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Abstract

We show that firms’ idiosyncratic volatility obeys a strong factor structure and that shocks to the common

factor in idiosyncratic volatility (CIV) are priced. Stocks in the lowest CIV-beta quintile earn average returns

5.4% per year higher than those in the highest quintile. The CIV factor helps to explain a number of asset

pricing anomalies. We provide new evidence linking the CIV factor to income risk faced by households.

These three facts are consistent with an incomplete markets heterogeneous-agent model. In the model, CIV

is a priced state variable because an increase in idiosyncratic firm volatility raises the average household’s

marginal utility. The calibrated model matches the high degree of comovement in idiosyncratic volatilities,

the CIV-beta return spread, and several other asset price moments.

Keywords: Firm volatility, Idiosyncratic risk, Cross-section of stock returns

1. Introduction

We present new empirical evidence regarding the behavior of idiosyncratic risk and document the im-

plications of this behavior for asset prices. First, we show that the idiosyncratic volatilities of U.S. firms

are synchronized. Second, we show that this common idiosyncratic volatility (CIV) is correlated with vari-

ous measures of household labor income risk. Third, we find that exposure to CIV shocks is priced in the

cross-section of stocks.

We then propose a heterogeneous-agent model with incomplete markets that offers an economic ratio-

nale and quantitatively accounts for these three facts. The key novelty in the model is that households’

consumption risk inherits the same factor structure of the idiosyncratic cash flow risk of firms. Common

fluctuations in firm-level risk thus enter the pricing kernel of households and, as a result, CIV is a priced

state variable. Stocks that tend to appreciate when CIV rises are valuable hedges to increases in households’

marginal utility and earn relatively low average returns, consistent with our empirical findings.
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We start by documenting an extraordinary degree of comovement among the idiosyncratic volatilities of

more than 20,000 CRSP stocks over a long sample spanning 1926 to 2010. A single factor explains 35% of

the time variation firm-level idiosyncratic risk. At first sight, a factor structure in return volatilities may

not appear surprising. After all, many finance theories posit that returns are linear functions of common

factors and, if the factors themselves have time-varying volatility, then firm volatility naturally inherits this

factor structure.1 However, we emphasize that this is comovement in idiosyncratic volatility, defined as the

standard deviation of residuals from factor model regressions. Volatility comovement does not arise from

omitted factors; even after saturating the factor regression with up to ten principal components (and showing

that model residuals are virtually uncorrelated), the residual firm volatilities continue to display the same

comovement seen in raw return volatilities.

We also show that comovement in volatilities is not only a feature of returns, but also of the volatility

of firm-level cash flows. We estimate volatilities of firm fundamentals such as sales or earnings growth using

quarterly Compustat data. Although these volatility estimates are noisier and less frequently observed than

those for stock returns, we again find a strong factor structure among firms’ idiosyncratic cash flow volatilities.

The common factor in fundamental volatility follows the same low frequency patterns as the common factor

in idiosyncratic return volatilities – the two have a correlation of 65%. This suggests that return volatility

patterns identified in this paper are not solely attributable to shocks to investor preferences or other sources

of pure discount rate variation.2 Instead, they measure the volatility of persistent idiosyncratic cash flow

growth driven by firm-level productivity and demand shocks.

Persistent, idiosyncratic cash flow shocks that hit firms are an important source of undiversifiable risk

to households. We present evidence showing that the CIV factor proxies for idiosyncratic risk faced by

households. Individual income data from the U.S. Social Security Administration from Guvenen et al. (2014)

show that the cross-sectional dispersion in household earnings growth rises and falls with CIV measured

from stock returns – they share a correlation of nearly 60% in changes. Similarly, dispersion in firm-level

employment growth (from Compustat) and in sector-level employment growth of both private and publicly

firms (from the Federal Reserve) are also strongly correlated with CIV. Finally, CIV shocks are positively

correlated with shocks to the dispersion in wage and house price growth across metropolitan areas.

How are persistent firm-level shocks transferred to households? Perhaps the main source of transmission

is through the labor income that households derive from firms that employ them. For example, when

workers possess firm-specific human capital, shocks to firm value are also shocks to workers’ human wealth

(Becker, 1962). Other transmission channels include under-diversified equity positions in own-employer

stock and the influence of firm performance on local wages and residential real estate values. And while

firms provide employees with some temporary insurance against idiosyncratic productivity shocks, workers

1Prominent factor models in finance include the CAPM (Sharpe, 1964), ICAPM (Merton, 1973), APT (Ross, 1976), and the
Fama and French (1993) model.

2Pástor and Veronesi (2005, 2006) suggest that time variation in stochastic discount factor volatility (and hence market
return volatility) can drive time variation in idiosyncratic stock return volatility.
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have little protection against persistent shocks, which ultimately affect compensation either through wages

or layoffs.3 Because households cannot completely insulate their consumption from persistent shocks to their

labor income (Blundell et al., 2008), the volatility of households’ consumption growth distribution inherits

the same factor structure as the volatility in firm-level returns and cash-flow growth.4 As the volatility of

firm-level growth rates rises, investors face more idiosyncratic risk that is not fully hedged, increasing the

dispersion of their consumption growth rates. Because increases in CIV represent an increase in consumption

risk for the average household, they adversely affect its marginal utility.

This effect of a change in CIV on the marginal utility of the average investor is reflected in asset price

data. Differences in firms’ betas on CIV shocks are strongly associated with differences in expected returns.

The top CIV-beta quintile earns average returns 5.4% per annum lower than firms in the bottom quintile.

We show that this fact is not due to high CIV-beta firms having high exposure to the market return, a size

or value factor, or a market variance factor. Instead, incorporating CIV innovations as a new asset pricing

factor can account for the CIV-beta return spread, and also helps to explain the cross-sectional differences

in average returns on book-to-market, size, earning-to-price, and corporate bond portfolios. Replacing CIV

with a factor based on the cross-sectional dispersion in household income growth or in firm size growth

recovers many of the same asset pricing facts. This provides additional evidence for the connection between

household risk and CIV.

Finally, we rationalize these empirical facts regarding idiosyncratic volatility comovement and asset prices

in a heterogeneous agent incomplete markets model. In our specification, households’ equilibrium idiosyn-

cratic consumption growth process possesses the same volatility factor structure as firm-level cash flow

growth. We derive equilibrium asset prices on stocks whose cash flow growth features common idiosyncratic

volatility, and who differ in their exposure to CIV shocks. In the model, CIV shocks carry a negative market

price of risk. Our calibration shows that the return spread on high-minus-low CIV-beta stocks observed in

the data is quantitatively consistent with the model, as are the return volatilities on the CIV-beta sorted

stocks. We also match the cross-sectional dispersion of household income growth, the mean and persistence

of CIV, the cross-sectional spread in CIV betas, and the equity risk premium on the market portfolio, while

respecting the properties of aggregate consumption and interest rates. One important reason why stocks

have negative CIV-betas in the model is that their dividend growth rate is negatively predictable by the

lagged CIV factor. We provide direct evidence for this cash flow predictability channel and calibrate the

model to be consistent with it.

The connection between firm-level volatility, household-level risk, and asset prices established in our paper

suggests that CIV is a plausible proxy for dispersion in consumption growth, which is the key ingredient

in heterogenous agent asset pricing models. The advantage of CIV as a household risk proxy is that it is

3See, e.g., Berk et al. (2010), Lustig et al. (2011), and Zhang (2015).
4Heathcote et al. (2014) estimate that more than 40% of persistent labor income shocks are passed through to household

consumption.
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constructed from reliably measured stock return data and is observable at high-frequencies, in contrast to

the noisy and infrequent consumption survey data typically studied.

Related Literature. This paper relates to several strands of research. The APT of Ross (1976) shows that

any common return factors are valid candidate asset pricing factors. The idiosyncratic return residuals will

not be priced, because they can be diversified away. This result breaks down in a world with non-traded

assets, such as human wealth, in which case factors driving commonality in residual volatility may be valid

asset pricing factors. We show that CIV is such an asset pricing factor.

Several representative agent models explore the role of aggregate consumption growth and market return

volatility for explaining asset pricing stylized facts.5 We focus on exposure to idiosyncratic volatility instead,

which in our model is not fully diversifiable. To make this distinction clear, the model features a constant

market variance. In our model, investors seek to hedge against idiosyncratic volatility shocks even if they are

indifferent about the timing of uncertainty resolution, though a preference for early resolution of uncertainty

magnifies the price of CIV risk. In our empirical work, we contrast the separate asset pricing roles of the

CIV and market variance (MV) factors. While both help to explain the cross-section of returns, the CIV

factor appears to be the stronger pricing factor.

Our model builds on Mankiw (1986) and Constantinides and Duffie (1996) who explored counter-cyclical

dispersion in consumption growth as a mechanism to increase the equilibrium equity premium. As an

empirical matter, we find that the market portfolio has little exposure to changes in CIV, making exposure

to CIV unsuitable to explain the equity risk premium. In contrast, CIV exposure is useful to explain the

cross-section. Constantinides and Ghosh (2014) explore the asset pricing implications of counter-cyclical

left-skewness in the cross-sectional distribution of household consumption growth, but they do not study the

association with the common idiosyncratic volatility of firms, which is the focus of our paper.

Testing such consumption-based incomplete markets models is challenged by the poor quality of household

level consumption data.6 Our incomplete markets model, which ties together idiosyncratic risks of firms and

households, allows us to avoid consumption survey data. It suggests CIV, measured from daily stock returns,

as a reliable high-frequency alternative to measure the consumption growth dispersion. This opens up new

possibilities for empirical work that aims to test consumption-based asset pricing models and for research

that studies the connection between inequality and financial markets. This proxy could be of independent

interest to the consumption literature.7

5Most recently, Bansal et al. (2014) and Campbell et al. (2014) present evidence regarding the effects of aggregate market
volatility for the time series and cross-section of equity returns. Earlier work includes Campbell (1993), Coval and Shumway
(2001), Adrian and Rosenberg (2008), among many others.

6Koijen et al. (2013) compare high-quality tax registry-based consumption to survey-based consumption data for a panel of
Swedish households and find large discrepancies. In the U.S., existing sources (PSID and CEX) produce conflicting pictures
of the evolution of consumption inequality. Furthermore, several authors report a growing discrepancy between survey and
aggregate consumption data from NIPA; see, e.g., Attanasio et al. (2004).

7See Vissing-Jorgensen (2002), Brav et al. (2002), and Malloy et al. (2009) for recent examples of work linking individual
consumption data to stock returns. In the same spirit as our exercise, Malloy et al. (2009) project consumption growth on stock
returns to derive a higher-frequency measure of consumption growth, and to extend the time series farther back in time.
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Finally, our paper connects to a large empirical literature that studies the role of idiosyncratic return

volatility. Campbell et al. (2001) examine secular variation in average idiosyncratic return volatility, but

do not study its cross-sectional properties.8 Ang et al. (2006) show that stocks with high idiosyncratic

volatility earn abnormally low average returns, while Chen and Petkova (2012) argue that this fact can be

explained with an average volatility factor. Double-sorted portfolios on CIV-beta and idiosyncratic volatility

display return spreads in both directions, so that both anomalies co-exist. Gilchrist and Zakrajsek (2010)

and Atkeson et al. (2013) study the firm volatility distribution to understand credit risk and debt prices.

Kelly et al. (2013) propose a network model in which firms are connected to other firms in a customer-

supplier network, and show that size-dependent network formation generates a common factor in firm-level

idiosyncratic volatility.

The rest of the paper is organized as follows. Section 2 describes the common idiosyncratic variance

factor in U.S. stock returns and firm-level cash flows. Section 3 provides evidence linking the CIV factor

to dispersion in household income shocks. Section 4 demonstrates that CIV is a priced factor in the cross-

section of stock returns. Section 5 presents and calibrates the heterogeneous agent model with CIV as priced

state variable. Section 6 concludes.

2. The factor structure in volatility

In this section we study idiosyncratic volatility in the annual panel of U.S. public firms. We first discuss

data and how we construct volatilities, then describe the behavior of the volatility panel.

