross-sectional dispersion when risk is higher, in recessions.

Proposition 3. For given precisions of an investor j, an increase in variance σi: a) increases

the dispersion of fund portfolios E[(qj− q̄)′(qj− q̄)] and b) increases the dispersion of portfolio

excess returns E[((qj − q̄)′(f − pr))2].

This result holds generally, when any shock becomes more volatile, not only when ag-

gregate risk rises. However, the effect is particularly large for the aggregate shock because

it affects every asset and therefore is in abundant supply. This shows up in the proof (see

appendix) as a high x̄a, which amplifies the effect of σa on portfolio and return dispersion.

Next, we consider the second effect of recessions: an increase in the price of risk. The

following result shows that, when prices are sufficiently noisy, an increase in the price of risk

increases the dispersion of portfolio returns.

Proposition 4. If σx is sufficiently large, then an increase in risk aversion ρ increases the

dispersion of portfolio excess returns E[((qj − q̄)′(f − pr))2].

When risk aversion rises, skilled investors make smaller bets on their information. These

smaller deviations from the market portfolio affect prices less and make prices less infor-

mative. The reduced precision of price information implies that agents weight prices less
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and private signals more in their posterior beliefs. Just like priors, information in prices is

common. Thus, weighting common signals less and heterogenous private signals more leads

to higher dispersion in beliefs and therefore in portfolio returns as well.

But this effect has to offset a counter-acting force. Recall that the optimal portfolio for

investor j takes the form q = (1/ρ)Σ̂−1
j (f − pr). If ρ increases, investors scale down their

risky asset positions and q falls. The increase in returns needs to increase dispersion enough

to offset the decrease in dispersion coming from the effect of 1/ρ reducing q. The proof of the

proposition in the appendix shows that a sufficient condition for the first effect to dominate

is that the elasticity of V1[f̃ − p̃r] with respect to ρ is greater than 1, which requires a large

enough asset supply variance.

1.5 Prediction 3: Performance

The third prediction of the model is that the average performance of investment managers is

higher in recessions than it is in expansions. To measure performance, we want to measure

the portfolio return, adjusted for risk. One risk adjustment that is both analytically tractable

in our model and often used in empirical work is the certainty equivalent return, which is also

an investor’s objective (6). The following Proposition shows that risk-unadjusted abnormal

portfolio returns, defined as the fund’s portfolio return, q′j(f −pr), minus the market return,

q̄′(f − pr) for skilled funds exceeds that of unskilled funds and non-fund investors by more

when volatility is higher, that is, in recessions.

Proposition 5. An increase in the variance of any shock σi increases the portfolio excess

return of an informed fund, E[(qj − q̄)′(z − pr)].

Because asset payoffs are more uncertain, recessions are times when information is more

valuable. In principle, the result is general and holds when any shock becomes more volatile.

But we show that the empirically relevant case is that only aggregate shock volatility rises

in recessions. Furthermore, the return effect is larger for the aggregate shock because it

depends on how abundant the risk is (x̄a) and the aggregate shock is naturally the most

abundant one.

Therefore, the advantage of the skilled over the unskilled investors increases in recessions.

This informational advantage generates higher returns for informed managers. In equilib-

rium, market clearing dictates that abnormal returns average to zero across all investors.

However, because the data only include mutual funds, our model calculations must similarly

exclude non-fund investors. Since investment managers are skilled or unskilled, while other
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investors are only unskilled, an increase in the skill premium implies that the average mutual

fund’s abnormal return rises in recessions.

Next, we consider the effect of an increase in the price of risk on performance given in

the second part of the previous proposition.

Proposition 6. If σx is sufficiently large, an increase in risk aversion ρ increases the port-

folio excess return of an informed fund, E[(qj − q̄)′(z − pr)].

The reason that a higher price of risk leads to higher performance is that information

can resolve risk. Therefore, informed managers are compensated for risk that they do not

bear because the information has resolved some of their uncertainty about random asset

payoffs. When the price of risk rises, the value of being able to resolve this risk rises as

well. Put differently, informed funds take larger positions in risky assets because they are

less uncertain about their returns. These larger positions pay off more on average when the

price of risk is high.

1.6 Who Underperforms?

The requirement that markets clear implies that not all investors can be successful stock-

pickers or market-timers. In each period, someone must make poor stock-picking or market-

timing decisions if someone else makes profitable decisions. We explain now why rational,

unskilled investors underperform in equilibrium.

Unskilled investors have negative timing ability in recessions. When the aggregate state za

is low, most skilled investors sell, pushing down asset prices, p, and making prior expected

returns, E[f − pr], high. Equation (10) shows that uninformed investors’ asset holdings

increase in (µ − pr). The uninformed misinterpret the low prices as a buying opportunity

and earn low returns. In terms of our measure of market timing, the informed (uninformed)

investors’ holdings covary positively (negatively) with aggregate payoffs, making their market

timing measure positive (negative). Since no investors learn about the aggregate shock in

expansions, prices do not fall when unexpected aggregate shocks are negative. Since the

price mechanism is shut down, the market timing measure is close to zero for both skilled

and unskilled in expansions. Taken together, the average fund exhibits some ability to time

the market and exploits that ability at the expense of the uninformed investors, in recessions.

Likewise, unskilled investors will show negative stock-picking ability in expansions. When

the stock-specific shock zi is low, and some investors know that it will be low, they will sell

and depress the price of asset i. A low price raises the expected return on the asset (µi−pir)
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for uninformed investors. The high expected return induces them to buy more of the asset.

Since they buy more of assets that subsequently have negative asset-specific payoff shocks,

these uninformed investors display negative stock-picking ability.

We note that when there is a positive aggregate supply shock, prices will be lower (Lemma

1), and assets will look more attractive to both uninformed and informed agents, all else

equal. In that case, both informed and uninformed can trade in the same direction because

of the additional asset supply.

1.7 Endogenous Capacity Choice

So far, we have assumed that skilled investment managers choose how to allocate a fixed

information-processing capacity, K. We now extend the model to allow for skilled managers

to add capacity at a cost C (K).11 We draw three main conclusions. First, the proofs of

Propositions 1 and 2 hold for any chosen level of capacity K, below an upper bound, no

matter the functional form of C. The other propositions also continue to hold because they

hold for any level of capacity. Endogenous capacity only has quantitative, not qualitative

implications. Second, because the marginal utility of learning about the aggregate shock is

increasing in its prior variance (Proposition 1), skilled managers choose to acquire higher

capacity in recessions. This extensive-margin effect amplifies our benchmark, intensive-

margin result. Third, the degree of amplification depends on the convexity of the cost

function, C (K). The convexity determines how elastic equilibrium capacity choice is to the

cyclical changes in the marginal benefit of learning. The supplementary appendix discusses

numerical simulation results from an endogenous-K model; they are similar to our benchmark

exogenous-K results.

A second margin along which one could imagine extending the results is to let investors

choose whether to become informed at a fixed capacity level K or not. Under this discrete

choice, an asymmetric equilibrium can arise where some investors become informed and other

not and where all investors are ex-ante indifferent about whether or not to become informed.

When capacity is more valuable, in recessions, more investors would become informed. This

would dampen the market timing, stock picking and outperformance metrics for the informed

because the difference between informed and uninformed investors would weaken. However,

it cannot overturn our results. If more information acquisition in recessions were to result

11We model this cost as a utility penalty, akin to the disutility from labor in business cycle models. Since
there are no wealth effects in our setting, it would be equivalent to modeling a cost of capacity through the
budget constraint. For a richer treatment of information production modeling, see Veldkamp (2006).
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in worse performance (or market timing) in recessions than in booms, then the returns

to information would be lower than in booms, which would imply that there should be less

information acquisition in recessions, a contradiction. The supplementary appendix discusses

numerical simulation results that vary exogenously the fraction of informed investors χ.

With more informed fund managers, each have a smaller informational advantage than with

fewer informed managers, resulting in lower market-timing (stock-picking) skill in recessions

(expansions) and lower outperformance. But because there are now more informed and

fewer uninformed funds in the economy, the average fund’s market-timing (stock-picking)

skill rises in recessions (expansions) and so does its outperformance.

2 Bringing Model to Data

This section introduces the empirical measures that we use in Section 3 to test the theory

of Section 1. It argues that they have the same comparative statics as their theoretical

counterparts and are themselves well-defined objects.

2.1 Market Timing and Stock Picking Measures

We define a fund’s fundamentals-based timing ability, Ftiming, as the covariance between its

portfolio weights in deviation from the market portfolio weights, wj
i −wm

i , and the aggregate

payoff shock, za, over a T -period horizon, averaged across assets:

Ftimingjt =
1

TN j

Nj∑
i=1

T−1∑
τ=0

(wj
it+τ − wm

it+τ )(za(t+τ+1)), (16)

where N j is the number of individual assets held by fund j. The subscript t on the portfolio

weights and the subscript t + 1 on the aggregate shock signify that the aggregate shock

is unknown at the time of portfolio formation. Relative to the market, a fund with a

high Ftiming overweights assets that have high (low) sensitivity to the aggregate shock

in anticipation of a positive (negative) aggregate shock realization and underweights assets

with a low (high) sensitivity.

When skilled investment managers allocate attention to stock-specific payoff shocks, zi,

information about zi allows them to choose portfolios that covary with zi. Fundamentals-

based stock picking ability, Fpicking, measures the covariance of a fund’s portfolio weights
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of each stock, relative to the market, with the stock-specific shock, zi:

Fpickingjt =
1

N j

Nj∑
i=1

(wj
it − wm

it )(zit+1). (17)

How well the manager can choose portfolio weights in anticipation of future asset-specific

payoff shocks is closely linked to her stock-picking ability.

Ftiming and Fpicking are closely related to commonly-used market-timing and stock-

picking variables, which measure how a fund’s holdings of each asset, relative to the market,

covary with the systematic and idiosyncratic components of the stock return. The key dif-

ference is that we measure how a portfolio covaries with aggregate and firm-specific funda-

mentals. We use the fundamentals-based measures because they correspond more closely to

the idea in the model that funds are learning about fundamentals and using signals about

those fundamentals to time the market and pick stocks.

2.2 Dispersion and Outperformance Measures

To connect the propositions to the data, we measure portfolio dispersion as the sum of

squared deviations of fund j’s portfolio weight in asset i at time t, wj
it, from the average

fund’s portfolio weight in asset i at time t, wm
it , summed over all assets held by fund j, N j:

Portfolio Dispersionjt =
Nj∑
i=1

(
wj
it − wm

it

)2
(18)

This measure is similar to the portfolio concentration measure in Kacperczyk, Sialm, and

Zheng (2005) and the active share measure in Cremers and Petajisto (2009). It is the same

quantity as in Proposition 3, except that the number of shares q is replaced with portfolio

weights w. In recessions, the portfolios of the informed managers differ more from each

other and more from those of the uninformed investors. Part of this difference comes from

a change in the composition of the risky asset portfolio and part comes from differences in

the fraction of assets held in riskless securities. Fund j’s portfolio weight wj
it is a fraction of

the fund’s assets, including both risky and riskless, held in asset i. Thus, when one informed

fund gets a bearish signal about the market, its wj
it for all risky assets i falls. Dispersion can

rise when funds take different positions in the risk-free asset, even if the fractional allocation

among the risky assets remains identical.

The higher dispersion across funds’ portfolio strategies translates into a higher cross-
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sectional dispersion in fund abnormal returns (Rj − Rm). To facilitate comparison with

the data, we define the dispersion of variable X as |Xj − X̄|. The notation X̄ denotes the

equally weighted cross-sectional average across all investment managers (excluding non-fund

investors).

When funds get signals about the aggregate state za that are heterogenous, they take

different directional bets on the market. Some funds tilt their portfolios to high-beta assets

and other funds to low-beta assets, thus creating dispersion in fund betas. To look for

evidence of this mechanism, we form a CAPM regression for fund j

Rj
t = αj + βjRm

t + σjεε
j
t (19)

and test for an increase in the beta dispersion in recessions as well.

We measure outperformance by looking at abnormal fund returns, measured as the fund’s

return minus the market return, and several risk-adjusted returns. One way to do that risk

adjustment is to estimate (19) for each fund and look at the α of that equation. We also

compute αs for similar models with multiple risk factors that are common in the empirical

literature. The three-factor alpha controls for a size and a value factor, while the four-factor

additionally controls for a momentum factor.

2.3 Do the Theoretical Measures and Empirical Measures Have

the Same Properties?

The theoretical propositions refer to payoffs and quantities that have analytical expressions

in a model with CARA preferences and normally distributed asset payoffs. But they do not

correspond to the returns and portfolio weights that are commonly used in the empirical

literature. The commonly used empirical measures, however, are not tractable analytically.

This raises the concern that, if we construct Ftiming and Fpicking inside the model, allo-

cating attention to aggregate shocks might not manifest itself as high Ftiming and allocating

attention to stock-specific risks might not be captured by high Fpicking. Similar concerns

arise for the dispersion and outperformance results. In addition, these empirical measures

may not be well-defined theoretical objects.

We start by noting that the empirical measures we use in the next section to test our

theory are well-defined objects. Our empirical measures use conventional definitions of fund

portfolio returns and portfolio weights. The weight fund j puts on asset i in its portfolio

is the time-2 market value held in asset i, piqi, divided by the value of all assets held by
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the fund. By the budget constraint, the value of all assets held by the fun is initial wealth

W0. Thus, wj
i ≡ piq

j
i

W0
. Similarly, the weight of asset i in the market is the value of asset

i pi(x̄i + xi), divided by the value of all the risky assets in the market. If we assume that

riskless assets are in zero net supply, then the value of all risky assets is the sum of all initial

wealth. Thus, wm
i ≡ piqi∫

W0jdj
and qi ≡

∫
j
qji is the total demand for asset j. Likewise, a fund

j’s return is Rj ≡
∑

i∈{0,1,2,c}w
j
iR

i, where. Rearranging reveals that this is equal to one plus

the fund’s end-of-period wealth Wj, divided by their initial wealth W0: Rj = W j
0 /Wj − 1.

All these measures have only initial wealth in their denominators. Since initial wealth is

known at the start of period 1, each one has finite moments in the model.

Second, to further allay the concern, we choose parameters and simulate our model in

which each fund manager allocates attention and chooses his portfolio optimally. Then, we

compute equilibrium prices and portfolio weights and estimate the same regressions on the

model-generated data as we do in the real data. This exercise verifies that the empirical

and theoretical measures have the same comparative statics. The supplementary appendix

explains how parameters are chosen to match moments of the aggregate and individual

stock returns in expansions and recessions, and it documents a complete set of results. In

the simulation, we set the number of assets n = 3. For brevity, we only discuss the key

comparative statics here.

For our benchmark parameter values, all skilled managers exclusively allocate attention

to stock-specific shocks in expansions. In contrast, the bulk of skilled managers learn about

the aggregate shock in recessions (87%, with the remaining 13% equally split between shocks

1 and 2). Thus, managers reallocate their attention over the business cycle. Such large swings

in attention allocation occur for a wide range of parameters.

This shift in attention allocation is clearly reflected in the fluctuations in Ftiming and

Fpicking. The simulation results show that skilled investors’ Ftiming in recessions is orders

of magnitude higher than in expansions. Similarly, we find that skilled funds have positive

Fpicking ability in expansions, when they allocate their attention to stock-specific informa-

tion. Our numerical results also confirm that there is a higher dispersion in the funds’ betas,

and in their abnormal returns, in recessions. Lastly, the simulations confirm that abnormal

returns and alphas, defined as in the empirical literature, and averaged over all funds, are

higher in recessions than in expansions. Skilled investment managers have positive excess

returns, while the uninformed ones have negative excess returns. Aggregating returns across

skilled and unskilled funds results in higher average alphas in recessions.
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3 Evidence from Equity Mutual Funds

Our model studies attention allocation over the business cycle, and its consequences for

investors’ strategies. We now turn to a specific set of investors, active U.S. mutual fund

managers, to test the predictions of the model. The richness of the data makes the mutual

fund industry a great laboratory for these tests. In principle, similar tests could be conducted

for hedge funds, real estate investment trusts, other professional investment managers, or

even individual investors.

3.1 Data

Our sample builds upon several data sets. We begin with the Center for Research on Security

Prices (CRSP) survivorship bias-free mutual fund database. The CRSP database provides

comprehensive information about fund returns and a host of other fund characteristics, such

as size (total net assets), age, expense ratio, turnover, and load. Given the nature of our

tests and data availability, we focus on actively managed open-end U.S. equity mutual funds.

We further merge the CRSP data with fund holdings data from Thomson Financial. The

total number of funds in our merged sample is 3,477. We also use the CRSP/Compustat

stock-level database, which is a source of information on individual stocks’ returns, market

capitalizations, book-to-market ratios, momentum, liquidity, and standardized unexpected

earnings (SUE). The aggregate stock market return is the value-weighted average return of

all stocks in the CRSP universe.

We use innovations in monthly seasonally-adjusted industrial production, obtained from

the Federal Reserve Statistical Release, as a proxy for aggregate shocks. We measure reces-

sions using the definition of the National Bureau of Economic Research (NBER) business

cycle dating committee. The start of the recession is the peak of economic activity and its

end is the trough. Our aggregate sample spans 312 months of data from January 1980 until

December 2005, among which 38 are NBER recession months (12%). We consider several

alternative recession indicators and find our results to be robust.12

12Results are omitted for brevity but are available from the authors upon request.

22



3.2 Motivating Fact: Aggregate Risk and Prices of Risk Rise in

Recessions

At the outset, we present empirical evidence for the main assumption in our model: Reces-

sions are periods in which individual stocks contain more aggregate risk and when prices of

risk are higher.

Table 1 shows that an average stock’s aggregate risk increases substantially in recessions

whereas the change in idiosyncratic risk is not statistically different from zero. The table

uses monthly returns for all stocks in the CRSP universe. For each stock and each month, we

estimate a CAPM equation based on a twelve-month rolling-window regression, delivering

the stock’s beta, βit , and its residual standard deviation, σiεt. We define the aggregate risk of

stock i in month t as |βitσmt | and its idiosyncratic risk as σiεt, where σ
m
t is formed monthly as

the realized volatility from daily return observations. Panel A reports the results from a time-

series regression of the aggregate risk (Columns 1 and 2), the idiosyncratic risk (Columns

3 and 4), and the ratio of aggregate to idiosyncratic risk (Columns 5 and 6), all averaged

across stocks, on the NBER recession indicator variable.13 The aggregate risk is twenty

percent higher in recessions than it is in expansions (6.69% versus 8.04% per month), an

economically and statistically significant difference. In contrast, the stock’s idiosyncratic risk

is essentially identical in expansions and in recessions. As a result, the ratio of aggregate to

idiosyncratic risk increases from 0.508 in expansions to 0.606 in recessions, and this cyclicality

is driven exclusively by the numerator. The results are similar whether one controls for other

aggregate risk factors (Columns 2, 4, and 6) or not (Columns 1, 3, and 5).

Panel B reports estimates from pooled (panel) regressions of each stock’s aggregate risk

(Columns 1 and 2), idiosyncratic risk (Columns 3 and 4), or the ratio of aggregate to idiosyn-

cratic risk (Columns 5 and 6) on the recession indicator variable, Recession, and additional

stock-specific control variables including size, book-to-market ratio, and leverage. The panel

results confirm the time-series findings.

A large literature in economics and finance presents evidence supporting the results in

Table 1. First, Ang and Chen (2002), Ribeiro and Veronesi (2002), and Forbes and Rigobon

(2002) document that stocks exhibit more comovement in recessions, consistent with stocks

carrying higher systematic risk in recessions. Second, Schwert (1989, 2011), Hamilton and

Lin (1996), Campbell, Lettau, Malkiel, and Xu (2001), and Engle and Rangel (2008) show

that aggregate stock market return volatility is much higher during periods of low economic

13The reported results are for equally weighted averages. Unreported results confirm that value-weighted
averaging across stocks delivers the same conclusion.
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activity. Diebold and Yilmaz (2008) find a robust cross-country link between volatile stock

markets and volatile fundamentals. Third, Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2012) find that the volatilities of GDP and industrial production growth, obtained

from GARCH estimation, and the volatility implied by stock options are much higher during

recessions. The same result holds for the uncertainty in several establishment-, firm- and

industry-level payoff measures they consider.

Our second assumption, that the price of risk rises in recessions, is supported by four

pieces of evidence. First is an empirical literature that documents the counter-cyclical nature

of risk premia and Sharpe ratios on equity, bonds, options, and currencies.14 Second, a

large theoretical literature has developed that generates such counter-cyclical market prices

of risk, e.g., the external habit model of Campbell and Cochrane (1999), the consumption

commitments model of Chetty and Szeidl (2007), the variable rare disasters model of Gabaix

(2012), or heterogeneous-agent models where agents have different risk aversion parameters.

Third, a recent paper by Dew-Becker (2012) combines habit with Epstein-Zin preferences in

an asset pricing model with production. He uses the structure of the model to construct an

empirical proxy for risk aversion, which rises in recessions. Fourth, a handful of recent papers

show that aggregate risk aversion rises in recessions because of properties of aggregation.15

In these models, heterogeneous agents with the same preferences but different risk aversion

parameters aggregate into a representative agent who has wealth-weighted functions of the

individual agent’s parameters. Because more risk-averse agents are more conservative, their

relative wealth rises in recessions, making aggregate risk aversion counter-cyclical.

3.3 Testing Prediction 1: Time-Varying Skill

Turning to our main model predictions, we first test whether skilled investment managers

reallocate their attention over the business cycle in a way that is consistent with measures

of time-varying skill. Learning about the aggregate payoff shock in recessions makes man-

agers choose portfolio holdings that covary more with the aggregate shock. Conversely, in

expansions, their holdings covary more with stock-specific information.

To estimate time-varying skill, we need measures of Ftiming and Fpicking for each fund j

in each month t. We proxy for the aggregate payoff shock with the innovation in log industrial

14Among many others, Fama and French (1989), Cochrane (2006), Ludvigson and Ng (2009), Lettau and
Ludvigson (2010), Lustig, Roussanov, and Verdelhan (2012), and the references therein. A related fact
consistent with counter-cyclical market prices of risk is high corporate bond yields in recessions despite only
modestly higher default rates, see Chen (2010).

15See Dumas (1989), Chan and Kogan (2002), and Gârleanu and Panageas (2010), among others.
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production growth, estimated from an AR(1).16 A time series of Ftimingjt is obtained

by computing the covariance of the innovations and each fund j’s portfolio weights (as in

equation (16)), using twelve-month rolling windows. Following equation (17), Fpicking is

computed in each month t as a cross-sectional covariance across the assets between the fund’s

portfolio weights and firm-specific earnings shocks (SUE). We then estimate the following

two equations using pooled (panel) regression model and calculating standard errors by

clustering at the fund and time dimensions.

Fpickingjt = a0 + a1Recessiont + a2X
j
t + ϵjt , (20)

Ftimingjt = a3 + a4Recessiont + a5X
j
t + εjt , (21)

Recessiont is an indicator variable equal to one if the economy in month t is in recession, as

defined by the NBER, and zero otherwise. X is a vector of fund-specific control variables,

including the fund age, the fund size, the average fund expense ratio, the turnover rate, the

percentage flow of new funds, the fund load, the volatility of fund flows, and the fund style

characteristics along the size, value, and momentum dimensions.

Our model predicts that Ftiming should be higher in recessions, which means that the

coefficient on Recession, a4, should be positive. Conversely, the fund’s portfolio holdings

and its returns covary more with subsequent firm-specific shocks in expansions. Therefore,

our hypothesis is that Fpicking should fall in recessions, or that a1 should be negative.

The parameter estimates appear in columns 1, 2, 4 and 5 of Table 2. Column 1 shows

the results for a univariate regression model. In expansions, Ftiming is not different from

zero, implying that funds’ portfolios do not comove with future macroeconomic information

in those periods. In recessions, Ftiming increases. The increase amounts to ten percent of a

standard deviation of Ftiming. It is measured precisely, with a t-statistic of 3. To remedy

the possibility of a bias in the coefficient due to omitted fund characteristics correlated with

recession times, we turn to a multivariate regression. Our findings, in Column 2, remain

largely unaffected by the inclusion of the control variables. Columns 4 and 5 of Table 2 show

that the average Fpicking across funds is positive in expansions and substantially lower in

recessions. The effect is statistically significant at the 1% level. It is also economically signif-

icant: Fpicking decreases by approximately ten percent of one standard deviation.17 In sum,

16Our results are robust to using industrial productions growth itself. Our results are also robust to
measuring aggregate shocks to fundamentals as innovations in non-farm employment growth

17We note that the R2 statistics in this and all following tables are quite low. We share this feature with
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the data support both main predictions of the theory: Portfolio holdings are more sensitive

to aggregate shocks in recessions and more sensitive to firm-specific shocks in expansions.

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012) show that these results are robust

to alternative, return-based measures of picking and timing, to alternative recession indicator

variables, and they investigate in more detail the strategies funds use to time the market.

Testing for Separate Effects of Volatility and Recessions. To identify a more nu-

anced prediction of the model, we can split the recession effect into that which comes from

aggregate volatility and that which comes from an increased price of risk. Proposition 1

predicts that an increase in aggregate volatility alone should cause managers to reallocate

attention to aggregate shocks. Furthermore, there should be an additional effect of reces-

sions, after controlling for aggregate volatility, that comes from the increase in the price

of risk (Proposition 2). To test for these two separate effects, we re-estimate the previous

results with both an indicator for recessions and an indicator for high aggregate payoff volatil-

ity. The high-volatility indicator variable equals one in months with the highest volatility

of aggregate earnings growth, where aggregate volatility is estimated from Shiller’s S&P

500 earnings growth data.18 We include both NBER recession and high aggregate payoff

volatility indicators as explanatory variables in an empirical horse race.

Columns 3 and 6 of Table 2 show that both recession and volatility contribute to a lower

Fpicking in expansions and a higher Ftiming in recessions. For the Ftiming result, the

recession effect is much stronger, while for the Fpicking result both recession and volatility

contribute about equally. Clearly, there is an effect of recessions beyond the one coming

through volatility. This is consistent with the predictions of our model, where recessions are

characterized both by an increase in aggregate payoff volatility and an increase in the price

of risk.

3.4 Testing Prediction 2: Dispersion

The second main prediction of the model states that heterogeneity in fund investment strate-

gies and portfolio returns rises in recessions. To test this hypothesis, we estimate the fol-

the entire literature that analyzes mutual fund data. The reason is that mutual fund-level data display a
large amount of heterogeneity that is hard to account for.