2.1. Data construction

We construct annual volatility of firm-level returns and cash flow growth. Return volatility is estimated

using data from the CRSP daily stock file from 1926-2010. It is defined as the standard deviation of a stock’s

daily returns within the calendar year.9 We refer to these estimates as “total” return volatility.

Idiosyncratic volatility is the focus of our analysis. Idiosyncratic returns are constructed within each

calendar year τ by estimating a factor model using all observations within the year. Our factor models take

the form

ri,t = γ0,i + γ′iF t + εi,t (1)

8Several papers explore this fact further, such as Bennett et al. (2003), Irvine and Pontiff (2009), and Brandt et al. (2010).
In contemporaneous work, Duarte et al. (2014) estimate a principal components model for idiosyncratic return volatility, but do
not study cash flow volatility, volatility factor pricing, or the association between firm and household idiosyncratic risk. Wei and
Zhang (2006) study aggregate time series variation in fundamental volatility. Engle and Figlewski (2012) document a common
factor in option-implied volatilities since 1996, and Barigozzi et al. (2010) and Veredas and Luciani (2012) examine the factor
structure in realized volatilities of intra-daily returns since 2001. Bloom et al. (2012) show that firm-specific output growth
volatility is broadly counter-cyclical. Jurado et al. (2014) studies new measures of uncertainty from aggregate and firm-level
data and relates them to macroeconomic activity.

9A firm-year observation is included if the stock has a CRSP share code 10, 11 or 12 and the stock has no missing daily
returns within the year.
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where t denotes a daily observation in year τ . Idiosyncratic volatility is then calculated as the standard

deviation of residuals εi,t within the calendar year. The result of this procedure is a panel of firm-year

idiosyncratic volatility estimates. The first return factor model that we consider is the market model,

specifying that F t is the return on the CRSP value-weighted market portfolio. The second model specifies

F t as the 3 × 1 vector of Fama-French (1993) factors. The third return factor model we use is purely

statistical and specifies F t as the first five principal components of the cross section of returns within the

year.10

Total fundamental volatility in year τ is estimated for all CRSP/Compustat firms using the 20 quarterly

year-on-year sales growth observations for calendar years τ−4 to τ .11 We also estimate idiosyncratic volatility

of firm fundamentals based on factor specifications. Since there is no predominant factor model for sales

growth in the literature, we only consider principal component factors. The approach is the same as in Eq.

(1), with the exception that the left hand side variable is sales growth and the data frequency is quarterly.

F t contains the first K principal components of growth rates within a five-year window ending in year τ ,

where K equals one or five, and residual volatility in year τ is the standard deviation of model residuals over

the five-year estimation period. The sales growth volatility panel covers 1975-2010.

2.2. The cross section distribution of volatility

The cross-sectional distribution of estimated firm-level volatility is lognormal to a close approximation.12

An attractive implication of this result is that dynamics of the entire cross-sectional distribution of firm

volatility can be described with only two time-varying parameters: the cross-sectional mean and standard

deviation of log volatility.13 It also demonstrates that the average volatility levels calculated throughout this

paper are not driven by extreme behavior in cross-sectional distributions.

10Robustness tests using ten PCs produce quantitatively similar results, hence we focus our presentation on five PCs. If
the true underlying factor structure is non-linear then the linear regression models we estimate are misspecified. However, the
principal components approach captures non-linear dependencies to some extent through the inclusion of additional principal
components. When using five or ten components, we find qualitatively identical results to those from lower-dimension factor
models such as Fama-French, which suggests that model misspecification is unable to explain our findings. In addition, results
are qualitatively unchanged when we allow for GARCH residuals in factor model regressions.

11The data requirements for a non-missing sales growth volatility observation in year τ are analogous to those for returns:
We use all Compustat firms linked to CRSP and possessing share code 10, 11 or 12, and require a firm to have no missing
observations in the 20 quarter window ending in year τ .

12Fig. A1 in the Appendix plots histograms of the empirical cross-sectional distribution of firm-level volatility (in logs).
Panel A shows the distribution of total return volatility pooling all firm-years from 1926-2010. Panel B shows the distribution
of total sales growth volatility (in logs) pooling all firm-years from 1975-2010. Panels C and D plot histograms of idiosyncratic
return and sales growth volatility based on the five principal components factor model. Overlaid on these histograms is the
exact normal density with mean and variance set equal to that of the empirical distribution. Log volatilities demonstrate only
slight skewness (less than 0.4) and do not appear to be leptokurtic (kurtosis between 2.9 and 3.2). The cross section volatility
distribution also appears lognormal in one-year snapshots of the cross section, as shown in Appendix Fig. A2 for the 2010
calendar year.

13The distribution of idiosyncratic return volatility estimated from the market model and the Fama-French three-factor model
are qualitatively identical to those shown in Fig. A1.
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2.3. Common secular patterns in firm-level volatility

2.3.1. Return volatility

Firm-level volatilities share an extraordinary degree of common time variation. Panel A of Fig. 1

plots annual firm-level total return volatility averaged within start-of-year size quintiles. Stocks of all sizes

demonstrate very similar secular time series volatility patterns. The same is true of industry groups. Panel B

reports average total return volatility among the stocks in the five-industry SIC code categorization provided

on Kenneth French’s web site.

The common time series variation of total return volatilities by size and industry groups is perhaps unsur-

prising given that firm-level returns are believed to have a substantial degree of common return variation, as

evidenced by the predominance of factor-based models of individual stock returns. If returns have common

factors and the volatility of those factors varies over time, then firm-level variances will also inherit a factor

structure.

The fact that volatilities of residuals display the same degree of common variation after removing common

factor from returns is surprising. Panels C and D of Fig. 1 plot average idiosyncratic volatility within size

and industry groups based on residuals from a five principal components factor model for returns. The plots

show the same dynamics for all groups of firms when considering idiosyncratic rather than total volatility.

The correlation between average idiosyncratic volatility within size quintiles one and five is 81%. The

minimum correlation among idiosyncratic volatilities of the five industry groups is 65%, which corresponds

to the health care industry versus the “other” category (including construction, transportation, services, and

finance).

Common variation in idiosyncratic volatility cannot be explained by comovement among factor model

residuals, for instance due to omitted common factors. Panel A of Fig. 2 shows that raw returns share

substantial common variation, with an average pairwise correlation of 13% over the 1926-2010 sample (and

occasionally exceeding 40%). However, the principal components model captures nearly all of this common

variation at the daily frequency, as average correlations among its residuals are typically less than 0.2%, and

are never above 0.9% in a year. The same is true for the market and Fama-French models. Moving to a

higher number of principal components, such as ten, has no quantitative impact on these results. Indeed,

the Fama-French model and the five principal component model appear to absorb all of the comovement in

returns, making omitted factors an unlikely explanation for the high degree of commonality in idiosyncratic

volatilities.

Despite the absence of comovement among residual return realizations, Panel B of Fig. 2 shows that

average idiosyncratic volatility from various factor models is nearly the same as average volatility of total

returns. In the typical year, only 11% of average total volatility is accounted for by the five principal

components factor model, with idiosyncratic volatility inheriting the remaining 89%. The same is true for

the market model and Fama-French model, with 8% and 9% of average volatility explained by common

7



Figure 1: Total and Idiosyncratic Return Volatility by Size and Industry Group

The figure plots annualized firm-level volatility averaged within size and industry groups. Within each calendar year, volatilities
are estimated as the standard deviation of daily returns for each stock. Panel A shows firm-level total return volatility averaged
within market equity quintiles. Panel B shows total return volatility averaged within the five-industry categorization of SIC
codes provided on Kenneth French’s web site. Panels C and D report the same within-group averages of firm-level idiosyncratic
volatility. Idiosyncratic volatility is the standard deviation of residuals from a five-factor principal components model for daily
returns.
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Panel C: Idiosyncratic Volatility by Size Quintile Panel D: Idiosyncratic Volatility by Industry
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factors respectively.14

The analyses in Fig. 1 and 2 use return volatility estimated from daily data within each year.15 We find

14We calculate the percent of average volatility explained by common factors as one minus the ratio of average factor model
residual volatility to average total volatility, where averages are first computed cross-sectionally, then averaged over the full
1926-2010 sample.

15It is standard practice in the literature to estimate idiosyncratic volatility from daily data. See, for example, Ang et al.
(2006).
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Figure 2: Volatility and Correlation of Return Factor Model Residuals

Panel A shows the average pairwise correlation for total and idiosyncratic returns within each calendar year. Panel B shows
the cross-sectional average annualized firm-level volatility each year for total and idiosyncratic returns. Idiosyncratic volatility
is the standard deviation of residuals from the market model, the Fama-French three-factor model, or a five-factor principal
components model for daily returns within each calendar year.

Panel A: Average Pairwise Correlation Panel B: Average Volatility

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

Total

MM Residuals

FF Residuals

5 PC Residuals

1930 1940 1950 1960 1970 1980 1990 2000 2010

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Total

MM Residuals

FF Residuals

5 PC Residuals

very similar results when estimating volatility from 12 monthly return observations within each year. First,

firm-level total and idiosyncratic return volatilities share a high degree of comovement. The average pairwise

correlation of idiosyncratic volatility among size quintiles is 84% annually, while the average correlation of

idiosyncratic volatility for industry groups is 83% (based on residuals from the five principal component

model). Second, the vast majority of correlation among monthly returns is absorbed by common factors.

Pairwise stock return correlations are 30% on average based on monthly data, dropping to 0.4% for monthly

Fama-French model residuals. Third, most of the average firm’s volatility is left unexplained by common

factors – the ratio of average Fama-French residual volatility to average total volatility is 67%. See Appendix

Fig. A3 for additional detail.

The strong comovement of return volatility is also a feature of portfolio returns. Fig. A4 in the Appendix

reports average volatility and average pairwise correlations for total and residual returns for 100 Fama-French

size and value portfolios. Portfolio return volatilities show a striking degree of comovement across the size

and book-to-market spectrum, even after accounting for common factors. Like the individual stock results

above, common idiosyncratic volatility patterns are unlikely to be driven by omitted common return factors.

2.3.2. Fundamental volatility

Fig. 3 reports average yearly sales growth volatility by size quintile and industry in Panels A and B. As

in the case of returns, firm sales growth data display a high degree of volatility commonality – the average

pairwise correlation among size and industry groups is 85% and 53%, respectively. Panels C and D show

9



Figure 3: Total and Idiosyncratic Sales Growth Volatility by Size and Industry Group

The figures plot firm-level volatility averaged within size and industry groups. For each calendar year τ , volatilities are estimated
as the standard deviation of 20 quarterly year-on-year sales growth observations in years τ − 4 to τ for each firm. Panel A
shows firm-level total volatility averaged within market equity quintiles. Panel B shows total volatility averaged within the
five-industry categorization of SIC codes provided on Ken French’s web site. Panels C and D report the same within-group
averages of firm-level idiosyncratic volatility. Idiosyncratic volatility is the standard deviation of residuals from a five-factor
principal components model for quarterly sales growth. The components are estimated in the same 20-quarter window used to
calculate volatility.
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within-group average idiosyncratic volatility estimated from a five-factor principal components model for sales

growth. Comovement in residual sales growth volatility is nearly identical to total sales growth volatility.

This is because total sales growth rates have very low average pairwise correlations (1.6% annually), as

shown in Fig. 4. After accounting for one sales growth principal component, the average pairwise correlation

drops to 0.7%. This fundamental volatility behavior is not specific to sales growth, but is also true of

other measures of firm cash flows. For example, the average variance of firms’ net income growth is 67.4%

correlated with that of sales growth.16 In summary, strong comovement is not unique to return volatilities,

16The common net income variance factor explains panel variation in firm-level net income variance with an R2 of 28.5%
on average. See appendix Table A1, Panels B and C, for volatility factor model estimates based on net income growth and
EBITDA growth.
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Figure 4: Volatility and Correlation of Total and Idiosyncratic Sales Growth

Panel A shows the average pairwise correlation for total and idiosyncratic sales growth within a 20-quarter window through
the end of each calendar year. Panel B shows cross section average firm-level volatility each year for total and idiosyncratic
sales growth. Idiosyncratic volatility is the standard deviation of residuals from a one-factor principal components model for
quarterly sales growth. The components are estimated in the same 20-quarter window used to calculate volatility.
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but also appears to be a feature of fundamental volatility.