18We calculate the twelve-month rolling-window standard deviation of aggregate earnings growth. The
volatility cutoff selects 6% of months. Of the high-volatility periods, 28% are recessions. Of all other
periods (when high-volatility indicator is 0), 10.6% are recessions. Conversely, 14% of recessions are also
high-volatility periods whereas only 4.8% of expansions are high-volatility periods.
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lowing regression specification, using various return and investment heterogeneity measures,

generically denoted as Dispersionjt , the dispersion of fund j at month t.

Dispersionjt = b0 + b1Recessiont + b2X
j
t + ϵjt , (22)

The definitions of Recession and other controls mirror those in regression (20). Our coeffi-

cient of interest is b1.

The first dispersion measure we examine is Portfolio Dispersion, defined in equation

(18). It measures a deviation of a fund’s investment strategy from a passive market strategy,

and hence, in equilibrium, from the strategies of other investors. The results in Columns

1 and 2 of Table 3 indicate an increase in average Portfolio Dispersion across funds in

recessions. The increase is statistically significant at the 1% level. It is also economically

significant: The value of portfolio dispersion in recessions goes up by about 15% of a standard

deviation.

Since dispersion in fund strategies should generate dispersion in fund returns, we next

look for evidence of higher return dispersion in recessions. To measure dispersion, we use the

absolute deviation between fund j’s return and the equally weighted cross-sectional average,

|returnjt−returnt|, as the dependent variable in (22). Columns 5 and 6 of Table 3 show that

return dispersion increases by 17% in recessions. Finally, portfolio and return dispersion in

recessions should come from different directional bets on the market. This should show up as

an increase in the dispersion of portfolio betas. Columns 3 and 4 show that the CAPM-beta

dispersion increases by 36% in recessions, all consistent with the predictions of our model.

These findings are robust. Counter-cyclical dispersion in funds’ portfolio strategies is

also found in measures of fund style shifting and sectoral asset allocation. The dispersion in

returns is also found for abnormal returns and fund alphas. Results are available on request.

Testing for Separate Effects of Volatility and Recessions. Propositions 3 and 4 tell

us that return dispersion increases in recessions for two reasons. One is that the volatility

of aggregate shocks increases and the other reason is that the price of risk increases. We

can disentangle these two effects by regressing return dispersion on volatility and recession

simultaneously. The model would predict that volatility should be a significant determi-

nant of dispersion and that after controlling for volatility, there should be some additional

explanatory power of recessions that comes from the price of risk effect.

Column 7 of Table 3 shows that both the recession and the volatility effects are present in

the data. Both are associated with a significant increase in the dispersion of returns. After
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including the volatility variable, the magnitude of the coefficient on Recession falls by 25%,

but the recession variable retains its statistical significance. The volatility and price of risk

fluctuations both have significant effects on portfolio dispersion, with the effect of volatility

being somewhat larger.

3.5 Testing Prediction 3: Performance

The third prediction of our model is that recessions are times when information allows funds

to earn higher average risk-adjusted returns. Empirical work by Moskowitz (2000), Kosowski

(2011), de Souza and Lynch (2012), and Glode (2011) also documents such evidence, but their

focus is solely on performance, not on managers’ attention allocation nor their investment

strategies. Their results are based on time-series analysis, while we account for differences

in fund size, age, turnover, flows, loads, style and flow volatility. Furthermore, these studies

are silent on the specific mechanism that drives the outperformance result, which is one of

the main contributions of our paper.

We evaluate this hypothesis using the following regression specification:

Performancejt = c0 + c1Recessiont + c2X
j
t + ϵjt (23)

where Performancejt denotes fund j’s performance in month t, measured as fund abnormal

returns, or CAPM, three-factor, or four-factor alphas. All returns are net of management

fees. The coefficient of interest is c1.

Column 1 of Table 4 shows that the average fund’s net return is 3bp per month lower

than the market return in expansions, which is statistically indistinguishable from zero.

But the coefficient of Recession is is 38bp per month, implying that the average mutual

fund’s abnormal return is 4.6% per year higher in recessions. This difference is highly

statistically significant and increases further after we control for fund characteristics (Column

2). Similar results (Columns 3 and 4) obtain when we use the CAPM alpha as a measure of

fund performance, except that the net alpha in expansions is now statistically significantly

negative. The 34bp per month higher net alpha in recessions corresponds to 4% per year.

When we use alphas based on the three- and four-factor models, the recession return premium

diminishes (Columns 5-8). But in recessions, the four-factor alpha still represents a non-

trivial 1% per year risk-adjusted excess return, 1.6% higher (significant at the 1% level)

than the -0.6% recorded in expansions.

The advantage of this cross-sectional regression model is that it allows us to include a
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host of fund-specific control variables. The disadvantage is that performance is measured

using past twelve-month rolling-window regressions. Thus, a given observation can be clas-

sified as a recession when some or even all of the remaining eleven months of the window

are expansions. To verify the robustness of our cross-sectional results, we also employ a

time-series approach. In each month, we form the equally weighted portfolio of funds and

calculate its net return, in excess of the risk-free rate. We then regress this time series of

fund portfolio returns on Recession and common risk factors, adjusting standard errors for

heteroscedasticity and autocorrelation. We find similar outperformance in recessions. Our

results are also robust to alternative performance measures, such as gross fund returns, gross

alphas, or the information ratio (the ratio of the CAPM alpha to the CAPM residual volatil-

ity). All increase sharply in recessions. Finally, we find similar results when we lead alpha

on the left-hand side by one month instead of using a contemporaneous alpha. All results

point in the same direction: Outperformance increases in recessions.

Testing for Separate Effects of Volatility and Recessions. As before, two forces

increase the performance of funds relative to non-funds in recessions: the increase in volatility

and the increase in the price of risk (propositions 5 and 6). Column 9 of Table 4 shows that

the data are consistent with each force having a distinct effect on fund outperformance. We

use the 4-factor alpha as the dependent variable for this exercise because we want to avoid

conflating more risk taking in recessions with greater fund outperformance in recessions.

When we regress each fund’s 4-factor alpha on a recession indicator and a volatility measure,

both have positive, significant coefficients. Adding the volatility variable reduces the size

of the recession effect by 28%. This suggests that fund outperformance in recessions is due

mostly to the increased price of risk and is due to a lesser extent to the higher volatility of

aggregate shocks. But the fact that both variables have a significant relationship with fund

outperformance, dispersion, and attention, in the direction predicted by the theory offers

solid support for the model.

3.6 Alternative Explanations

The existing literature has not yet advanced any alternative explanations for time-varying

skill, as far as we know. In Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012), we

consider six possible alternative explanations in detail: 1) Measures of fund skill change

because fund managers change; 2) the results are driven by sample selection, because highly

successful managers are hired by hedge funds; 3) the convex flow-performance relationship
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changes incentives over the business cycle; 4) young managers with career concerns have an

incentive to herd that might vary over the cycle; 5) investors in mutual funds have time-

varying marginal utility; and 6) the effects arise mechanically from the properties of asset

returns. Ultimately, we conclude that while some of these hypotheses can account for some

of the facts, they do not account for all facts jointly. In particular, none explains the main

fact, that market timing is better in recessions and stock picking is more successful in booms.

4 Conclusion

Do investment managers add value for their clients? The answer to this question matters

for issues ranging from the discussion of market efficiency to practical portfolio advice for

households. The large amount of randomness in financial asset returns makes it a difficult

question to answer. The multi-billion investment management business is first and foremost

an information-processing business. We model investment managers not only as agents

making optimal portfolio decisions, but also as human beings with finite mental capacity

(attention), who optimally allocate that scarce capacity to process information at each point

in time. Since the optimal attention allocation varies with the state of the economy, so do

investment strategies and fund returns. As long as a subset of skilled investment managers

can process information about future asset payoffs, the model predicts a higher covariance

of portfolio holdings with aggregate asset payoff shocks, more cross-sectional dispersion in

portfolio investment strategies and returns across funds, and a higher average outperformance

in recessions. We observe these patterns in investments and returns of actively managed

U.S. mutual funds. Hence, the data are consistent with a world in which some investment

managers have skill.

Beyond the mutual fund industry, a sizeable fraction of GDP currently comes from in-

dustries that produce and process information (consulting, business management, product

design, marketing analysis, accounting, rating agencies, equity analysts, etc.). Ever increas-

ing access to information has made the problem of how to best allocate a limited amount

of information-processing capacity ever more relevant. While information choices have con-

sequences for real outcomes, they are often poorly understood because they are difficult to

measure. By predicting how information choices are linked to observable variables (such as

the state of the economy) and by tying information choices to real outcomes (such as portfo-

lio investment), we show how models of information choices can be brought to the data. This

information-choice-based approach could be useful in examining other information-processing
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sectors of the economy.
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Maćkowiak, B., E. Moench, and M. Wiederholt (2009): “Sectoral price data and
models of price setting,” Journal of Monetary Economics, 56S, 78–99.
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Table 1: Individual Stocks Have More Aggregate Risk in Recessions

For each stock i and month t, we estimate a CAPM equation based on twelve months of data (a twelve-
month rolling-window regression). This estimation delivers the stock’s beta, βit, and its residual standard
deviation, σiεt. We define stock i’s aggregate risk in month t as

∣∣βitσmt ∣∣ and its idiosyncratic risk as σiεt, where
σmt is the realized volatility from daily market return observations. Panel A reports results from a time-

series regression of the average stock’s aggregate risk, 1
N

∑N
i=1

∣∣βitσmt ∣∣, in Columns 1 and 2, of the average

idiosyncratic risk, 1
N

∑N
i=1 σ

i
εt, in Columns 3 and 4, and of the ratio of aggregate to average idiosyncratic

risk, in Columns 5 and 6, on Recession. Recession is an indicator variable equal to one for every month the
economy is in a recession according to the NBER, and zero otherwise. In Columns 2, 4, and 6 we include
several aggregate control variables: the market excess return (MKTPREM), the return on the small-minus-
big portfolio (SMB), the return on the high-minus-low book-to-market portfolio (HML), the return on the
up-minus-down momentum portfolio (UMD). The data are monthly from 1980-2005 (309 months). Standard
errors (in parentheses) are corrected for autocorrelation and heteroscedasticity. Panel B reports results of
panel regressions of each stock’s aggregate risk,

∣∣βitσmt ∣∣, in Columns 1 and 2 and of its idiosyncratic risk,

σiεt, in Columns 3 and 4, and of the ratio of a stock’s aggregate to idiosyncratic risk, in Columns 5 and
6, on Recession. In Columns 2, 4, and 6 we include several firm-specific control variables: the log market
capitalization of the stock, log(Size), the ratio of book equity to market equity, B −M , the average return
over the past year, Momentum, the stock’s ratio of book debt to book debt plus book equity, Leverage, and
an indicator variable, NASDAQ, equal to one if the stock is traded on NASDAQ. All control variables are
lagged one month. The data are monthly and cover all stocks in the CRSP universe for 1980-2005. Standard
errors (in parentheses) are clustered at the stock and time dimensions.

(1) (2) (3) (4) (5) (6)
Aggregate Risk Idiosyncratic Risk Aggregate/Idiosyncratic Risk
Panel A: Time-Series Regression

Recession 1.348 1.308 0.058 0.016 0.098 0.097
(0.693) (0.678) (1.018) (1.016) (0.027) (0.027)

MKTPREM -4.034 -1.865 -0.215
(3.055) (3.043) (0.226)

SMB 8.110 12.045 0.167
(3.780) (4.923) (0.199)

HML 0.292 9.664 -0.308
(5.458) (8.150) (0.302)

UMD -4.279 -1.112 -0.270
(2.349) (3.888) (0.178)

Constant 6.694 6.748 13.229 13.196 0.508 0.513
(0.204) (0.212) (0.286) (0.276) (0.013) (0.014)

Observations 309 309 309 309 309 309
R-squared 6.85 9.70 0.10 3.33 8.58 10.52

Panel B: Pooled Regression

Recession 1.203 1.419 0.064 0.510 0.096 0.104
(0.242) (0.238) (0.493) (0.580) (0.021) (0.024)

Log(Size) -0.145 -1.544 0.043
(0.021) (0.037) (0.002)

B-M Ratio -0.934 -2.691 0.008
(0.056) (0.086) (0.004)

Momentum 0.097 2.059 -0.040
(0.101) (0.177) (0.005)

Leverage -0.600 -1.006 -0.010
(0.074) (0.119) (0.003)

NASDAQ 0.600 1.937 -0.043
(0.075) (0.105) (0.005)

Constant 4.924 4.902 12.641 12.592 0.450 0.450
(0.092) (0.095) (0.122) (0.144) (0.009) (0.009)

Observations 1,312,216 1,312,216 1,312,216 1,312,216 1,312,216 1,312,216
R-squared 0.62 2.90 0.000 19.33 0.58 7.56
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Table 2: Attention Allocation is Cyclical

Dependent variables: Fund j’s Ftimingjt is defined in equation (16), where the rolling window T is 12 months
and the aggregate shock at+1 is the change in industrial production growth between t and t+ 1. A fund j’s

Fpickingjt is defined as in equation (17), where sit+1 is the change in asset i’s earnings growth between t
and t+ 1. All are multiplied by 10,000 for readability.
Independent variables: Recession is an indicator variable equal to one for every month the economy is in
a recession according to the NBER, and zero otherwise. Log(Age) is the natural logarithm of fund age in
years. Log(TNA) is the natural logarithm of a fund total net assets. Expenses is the fund expense ratio.
Turnover is the fund turnover ratio. Flow is the percentage growth in a fund’s new money. Load is the
total fund load. Flowvol is the volatility of fund flows, measures from the last twelve months of fund flows.
The last three control variables measure the style of a fund along the size, value, and momentum dimensions,
calculated from the scores of the stocks in their portfolio in that month. They are omitted for brevity. All
control variables are demeaned. Flow and Turnover are winsorized at the 1% level. V olatility is an indicator
variable for periods of volatile earnings. We calculate the twelve-month rolling-window standard deviation
of the year-to-year log change in the earnings of S&P 500 index constituents; the earnings data are from
Robert Shiller for 1926-2008. Volatility equals one if this standard deviation is in the highest 10% of months
in the 1926-2008 sample. During 1985-2005, 12% of months are such high volatility months. The data are
monthly and cover the period 1980 to 2005. Standard errors (in parentheses) are clustered by fund and time.