2.4. Volatility factor model estimates

We next estimate factor regression models for firm-level volatility. We consider total volatility as well as

idiosyncratic volatility estimated from a Fama-French three-factor model or a five-factor principal component

model. In all cases, time series regressions are run firm-by-firm with volatility as the left-hand side variable.

The factor in each set of regressions is defined as the equal-weighted average of the left-hand size volatility

measure. This is approximately equal to the first principal component of a given volatility panel, but avoids

principal components complications arising from unbalanced panels.

Panel A of Table 1 reports volatility factor model results for daily return volatilities.17 Columns corre-

spond to the method used to construct return residuals. The average univariate time series R2 is 36.2% for

the total volatility model, and close to 35% for the idiosyncratic volatility models. The pooled panel OLS

R2 is between 33% and 35% (relative to a volatility model with only firm-specific intercepts).18

In Panel B of Table 1, we show volatility factor model estimates for sales growth volatility. The first

three columns report results based on panels of total volatility and idiosyncratic volatility from one and five

principal component models. The last column reports model estimates for an annual volatility panel that

estimates volatility from only four quarterly year-on-year sales growth observations within each year.19 Due

17Average intercept and slope coefficients differ from zero and one due to unbalanced panel data.
18For portfolios rather than individual stock returns, we find even higher volatility factor model R2 values. Based on the

Fama-French 100 size and value portfolios, the average univariate R2 is 70.8% for total volatility, 49.7% for market model
residual volatility, and 39.4% for Fama-French model residual volatility (see Panel A of appendix Table A1).

19This model avoids the issue of overlapping regression observations that arises from our rolling 20-quarter volatility used
elsewhere. The similarity of these results with the first three columns of Panel B indicate that the strong factor structure in
sales growth volatility is not an artifact of overlapping observations.
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Table 1: Volatility Factor Model Estimates

The table reports estimates of annual volatility one-factor regression models. In each panel, the volatility factor is defined as

the equal-weighted cross section average of firm volatilities within that year. That is, all estimated volatility factor models take

the form: σi,t = intercepti + loadingi · σ·,t + ei,t. Columns represent different volatility measures. For returns (Panel A), the

columns report estimates for a factor model of total return volatility and idiosyncratic volatility based on residual returns from

the market model, the Fama-French model, or the five principal component models. For sales growth (Panel B), the columns

report total volatility or idiosyncratic volatility based on sales growth residuals from the one and five principal components

model (using a rolling 20 quarter window for estimation). The last column of Panel B reports results when using only the

four quarterly growth observations within each calendar year to estimate total volatility. We report cross-sectional averages of

loadings and intercepts as well as time series regression R2 averaged over all firms. We also report a pooled factor model R2,

which compares the estimated factor model to a model with only firm-specific intercepts and no factor.

Panel A: Returns

Total MM FF 5 PCs

Loading (average) 1.012 1.024 1.032 1.031

Intercept (average) 0.006 0.005 0.004 0.004

R2 (average univariate) 0.362 0.347 0.346 0.348

R2 (pooled) 0.345 0.337 0.339 0.347

Panel B: Sales Growth

Total (5yr) 1 PC (5yr) 5 PCs (5yr) Total (1yr)

Loading (average) 0.885 1.149 1.249 0.884

Intercept (average) 0.044 -0.018 -0.024 0.030

R2 (average univariate) 0.293 0.299 0.299 0.178

R2 (pooled) 0.303 0.315 0.304 0.168

Figure 5: Common Idiosyncratic Volatility: Levels and Changes

Panel A plots the average annual volatility of the CRSP value-weighted market return (MV) and the cross-sectional average
volatility of market model residuals (CIV). Panel B plots annual changes in CIV, and CIV changes orthogonalized against
annual changes in MV.
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to the small number of observations used to construct sales growth volatility, we might expect poorer fits in

these regressions, yet the results are closely in line with those for return volatility. The time series R2 for

raw and idiosyncratic growth rate volatility ranges between 17.8% and 29.9% on average. The pooled R2

reaches as high as 31.5%.
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The common factor in fundamental volatility follows the same low frequency patterns as the common

factor in idiosyncratic return volatilities, sharing a correlation of 64.6% with the common factor in Fama-

French residual return volatility. This suggests that the return volatility patterns identified in this section

are not attributable to discount rate shocks, but rather they measure the volatility of persistent idiosyncratic

cash flow growth shocks at the firm level. If the shocks were largely transitory, they would have only a minor

impact on returns.

Panel A of Fig. 5 plots the level of average annualized idiosyncratic volatility (labeled CIV) against the

volatility of the value-weighted market portfolio (MV). The two series possess substantial common variation,

particularly associated with deep recessions at the beginning and end of the sample (correlation of 63.8% in

levels). Panel B reports changes in CIV, as well as residuals from a regression of CIV changes on changes in

MV. The two sets of innovations share a correlation of 67.0%, indicating that the behavior of idiosyncratic

volatility shocks is in large part distinct from shocks to market volatility. The asset pricing tests of the next

section document important additional differences in the behavior of CIV and MV.

3. Idiosyncratic risk of the firm and the household

The evidence presented in Section 2 indicates that firm-level idiosyncratic volatilities possess a high

degree of comovement that is aptly described by a factor model. The commonality in firms’ idiosyncratic

risks hints at the possibility that income and consumption growth realizations experienced by households

also possess common variation in their second moments. That is, households may face common fluctuations

in their idiosyncratic risks, even though their individual consumption growth realizations themselves may be

(conditionally) uncorrelated. This seems plausible since shocks to households labor income, human capital

and financial capital derive in large part from shocks to their employers. In this section, we investigate the

empirical association between fluctuations in firm-level idiosyncratic volatility and idiosyncratic consumption

and income risk faced by households.

3.1. Theoretical connection

Individual household income and individual firm performance are linked through a number of channels.

First, households may be directly exposed to the equity risk of their employers. A large theoretical literature

beginning with Jensen and Meckling (1976) predicts that management will hold under-diversified positions

in their employers’ stock for incentive reasons. This prediction is born out empirically.20 Benartzi (2001),

Cohen (2009), and Van Nieuwerburgh and Veldkamp (2006) show that non-manager employees also tend to

overallocate wealth to equity of their employer and offer behavioral or information-based interpretations for

this phenomenon.21

20Demsetz and Lehn (1985), Murphy (1985), Morck et al. (1988), Kole (1995), and others.
21A large literature including French and Poterba (1991), Coval and Moskowitz (1999) and Calvet et al. (2007) indicate that

the typical household is exposed to idiosyncratic stock risk above and beyond that due to overallocation of savings to the equity
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Firm-specific human capital (Becker, 1962) is a second channel tying household idiosyncratic outcomes

to those of the firm. Hashimoto (1981) notes that “The standard analysis of firm-specific human capital

argues that the cost of and the return to the investment will be shared by the worker and the employer.”

The typical employee’s wealth is dominated by her human capital (Lustig et al., 2013), implying that shocks

to an employer’s firm value and human wealth shocks of its employees move in tandem. This mechanism

is empirically documented in Neal (1995) and Kletzer (1989, 1990). These studies also emphasize that the

firm-specific human capital mechanism leads to protracted and potentially permanent income impairment

following job displacements, consistent with the evidence in Ruhm (1991) and Jacobson et al. (1993). Fur-

thermore, the probability of job displacement, defined by Kletzer (1998) as “a plant closing, an employer

going out of business, a layoff from which he/she was not recalled,” is directly tied to firm performance.

In addition to job loss risk, the empirical findings of Brown and Medoff (1989) suggest that employees at

larger firms enjoy a wage premium, presenting a mechanism through which employee income shocks may

be correlated with idiosyncratic firm shocks. Theoretical work of skilled labor compensation in Harris and

Holmstrom (1982), Berk et al. (2010) and Lustig et al. (2011) finds that employers optimally insure some

but not all productivity shocks, leaving employee compensation exposed to firm-level shocks.

A large literature documents that shocks to individual labor income growth translate into shocks to

individual consumption growth because of incomplete risk sharing. Blundell et al. (2008) and Heathcote

et al. (2014) show that permanent shocks to labor income end up in consumption, while transitory shocks

are partially insured.

3.2. Empirical evidence

Our empirical analysis suggests that common idiosyncratic return volatility is a plausible proxy for

idiosyncratic risk faced by individual consumers. We present four new results consistent with this interpre-

tation.

Our first result documents a significant association between shocks to firm-level idiosyncratic risk and data

on idiosyncratic household income risk. Our measure of idiosyncratic firm risk is the equally-weighted average

of firm-level market model residual return variance.22 The highest quality household income growth data

come from the U.S. Social Security Administration; Guvenen et al. (2014) report cross-sectional summary

statistics each year from 1978-2011. In Fig. 6, we plot yearly changes in CIV alongside yearly changes in the

standard deviation and interdecile range of the cross-sectional earnings growth distribution for individuals.

All series are standardized to have zero mean and unit variance for comparison. CIV innovations have a

correlation of 57.9% (t = 3.8) with changes in idiosyncratic income risk measured by the cross-sectional

of one’s employer. Home and local bias represent additional ways through which domestic and local shocks that hit firms affect
the financial income of households.

22Residuals are based on market model return regressions. Results are quantitatively similar and qualitatively the same if
using an alternative definition such as variance of Fama-French model residuals. We compute a monthly, quarterly and annual
version of average idiosyncratic variance to conform with various data sources that are available at each of these frequencies.
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Figure 6: CIV and Dispersion in Individual Household Income Growth

The figure compares yearly changes in CIV with yearly changes in the standard deviation and interdecile range of the individual earnings

growth distribution. CIV is the equal-weighted average of firm-level market model residual return variance each year. Individual earnings

data is from the U.S. Social Security Administration and summarized by Guvenen et al. (2014). Each series is standardized to have

equal mean and variance for ease of comparison.
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standard deviation of earnings growth, and a correlation of 46.7% (t = 2.8) with changes in the interdecile

range.23

Our second finding is that changes in CIV are significantly associated with employment risk. We calculate

firm-level employment growth rates growth for U.S. publicly-listed firms from 1952-2010 using Compustat

data for number of employees. Then, to proxy for employment risk, we calculate the cross-sectional in-

terquartile range of employment growth rates each year. Changes in CIV share a correlation of 26.8% with

changes in employment growth dispersion (t = 2.1). The drawback of Compustat data is its restriction to

the universe of public firms. The Federal Reserve reports monthly total employment for over 100 sectors

beginning in 1991, aggregating both private and public firms, and we use this data to calculate log employ-

ment growth for each sector-year. Changes in CIV and changes in the cross-sectional standard deviation of

sector-level employment growth have a correlation of 41.8% (t = 1.9).

23The Guvenen et al. measures are also correlated with market variance (MV) innovations. For example, innovations in the
cross-sectional standard deviation of household earnings growth have a correlation of 42.8% with MV innovations (t-statistic of
2.6). Because MV and CIV innovations are positively correlated, it makes sense to disentangle the contribution of each through
two orthogonalizations. Innovations in the cross-sectional standard deviation of household earnings growth have a correlation
of 38.7% (t-statistic of 2.3) with CIV innovations orthogonalized to MV innovations and a correlation of 4.3% (t-statistic 0.2)
with MV innovations orthogonalized to CIV. Thus, the correlation is stronger with CIV than with MV. The same pattern holds
for the other four correlations discussed below.
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A large fraction of household wealth is invested in residential real estate, leaving individuals exposed to

idiosyncratic wealth shocks deriving from fluctuations in the value of their homes.24 Local house prices also

reflect local labor market conditions (Van Nieuwerburgh and Weill, 2010). Our third and fourth findings

relate CIV to the cross-sectional dispersion of house price growth and wage-per-job growth across metropoli-

tan areas. House price data are from the Federal Housing Financing Agency and wage data from NIPA’s

Regional Economic Information System. The merged data set contains annual information from 1969-2009

for 386 regions. The correlation between innovations in CIV and innovations in the cross-sectional standard

deviation of house price growth is 23.2% per quarter (t = 2.7), and the correlation with innovations in the

cross-sectional standard deviation of per capita wage growth is 15.2% per quarter (t = 1.7). This evidence

offers further support of a link between the cross-sectional income distribution of firms and of households.