(1) (2) (3) (4) (5) (6)
Ftiming Fpicking

Recession 0.011 0.012 0.011 -0.742 -0.680 -0.617
(0.003) (0.003) (0.004) (0.138) (0.126) (0.127)

Volatility 0.000 -0.415
(0.003) (0.099)

Log(Age) -0.001 -0.001 0.447 0.445
(0.001) (0.001) (0.061) (0.061)

Log(TNA) -0.001 -0.001 -0.130 -0.129
(0.000) (0.000) (0.029) (0.029)

Expenses -0.208 -0.227 96.748 96.205
(0.219) (0.217) (11.200) (11.007)

Turnover -0.004 -0.004 -0.260 -0.262
(0.001) (0.001) (0.063) (0.063)

Flow -0.010 -0.010 0.637 0.631
(0.011) (0.011) (0.652) (0.652)

Load 0.006 0.009 -9.851 -9.851
(0.022) (0.022) (1.951) (1.935)

Flow vol -0.006 -0.004 6.684 6.711
(0.017) (0.017) (1.042) (1.032)

Constant -0.001 0.000 -0.001 3.082 3.238 3.119
(0.001) (0.002) (0.001) (0.069) (0.107) (0.072)

Observations 221,488 221,488 221,488 165,029 165,029 165,029
R-squared 0.03 0.09 0.08 0.03 0.25 0.25
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Table 3: Portfolio and Return Dispersion Rises in Recessions

Dependent variables: Portfolio dispersion is the Herfindahl index of portfolio weights in stocks i ∈ {1, · · · , N}
in deviation from the market portfolio weights

∑N
i=1(w

j
it − wmit )

2 × 100. Return dispersion is |returnjt −
returnt|, where return denotes the (equally weighted) cross-sectional average. The CAPM beta comes from

twelve-month rolling-window regressions of fund-level excess returns on excess market returns (and returns

on SMB, HML, and MOM). Beta dispersion is constructed analogously to return dispersion. The right-hand

side variables, the sample period, and the standard error calculation are the same as in Table 2.

(1) (2) (3) (4) (5) (6) (7)
Portfolio Dispersion Beta Dispersion Return Dispersion

Recession 0.204 0.118 0.083 0.088 0.316 0.380 0.286
(0.027) (0.025) (0.015) (0.014) (0.147) (0.146) (0.142)

Volatility 0.593
(0.220)

Log(Age) 0.210 -0.005 -0.121 -0.109
(0.028) (0.002) (0.017) (0.018)

Log(TNA) -0.165 0.004 0.043 0.036
(0.014) (0.001) (0.009) (0.010)

Expenses 31.986 4.162 28.330 25.602
(4.867) (0.212) (2.621) (2.564)

Turnover -0.113 0.013 0.090 0.075
(0.026) (0.001) (0.013) (0.014)

Flow -0.230 -0.004 -0.230 -0.268
(0.108) (0.018) (0.223) (0.217)

Load -1.658 -0.318 -4.071 -3.548
(0.900) (0.041) (0.509) (0.527)

Flow vol 2.379 0.075 1.570 1.852
(0.304) (0.027) (0.240) (0.261)

Constant 1.525 1.524 0.228 0.228 1.904 1.899 1.843
(0.024) (0.022) (0.006) (0.006) (0.084) (0.077) (0.078)

Observations 227,141 227,141 224,130 224,130 227,141 227,141 227,141
R-squared 0.10 4.80 1.35 8.10 0.19 7.00 7.89
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Table 4: Fund Performance Improves in Recessions

Dependent variables: Abnormal Return is the fund return minus the market return. The alphas come from

twelve-month rolling-window regressions of fund-level excess returns on excess market returns for the CAPM

alpha, additionally on the SMB and the HML factors for the three-factor alpha, and additionally on the

UMD factor for the four-factor alpha. The independent variables, the sample period, and the standard error

calculations are the same as in Table 2.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Abnormal Return CAPM Alpha 3-Factor Alpha 4-Factor Alpha

Recession 0.384 0.433 0.339 0.399 0.043 0.062 0.108 0.131 0.086
(0.056) (0.059) (0.048) (0.050) (0.034) (0.026) (0.041) (0.033) (0.035)

Volatility 0.138
(0.064)

Log(Age) -0.015 -0.032 -0.023 -0.035 -0.032
(0.021) (0.008) (0.006) (0.006) (0.006)

Log(TNA) 0.023 0.040 0.018 0.019 0.018
(0.013) (0.004) (0.003) (0.003) (0.003)

Expenses -5.120 -0.929 -5.793 -5.970 -6.590
(2.817) (0.892) (0.720) (0.677) (0.715)

Turnover 0.021 -0.054 -0.087 -0.076 -0.080
(0.039) (0.010) (0.010) (0.008) (0.008)

Flow 2.127 2.308 1.510 1.386 1.378
(0.672) (0.172) (0.096) (0.096) (0.096)

Load -0.698 -0.810 -0.143 -0.371 -0.249
(0.457) (0.174) (0.129) (0.139) (0.139)

Flow vol -0.106 1.025 1.461 1.210 1.278
(0.588) (0.137) (0.109) (0.104) (0.106)

Constant -0.032 -0.036 -0.060 -0.065 -0.059 -0.061 -0.051 -0.053 -0.066
(0.064) (0.063) (0.025) (0.024) (0.020) (0.018) (0.023) (0.021) (0.021)

Observations 224,130 224,130 224,130 224,130 224,130 224,130 224,130 224,130 224,130
R-squared 0.01 0.57 1.15 10.70 0.03 6.20 0.16 5.50 5.82
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A Technical Appendix

A.1 Useful notation, matrices and derivatives

All the following matrices are diagonal with ii entry given by:

1. Posterior precision of shock i for an investor j is σ̂−1
ij , which is equivalent to

(Σ̂−1
j )ii = (Σ−1 +Σ−1

ηj +Σ−1
p )ii = σ−1

i +Kij +
K̄2
i

ρ2σx
= σ̂−1

i (24)

2. Average signal precision: (Σ̄−1
η )ii = K̄i, where K̄i ≡

∫
j
Kij

3. Precision of the information convey by prices about shock i: (Σ−1
p )ii =

1
ρ2σx

(Σ̄−1
η )2ii =

K̄2
i

ρ2σx
= σ−1

ip

4. Average posterior precision of shock i: σ̄−1
i ≡ σ−1

i + K̄i +
K̄2

i

ρ2σx
. The average variance is therefore

(Σ̄)ii =
1(

σ−1
i +K̄i+

K̄2
i

ρ2σx

) = σ̄i, with derivatives:

∂(Σ̄)ii
∂σi

=

(
σ̄i
σi

)2

> 0 (25)

∂(Σ̄)ii
∂ρ

=
2

ρ

σ̄2
i

σip
> 0 (26)

Applying the chain rule yields
∂(Σ̄Σ̄)ii
∂ρ

=
4σ̄i
ρ

σ̄2
i

σip
> 0. (27)

5. Difference from average posterior beliefs: Recall that Σ̄−1
η ≡

∫
j
Σ−1
ηj dj is the average private signal

precision and that Σ̄−1 ≡
∫
j
Σ̂−1
j dj = Σ−1+Σ−1

p +Σ̄−1
η is the average posterior precision. Now define

∆ as the difference between the precision of an informed investor’s posterior beliefs and the average

posterior precision. Since the Σ−1+Σ−1
p terms are equal for all investors, this quantity is also equal to

the difference between the precision of an informed investor’s private signals and the average private

signal precision:

∆ ≡ Σ̂−1
j − Σ̄−1 = Σ−1

ηj − Σ̄−1
η . (28)

6. Ex-ante mean and variance of returns:

Using lemma 1 and the coefficients given by (44), we can write the risk factor return as

f̃ − p̃r = (I −B)z − Cx−A

= Σ̄

[
Σ−1z + ρ

(
I +

1

ρ2σx
Σ̄−1′

η

)
x

]
+ ρΣ̄x̄+ Γ−1µ.

This expression is a constant plus a linear combination of two normal variables, which is also a normal

variable. Therefore, we can write

f̃ − p̃r = V 1/2u+ w (29)
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where u ∼ N(0, I),

w ≡ ρΣ̄x̄+ Γ−1µ (30)

and

V ≡ Σ̄

[
Σ−1 + ρ2σx

(
I +

1

ρ2σx
Σ̄−1′

η

)(
I +

1

ρ2σx
Σ̄−1′

η

)′
]
Σ̄

= Σ̄

[
Σ−1 + ρ2σx

(
I +

1

ρ2σx
(Σ̄−1′

η + Σ̄−1
η ) +

1

ρ4σ2
x

Σ̄−1′

η Σ̄−1
η

)]
Σ̄

= Σ̄

[
Σ−1 + ρ2σxI + (Σ̄−1′

η + Σ̄−1
η ) +

1

ρ2σx
Σ̄−1′

η Σ̄−1
η

]
Σ̄

= Σ̄
[
ρ2σxI + Σ̄−1′

η +Σ−1 + Σ̄−1
η +Σ−1

p

]
Σ̄

= Σ̄
[
ρ2σxI + Σ̄−1′

η + Σ̄−1
]
Σ̄ (31)

The first line uses E[xx′] = σxI and E[zz′] = Σ, the fourth line uses (45) and the fifth line uses

Σ̄−1 = Σ−1 +Σ−1
p + Σ̄−1

η .

This variance matrix V is a diagonal matrix. It diagonal elements are

(V )ii = (Σ̄
[
ρ2σxI + Σ̄−1

η + Σ̄−1
]
Σ̄)ii

= σ̄i[1 + (ρ2σx + K̄i)σ̄i] (32)

Diagonals of V have the following derivatives:

∂Vii
∂σi

=

(
σ̄i
σi

)2 (
1 + 2(ρ2σx + K̄i)σ̄i

)
> 0 (33)

∂Vii
∂ρ

= 2ρσxσ̄
2
i

[
1 +

1

ρ2σlp
(1 + 2(ρ2σx + K̄i)σ̄i)

]
> 0 (34)

The elasticity of Vii with respect ρ is given by:

∂Vii
∂ρ

ρ

Vii
= 2ρσxσ̄

2
i

[
1 +

1

ρ2σlp
(1 + 2(ρ2σx + K̄i)σ̄i)

]
ρ

σ̄i[1 + (ρ2σx + K̄i)σ̄i]

=
2ρ2σxσ̄i

[1 + (ρ2σx + K̄i)σ̄i]

[
1 +

1

ρ2σlp
(1 + 2(ρ2σx + K̄i)σ̄i)

]
The second term is always larger than one. We look for a sufficient condition that makes the first

term larger than one too:

2ρ2σxσ̄i > 1 + (ρ2σx + K̄i)σ̄i

ρ2σx > σ̄−1
i + K̄i

ρ2σx > σ−1
i + 2K̄i +

K̄2
i

ρ2σx
(35)

Since the LHS is increasing in σx and the RHS is decreasing in σx, if σx is sufficiently high, the
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elasticity of Vii with respect to ρ becomes larger than one.

A.2 Solving the Model

Step 1: Portfolio Choices From the FOC, the optimal portfolio of risks factors chosen by investor

j is

q̃j =
1

ρ
Σ̂−1
j (Ej [f̃ ]− p̃r) (36)

where Ej [f̃ ] and Σ̂j depend on the skill of the investor.

Next, we compute the risk factor portfolio of the average investor.∫
j

q̃j =
1

ρ

∫
j

Σ̂−1
j (Ej [f̃ ]− p̃r)dj

=
1

ρ

(∫
j

Σ̂−1
j (Γ−1µ+ Ej [f̃ ])dj − Σ̄−1p̃r

)
=

1

ρ

(∫
j

Σ−1
ηj ηjdj +Σ−1

p ηp + Σ̄−1(Γ−1µ− p̃r)

)
=

1

ρ

(
Σ̄−1
η z +Σ−1

p ηp + Σ̄−1(Γ−1µ− p̃r)
)

(37)

where the fourth equality uses the fact that average noise of private signals is zero. Using the portfolio

expressions (36) and (37), we compute the difference between the portfolio of investor j and the market

portfolio:

q̃j −
∫
j

q̃j =
1

ρ

(
Σ̂−1
j (Ej [f̃ ]− p̃r)− (Σ̄−1

η +Σ−1
p )z − Σ−1

p εp − Σ̄−1(Γ−1µ− p̃r)
)

=
1

ρ

(
(Σ−1

ηj ηj +Σ−1
p ηp)− Σ̄−1

η z − Σ−1
p ηp + (Σ̂−1

j − Σ̄−1)(Γ−1µ− p̃r)
)

=
1

ρ

(
(Σ−1

ηj − Σ̄−1
η )z +Σ−1

ηj εj + (Σ̂−1
j − Σ̄−1)(Γ−1µ− p̃r)

)
=

1

ρ

(
∆(f̃ − p̃r) + Σ−1

ηj εj)
)

(38)

=
1

ρ

[
Σ−1
ηj εj +∆(V 1/2u+ w)

]
(39)

where the third equality uses ηj = z + εj , the fourth equality uses (28) and the definition f̃ = Γ−1µ+ z and

the last line uses (29).