4. CIV and expected stock returns

In this section, we document that stocks’ exposure to CIV shocks helps explain cross-sectional differences

in average stock returns. Then, Section 5 rationalizes these asset pricing findings and the empirical association

between CIV and household income risk in an equilibrium incomplete markets model with heterogeneous

agents.

We start by exploring average (abnormal) returns on portfolios sorted on stocks’ CIV exposure. We then

conduct a formal asset pricing test using a Fama-MacBeth analysis in which CIV shocks are the key asset

pricing factor. Using this analysis, we ask whether CIV shocks also price other stock and corporate bond

portfolios that have been deemed anomalous. Finally, we ask whether direct measures of household income

dispersion price the cross-section of stock returns.

4.1. CIV-beta sorted portfolios

Our asset pricing analysis is conducted using monthly returns, so the results of this section use a monthly

version of common idiosyncratic variance (CIV) described earlier.25 We construct CIV shocks as monthly

changes in CIV. Similarly, we construct a monthly measure of the market variance (MV) from daily value-

weighted stock market returns, and construct MV shocks as monthly changes in MV. For each month from

January 1963 until December 2010, we regress monthly individual firm stock returns in excess of a risk-free

rate on CIV innovations and MV innovations using a trailing 60-month window.26 We refer to a firm’s

exposure to the CIV shock as its CIV-beta and to its exposure to the MV shock as its MV-beta.

24For the median household with positive primary housing wealth in the 2010 wave of the Survey of Consumer Finance, the
primary residence represents 61% of all assets. For 25% of households it represents 90% or more of all assets.

25Each month, we estimate a regression of daily individual firm returns on the value-weighted market return for all CRSP
firms with non-missing data that month. We then calculate CIV (in levels) as the equal-weighted average of market model
residual variance across firms. The monthly nature of our return tests highlights an attractive feature of CIV estimated from
returns – it is a plausible proxy for idiosyncratic household income risk while being easily observable at high frequencies.

26We use all CRSP stocks with share codes 10, 11, and 12, and include a stock in portfolio sorts if it had no missing monthly
returns in the 60-month estimation window. The inclusion of MV shocks in a multivariate regression is equivalent to estimating
univariate betas with respect to CIV shocks that have been orthogonalized to MV shocks.
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In a first exercise, we sort stocks into quintiles based on their CIV-beta each month, form an equally-

weighted portfolio of the stocks in each quintile and hold that portfolio for one month. Panel A of Table

2 reports the average excess return of each portfolio, as well as the return on a strategy that goes long

the highest CIV-beta quintile and short the lowest CIV-beta quintile. It shows that average returns are

decreasing in CIV-beta. Stocks in the first quintile have negative CIV betas and thus tend to lose value

when CIV rises. In contrast, stocks in Q5 tend to hedge CIV increases, paying off in high volatility states.

The long-short strategy has an average annualized return of -5.41% per year with a t-statistic of -3.94. The

second and third rows report the abnormal return of each portfolio relative to the CAPM and Fama-French

(1993) three factor model, respectively. The spread portfolio has a CAPM alpha of -4.77% (t-statistic of

-3.52) and three-factor alpha of -3.29% (t-statistic of -2.50). Panel B shows similar results for value-weighted

portfolios; we focus on equally-weighted portfolios in what follows.

In Panel C, we purge the CIV-beta quintile portfolios from their heterogeneous exposure to the MV

shocks, following the approach in Ang et al. (2006). Specifically, we double-sort stocks first into MV-beta

quintile portfolios, and then, within each MV-beta quintile, into equally-sized CIV-beta portfolios. For each

CIV-beta decile, we then combine all stocks in the five MV-beta quintiles, collapsing the double-sort back to a

single-sort. We verify that this produces CIV-beta portfolios with essentially equal MV-betas. We call these

CIV-beta sorted portfolios controlling for MV-beta. The long-short strategy has an average return spread of

-4.35% per year with t-statistic of -3.10. The spread portfolio has a CAPM (three-factor) alpha of -3.14%

(-2.05%) with a t-statistic of -2.38 (-1.64). In unreported results, we find that sorting stocks into deciles

rather than quintiles leads to similar simple CIV-beta spreads, but larger CIV-beta spreads controlling for

MV-beta. Specifically, the portfolio that goes long the tenth CIV-beta decile and short the first has an excess

return of -5.76%, a CAPM alpha of -4.33%, and a three-factor alpha of -3.16%, all of which have t-statistics

in excess of two. They are also larger than for the simple CIV-beta decile sorts.

In Panel D, we report average excess returns on 25 double-sorted CIV-beta and MV-beta portfolios (5 by

5). They are the same portfolios as described in the previous sorting exercise, except that we do not collapse

them back down to a single dimension. High CIV-beta stocks continue to earn substantially lower average

returns within each MV-beta quintile. The Q5-minus-Q1 CIV-beta strategy has returns ranging from −2.8%

to −5.7% per year depending on the MV-beta quintile, and is significant for all MV-beta quintiles except

for the fifth. The reverse is not true: controlling for CIV-beta exposure, the return spread between the first

and last MV-beta quintile is not statistically different from zero in any of the CIV-beta sorted quintiles.

We obtain similar results when we sort independently on CIV- and MV-betas. These double-sorts raise an

interesting question of whether exposure to MV risk is priced once exposure to CIV risk is controlled for.

We return to this question in the Fama-MacBeth analysis below.

We conclude that stocks with more negative CIV exposure carry economically and significantly higher

returns than stocks with less negative or positive exposure. This is true after accounting for their exposure

to the market factor, the size and value factors, and their exposure to the market variance shocks.
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Table 2: Portfolios Formed on CIV Beta

The table reports average excess returns and alphas in annual percentages for portfolios sorted on the basis of monthly CIV beta for

the 1963-2010 sample. Panel A reports equally-weighted average excess returns and alphas in one-way sorts using all CRSP stocks.

Panel B reports value-weighted averages in one-way sorts. Panel C shows equally-weighted one-way sorts on CIV-beta that control

for MV-beta, as explained in the main text. Panel D shows equally-weighted average excess returns in sequential two-way sorts on

CIV-beta and MV-beta.

CIV beta

1 (Low) 2 3 4 5 (High) 5-1 t(5-1)

Panel A: One-way sorts on CIV-beta

E[R]− rf 12.08 10.88 9.96 8.70 6.68 −5.41 −3.94

αCAPM 5.38 5.07 4.55 3.24 0.61 −4.77 −3.52

αFF 1.06 1.07 0.78 −0.07 −2.23 −3.29 −2.50

Panel B: One-way sorts on CIV-beta (value-weighted)

E[R]− rf 9.41 7.04 5.77 5.82 3.87 −5.53 −3.15

αCAPM 2.84 1.34 0.49 0.74 −1.72 −4.56 −2.65

αFF 1.58 0.58 0.26 0.78 −1.59 −3.17 −1.84

Panel C: One-way sorts on CIV-beta controlling for MV-beta

E[R]− rf 11.71 11.08 9.57 8.57 7.36 −4.35 −3.10

αCAPM 4.87 5.04 3.99 3.21 1.74 −3.14 −2.38

αFF 0.66 1.22 0.31 −0.19 −1.39 −2.05 −1.64

Panel D: Two-way sorts on CIV-beta and MV-beta

1 (low) 10.04 10.36 8.48 7.66 6.16 −3.88 −2.52

2 12.28 10.08 9.24 9.54 8.36 −3.92 −2.25

3 12.51 11.09 9.88 8.50 6.80 −5.71 −3.38

4 12.88 11.43 9.98 7.76 7.46 −5.42 −3.29

5 (high) 10.86 12.46 10.26 9.37 8.04 −2.82 −1.39

5-1 0.81 2.10 1.78 1.71 1.88 – –

t(5-1) 0.48 1.17 1.01 0.90 0.84 – –

The appendix investigates the robustness of these results. Table A2 shows results for two subsamples as

well as for single-sorts on CIV-beta, estimated without controlling for MV shocks in the firm-level regressions,

and from single-sorts on MV-beta, estimated without controlling for CIV exposure. The results are present

in both subsamples, and stronger in the second half of the sample. Only the CIV sort is associated with a

significant (abnormal) return spread, but not the MV sort. Together, they suggest that variation in CIV,

as opposed to MV, is the primary driver of average return differences in Table 2. Table A3 studies several

other double sorts where we add log market equity, idiosyncratic variance, VIX-beta, and the (Pastor and

Stambaugh, 2003) liquidity beta, always in addition to the CIV-beta. The results show that significant

CIV-beta return spreads are present after accounting for betas on VIX and the Pastor-Stambaugh liquidity

factor, and for firm size and idiosyncratic variance.27

27Specifically, Panel A compares the CIV result to the size effect using two-way independent sorts on CIV-beta and log market
equity. The CIV-beta spread is large and significantly negative in all size quintiles, ranging between −3.2% for the largest firms
and −4.8% per year for the smallest. Panel B reports double sorts on CIV-beta and stock-level idiosyncratic variance, providing
a comparison to the idiosyncratic volatility puzzle of Ang et al. (2006). Idiosyncratic variance is defined as a stock’s standard
deviation of daily market model residuals each month. The CIV-beta return spread is between −2.1% and −5.5% per year
depending and significant in every idiosyncratic volatility quintile. The idiosyncratic volatility effect also shows up with high
idiosyncratic variance stocks having lower average returns than low idiosyncratic variance stocks in all CIV-beta quintiles.
However, the latter differences are not significant. Using value-weighted portfolios instead of equally-weighted portfolios leads
to the same conclusion regarding the CIV-beta direction, but results in somewhat more negative and borderline significant
spreads along the idiosyncratic variance direction. Panel C conducts two-way sorts of CIV-beta and the beta on monthly VIX
changes. This provides a comparison with the market variance factor tests of Ang et al. (2006) who use the VIX to proxy for
market variance. The monthly VIX series is available from the CBOE web site beginning in 1990. The CIV beta spread ranges
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4.2. Pricing CIV-beta sorted portfolios

Next, we perform a two-stage Fama-MacBeth estimation to formally explore the ability of the CIV factor

to explain the abnormal returns associated with CIV-beta sorted portfolios. In the first stage, we estimate

the factor betas by regressing monthly excess returns for each test asset on a constant and asset pricing

factors. In the second stage, we estimate a single cross-sectional regression of the average excess test asset

returns on the factor betas and a constant. Panel A of Table 3 shows the risk premia estimates from that

second stage. The estimation uses the same monthly portfolio returns, CIV and MV innovations, and sample

as in the previous section.

As a benchmark, the first column reports the results for the CAPM where the market excess return is

the sole asset pricing factor. The second column adds the CIV innovations as a second factor. These CIV

innovations are the same ones used in the portfolio formation stage. This two-factor model is the model

suggested by our theory in the next section. The third column adds the MV innovations to explore whether

MV innovations help to price the cross-section of test assets. The table reports Newey-West t-statistics (with

1 lag), the R-squared statistic, and the root mean squared pricing error among the test assets. The row

labeled bMV is the point estimate of the price of risk associated with MV in the SDF. When factors are

correlated, this risk price differs from the risk premium λMV reported in the top part of the table. Testing

whether MV helps to price the test assets is done by testing the null hypothesis bMV = 0. The t-statistic

below bMV is the relevant one for that test.28

The first column uses 10 simple CIV-beta sorted portfolios as test assets. We use decile rather than

quintile portfolios to have a large enough cross-section. It shows that the CAPM fails to price the CIV-beta

sorted portfolios. The cross-sectional R2 is low and the pricing errors large. The second column shows that

CIV is priced with a negative and highly statistically significant risk premium λCIV of -0.073. Adding CIV

as a pricing factor increases the cross-sectional R2 by 86% points and reduces the average pricing error to

a mere 32 basis points per year. The third column shows that adding MV does not improve the fit any

further. The pricing error falls by less than a basis point, and while the point estimate on MV is negative,

its t-statistic is only -0.74. MV does not help to price the test assets, as the t-statistic on bMV indicates that

we fail to reject the null that bMV = 0. A chi-squared test indicates that the models with the CIV pricing

factor in columns (2) and (3) cannot be rejected.

from −6.5% to −9.4% and is significant in every VIX-beta quintile. High VIX-beta stocks have lower average returns than low
VIX-beta stocks in every CIV-beta quintile, but the return differences are not significant. Panel D sorts on a stock’s CIV-beta
and beta with respect to the Pastor-Stambaugh liquidity factor. The average returns on Q5-minus-Q1 CIV-beta portfolios
range from −4.1% to −6.7% per year and are significant in every liquidity-beta quintile. The CIV-beta spread is larger for
low-liquidity stocks. The spread in the liquidity-beta direction is insignificant, controlling for CIV-beta. Finally, Table A4
reports the cross-sectional correlation between CIV-betas and the other sorting variables used in Table 2.

28The asset pricing model has a log SDF −mt+1 = rft + 1
2
V[mt+1] + b′ft+1, where the asset pricing factors are collected

in the vector ft+1 and the associated market prices of risk are collected in the vector b. The asset pricing factors are mean-

zero with constant variance-covariance matrix Σ = E[ff ′]. Risk premia on test asset j can be written as: E[rxjt+1] =

Cov(rxjt+1, f
′
t+1)b =

(
Cov(rxjt+1, f

′
t+1)Σ−1

)
(Σb) = β′jλ. When the factors are correlated, the λs are linear combinations of

the risk prices b. Cochrane (2005, pp. 260-261) explains that testing whether MV helps to price the test assets is done by
testing the null hypothesis bMV = 0. When asking the different question of whether MV is priced, one tests λMV = 0 instead.
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Table 3: Fama MacBeth Analysis: CIV Single- and Double-Sorted Portfolios

The CIV-beta and MV-beta for each stock are estimated in a multiple 60-month rolling window regression. The dependent variable is

the excess return while the independent variables are the CIV innovation and the MV innovation. The set of test assets in Panel A are

decile portfolios sorted on CIV-beta. The test assets in Panel B are decile portfolios sorted on CIV-beta, controlling for the MV-beta.

Specifically, we first sort stocks into MV-beta deciles. Then, within each MV-beta decile, we sort stocks into CIV-beta deciles. For

each CIV-beta decile, we then collect all the stocks in the ten MV-beta deciles. The set of test assets in Panel C are 25 portfolios

double-sorted on CIV- and MV-betas. We first sort stocks into five MV-beta quintiles. Then, within each MV-beta quintile, we sort

stocks into five CIV-beta quintiles. All portfolios are formed each month and held for one month. The Fama MacBeth estimation

sample is 1963.01-2010.12. The model in columns 1, 4, and 7 contains the excess market return as the factor. The model in columns

2, 5, and 8 contains the excess market return and the CIV innovation as factors. The model in columns 3, 6, and 9 contains the

excess market return, the CIV innovation and the MV innovation. The table reports the risk premia estimates (λ) and Newey-West

standard errors (with one lag) from a cross-sectional regression of average monthly excess portfolio returns on factor exposures. The

third to last row reports the cross-sectional R2 and the second to last row reports the root mean-squared pricing error, expressed as

an annual return. The last row reports an asymptotic χ2 (Wald) testing whether all pricing errors are jointly zero, statistics with “∗”

are significant at 5% and with “∗∗” are significant at 1%. The bottom panel also reports bMV , the market price of risk of MV and its

associated t-statistic. The market prices of risk b are estimated from a cross-sectional regression of average excess returns on the test

assets on the (univariate) covariances of the returns with the factors.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: 10 CIV beta Panel B: 10 CIV beta contr. MV Panel C: 25 double CIV-MV

Constant 0.003 0.017 0.018 −0.003 0.017 0.016 0.006 0.008 0.006
t-stat 0.552 23.922 7.321 −2.001 4.300 4.121 2.595 4.998 3.926
Rm-Rf 0.005 −0.014 −0.015 0.010 −0.014 −0.014 0.002 −0.002 −0.000
t-stat 1.125 −18.730 −5.912 7.784 −3.027 −2.869 1.124 −1.249 −0.312
CIV – −0.073 −0.071 – −0.077 −0.083 – −0.033 −0.039
t-stat – −31.652 −22.352 – −6.119 −5.994 – −4.300 −4.950
MV – – −0.012 – – −0.037 – – −0.029
t-stat – – −0.739 – – −3.653 – – −2.321
bMV – – 5.235 – – −10.186 – – −12.445
t-stat – – 0.498 – – −1.625 – – −1.614
R2 0.109 0.971 0.972 0.552 0.871 0.886 0.057 0.489 0.527
RMSE 1.759 0.317 0.310 1.141 0.611 0.575 1.752 1.289 1.241
χ2 25.840∗∗ 4.029 3.394 18.791∗ 8.879 7.439 43.871∗∗ 36.272∗ 29.424

Panel B of Table 3 shows the Fama MacBeth results for 10 CIV-beta sorted portfolios that control for

MV-beta. The table shows that, while the CAPM does better explaining these test assets (column 4), CIV

innovations still add substantially to the pricing performance (column 5). Pricing errors are cut in half to 61

bps per year and CIV comes in with a similar -0.077 risk premium estimate, which is highly significant. MV

innovations now also carry a negative and significant risk premium (column 6). However, we fail to reject

the null hypothesis bMV = 0. Furthermore, adding MV only reduces pricing errors by 4 basis points. Again,

the pricing errors in the models with the CIV factor are not statistically different form zero according to the

χ2 test statistic.

Panel C shows that CIV innovations price the 25 double-sorted portfolios on CIV-beta and MV-beta with

a negative and significant risk premium (column 8), again substantially improving on the pricing ability of

the CAPM (column 7). Adding the MV factor (column 9) only marginally reduces the pricing error and

marginally increases the cross-sectional R2. While the risk premium on the MV innovations is negative and

significant, we still (marginally) fail to reject the null hypothesis that bMV = 0.

In conclusion, exposure to CIV shocks goes a long way towards reducing CAPM pricing errors associated

with CIV-beta sorted portfolios. We estimate a significant and negative risk premium associated with CIV

shocks.
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4.3. Pricing anomaly portfolios

It is natural to ask whether CIV is a risk factor that can help to explain other test assets whose returns

are anomalous relative to benchmark asset pricing models. Table 4 summarizes our findings. Panel A studies

the standard 10 book-to-market (BM) sorted portfolios. Column 2 shows that adding CIV to the CAPM

dramatically reduces pricing errors from 189 to 86 bps per year and increases the cross-sectional R2 from 1%

to 80%. Interestingly, the risk premium associated with CIV innovations is -0.069, a similar point estimate

to the one we obtained on the CIV-beta sorted portfolios in Table 3. It is highly statistically significant.

In column 3, we add MV as a pricing factor and find that it is not priced and that it barely lowers pricing

errors. The market price of MV risk, bMV has the wrong sign, but is not different from zero.

Panel B studies 10 size portfolios. The CAPM in column 4 does substantially better for these portfolios

and leaves only 54 bps unexplained. Yet, adding CIV lowers the pricing errors further to 39 bps. CIV enters

with the right sign and is significantly different from zero. Its point estimate is substantially smaller here

than for the BM- or CIV-sorted portfolios, however. MV also prices the size portfolios with a significantly

negative λMV . The estimate for bMV is also significantly negative, so that we can reject the null that MV

does not add pricing power to the other factors for size portfolios.

In Panel C, we add corporate bond portfolios. We use data from Citibank’s Yield Book for four

investment-grade portfolios: AAA, AA, A, and BBB. Return data for these portfolios are available monthly

from January 1980 until December 2010, which restricts our estimation to this sample in columns 7-9. Be-

cause we cannot identify risk prices off four test assets and because it is recommended to use large and

diverse cross-sections of test assets (Lewellen et al., 2010), we combine the 10 size, 10 value, and 4 corporate

bond portfolios in Panel C. We find that CIV is priced with a significantly negative risk premium while MV

is not. Inspection of the betas reveals that growth stocks have mildly positive CIV betas (0.005-0.009 for

BM1-BM5) while value stocks have negative CIV-betas (around -0.03 for BM6-BM9 and -0.09 for BM10).

Small firms have negative CIV-betas (-0.13 for ME1, -0.07 for ME2), while large firms have less negative

or even positive CIV-betas (0.01 for ME10). Finally, corporate bond portfolios of high credit quality have

positive CIV-betas (0.013 for AAA) while corporate bonds of firms with lower credit quality have negative

CIV-betas (-0.03 for the BBB portfolios). These patterns in CIV-betas help to explain why the CIV factor

contributes to resolving the value, size, and credit spread anomalies.

We conduct several robustness checks in the appendix. We use traded versions of the CIV and MV factors.

The traded CIV (MV) factor is the return on a portfolio that goes long the tenth CIV-beta (MV-beta) decile

and short the first CIV-beta (MV-beta) decile. Table A5 contains the results. The risk premium estimate on

the traded CIV has the interpretation of a monthly excess return. We estimate an average value of around

-0.005 or -6% annualized. This is consistent with the average return spread on the 10-minus-1 CIV-beta

portfolio of -5.4% per year. In contrast, the risk premium on the traded MV factor is always positive, which

is the wrong sign.

We also investigate the pricing ability of CIV and market variance for the same set of test assets as in
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Table 4: Fama MacBeth Analysis: Anomalies Portfolios

The set of test assets are decile portfolios sorted on book-to-market ratio in columns 1-3, on size (market capitalization) in columns

4-6, the book-to-market deciles, size deciles, and 4 corporate bond portfolios sorted by credit rating in columns 7-9. The estimation

sample is 1963.01-2010.12 in columns 1-6 and 1980.01-2010.12 in columns 7-9. The model in columns 1, 4, and contains the excess

market return as the factor. The model in columns 2, 5, and 8 contains the excess market return and CIV innovation as factors. The

model in columns 3, 6, and 9 contains the excess market return, the CIV innovation and the MV innovation. The table reports the risk

premia estimates (λ) associated with the factors and their Newey-West standard errors (with one lag) from a cross-sectional regression

of average monthly excess portfolio returns on factor exposures. The third to last row reports the cross-sectional R2 and the second

to last row reports the root mean-squared pricing error, expressed as an annual return. The last row reports an asymptotic χ2 (Wald)

testing whether all pricing errors are jointly zero, statistics with “∗” are significant at 5% and with “∗∗” are significant at 1%. The

bottom panel also reports bMV , the market price of risk of MV and its associated t-statistic. The market prices of risk b are estimated

from a cross-sectional regression of average excess returns on the test assets on the (univariate) covariances of the returns with the

factors.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: 10 BM Panel B: 10 ME Panel C: 10 BM, 10 ME, 4 CB

Constant 0.009 0.014 0.012 −0.008 −0.004 0.004 0.003 0.003 0.003
t-stat 0.971 5.048 3.774 −4.816 −2.348 1.130 16.672 16.317 15.697
Rm-Rf −0.003 −0.009 −0.007 0.013 0.009 0.001 0.004 0.004 0.004
t-stat −0.280 −3.292 −2.190 8.955 5.568 0.366 14.778 11.567 9.645
CIV – −0.069 −0.069 – −0.020 −0.033 – −0.015 −0.015
t-stat – −9.934 −8.855 – −7.265 −6.777 – −2.192 −2.251
MV – – −0.005 – – −0.025 – – −0.006
t-stat – – −0.621 – – −4.286 – – −1.000
bMV – – 9.803 – – −10.370 – – −0.445
t-stat – – 1.715 – – −3.065 – – −0.141
R2 0.013 0.796 0.837 0.839 0.919 0.955 0.722 0.781 0.781
RMSE 1.886 0.857 0.768 0.543 0.386 0.287 1.031 0.914 0.913
χ2 11.579 4.820 3.692 8.019 6.438 4.201 12.284 11.154 10.186

Table 4, but using the Campbell et al. (2014) measure of market variance, called NV . The results in Table

A6 show that CIV continues to carry a negative and significant risk premium for all sets of test assets, even

after inclusion of the traded NV factor.