Step 2: Clearing the asset market and computing expected excess return Lemma

1 describes the solution to the market-clearing problem and derives the coefficients A, B and C in the

pricing equation. The equilibrium price, along with the random signal realizations determines the time-2

expected return (Ej [f̃ ]− p̃r). But at time 1, the equilibrium price and one’s realized signals are not known.

To compute period-1 utility, we need to know the time-1 expectation and variance of this time-2 expected

return.

The time-2 expected excess return can be written as: Ej [f̃ ]− p̃r = Ej [f̃ ]− f̃ + f̃ − p̃r and therefore its
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variance is

V1[Ej [f̃ ]− p̃r] = V1[Ej [f̃ ]− f̃ ] + V1[f̃ − p̃r] + 2Cov1[Ej [f̃ ]− f̃ , f̃ − p̃r] (40)

Combining (9) with the definitions ηj = z + εj and ηp = z + εp, we can compute expectation errors:

Ej [f̃ ]− f̃ = Σ̂j

[
(Σ−1

ηj +Σ−1
p − Σ̂−1

j )z +Σ−1
ηj εj +Σ−1

p εp

]
= Σ̂j

[
−Σ−1z +Σ−1

ηj εj +Σ−1
p εp

]
Since this is a sum of mean-zero variables, its expectation is E1[Ej [f̃ ]− f̃ ] = 0 and its variance is V1[Ej [f̃ ]−
f̃ ] = Σ̂j

[
Σ−1 +Σ−1

ηj +Σ−1
p

]
Σ̂′
j = Σ̂j .

From (29) we know that V1[f̃ − p̃r] = V . To compute the covariance term, we can use the definition

f̃ = Γ−1µ+ z and rearrange the definition of ηp to get p̃r = Bηp +A and ηp = z + εp to write

f̃ − p̃r = Γ−1µ+ (I −B)z −A−Bεp (41)

= ρΣ̄x̄+ Σ̄Σ−1z − (I − Σ̄Σ−1)εp (42)

where the second line comes from substituting the coefficients A and B from lemma 1. Since the constant

ρΣ̄x̄ does not affect the covariance, we can write

Cov1[Ej [f̃ ]− f̃ , f̃ − p̃r] = Cov[−Σ̂jΣ
−1z + Σ̂jΣ

−1
p εp, Σ̄Σ

−1z − (I − Σ̄Σ−1)εp]

= −Σ̂jΣ
−1ΣΣ̄Σ−1 − Σ̂jΣ

−1
p Σp(I − Σ̄Σ−1)]

= −Σ̂jΣ̄Σ
−1 − Σ̂j(I − Σ̄Σ−1)

= −Σ̂j

Substituting the three variance and covariance terms into (40), we find that the variance of excess return is

V1[Ej [f̃ ]− p̃r] = Σ̂j + V − 2Σ̂j = V − Σ̂j . Note that this is a diagonal matrix. Substituting the expressions

(32) and (24) for the diagonal elements of V and Σ̂j we have

(V − Σ̂j)ii = (σ̄i − σ̂i) + (ρ2σx + K̄i)σ̄
2
i

A sufficient condition for the expression to hold for informed investors isKij > K̄i (implying that σ̂−1
i > σ̄−1

i ,

this is, they most allocate more capacity to each shock than the average agent. Given the symmetry

across investors, they will all learn about the same shocks and thus this condition holds. Therefore, the

variance matrix is positive definite. In summary, the excess return is normally distributed as Ej [f̃ ] − p̃r ∼
N (w, V − Σ̂j).

Step 3: Compute ex-ante expected utility Ex-ante expected utility for investor j is U1j =

E1

[
ρEj [Wj ]− ρ2

2 Vj [Wj ]
]
. In period 2, the investor has chosen his portfolio and the price is in his information

set, therefore the only random variable is z. We substitute the budget constraint, the optimal portfolio

choice from (36) and take expectation and variance conditioning on Ej [f̃ ] and Σ̂j to obtain U1j = ρrW0 +
1
2E1[(Ej [f̃ ]− p̃r)′Σ̂j(Ej [f̃ ]− p̃r)].

Define m ≡ Σ̂
−1/2
j (Ej [f̃ ]− p̃r) and note that m ∼ N (Σ̂

−1/2
j w, Σ̂−1

j V − I). The second term in the Uij is
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equal to E[m′m], which is the mean of a non-central Chi-square. Using the formula, ifm ∼ N (E[m], V ar[m]),

then E[m′m] = tr(V ar[m]) + E[m]′E[m], we get

U1j = ρrW0 +
1

2
tr(Σ̂−1

j V − I) +
1

2
w′Σ̂−1

j w.

Finally we substitute the expressions for Σ̂−1
j and w from (24) and (30):

U1j = ρrW0 −
N

2
+

1

2

N∑
i=1

(
σ−1
i +Kij +

K̄2
i

ρ2σx

)
Vii +

ρ2

2

N∑
i=1

x̄2i σ̄
2
i

(
σ−1
i +Kij +

K̄2
i

ρ2σx

)

=
1

2

N∑
i=1

Kij [Vii + ρ2x̄2i σ̄
2
i ] + ρrW0 −

N

2
+

1

2

N∑
i=1

(
σ−1
i +

K̄2
i

ρ2σx

)
[Vii + ρ2x̄2i σ̄

2
i ]

=
1

2

N∑
i=1

Kijλi + constant (43)

where the weights λi = σ̄i[1 + (ρ2σx + K̄i)σ̄i] + ρ2x̄2i σ̄
2
i are given by the variance of expected excess return

Vii from 32 plus a term that depends on the supply of the risk.

Step 4: Information choices The attention allocation problem maximizes ex-ante utility in 43

subject to the information capacity and no-forgetting constraints:

max
{Kij}N

i=1

1

2

N∑
i=1

Kijλi + constant

subject to
N∑
i=1

Kij ≤ K

Kij ≥ 0 ∀i

Observe that λi depends only on parameters and on aggregate average precisions. Since the investor has

zero mass in a continuum of investors, he takes λi as given. Since the constant is irrelevant, the optimal

choice maximizes a weighted sum of attention allocations, where the weights are given by λi (equation 14),

subject to a constraint on an un-weighted sum. This is not a concave objective, so a first-order approach will

not deliver a solution. A simple variational argument reveals that allocating all capacity to the risk(s) with

the highest λi achieves the maximum utility. For a formal proof of this result, see Van Nieuwerburgh and

Veldkamp (2010). Thus the solution is given by: Kij = K if λi = maxk λk and Kij = 0 otherwise. There

may be multiple risks i that achieve the same maximum value of λi. In that case, the manager is indifferent

about how to allocate attention between those risks.

A.3 Proofs

Proof of Lemma 1

Proof. Following Admati (1985), we know that the equilibrium price takes the following form p̃r = A+Bz+
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Cx where

A = Γ−1µ− ρΣ̄x̄

B = I − Σ̄Σ−1 (44)

C = −ρΣ̄
(
I +

1

ρ2σx
Σ̄−1′

η

)
and therefore the price is given by

p̃r = Σ̄

[
(Σ̄−1 − Σ−1)z − ρ(x̄+ x)− 1

ρσx
Σ̄−1′

η

]
Furthermore, the precision of the public signal is

Σ−1
p ≡

(
σxB

−1CC ′B−1′
)−1

=
1

ρ2σx
Σ̄−1′

η Σ̄−1
η (45)

Proof of Proposition 1 For a given investor j, the optimal choice of attention allocation to risk i is

weakly increasing in its variance σi.

Proof. From step 4 of the model solution, we know that the optimal information choice is Kij = K if

λi = maxk λk and Kij = 0 otherwise. It remains to be shown that the weight λi is increasing in σi:

∂λi
∂σi

= [1 + 2σ̄i(ρ
2(σx + x̄2i ) + K̄i)]

(
σ̄i
σi

)2

> 0

and ∂λk

∂σi
= 0. Therefore, an increase in the variance of risk i only increases the weight associated with Kij ,

and either shifts the attention towards that risk (if it was not already allocated) or it remains at its previous

level.

Proof of Proposition 2 For a given investor j, an increase in risk aversion ρ weakly increases the

attention allocated to risk i if its supply x̄i is sufficiently high.

Proof. From step 4 of the model solution, we know that all capacity is allocated to the risk i with the highest

weight λi. The derivative of the weight with respect to risk aversion is given by:

∂λi
∂ρ

= [1 + 2σ̄i(ρ
2(σx + x̄2i ) + K̄i)]

2σ̄2
i

ρσlp
+ 2ρσ̄2

i (σx + x̄2i )

In this case, an increase in risk aversion will increase the weight for all risks. However, the magnitude of the

increase in the weight will depend positively on the supply of such risk:

∂2λi
∂x̄i∂ρ

= 4ρσ̄2
i x̄i

(
1 +

2σ̄i
σlp

)
> 0
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In conclusion, an increase in risk aversion shifts attention towards the risk with highest supply (if it was not

already allocated) or it remains at its previous level.

Derivation of excess returns and their dispersion We begin by calculating the portfolio

excess return. Note that the return of the portfolio expressed in terms of assets is equal to the return

expressed in risk factors:

(qj − q̄)′(f − pr) = (qj − q̄)′Γ−1(Γf − Γpr) (46)

= (q̃j −
∫
l

q̃l)
′(f̃ − p̃r) (47)

Substitute (29) and (39) into (47) to get

E[(q̃j −
∫
l

q̃l)
′(f̃ − p̃r)] =

1

ρ
E

[(
Σ−1
ηj ϵj +∆(V 1/2u+ w)

)′
(V 1/2u+ w)

]
=

1

ρ
E
[
ϵ′jΣ

−1
ηj w + ϵ′jΣ

−1
ηj V

1/2u+ 2w′∆V 1/2u+ w′∆w + u′V 1/2∆V 1/2u
]

=
1

ρ
E
[
w′∆w + u′V 1/2∆V 1/2u

]
=

1

ρ

[
ρ2x̄′Σ̄∆Σ̄x̄+ Tr

(
V 1/2∆V 1/2E(uu′)

)]
=

1

ρ

[
ρ2x̄′Σ̄∆Σ̄x̄+ Tr(∆V )

]
= ρTr(x̄′Σ̄∆Σ̄x̄) +

1

ρ
Tr(∆V ) (48)

where the third equality comes from the fact that ϵj and u are mean zero and uncorrelated.

To get return dispersion, we substitute (29) and (39) into (47), then square the excess return and take

the expectation:

E[((qj − q̄)′(f̃ − p̃r))2] = E

[(
1

ρ
[Σ−1
η ej +∆V 1/2u+∆w]′(w + V 1/2u)

)2
]

Using the fact that for any random variable x we have that V (x) = E(x2)−E2(x), the dispersion of funds’

portfolio returns is equal to:

E[((qj − q̄)′(f̃ − p̃r))2] =
1

ρ2
V
(
[Σ−1
ηj ej +∆V 1/2u+∆w]′(V 1/2u+ w)

)
+

1

ρ2

(
E[Σ−1

ηj ej +∆V 1/2u+∆w]′(V 1/2u+ w)
)2
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We compute each term separately.

V (·) = V
[
e′jΣ

−1
ηj w + e′jΣ

−1
ηj V

1/2u+ 2w′∆V 1/2u+ w′∆w + u′V 1/2∆V 1/2u
]

= w′Σ−1
ηj w + 0 + 4w′∆V∆w + 0 + 2Tr(∆V∆V )

= ρ2Tr(x̄′Σ̄Σ−1
ηj Σ̄x̄) + 4ρ2Tr(x̄′Σ̄∆V∆Σ̄x̄) + 2Tr(∆V∆V )

and

E(·)2 = (w′∆w)2 + Tr2(∆V ) + 2w′∆wTr(∆V )

= ρ4Tr2(x̄′Σ̄∆Σ̄x̄) + Tr2(∆V ) + 2ρ2Tr(x̄′Σ̄∆Σ̄x̄)Tr(∆V )

Substituting back we have:

E[((qj − q̄)′(f̃ − p̃r))2] = Tr(x̄′Σ̄Σ−1
ηj Σ̄x̄) + 4Tr(x̄′Σ̄∆V∆Σ̄x̄) + 2Tr(x̄′Σ̄′∆Σ̄x̄)Tr(∆V )

+ ρ2Tr2(x̄′Σ̄∆Σ̄x̄) +
1

ρ2
Tr2(∆V ) +

2

ρ2
Tr(∆V∆V )

= 6x̄l
2σ̄2
l (Klj − K̄l)

2Vii + 3(Klj − K̄l)
2V

2

ρ2
+ x̄2l σ̄

2
lKlj + ρ2x̄4l σ̄

4
l (Klj − K̄l)

2

=
n∑
l=1

(Klj − K̄l)
2x̄l

2σ̄2
l

[
6Vll + ρ2x̄2l σ̄

2
l + 3

V 2
ll

ρ2x̄l2σ̄2
l

]
+ x̄l

2σ̄2
lKlj (49)

Proof of Proposition 3 For given precisions of an investor j, an increase in variance σi: a) increases

the dispersion of fund portfolios E[(qj− q̄)′(qj− q̄)] and b) increases the dispersion of portfolio excess returns

E[((qj − q̄)′(f̃ − p̃r))2].