In addition, we investigate whether CIV is priced in the 25 portfolios double-sorted on book-to-market

ratio and size and 6 portfolios double-sorted on their exposure to market returns and market variance

innovations, in line with Campbell et al. (2014) test assets. We construct the 6 risk-sorted portfolios as

follows. In a 60-month trailing window, we regress stock returns on market return and MV innovations, and

use the coefficient estimates to form double sorted stock portfolios, which we hold for the subsequent month.

The 6 risk-sorted portfolios are independently sorted by terciles on the market exposure and into two groups

based on the market variance innovations exposure. We report the Fama MacBeth analysis for these test

assets in Table A9 in the Appendix. Panel A uses the 25 portfolios double-sorted on book-to-market ratio

and size as test assets, panel B adds the 6 risk-sorted portfolios to set of test assets and panel C adds the 4

corporate bonds portfolios sorted by credit rating. In all three panels, the CIV price of risk is negative, and

in five of the six specifications the point estimate is significantly different from zero.

Finally, we have studied earnings-price sorted portfolios, idiosyncratic volatility sorted portfolios, and

momentum portfolios. The results for earnings-price portfolios look very similar to those for book-to-market

sorted portfolios. In contrast, CIV has no pricing ability for the idiosyncratic volatility and momentum

portfolios.
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We conclude that CIV innovations have pricing ability for value, size, and corporate bond portfolios over

and above the pricing ability of the market variance factor. This strengthens the appeal of CIV as a new

asset pricing factor.

4.4. Household income growth dispersion as pricing factor

The positive correlation between CIV shocks and shocks to the dispersion in household income growth

(Section 3), couples with the significant asset pricing power of CIV, suggest that CIV proxies for partially

uninsurable idiosyncratic consumption risk of households. To support this view, we document that direct

measures of household income risk help price the cross-section of returns. Unfortunately, our measures of

income dispersion are only available at annual frequency and for a relatively short sample. We explore two

ways to overcome this difficulty.

First, we find a proxy for the cross-sectional dispersion of firm employment growth (such as the Compustat

or BEA measures used in section 3) that is available at high frequency. We use the market value of the firm’s

equity as a proxy for its number of employees. We calculate the cross-sectional standard deviation of the

growth rate in firm size at the monthly frequency. We refer to monthly changes in this size dispersion as the

FSD factor. The correlation between the innovations in the CIV and FSD factors is 32.3%. We estimate a

firm’s FSD-beta in a multiple regression of excess returns on FSD and MV factors, and then sort stocks into

deciles by their FSD-beta. Stocks with low FSD-beta have excess returns that are 4.6% higher than stocks

with a high FSD-beta. This spread is similar in magnitude to the CIV-beta spread (t-statistic of -2.86).

Moreover, the CAPM and three-factor models leaves the entire return spread unexplained. The αCAPM

spread is -5.8% (t-statistic of -3.7) and αFF spread is -4.6% (t-statistic of -3.02).29

Second, we construct a traded version of the shocks to the Guvenen et al. (2014) household income growth

dispersion measure, which we refer to as the GID factor.30 The correlation between the annual innovations

in the CIV and GID factors is 33.7%. We show that the GID factor prices the cross-section of annual test

asset excess returns.31 Despite the short sample for the Guvenen measure, these results provide additional

support for the mechanism in the paper.

5. Model with CIV in household consumption

Motivated by the three sets of facts presented in Sections 2, 3 and 4, this section of the paper develops

an incomplete markets asset pricing model where a common idiosyncratic volatility factor is the key state

29The Fama MacBeth analysis in Table A7 shows that FSD prices the 10 FSD-beta sorted portfolios, the 10 value portfolios,
and the full cross-section of 34 test assets that also includes 10 size portfolios and 4 corporate bond portfolios with a negative
and significant risk premium.

30That is, we first estimate GID-betas for each stock using firm-level regressions of annual returns that control for the MV
factor. Second, we form the return on a portfolio that goes long highest GID-beta decile of stocks and short the lowest GID-beta
decile of stocks.

31Table A8 shows that the GID factor is significant and negative in 7 out of 8 specifications. MV innovations are significant
in 2 out of 4 specifications.
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variable driving both residual stock return volatility and the dispersion in household income growth. In-

novations to this factor represent bad news and carry a negative price of risk. Stocks with more negative

exposure with respect to this innovation in turn earn a higher risk premium. We show a calibration that

quantitatively accounts for the cross-sectional differences in average returns across CIV-beta sorted port-

folios. In the interest of space, the model details and parameter sensitivity analysis are relegated to the

appendix.

5.1. Model setup

There is a unit mass of atomless agents, each having Epstein-Zin preferences. There is a large number of

securities in zero or positive net supply. Agents are endowed with an equal fraction of these securities and

with a labor income process of the form Ij,t = SjtCt−Dt, where Sj denotes agent j’s consumption share and

per capita dividends are Dt. As in Constantinides and Ghosh (2014), given the symmetric and homogeneous

preferences, households choose not to trade away from their initial endowments. That is, autarky is an

equilibrium and individual j’s equilibrium consumption is Cj,t = Ij,t+Dt = SjtC
a
t . Following Constantinides

and Duffie (1996), we interpret the equilibrium consumption process Cj,t as the post-trade consumption that

obtains after households have exhausted all insurance options and the temporary innovations to labor income

have been smoothed out. It reflects the permanent innovations to income that are not insurable and thus

passed through to consumption.

Relative to the literature, and motivated by the empirical evidence in section 3, the novel ingredient in the

model is the link between the firms’ dividend growth process and the households’ individual income growth

process. The common idiosyncratic volatility factor in firms cash flows is also the driver of the cross-sectional

dispersion of household consumption growth rates:

σ2
g,t+1 = σ2

g + νg
(
σ2
gt − σ2

g

)
+ σwσgwg,t+1 (2)

∆cjt+1 = ∆cat+1 + ∆sjt+1 = µg + σcηt+1 + φcσgwg,t+1 + σg,t+1v
j
t+1 −

1

2
σ2
g,t+1 (3)

All shocks are i.i.d. standard normal and mutually uncorrelated. The process σ2
g,t+1 is the cross-sectional

variance of the individual log consumption growth process. Eq. (2) assumes this dispersion follows an AR(1)

with innovations wg,t+1. The wg,t+1 shock is the key source of aggregate risk in the model. As will become

clear below, it maps one-for-one to the CIV shock. The only other aggregate source of risk is the usual

aggregate consumption growth shock ηt+1 in Eq. (3). When φc < 0, aggregate consumption growth is

negatively correlated with shocks to the cross-sectional dispersion of individual consumption growth. This

counter-cyclical variation in idiosyncratic risk is a mechanism familiar from Mankiw (1986), Constantinides

and Duffie (1996), and Krueger and Lustig (2010). Our main pricing predictions do not require this channel

(i.e., we can allow φc = 0), but it helps the quantitative fit of the model.
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Eq. (4) describes the dividend growth process for a stock i.

∆dit+1 = µi + χi
(
σ2
gt − σ2

g

)
+ ϕσcηt+1 + φiσgwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 (4)

Dividend growth is affected by the two sources of aggregate risk. There is a traditional leverage effect with

respect to the ηt+1 shock (ϕ > 1) and a possible negative correlation with the CIV shock wg,t+1 (φi < 0).

Dividend growth is also subject to two sources of idiosyncratic risk. The κie
i
t+1 shock is orthogonal to

all other shocks in the economy, but its variance σ2
gt is common across firms. In contrast, the ζiε

i
t+1

shock has a variance σ2
it that is firm-specific. Each stock’s σ2

it process follows an AR(1), described in the

appendix. Thus, firm i’s idiosyncratic cash flow growth risk is Vt
[
κiσgte

i
t+1 + ζiσitε

i
t+1

]
= κ2

iσ
2
gt + ζ2

i σ
2
it.

This specification captures the factor structure in idiosyncratic variance documented in Section 2, where

the first term captures the common idiosyncratic variance (CIV) factor. Thus, wg,t+1 shocks are perfectly

correlated with innovations in CIV. Finally, the term χi
(
σ2
gt − σ2

g

)
allows for predictability of dividend

growth between t and t+ 1 by the CIV level at time t. Apart from mean dividend growth µi and a common

leverage parameter ϕ, the key cash flow parameters are Θi = (χi, φi, κi, ζi).

The market portfolio follows a similar dividend growth process as in Eq. (4), except without the idiosyn-

cratic risk terms which are diversified away. The conditional variance of the dividend growth on the market

portfolio, just like that of aggregate consumption growth, is constant. This implies that the aggregate stock

market variance (MV) is constant over time. We make this assumption to keep the model simple and to

highlight the role of CIV.

5.2. The cross-section of equity risk premia

The log stochastic discount factor innovations can be written as:

−mt+1 + Et[mt+1] = λησcηt+1 + λwσgwg,t+1, (5)

where the market prices of risk are given by:

λη = γ, λw = −1

2
γ(1 + γ)σw + γφc +

γνg

(
1
ψ − γ

)
2 (κc1 − νg)

σw.

The appendix provides the derivation and the expression for the risk-free rate rft . Eq. (5) shows that there

are two priced sources of aggregate risk: shocks to aggregate consumption growth carrying a price of risk,

λη, equal to the coefficient of relative risk aversion γ, and shocks to the CIV factor carrying a market price

of risk, λw. All three terms in the λw expression are negative, provided that the agent has a preference

for early resolution of uncertainty (ψ−1 < γ), indicating that an increase in the cross-sectional volatility

of consumption growth is bad news for investors. The first term in λw captures precautionary motives

against changes in consumption risk sharing and is the main pricing effect of CIV shocks. The second

25



term compensates for exposure to counter-cyclical cross-sectional variation in idiosyncratic risk. Both terms

appear when utility is time-additive. The third term arises from Epstein-Zin preferences, inducing investors

to care not only about current but also about future cross-sectional dispersion of consumption growth. The

size of this effect is governed by the persistence of the idiosyncratic volatility factor, νg.

We exploit the normality of the shocks to guess and verify that the log price-dividend ratio on a stock

is affine in the CIV factor and in firm-specific variance: pdit = µpdi + Aigs
(
σ2
gt − σ2

g

)
+ Aiis

(
σ2
it − σ2

i

)
. The

conditional variance of individual stock returns is given by:

Vt
[
rit+1

]
= β2

η,iσ
2
c + β2

gs,iσ
2
g +

(
ki1A

i
is

)2
σ2
iw + κ2

iσ
2
gt + ζ2

i σ
2
it (6)

CIVt ≡ Ei
[
Vt
[
ridio,it+1

]]
= const+ ζ̄2σ2

i + κ̄2σ2
gt (7)

where

βη,i ≡ ϕ, βgs,i ≡ ki1
2χi + κ2

i +
(

1 + 1
ψ

)
γνg

2
(
1− ki1νg

) σw + φi. (8)

The first two terms in Eq. (6) reflect the role of aggregate risks in a stock’s return variance. The variance

of idiosyncratic stock returns is given by the last three terms. Idiosyncratic return variance is driven by the

common variance process σ2
gt and a firm-specific variance process σ2

it.

Defining the CIV factor as the average of firms’ idiosyncratic return variances, as we did in the data,

Eq. (7) shows that CIV is affine in σ2
gt. In Section 2, we demonstrated the presence of a large first principal

component in both total and idiosyncratic return variance, and showed that it was the same component in

both. We also showed that total and idiosyncratic return variance at the firm-level were nearly identical.

This fact justifies our assumption of constant market variance. Finally, we showed that there was a common

component in firms’ total and idiosyncratic cash flow (sales) growth, and that the common component in

cash flow growth and return volatilities where highly correlated. This model generates all these features.

It associates the common component in idiosyncratic return variance with changes in the cross-sectional

dispersion of consumption growth across agents, a connection for which we provided support in Section 3.

The equity risk premium on stock i is:

Et
[
rit+1 − r

f
t

]
+ .5Vt[rit+1] = Cov(−mt+1 + Et[mt+1], rit+1 − Et[rit+1]) = βη,iλησ

2
c + βgs,iλwσ

2
g .

The first term is the standard (consumption-) CAPM term. The second term is a new term which com-

pensates investors for movements in the cross-sectional consumption growth distribution, today and in the

future. Stocks that have low returns when the cross-sectional dispersion of individual consumption growth

increases, i.e., stocks with βgs,i < 0, are risky and carry high expected returns because λw < 0. Because

βη,i is constant across stocks, heterogeneous exposure to CIV shocks is the sole driver of differences in risk

premia across stocks.
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Eq. (8) shows the model-implied CIV-beta. There are three mechanisms that contribute to a negative

βgs,i. First, a sufficiently negative means that periods of high CIV predict low future dividend growth.

Below, we show that CIV negatively forecasts dividend growth in the data and we choose χi to match the

slope of the predictive relationship. Second, if positive shocks to CIV coincide with low dividend growth

realizations (φi < 0), then that stock has a more negative βgs,i. Third, a stock with lower κi, or lower cash

flow exposure to the common idiosyncratic risk term, will have a lower βgs,i. Intuitively, when there is a

positive shock to CIV the quantity of idiosyncratic risk goes up more for stocks with greater exposure κi. As

a result of convexity in the relation between growth and terminal value, this raises the price more of those

high volatility stocks, increasing their βgs,i, and lowering their equilibrium expected return.32

5.3. Quantitative implications of the CIV model

We use our model to evaluate if the average return spreads across CIV-beta sorted portfolios documented

in Section 4 are quantitatively consistent with the extent of idiosyncratic volatility comovement documented

in Section 2. A detailed discussion of the calibration and a sensitivity analysis are in the appendix; our

benchmark parameter values are in Table 5. The calibration matches the mean and volatility of aggregate

consumption growth and the risk-free rate. The average cross-sectional standard deviation of consumption

growth is set at 10% to reflect the partial pass-through of household income shocks to consumption.33 The

persistence of σgt is chosen to match that of CIV (annual autocorrelation of 0.6). Unlike other state variables

in the asset pricing literature, this variable moves at business-cycle frequencies. We also match the mean of

the observed CIV process. The consumption leverage parameter ϕ and risk aversion parameter γ are chosen

to match the equity risk premium on the market portfolio of 5.5%. Because the exposure of the aggregate

market portfolio to the CIV shock, βgs,M , is close to zero in the data, most of the equity risk premium on

the market portfolio must come from the standard consumption-CAPM term. Given the low volatility of

aggregate consumption growth, this requires a risk aversion coefficient of 15. At this point, the market price

of CIV risk λw is fully pinned down.

The main question is whether the model can generate the observed differences in average returns between

stocks with low and high CIV-betas, documented in Section 4. To speak to the quintile portfolio evidence,

we solve our model for a representative stock in each of the CIV-beta quintiles portfolios. That is, we choose

five sets of four cash flow growth parameters Θi, and price the resulting cash flows inside the model. The four

cash flow parameters are chosen to match four moments, for each quintile portfolio and the market portfolio.

Those are the CIV-beta, βgs,i in Eq. (8), the slope of a regression of dividend growth on lagged CIV, and the

slope and R2 from a regression of stock return variance (in Eq. 6) on the CIV factor (in Eq. 7). While these

32A similar convexity effect is explored by Pastor and Veronesi (2003, 2009).
33As discussed above, Blundell et al. (2008) and Heathcote et al. (2014) provide empirical support for the partial pass-through

of permanent income shocks to consumption. Given that the cross-sectional standard deviation of household income growth is
53% on average according to Guvenen et al. (2014), this assumes that one-fifth of income shocks are uninsurable. We perform
sensitivity with respect to this parameter in the appendix, considering higher values that match the average cross-section
dispersion in household-level consumption growth.
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Table 5: Benchmark Calibration

This table lists the parameter values of the benchmark calibration. The preferences parameters include intertemporal discount (δ),

risk aversion (γ), and intertemporal elasticity of substitution (ψ). The aggregate consumption growth process, the consumption share

process and the dividend growth process are described by Eq. (2), (3), and (4). Finally, the bottom panel presents the calibration of

the portfolios sorted from lowest CIV-beta (Q1) to highest CIV-beta (Q5), and the market portfolio calibration in reported in the last

column (M).

Preferences
δ 0.8747 γ 15 ψ 2

Aggregate Consumption Growth Process
µg 0.02 σc 0.02469 φc -0.0395

Consumption Share Process
σg 0.1 νg 0.6 σw 0.01472

Dividend Growth Process
σi 0.004 νi 0.15 σiw 1.5e-06

Parameter Q1 Q2 Q3 Q4 Q5 M
µi 6.58 % 5.81 % 4.92 % 5.74 % 4.55 % 5.20 %
ϕ 5.69 5.69 5.69 5.69 5.69 5.69
φi −1.21 −0.68 −0.45 −0.22 0.20 −0.29
χi −0.95 −0.25 0.06 −0.40 −1.42 −0.65
κi 2.76 2.07 1.88 1.88 2.27 ×
ζi 141.12 106.73 96.95 97.25 118.92 ×

are four simultaneous equations, χi mostly affects the dividend growth predictability slope, κi governs the

portfolio’s return variance exposure to CIV, ζi affects the R2 of that relationship, and φi is chosen to match

βgs,i given the other three parameters. Rows 5 and 6 of Table 6 show that the calibration indeed matches the

CIV betas. Rows 14-17 shows that the model matches the slope and R2 of the regression of return variance

on CIV. Finally, rows 18 and 19 show that the calibration matches the dividend growth predictability by

lagged CIV. We note that dividend growth is much lower on the low CIV-beta stocks following an increase

in CIV than it is for the high CIV-beta stocks.

The main result of the calibration exercise is that the model is able to match the 5.4% spread in excess

returns on the CIV beta-sorted portfolios. It generates a monotonically declining pattern in excess stock

return from Q1 to Q5 (row 2). While the average excess return levels are too low, the model exactly matches

the return spread between portfolio 5 and portfolio 1 (row 1). As rows 3 and 4 make clear, the common

level of the equity risk premium comes from compensation for η-risk, while the entire cross-sectional slope in

excess returns is due to differential exposure to the wg-risk. The stocks in portfolio Q1 (Q5) have negative

(positive) exposure to the CIV factor (row 6). Their returns fall (rise) when the cross-sectional vol increases,

making them risky (a hedge). As a result, they carry the highest (lowest) risk premia.

The model accurately matches total return volatilities of the CIV beta-sorted portfolios, shown in rows 7

and 8 of Table 6. Annual return volatilities for the typical stock in each of the quintile portfolios range from

45% to 65%. They are highest for portfolios Q1 and Q5. The market portfolio has a volatility of 15.7% in the

data and 14.1% in the model. Rows 9-13 break down total return volatility into its five components. As in

the data, most of total return volatility is idiosyncratic return volatility. The common idiosyncratic and firm-

specific idiosyncratic components contribute about one-third and two-thirds, respectively, to idiosyncratic

firm volatility (rows 11 and 12). The model matches the persistence of the various volatility components
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Table 6: Calibration Results

This table reports moments from the model and compares them to the data. The first two rows report the average excess

return. The next two rows split out the equity risk premium into a contribution representing compensation for η risk and a

compensation for wg risk. Rows 5 and 6 report CIV-betas, where model betas have been scaled to ensure that the innovation

volatility of CIV is the same in model and data. Rows 7 and 8 report stock return volatilities, followed by a breakdown of

volatility into its five components in rows 9-13 (see Eq. 6). Since the variance but not the volatility components are additive,

we calculate the square root of each variance component, and then rescale all components so they sum to total volatility. Rows

14 and 15 report the slope of a regression of Vt

[
ridio,it+1

]
on CIV, multiplied by 100. Rows 16 and 17 report the R-squared of

this regression, multiplied by 100. Rows 18 and 19 report the slope of a predictive regression of annual dividend growth on

one-year lagged CIV. The model is simulated at annual frequency for 60,000 periods. All moments in the data are expressed as

annual quantities and computed from the 1963.01 to 2010.12 sample.

Moment Q1 Q2 Q3 Q4 Q5 M

1 Excess Ret Data 12.08 10.88 9.96 8.70 6.68 5.50

2 Model 8.65 6.65 5.74 4.89 3.25 5.50

3 η risk 5.21 5.21 5.21 5.21 5.21 5.21

4 wg risk 3.45 1.44 0.53 −0.31 −1.96 0.29

5 Beta βgs,i Data −0.50 −0.21 −0.08 0.05 0.28 −0.04

6 Model −0.50 −0.21 −0.08 0.05 0.28 −0.04

7 Return Vol. Data 66.89 52.17 47.20 46.70 54.45 15.65

8 Model 65.00 49.62 45.34 45.45 54.78 14.08

9 η risk 8.42 8.50 8.64 8.71 8.51 13.39

10 wg risk 5.15 2.18 0.82 0.48 2.96 0.69

11 ei risk 16.52 12.51 11.53 11.65 13.73 ×
12 εi risk 33.85 25.82 23.84 24.10 28.81 ×
13 wi risk 1.05 0.61 0.51 0.52 0.76 ×
14 Idio var on CIV slope Data 1.54 0.87 0.71 0.72 1.04 ×
15 Model 1.58 0.89 0.73 0.74 1.07 ×
16 Idio var on CIV R2 Data 17.69 17.21 17.10 17.11 16.31 ×
17 Model 17.69 17.21 17.10 17.11 16.31 ×
18 Div.gr. predictability Data −0.20 −0.05 0.01 −0.08 −0.29 −0.13

19 Model −0.20 −0.05 0.01 −0.08 −0.29 −0.13

as well as the relative amount of variation that comes from the common and the firm-specific volatility

components.

The model has additional testable implications. In the appendix, we find that the log price-dividend ratio

predicts CIV with a positive sign, consistent with the model. The point estimate in the data is significant for

quintiles 1-4 and the predictive R2 ranges from 11% to 29%, which is substantial. Also, the model predicts a

negative relationship between real rates and CIV, resulting in a downward term structure of real rates. This

is a prediction it shares with the model of Bansal and Yaron (2004). Verdelhan (2010) shows a significant

downward slope for 1983-1995 for the U.K. and a flat yield curve from 1995 to 2006. The evidence for the

U.S. shows a modest upward sloping yield curve.

The appendix explores several sensitivity analyses. In one exercise, we increase the mean of the σgt

process, σg, thereby increasing the amount of labor income risk that is passed through to consumption.

We increase σg from 0.10 to 0.42, thereby matching the cross-sectional dispersion of observed consumption

growth. Interestingly, the model matches the asset pricing results as well as in the benchmark calibration.

We also consider a calibration with lower risk aversion, which implies a lower equity risk premium but a

similar return spread on the high-minus-low CIV-beta portfolio.
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6. Conclusion

We document strong comovement of individual stock return volatilities. Removing all common variation

in returns has little effect on volatility comovement, as residual return volatility possesses effectively the same

volatility factor structure as total returns. Volatility comovement is also a prominent feature of firm-level

cash flows. We find a strong factor structure in total and idiosyncratic sales growth volatilities. Shocks to

this common component of idiosyncratic volatility (CIV) are priced. Sorting stocks on their CIV-beta results

in a substantial return spread of about 6%; the spread survives inclusion of common risk factors. The CIV

factor is also helpful to understand return differences on other stock and corporate bond portfolios. Finally,

we establish an empirical connection between CIV shocks and shocks to the cross-sectional dispersion of

household income growth.