Proof. Part a) Our measure of portfolio dispersion is E[(qj − q̄)′(qj − q̄)]. Transforming asset quantities into

risk factor quantities yield the equivalent expression E[(q̃j −
∫
l
q̃l)

′Γ−1′Γ−1(q̃j −
∫
l
q̃l)].

Using (38) to substitute out (q̃j −
∫
l
q̃l), we find that

E[(qj − q̄)′(qj − q̄)] =
1

ρ2

∑
i

(
∆iiE[(f̃i − p̃ir)

2] + Σ−2
ηj (i, i)E[ϵ2ij ]

)
(Γ−1(i, i))2 (50)

=
1

ρ2

∑
i

(
∆ii(w

2
i + Vii) + Σ−2

ηj (i, i)K
−1
ij

)
(Γ−1(i, i))2 (51)

Note that the matrices are all diagonal and the cross terms drop out because the market return (f̃i− p̃ir) is

independent of agent j’s signal noise ϵj .

The only components that are affected by the increase in σi are V and w. (33) shows that ∂Vii/σi > 0.

From (30), we see that, wi = ρΣ̄iix̄i + Γ−1(i, :)µ. Prior variance σi enters wi only through the average

posterior variance Σ̄. (25) establishes that ∂Σ̄ii/∂σi > 0. Since both derivatives are positive and all the

other terms in (51) are positive, we conclude that portfolio dispersion increases when the variance of any

risk does.

Part b) Recall the dispersion of portfolio excess returns given by (49). The only variables that depend

on σi are σ̄i and Vii, both of which are increasing in σi. Since all other terms in the expression are positive,
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dispersion of portfolio excess returns is increasing in σi.

Proof of Proposition 4 If σx is sufficiently large, then an increase in risk aversion ρ increases the

dispersion of portfolio excess returns E[((qj − q̄)′(f̃ − p̃r))2].

Proof. Dispersion of excess returns given in (49):

E[((qj − q̄)′(f̃ − p̃r))2] =
n∑
l=1

(Klj − K̄l)
2

x̄l
2σ̄2
l

[
6Vll + ρ2x̄2l σ̄

2
l +

Kl

(Klj − K̄l)2

]
+ 3

V 2
ll

ρ2︸︷︷︸
sign


The only terms affected by ρ are σ̄l and Vll, and both are increasing in ρ as shown in (26) and (34). Therefore

the only term of the derivative that we need to sign corresponds to the last one, whose derivative is:

3
n∑
l=1

(Klj − K̄l)
2

[
2Vll
ρ2

∂Vll
∂ρ

− 2

ρ3
V 2
ll

]
=

6

ρ2

n∑
l=1

(Klj − K̄l)
2Vll

[
∂Vll
∂ρ

− Vll
ρ

]

This expression is positive if the elasticity of Vll with respect to ρ is larger than one for all l, which is ensured

if σx is sufficiently large, i.e. satisfies (35).

Proof of Propositions 5 and 6 An increase in the variance of any shock σi increases the portfolio

excess return of an informed fund, E[(qj − q̄)′(f̃ − p̃r)]. Furthermore, if σx is sufficiently large, an increase

in risk aversion ρ also increases this excess return.

Proof. From (48) we have that expected excess returns are given by

E[(q̃j −
∫
l

q̃l)
′(f̃ − p̃r)] = ρTr(x̄′Σ̄∆Σ̄x̄) +

1

ρ
Tr(∆V )

Taking a derivative with respect to σi, recalling that ∆ does not depend on it:

∂E[(q̃j −
∫
l
q̃l)

′(f̃ − p̃r)]

∂σi
= 2ρTr

(
x̄′∆

[
∂Σ̄

∂σi

]
Σ̄x̄
)
+

1

ρ
Tr
(
∆

[
∂V

∂σi

])
> 0

This expression is positive since both Σ̄ and V are increasing in σi as we know from (25) and (33).

Taking a derivative with respect to ρ, recalling that ∆ does not depend on it:

∂E[(q̃j −
∫
l
q̃l)

′(f̃ − p̃r)]

∂ρ
= Tr(x̄′Σ̄∆Σ̄x̄) + 2ρTr

(
x̄′∆

[
∂Σ̄

∂ρ

]
Σ̄x̄
)
− 1

ρ2
Tr(∆V ) +

1

ρ
Tr
(
∆

[
∂V

∂ρ

])
= Tr(x̄′Σ̄∆Σ̄x̄) + 2ρTr

(
x̄′∆

[
∂Σ̄

∂ρ

]
Σ̄x̄
)
+

1

ρ

[
Tr
(
∆

[
∂V

∂ρ
− V

ρ

])]
A sufficient condition for this expression to be positive is ∂V

∂ρ − V
ρ > 0, which is equivalent to the elasticity

of Vii with respect to ρ larger than one for each i. This holds if σx is sufficiently large, i.e. satisfies (35).
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Supplementary Appendix for “Rational Attention Allocation over

the Business Cycle”: Model Simulation

Not for publication

In this supplementary appendix, we do two things. In section 1, we use a numerical example to illustrate

the model’s predictions for the same measures of attention, portfolio dispersion, and performance as the

ones we measure in the data. The goal of this exercise is to confirm that the model makes the same

qualitative predictions for these observables as for the slightly different measures of attention allocation,

portfolio dispersion, and fund performance for which we formally proved our propositions. Notably, we do

not attempt to quantitatively account for all time-series and cross-sectional moments of actively managed

fund portfolio holdings and returns. Such a task would be beyond the scope of this paper and indeed beyond

the current state of the literature. Our model is too stylized along many dimensions to deliver on such a

task. For example, it has only three assets and no heterogeneity in risk aversion, prior beliefs, or initial

wealth among funds, and no heterogeneity in information capacity among skilled managers. Adding such

features could improve the predictions, but only at the cost of obscuring the main mechanisms operating in

the model.

The second section analyzes a model where the agent has expected exponential utility. It re-derives the

main results of the paper analytically for that model.

S.1 Numerical Analysis

S.1.1 Parameter Choices

The following explains how we choose the parameters of our model. The simplicity of the model prevents

a full calibration. Instead, we pursue a numerical example that matches some salient properties of stock

return data. Our benchmark parameter choices are listed in Table S.1. Section S.1.3 below shows that the

qualitative results are robust to a wide range of parameter choices.

Our procedure is to simulate 3000 draws of the shocks (x1, x2, xc, s1, s2, a) in recessions and 3000 draws

of the shocks in expansions. Since our model is static, each simulation is best interpreted as different draws

of a random variable, and not as a period (months). The model’s recessions differ from expansions in two

respects.

First, the variance of the aggregate payoff shock σa is higher. It is set to replicate the fact the market

return volatility is about 25% higher in recessions than in expansions. In the numerical example, the volatility

of the market return is 4.0% in expansions and 5.0% in recessions, straddling the observed market return

volatility of 4.5%. Setting the variance of the asset supply vector σx = .052x̄ allows us to match this level of

market return volatility.

Second, recessions are also characterized by lower realized stock market returns (despite high expected

returns). In order to generate lower realized market returns and higher expected returns in a static model,

we have to assume that agents are surprised by unexpectedly low returns in recessions. We accomplish this

in the numerical example by replicating the bottom m = 2.5% of market return realizations among the 3000
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simulations of the model in recessions, in effect simulating the economy in recessions for 3000 ∗ (1 + .025) >

3000 draws. This choice for m is conservative because the 0.03% difference between market returns in

expansions (0.87% per month) and recessions (0.84% per month) it generates is lower than the 0.20% per

month difference in the data. In the robustness section below, we consider a case that generates a 0.20%

return difference. The results are qualitatively and quantitatively similar.

To get the average market return right, we choose the mean of asset payoffs µ (equal for all assets) and

the coefficient of absolute risk aversion, ρ, to achieve an average equilibrium market return of about 0.85%

per month.

Table S.1: Numerical Example

The first column lists the parameter in question, the second column is its symbol, the third column lists its
numerical value, and the last column briefly summarizes how we chose that value.

Parameter Symbol Value How Chosen?
CARA ρ 0.525 Asset return mean
mean of payoffs 1,2,c µ1, µ2, µc 10, 10, 10 Asset return mean
variance aggr. payoff comp. a σa 0.1225 (E), 0.2625 (R) Market return vol in expansions vs. recessions
variance idio. payoff comp. si σi 0.25 Asset return vol vs. market return vol
a-sensitivity of payoffs b1, b2 0.25,0.50 Asset beta level + dispersion
mean asset supply 1,2 x̄1 = x̄2 1,1 Normalization
mean asset supply c x̄c 7 Asset return volatility
variance asset supply σx (.05 ∗ x̄)2 Asset return idio vol
risk-free rate r 0.0022 Average T-bill return
initial wealth W0 90 Average cash position
difficulty learning aggr. info ψ 1 Simplicity
information capacity K 1
skilled fraction χ 0.20

We consider 3 assets (n = 3). We think of assets 1 and 2 as two large industries and the composite

asset as summarizing all other industries. Therefore, we normalize the mean asset supply of assets 1 and 2

to 1, and set the supply of the composite asset, x̄c, to 7. The variance of the firm-specific shocks is chosen

to match the fact that individual industry returns are about 30% more volatile than the market return over

our sample from 1980 to 2005. We use data from the 30 industry portfolios of Fama and French (1997). In

the example, the average volatility of assets 1 and 2 is 6.5% in recessions and 5.8% in expansions, 29% and

45% higher than that of the market return. This choice matches the proportion of the average industry’s

return variance that is idiosyncratic. We choose the asset loadings on the aggregate payoff shock, b1 and b2,

to be different from each other so as to generate some spread in asset betas. The chosen values generate

average market betas of 0.9 and a dispersion in betas of 33%. This is reasonably close to the average beta

of 0.95 and the dispersion of 23% for the 30-industry portfolios.

We set the average risk-free rate equal to 0.22% per month, the average of the 1-month yield minus

inflation in our sample. We set initial wealth, W0, to generate average holdings in the risk-free asset around

0%.

For simplicity, we set capacity K for skilled investment managers equal to 1. This implies that learning

can increase the precision of one of the idiosyncratic shocks (or the aggregate shock) by 25% (by 18%). We

will vary K in our robustness exercise below. Likewise, we have no strong prior on the fraction of skilled

funds, χ. In our benchmark, we set it equal to 20%, and we will vary it for robustness. The model is simulated
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for 800 investors, of which 175 are skilled (20%). We assume that 20% of all investors are non-investment

managers (“other investors”). The unskilled managers (60% of the populations) and other investors differ

in name only. We note that the parameter conditions in Propositions 2 through 4 are satisfied by these

parameter choices.

As in our empirical work on mutual funds in Section 3, we compute all statistics of interest as equally-

weighted averages across all investment managers (i.e., without the 20% other investors). We also report

results separately for skilled and unskilled investment managers.

S.1.2 Main Simulation Results

Every skilled manager (K > 0) solves for the choice of signal precisions Kaj ≥ 0 and K1j ≥ 0 that maximize

time-1 expected utility (11). We assume that these choice variables lie on a 25× 25 grid in R2
+. The signal

precision choice K2j ≥ 0 is implied by the capacity constraint (7).

We simulate a sequence of T = 3000 draws (months) for the random variables in each of the recession

and expansion states, as explained above. We form a T × 1 time series for the three individual asset returns,

for the market return, for each fund’s return, and for each fund’s (and the market’s) portfolio weights in

each asset. For each asset i, we then estimate a CAPM regression of the asset’s excess return on the market

excess return. This delivers the asset’s CAPM beta, βi; one value in expansions and one in recessions. We

define the systematic component of returns as βiR
m
t , for t = 1, · · · , T and i = 1, 2, 3. Stacking the different

is and ts results in a 3T × 1 vector of systematic returns. Similarly, we define the idiosyncratic return as

Rit − βiR
m
t .

To compute Ftiming in equation (16) for fund j, we stack its portfolio weights in deviation from the

market’s weights for the three assets and the T draws into a 3T ×1 vector. We also create a 3T ×1 vector of

aggregate shocks by stacking three identical repetitions of each aggregate shock realization a. We calculate

Ftiming as the covariance between these two variables. Likewise, we form Timing as in Kacperczyk,

Van Nieuwerburgh, and Veldkamp (2012) as the covariance between the time series of portfolio weights,

in deviation from the market’s weights, and the systematic component of returns. The procedure delivers

one Ftiming and one Timing measure per fund in recessions and one set of measures in expansions. We

multiply Ftiming by 1000 and Timing by 10,000 because the aggregate shocks are an order of magnitude

larger than the systematic returns.

Table S.2 summarizes the predictions of the model for the main statistics of interest. The left panel shows

the results for recessions, while the right panel shows the results for expansions. In each panel, we present

three columns. Column skilled reports the equally weighted average of the statistic in question for the group

of skilled investors (20% of investors have K > 0 in our benchmark parametrization). Column unskilled is

the equally weighted average across the unskilled funds (60% of investors are unskilled investment managers).

Column all is the equally weighted average across all funds (80% of investors). The 20% unskilled other

investors are excluded from the table because we do not observe them in the data. However, the model’s

predictions for this group are identical to those for the unskilled funds. These two groups differ in name

only.

Rows 1 and 2 of Table S.2 show that Ftiming and Timing are higher for skilled investors in recessions

(left panel) than in expansions (right panel). Because of market clearing, unskilled investors are the flip side

of the skilled ones, their Ftiming and Timing measures are negative. Since no investors learn about the
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aggregate shock in expansions, Ftiming and Timing are essentially zero for both skilled and unskilled. The

net effect of the skilled and unskilled is listed in Column all. This combination of all investment managers,

skilled and unskilled, is what we have data on. Hence, the first testable implication of the model is that

Ftiming and Timing should be higher for all funds in recessions than in expansions.

In a similar fashion, we construct Fpicking measure, defined in equation (17), and the stock-picking

measure Picking, defined in Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012). That is, we stack the

stock-specific shocks, si, the idiosyncratic returns, Rit − βiR
m
t , and the fund’s portfolio weights into 3T × 1

vectors and compute the respective covariances. Rows 3 and 4 summarize the predictions of the model for

Fpicking (multiplied by 1000) and Picking (multiplied by 10,000). Across all funds (skilled and unskilled),

the model predicts lower Fpicking and Picking in recessions. Skilled funds have a high Fpicking and

Picking ability in expansions, when they allocate their attention to stock-specific information. Unskilled

investors exhibit a negative Picking in expansions for the same reason that they have a negative Timing in

recessions: Price fluctuations induce them to buy when returns are low and sell when returns are high. The

Fpicking and Picking measures are close to zero for all investors in recessions. Hence, the second testable

implication of the model is that Fpicking and Picking should be lower for all funds in recessions than in

expansions.

Table S.2: Benchmark Simulation Results from the Model

This table provides the main statistics for a simulation of the model under the benchmark parameter values
summarized in Table S.1. Panel A reports moments related to attention allocation, Panel B reports the
moments related to portfolio dispersion, and Panel C reports moments related to performance. The first
column lists the moments in question, as defined in the main text, the next three columns report the
predictions for the model simulated in a recession, the last three columns report the results for the model
simulated in an expansion. All moments are generated from a simulation of 3,000 draws and 800 investors.
For both recessions and expansions, we list the equally-weighted average across all investment managers (the
20% skilled and the 60% investment managers), and separately for the skilled and the unskilled investment
managers.

Recessions Expansions
All managers Skilled Unskilled All managers Skilled Unskilled

Panel A: Attention Allocation
1. Ftiming 10.55 162.54 -40.11 0.07 0.94 -0.22
2. Timing 9.91 155.78 -38.72 0.06 3.31 -1.02
3. Fpicking 2.15 33.46 -8.28 15.61 249.72 -62.42
4. Picking 1.66 25.84 -6.40 10.02 160.11 -40.01

Panel B: Dispersion

5. Concentration 3.75 13.15 0.00 3.12 11.48 0.00
6. Idiosyncratic volatility 5.09 15.21 1.72 4.33 13.50 1.28
7. Dispersion in abnormal return 3.54 10.05 1.36 3.37 9.82 1.22
8. Dispersion in CAPM alpha 2.52 5.05 1.68 2.28 4.55 1.52
9. Dispersion in CAPM beta 6.37 13.20 4.09 1.46 4.30 0.51

Panel C: Performance

10. Abnormal return 0.346 5.471 -1.363 0.302 4.867 -1.220
11. CAPM Alpha 0.353 5.401 -1.330 0.307 4.861 -1.211

Next, we turn to the measures of portfolio and return dispersion. Row 5 of Table S.2 shows the re-

sults for the Concentration measure, defined in equation (18), in our numerical example. We calculate
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Concentrationj for fund j by stacking all squared deviations of fund j’s portfolio from the market portfo-

lio into a 3T × 1 vector, and by summing over its entries, and dividing by T . We obtain one number for

recessions and one for expansions. We find that Concentration is higher for all funds in recessions than in

expansions. This increase is driven entirely by the informed; the uninformed are all holding the exact same

portfolio because of common prior beliefs.

More concentrated portfolios are also less diversified. For each fund j, we estimate CAPM regression

(19) by regressing the fund’s excess return on the market’s excess return. This delivers the fund’s αj , βj ,

and σjε. We use the idiosyncratic risk σjε as our second measure of portfolio dispersion. If all funds held the

market portfolio, their idiosyncratic risk would be zero, and there would be zero cross-sectional dispersion. In

simulation, the skilled funds take on more idiosyncratic risk than the unskilled ones, and more in recessions

than in expansions. As a result, idiosyncratic risk is higher in recessions than in expansions for all funds.

Rows 7 through 9 report the results for the dispersion across funds’ abnormal returns, CAPM alphas, and

CAPM betas. All three metrics show increasing dispersion in recessions, driven largely by the heterogeneity

in the choices of the skilled investors.

Finally, we study performance measures. Rows 10 and 11 of Table S.2 show that skilled investment

managers have large excess returns, as measured by abnormal fund returns or fund alphas (Rj − Rm and

αj), at the expense of the uninformed. The average investment manager has a slightly higher alpha in

recessions than in expansions. While quantitatively modest (4.6bp per month or 55bp per year), the positive

difference in average alphas between recessions and expansions is a robust finding of the model.

The numerical results also reveal that the regression residual variance (σjε)
2 is higher in recessions. This

effect arises because a fund that gets different signal draws (information) in each period holds a portfolio

with a beta that varies over time. The CAPM equation (19) estimates an unconditional beta instead. The

difference between the true, conditional beta and the estimated, constant beta shows up in the regression

residual. Since recessions are times when funds learn more new information each period about the aggregate

shock, these are times when true fund betas fluctuate more and the regression residuals are more volatile.

S.1.3 Robustness of Simulation Results

This section discusses the robustness of the model to alternative parameter choices. We conduct several

experiments in which we vary one key parameter at a time, while holding all other parameters fixed at their

benchmark levels. Table S.3 summarizes these robustness checks. For brevity, we only report the results

averaged over all investment managers and omit the results broken out for skilled and unskilled managers,

separately. We find that none of the comparative statics are sensitive to variation in the key parameters of

the model.

Varying the fraction of skilled managers In our benchmark model, we assume that 20%

(χ = .20) of investors are skilled mutual funds (60% are unskilled mutual funds and 20% unskilled other

investors). We first study two different values for the fraction of skilled investment managers: χ = 10%

and χ = 30%. When there are fewer skilled funds, they have a comparatively larger advantage over the

unskilled. This results in investment choices that exploit their informational advantage more aggressively.

Timing for the skilled increases from 156 to 210 in recessions while their Picking reading in expansions

increases from 160 in the baseline to 181. At the same time, there are fewer skilled investors exploiting
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more unskilled investors than in the baseline, so that the unskilled investors have less negative average

Timing values in recessions and less negative Picking values in expansions. As a result, the Timing value

in recessions and Picking value in expansions, averaged across across all investment managers (80% of

the investor population), fall relative to the benchmark (from 9.9 to 5.8). Similarly, Ftiming increases in

recessions for all funds and Fpicking decreases, but the changes are smaller than in the benchmark case.

Likewise, our measures of portfolio dispersion continue to be higher in recessions than in expansions, but

all dispersion levels are somewhat lower than before. The reason is that there is no dispersion among the

unskilled, and there are more of them than in the benchmark. Finally, the performance results remain intact

as well. The skilled investors make higher abnormal returns and alphas than in the benchmark, which means

the unskilled loose more in total. However, they loose less per unskilled investor. As a result, alphas averaged

across all funds are lower than in the benchmark: 18.6bp per month in recessions (versus 35.3bp) and 15.6bp

in expansions (versus 30.7bp).

The opposite effects occur when we increase the fraction of skilled investors to 30 percent. The increase

in Ftiming and Timing and the decrease in Fpicking and Picking in recessions are larger than those in

the benchmark model. The same is true for portfolio dispersion and performance. For example, the average

alpha is now 50.6bp per month in recessions and 45.4bp in expansions; the difference is slightly higher than

in the benchmark. In expansions, all skilled investors continue to learn about the stock-specific information.

In recessions, about 70% of attention is allocated to the aggregate shock in recessions and 15% to each of

the stock-specific shocks. This 70% is lower than the 87% of skilled managers who learn about the aggregate

shock in recessions in our benchmark parametrization. This is a general equilibrium effect, which we label

strategic substitutability. When many informed investors learn about the aggregate shock, and buy assets

that load heavily on that shock, they push up the price of these assets, making it less desirable to learn

about for other informed investors ceteris paribus. This leads some to learn about the stock-specific shocks

instead. Hence, the higher average Fpicking of the informed in recessions compared to the benchmark. Why

is the reverse not happening in expansions? Because the volatility of the aggregate shock is low enough in

expansions that it turns out not to be optimal for any of the 30% informed investors to deviate from the full

attention allocation to the idiosyncratic shocks.

Varying capacity K The second variational experiment is to decrease and increase the amount of

attention allocation capacity K that skilled investors have. In our benchmark, K = 1, which amounts to

the ability to increase the precision on any one signal by 25% of the prior precision of the stock-specific

information through learning. We now consider K = .5 and K = 2. When the 20% of skilled have twice as

much capacity, their Ftiming and Timing increase substantially in recessions (Timing goes up from 157 in

the benchmark to 220), and their Fpicking and Picking increase in expansions (Picking goes up from 160 in

the benchmark to 311). In contrast to the previous exercise, the Timing measure for the unskilled becomes

more negative in recessions and their Picking more negative in expansions than in the benchmark. The

reason is that there are as many unskilled as in the benchmark, but they are now at a larger informational

disadvantage. The net effect of the skilled and the unskilled is an increase in Timing in recessions from 9.9 in

the benchmark to 14.0. Likewise, Picking in expansions increases from 10.0 to 19.5. Giving 30% of investors

K = 1 has similar effects as giving 20% of investors K = 2. Portfolio dispersion increases substantially with

higher K. The result is driven by the more concentrated portfolios of the skilled, which creates both more

6



dispersion among the skilled and a bigger difference with the unskilled. The skilled investors make abnormal

returns and alphas that are about twice as high as those in the benchmark, and the unskilled loose about

twice as much. The net effect are average fund alphas that are substantially higher than in the benchmark:

67.2bp per month in recessions (versus 35.3bp) and 59.3bp in expansions (versus 30.7bp). The opposite

happens when we lower K to 0.5.

Recessions are times with low returns. We recall that recessions in the model are periods

with not only a higher variance of the aggregate shock, but also with lower realized market returns. We

implement the latter by first simulating the model in recessions for 3000 periods, then taking the bottom

m% of return realizations, and adding them to the 3000 draws when calculating the moments of interest. In

our third robustness check we verify how robust our results are to different values for m. We explore m = 0

and m = 0.08, while our benchmark is m = 0.025. When m = .08, realized market returns are 22 basis

points per month lower in recessions than in expansions (0.54 versus 0.76% per month). This corresponds

to the return difference in the data. The results for Timing, Picking, Ftiming, and Fpicking are slightly

stronger, but the magnitudes are quite close to the benchmark. The same is true for all dispersion measures,

except for the beta dispersion. The latter is quite a bit lower in recessions than in the benchmark (3.91

instead of 6.37), driven by a reduction in the beta dispersion of the skilled. Because of the lower returns

in recessions, skilled managers have both lower betas and less differences in their betas compared to the

unskilled in recessions. Finally, the performance results are similar to the benchmark. Alphas are slightly

higher than in the benchmark: 38.5bp per month in recessions (versus 35.3bp) and 31.6bp in expansions

(versus 30.7bp). The difference between recessions and expansions grows to 7bp per month.

The case of m = 0 corresponds to a world in which assets have realized payoffs that are symmetrically

distributed around the same mean in expansions and in recessions. However, because recessions are times in

which returns are more volatile, expected (and unconditional average) returns must be higher to compensate

the investors for bearing higher risk. In particular, the average market return is 1.30% in recessions and

0.95% in expansions. The results on the fund moments are opposite from the case with higher m, but

still quantitatively similar to our benchmark case. For example, the difference in average alphas between

recessions and expansions is 4.1bp per month compared to 4.6bp in the benchmark.
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S.1.4 Endogenous Capacity Model

Finally, we consider an extended model in which skilled managers can freely choose not only how to allocate

their information processing capacity, but also how much capacity to acquire. We let the cost of acquiring K

units of capacity be C(K). Each skilled fund solves for the choice of signal precisions Kaj ≥ 0 and K1j ≥ 0,

and capacity K that maximize time-1 expected utility, as in (11) but adjusted for a penalty term −C(K). In

our numerical work, we assume that these choice variables lie on a 25× 25 grid in R3
+. The choice of signal

precision K2j ≥ 0 is implied by the capacity constraint (7).

In our numerical exercise, we consider two different functional forms for C(K). The first one is C1(K) =

c1 exp(K) and the second one is C2(K) = c2K
ψ. For ease of comparison with our exogenous K results, we

choose the scalars c1 and c2 such that the optimal capacity choice is K = 1 on average across expansions

and recessions. This is the same capacity choice we assume in our benchmark parametrization. Clearly,

increasing (lowering) the scalars c1 and c2 will lead to lower (higher) optimal capacity choice. These scalars

can be interpreted as (shadow) prices of capacity. All other parameters are the same as in our benchmark

model.

More interesting than the level of K that is chosen is how that choice differs between recessions and

expansions. We find that for both cost functions, investors acquire more capacity in recessions than in

expansions. Nothing in the cost function makes it cheaper to acquire capacity in either expansions or

recessions. This result is solely driven by the fact that the higher (aggregate) uncertainty in recessions

makes it optimal to acquire more capacity and to allocate it to the aggregate shock. This extensive-margin

effect acts as an amplification to our intensive-margin effect. How elastic capacity choice is to changes in

prior aggregate uncertainty, and hence how large the amplification effect is, does depend on the functional

form of the cost function. For cost function 1, we find that capacity choice is 1.02 in recessions and 0.97 in

expansions. For cost function 2, the elasticity is much higher, with a capacity choice of 1.15 in recessions

and 0.92 in expansions. The reason for the higher elasticity is that the marginal cost function 2 is less steep

in capacity. As a result, a given change in the marginal benefit of acquiring information leads to larger

equilibrium changes in capacity. Since we have no strong prior over the functional form, we conduct our

numerical simulation for both cost functions.

Table S.4 summarizes the main moments of interest for the endogenous K model, alongside the bench-

mark, exogenous K results. For brevity, we only report the results averaged over all investment managers

and omit the results broken out for skilled and unskilled managers, separately. Overall, we find that the

results are very similar to those in our exogenous K model, not only qualitatively, but also quantitatively.

The moments for cost function 2 (two most right columns) tend to be higher in recessions than do the bench-

mark numbers, and lower in expansions. Hence, there is amplification of the difference between recessions

and expansions. For example, average fund alphas are somewhat higher than in the benchmark in recessions

(40.7bp per month versus 35.3bp) and somewhat lower in expansions (27.7bp versus 30.7bp). The resulting

difference between recessions and expansions grows substantially from 4.6bp to 13bp per month. For cost

function 1 (two middle columns), the moments are slightly higher in recessions since the skilled investment

managers choose to acquire slightly more capacity than what they are endowed with in the benchmark

(K = 1.02 versus 1). The moments are slightly lower in expansions, since they have slightly lower capacity

(K = 0.97 versus 1). Overall, the difference in our key variables between recessions and expansions is usually

very similar to that in our benchmark model.
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Table S.4: Endogenous Capacity Model

This table provides the results from an extension of the model where skilled funds endogenously choose how
much capacity to acquire. It reports on the main predictions of the model. Panel A reports moments related
to attention allocation, Panel B reports the moments related to dispersion, and Panel C reports moments
related to performance. The first column lists the moments in question, as defined in the main text. The
other pairs of columns report results for the benchmark parameters and for two versions of the endogenous
K model with different cost functions. The cost function in the first one is C1(K) = c1 exp(K), while the
cost function in the second one is C2(K) = c2K

ψ. We set c1 = 1.057, c2 = 2.4, and ψ = 1.2. All other
parameters are the same as in the benchmark model. In each pair of columns, the first column reports the
predictions for the model simulated in a recession (R) and the second column for the model simulated in
an expansion (E). All moments are generated from a simulation of 2000 draws and 100 investors. For both
recessions and expansions, we list the equally weighted average across all investment managers (the 20%
skilled and the 60% investment managers).

Baseline C1(K) = c1 exp(K) C2(K) = c2Kψ

R E R E R E
Panel A: Attention Allocation

1. Ftiming 10.55 0.07 10.53 -0.12 11.58 -0.01
2. Timing 9.91 0.06 9.83 0.10 10.65 0.13
3. Fpicking 2.15 15.61 2.35 15.43 3.69 14.37
4. Picking 1.66 10.02 1.76 9.91 2.65 8.87

Panel B: Dispersion
5. Concentration 3.75 3.12 3.82 3.13 4.37 2.85
6. Idiosyncratic volatility 5.09 4.33 5.20 4.53 5.34 4.15
7. Dispersion in abnormal return 3.54 3.37 3.59 3.34 3.97 3.16
8. Dispersion in CAPM alpha 2.52 2.28 2.57 2.29 2.92 2.06
9. Dispersion in CAPM beta 6.37 1.46 5.18 3.01 5.28 1.94

Panel C: Performance
10. Abnormal return 0.346 0.302 0.348 0.302 0.399 0.271
11. CAPM Alpha 0.353 0.307 0.355 0.307 0.407 0.277

S.2 An Expected Utility Model

With expected utility, the time-2 utility is the same as in the main text. Utility U2j is a log-transformation

of expected exponential utility. Maximizing the log of expected utility is equivalent to maximizing expected

utility because log is a monotonic transformation. However, period-1 utility U1j is the time-1 expectation of

the log of time-2 expected utility. That is a transformation that induces a preference for early resolution of

uncertainty. When thinking about information acquisition, considering agents who have such a preference is

helpful. The expected utility model has some very undesirable features and, although versions of the main

results still hold, the intuition for why they hold has less useful economic content to it.

The problem is that, at the time when he chooses information, an expected utility investor does not

value being less uncertain when he invests. He only cares about the uncertainty he faces initially (exogenous

prior uncertainty) and how much uncertainty there is at the end (none, payoffs are observed). Of course, he

values information that will help him to increase expected return. But if a piece of information might lead

the investor to take an aggressive portfolio position, the investor will be averse to learning this information

because given his current information, the portfolio he expects his future self to choose looks too risky. The

upshot of all of this is some weird behavior. For example, if we introduce an asset that is very uncertain,

but is in near-zero supply. Expected utility investors might all use all of their capacity to study this asset
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that is an infinitesimal part of their portfolio. Since we want to base our analysis on a plausible description

of how financial market participants make decisions, we stuck with mean-variance utility in the main text.

That being said, the purpose of this section is to show that the results are robust to the expected

utility formulation of the model. Since the time-2 utility functions are equivalent, the results for optimal

portfolio holdings, portfolio dispersion and expected profits are identical. In other words, because lemma 1

and propositions 3, 4, 5 and 6 take arbitrary information choices as given, changes in the model that only

affect the information choices do not affect these results. What does change is the proofs of propositions 1

and 2, the results about how attention is allocated.

Utility We begin with a derivation of time-1 expected utility. We compute ex-ante utility for investor j

as U1j = E[−e−ρW ] where the expectation is unconditional. First we substitute the budget constraint and

obtain U1j = E[−e−ρq̃′(f̃−p̃r)], where we he omitted the constant term −e−ρrW0 since it will not change the

optimization problem. In period 2, the investor has chosen his portfolio and the price is in his information

set, therefore the only random variable is z. Conditioning on ẑj and Σ̂j and using the formula for the

expectation of a log-normal variable we obtain:

U1j = E
[
E
[
−e−ρq̃

′(f̃−p̃r)
∣∣∣ẑj , Σ̂j]]

= E

[
−e−ρq̃

′(f̃−p̃r)+ ρ2

2 q̃
′Σ̂j q̃

]
= E

[
−e−

1
2 (Ej [f̃ ]−p̃r)′Σ̂−1

j (Ej [f̃ ]−p̃r)
]

where the third line substitutes the optimal portfolio choice q̃ = ρ−1Σ̂−1
j (f̃ − p̃r). Now we compute ex-

pectations in period 1. Note that both the expected return and the price are random variables and that

both are correlated since they contain information about the true payoffs. Recall from the previous sec-

tion that Ej [f̃ ] − p̃r ∼ N (w, V − Σ̂j), then we have to compute the expectation of the exponential of the

square of a normal variable. We will rewrite the expression in terms of the zero mean random variable

y ≡ Ej [f̃ ] − p̃r − w ∼ N (0, V − Σ̂j) and use the formula in p.102 of Veldkamp (2011) with F = −1
2 Σ̂

−1
j ,

G′ = −w′Σ̂−1
j and H = − 1

2w
′Σ̂−1
j w:

U1j = E
[
−e−

1
2 (Ej [f̃ ]−p̃r)′Σ̂−1

j (Ej [f̃ ]−p̃r)
]

= E
[
−e−

1
2y

′Σ̂−1
j y−wΣ̂−1

j y− 1
2w

′Σ̂−1
j w
]

= −|I + (V − Σ̂j)Σ̂
−1
j |− 1

2 exp

{
1

2
w′Σ̂−1

j Σ̂jV
−1(V − Σ̂j)Σ̂

−1
j w − 1

2
w′Σ̂−1

j w

}

= −

(
|Σ̂j |
|V |

) 1
2

exp

(
−1

2
w′V −1w

)

In the proofs below, we will work with a monotonic transformation Ũ ≡ −2 log(−U1j) given by

Ũ = − log |Σ̂j |+ log |V |+ w′V −1w

We now show the computation of each term in utility.
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• |Σ̂−1
j | =

∏n
l=1 σ̂

−1
l =⇒ − log |Σ̂j | =

∑n
l=1 log σ̂

−1
l

• |V | =
∏n
l=1 σ̄l[1 + (ρ2σx + K̄l)σ̄l] =⇒ log |V | =

∑n
l=1 log

(
σ̄l[1 + (ρ2σx + K̄l)σ̄l]

)
• w′V −1w =

∑n
l=1

(
ρ2x̄2

l

ρ2σx+K̄l+σ̄
−1
l

)
With all these elements, the transformation of utility reads:

Ũ =
n∑
l=1

{
− log σ̂l + log σ̄l[1 + (ρ2σx + K̄l)σ̄l] +

ρ2x̄2l
ρ2σx + K̄l + σ̄−1

l

}
(S.1)

Observe that the only utility component affected by the actions of the investor is the first.

S.2.1 Proof of Proposition 1

For a given investor j, the marginal value of allocating an increment of capacity to shock i is increasing in

its variance σi, this is: ∂2U/∂Kij∂σi > 0.

Proof. Recall that transformed utility is given by: Ũ = − log |Σ̂j |+log |V |+
∑n
l=1

{
ρ2x̄2

l

ρ2σx+K̄l+σ̄l
−1

}
. We start

by taking the derivative of utility with respect to Kij , noting that Kij only affects the investor’s posterior

variance (it does not affect any average precision inside V because the investor has measure zero):

∂Ũ

∂Kij
= −∂ log |Σ̂j |

∂Kij
= σ̂i > 0

Now we take derivative of the previous expression with respect to σi:

∂2Ũ

∂Kij∂σi
=

(
σ̂i
σi

)2

> 0

To show the result holds also for the original utility U , first observe that U = −e−Ũ/2. Second, we will use

Faà di Bruno’s formula for the derivative of a composition:

∂2U

∂Kij∂σi
=

∂U

∂Ũ

∂2Ũ

∂Kij∂σi
+
∂2U

∂Ũ2

∂Ũ

∂Kij

∂Ũ

∂σi

=
1

2
e−

Ũ
2

(
σ̂i
σi

)2

− 1

4
e−

Ũ
2 σ̂i

(
− 1

σ̂i

(
σ̂i
σi

)2

+

(
σ̄i
σi

)2(
1 + 2(ρ2σx + K̄i′)σ̄i
σ̄i(1 + (ρ2σx + K̄i)σ̄i)

)
+

ρ2x̄2i
σ2
i (ρ

2σx + K̄i + σ̄−1
i )2

)

=
3

4
e−

Ũ
2

(
σ̂i
σi

)2

− 1

4
e−

Ũ
2 σ̂i

[(
σ̄i
σi

)2(
1 + 2(ρ2σx + K̄i)σ̄i
σ̄i(1 + (ρ2σx + K̄i)σ̄i)

)
+

ρ2x̄2i
σ2
i (ρ

2σx + K̄i + σ̄−1
i )2

]

where we have substituted all the terms. A sufficient condition for this expression to be positive is σ̂i′ <

σ̂i < 3σ̂i′ . Under this condition, the marginal utility of reallocating capacity from shock i to i′ is increasing

in σi′ .
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S.2.2 Proof of Proposition 2

An increase in risk aversion ρ increases the marginal utility for investor j of reallocating capacity from shocks

with high posterior precision to shocks with low posterior precision: If Ki′j = K̃ and Kij = K − K̃, then
∂2Ũ
∂ρ∂K̃

> 0 as long as σ̂−1
i > σ̂−1

i′ .

Proof. As before, the chain rule implies that ∂2Ũ
∂ρ∂Kij

= ∂2Ũ
∂ρ∂Ki′j

− ∂2Ũ
∂ρ∂Kij

. For each i, we have that

∂2Ũ

∂ρ∂Kij
=
∂
(

∂Ũ
∂Kij

)
∂ρ

=
∂σ̂i
∂ρ

=
2

ρ

σ̂2
i

σip
> 0

Since each investor has measure zero, his reallocation of capacity does not change the average, which we

write as: K̄ ≡ K̄ij = K̄i′j . Therefore the difference is given by:

∂2Ũ

∂ρ∂K̃
=

2

ρσip

[
σ̂2
i′ − σ̂2

i

]
This expression is positive as long as the difference inside the brackets is positive, which is equivalent to

σ̂−1
i > σ̂−1

i′ . To show the result holds also for the original utility U , first observe that U = −e−Ũ/2. Second,
we will use Faà di Bruno’s formula for the derivative of a composition:

∂2U

∂ρ∂K̃
=

∂U

∂Ũ

∂2Ũ

∂ρ∂K̃
+
∂2U

∂Ũ2

∂Ũ

∂K̃

∂Ũ

∂ρ

= e−
Ũ
2

[
σ̂2
i′ − σ̂2

i

]
ρσip

− 1

4
e−

Ũ
2 (σ̂i′ − σ̂i)

2

ρ

n∑
l=1

(σ̄l − σ̂l)

σlp
+

n∑
l=1

2ρσxσ̄l +
σ̄2
l

σlp
(ρ2σx + K̄l)

1 + (ρ2σx + K̄l)σ̄l
+ 2ρ

n∑
l=1

x̄2l (K̄l + σ̄−1
l + σ−1

lp )

(ρ2σx + K̄l + σ̄−1
l )2


Thus, if aggregate shocks have lower posterior precision, an increase in risk aversion will make learning about

them more valuable.
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