We account for all three facts in a model with heterogeneous investors whose consumption risk is linked

to firms’ idiosyncratic cash flow risk. CIV is a priced state variable: Increases in CIV lead to an increase

in the dispersion of consumption growth across households and are associated with high marginal utility

for the average investor. Stocks whose returns rise with CIV hedge against deterioration in the investment

opportunity set and thus earn low average returns. The calibrated model quantitatively matches the observed

return spread and volatility facts.

Our work empirically documents a link between the volatility in firms’ returns and cash flow growth

and the cross-sectional volatility in household consumption growth. A large literature argues that shocks

to firms have important effects on both the labor income and financial income of their employees. Another

literature documents that households cannot or do not fully insure against their labor income shocks. One

valuable direction for future work is to provide further evidence on the joint dynamics of the distributions

of firm output and household income and consumption. A second direction is to use CIV as a measure of

consumption growth dispersion in tests of consumption-based asset pricing models and in work that studies

income and consumption inequality.
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Appendix A. Empirical appendix

Figure A1: Log Volatility: Empirical Density Versus Normal Density

The figure plots histograms of the empirical cross section distribution of annual firm-level volatility (in logs) pooling all firm-year

observations. Panel A shows total return volatility, calculated as the standard deviation of daily returns for each stock within a

calendar year. Panel B shows total sales growth volatility, calculated as the standard deviation of quarterly year-on-year sales growth

observations in a 20 quarter window. Panels C and D show idiosyncratic volatility based on the five principal components factor model.

Overlaid on these histograms is the exact normal density with mean and variance set equal to that of the empirical distribution. Each

figure reports the skewness and kurtosis of the data in the histogram.
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Figure A2: Log Volatility: Empirical Density Versus Normal Density 2010 Snapshot

The figure plots histograms of the empirical cross section distribution of annual firm-level volatility (in logs) for the 2010 calendar year.

Panel A shows total return volatility, calculated as the standard deviation of daily returns for each stock within a calendar year. Panel

B shows total sales growth volatility, calculated as the standard deviation of quarterly year-on-year sales growth observations in a 20

quarter window. Panels C and D show idiosyncratic volatility based on the five principal components factor model. Overlaid on these

histograms is the exact normal density with mean and variance set equal to that of the empirical distribution. Each figure reports the

skewness and kurtosis of the data in the histogram.
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Figure A3: Volatility and Correlation of Monthly Returns

The figure repeats the analysis of Fig. 2 using monthly return observations within each calendar year, rather than daily.
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Figure A4: Volatility of 100 Size and Value Portfolios

The figures plot volatility of total and idiosyncratic returns on 100 size and value portfolios. Within each calendar year, total return

volatilities are estimated from daily returns for each portfolio (Panel A), while idiosyncratic return volatility is the standard deviation

of residuals from the three factor Fama-French model (Panel B) estimated within each calendar year. Panel C shows average pairwise

correlation for total and idiosyncratic returns on 100 size and value portfolios within each calendar year.
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Table A1: Volatility Factor Model Estimates

The table reports estimates of annual volatility one-factor regression models. In each panel, the volatility factor is defined as the

equal-weighted cross section average of firm volatilities within that year. That is, all estimated volatility factor models take the form:

σi,t = intercepti + loadingi · σ·,t + ei,t. Columns represent different volatility measures. For the 100 Fama-French returns (Panel A),

the columns report estimates for a factor model of total return volatility and idiosyncratic volatility based on residual returns from the

market model, the Fama-French model, or the five principal component models. For net income growth (Panel B) and EBITDA growth

(Panel C), the columns report total volatility or idiosyncratic volatility based on sales growth residuals from the one and five principal

components model (using a rolling 20 quarter window for estimation). The last column of Panels B and C reports results when using

only the four quarterly growth observations within each calendar year to estimate total volatility. We report cross-sectional averages

of loadings and intercepts as well as time series regression R2 averaged over all firms. We also report a pooled factor model R2, which

compares the estimated factor model to a model with only firm-specific intercepts and no factor.

Panel A: Portfolio Returns
Total MM FF 5 PCs

Loading (average) 1.000 0.999 1.000 0.999
Intercept (average) 0.000 0.000 0.000 0.000
R2 (average univariate) 0.708 0.497 0.394 0.450
R2 (pooled) 0.691 0.454 0.375 0.470

Panel B: Net Income Growth
Total (5yr) 1 PC (5yr) 5 PCs (5yr) Total (1yr)

Loading (average) 1.142 0.809 0.839 1.079
Intercept (average) -0.053 -0.007 -0.011 -0.031
R2 (average univariate) 0.285 0.270 0.269 0.199
R2 (pooled) 0.273 0.257 0.252 0.169

Panel C: EBITDA Growth
Total (5yr) 1 PC (5yr) 5 PCs (5yr) Total (1yr)

Loading (average) 0.842 0.934 0.884 0.990
Intercept (average) 0.065 -0.021 -0.009 0.017
R2 (average univariate) 0.294 0.281 0.280 0.191
R2 (pooled) 0.261 0.269 0.259 0.152

Table A2: Portfolios Formed on CIV Beta – Additional Single Sorts

The table reports average excess returns, CAPM alphas, and three-factor Fama-French alphas for equally-weighted portfolio sorts in

annual percentages. Panels A and B report one-way sorts on CIV beta using all CRSP stocks in the 1986-2010 and 1963-1985 subsamples,

respectively. Panel C reports sorts on CIV-beta, where CIV-betas for stocks have been estimated from univariate regressions of monthly

excess returns on CIV changes, without controlling for exposure to MV shocks. Panel D reports sorts on MV-beta in the full 1963-2010

sample, where MV-betas for stocks have been estimated from univariate regressions of monthly excess returns on MV changes, without

controlling for exposure to CIV shocks.

1 (Low) 2 3 4 5 (High) 5-1 t(5-1)

Panel A: One-way sorts on CIV beta, 1986-2010
E[R]− rf 12.82 11.12 10.12 8.19 5.81 −7.00 −3.21
αCAPM 4.82 4.34 4.01 2.25 −0.92 −5.73 −2.72
αFF 2.74 2.11 1.69 0.26 −2.21 −4.94 −2.57

Panel B: One-way sorts on CIV beta, 1963-1985
E[R]− rf 11.29 10.63 9.79 9.26 7.62 −3.67 −2.29
αCAPM 6.07 5.98 5.31 4.56 2.49 −3.57 −2.22
αFF −0.97 −0.08 −0.02 −0.11 −2.15 −1.18 −0.75

Panel C: One-way sorts on CIV beta, no orthogonalization
E[R]− rf 11.76 11.08 9.94 8.58 6.94 −4.82 −3.12
αCAPM 4.77 5.03 4.44 3.32 1.30 −3.46 −2.39
αFF 0.67 1.08 0.73 −0.11 −1.76 −2.43 −1.77

Panel D: One-way sorts on MV beta
E[R]− rf 9.98 10.42 10.39 9.26 8.25 −1.73 −0.94
αCAPM 2.51 4.17 4.84 4.17 3.18 0.67 0.43
αFF −0.83 0.29 1.01 0.51 −0.38 0.45 0.33
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Table A3: Portfolios Formed on CIV Beta: Additional Double Sorts

The table reports average excess returns for several double-sorting exercises. In each panel we sort stocks first into quintiles sorted on

a factor, and then within each quintile, sort stocks in quintiles based on their CIV-beta. We form equally-weighted average returns for

all 25 portfolios, expressed in annual percentages. The second factor is size (log market equity) in panel A, the level of idiosyncratic

variance in Panel B, the VIX-beta in panel C, and the Pastor-Stambaugh liquidity factor-beta in panel D. The sample is 1963.01-2010.12,

except for panel C which is for 1990.1-2010.12.

CIV beta
1 (Low) 2 3 4 5 (High) 5-1 t(5-1)

Panel A: Two-way sorts on CIV beta and log market equity
1 (low) 14.77 14.22 12.67 11.86 9.97 −4.80 −2.80
2 10.40 11.03 11.66 10.64 6.89 −3.50 −2.45
3 11.56 11.14 10.07 8.93 7.60 −3.96 −2.72
4 10.39 9.89 9.48 8.44 6.35 −4.04 −2.88
5 (high) 8.23 7.62 6.69 6.02 5.00 −3.23 −2.33
5-1 −6.54 −6.60 −5.99 −5.84 −4.97 – –
t(5-1) −2.17 −2.42 −2.32 −2.35 −1.84 – –

Panel B: Two-way sorts on CIV beta and idiosyncratic variance
1 (low) 9.52 9.50 7.92 7.66 7.43 −2.08 −2.09
2 13.20 10.99 10.12 9.09 8.65 −4.56 −4.24
3 14.49 13.12 11.69 11.27 8.97 −5.52 −4.25
4 14.32 12.44 11.12 10.44 9.34 −4.98 −3.42
5 (high) 8.31 7.01 7.21 5.24 3.36 −4.94 −2.70
5-1 −1.21 −2.49 −0.71 −2.42 −4.07 – –
t(5-1) −0.37 −0.81 −0.24 −0.84 −1.20 – –

Panel C: Two-way sorts on CIV beta and VIX beta
1 (low) 17.67 14.01 10.33 10.11 8.24 −9.43 −2.44
2 16.59 13.05 13.37 11.79 9.84 −6.75 −1.94
3 16.72 14.40 12.22 10.61 8.83 −7.89 −2.72
4 16.12 11.69 9.63 7.72 7.19 −8.93 −3.24
5 (high) 13.26 8.21 8.64 5.89 6.74 −6.52 −1.92
5-1 −4.41 −5.80 −1.69 −4.22 −1.49 – –
t(5-1) −0.95 −1.17 −0.34 −0.85 −0.28 – –

Panel D: Two-way sorts on CIV beta and PS liquidity beta
1 (low) 11.89 9.76 8.02 6.31 5.20 −6.69 −3.51
2 11.27 9.66 8.57 7.93 5.53 −5.73 −3.59
3 11.99 10.85 9.40 8.17 6.63 −5.36 −3.48
4 11.85 10.94 10.41 8.19 6.11 −5.74 −3.86
5 (high) 10.30 9.81 9.90 8.83 6.25 −4.06 −2.45
5-1 −1.58 0.05 1.88 2.53 1.05 – –
t(5-1) −0.80 0.03 0.87 1.19 0.51 – –

Table A4: Correlations Among Sorting Variables

In each month we calculate the cross-sectional correlation between the sorting variables used in Panel E of Table 2 and in Table A3.

The table reports an average of these correlations over all months in the 1963-2010 sample. The CIV-beta and MV-beta are obtained

from a multiple regression of individual stock excess returns on CIV shocks and MV shocks. All other betas are obtained from single

regressions of individual stock excess returns on the asset pricing factors. The correlation between the CIV-beta and the single-sorted

MV-beta is (not reported).

CIV beta MV beta Log ME Idios. Var. VIX beta PS liq. beta

CIV beta 1.00 – – – – –

MV beta −0.43 1.00 – – – –

Log ME 0.13 0.03 1.00 – – –

Idios. Var. −0.06 −0.04 −0.30 1.00 – –

VIX beta −0.01 0.48 −0.09 −0.05 1.00 –

PS liq. beta −0.07 −0.26 −0.09 0.07 −0.23 1.00
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Table A5: Fama MacBeth Analysis: Traded Factors

The set of test assets are decile portfolios sorted on exposure to CIV innovations in columns 1-3, decile portfolios sorted on book-to-

market ratio in columns 4-6, decile portfolios sorted on size (market capitalization) in columns 7-9, and all of these 30 assets plus 4

corporate bond portfolios sorted on credit rating in columns 10-12. The estimation sample is monthly from 1963.01-2010.12 in columns

1-9 and 1980.01-2010.12 in columns 10-12. The model in columns 1, 4, 7, and 10 contains the excess market return as the factor. The

model in columns 2, 5, 8, and 11 contains the excess market return and the return on a portfolio that goes long in the tenth decile of

CIV-beta stocks and short in the first decile of CIV-beta stocks (CIVtr) as factors. The model in columns 3, 6, 9, and 12 contains the

excess market return, CIVtr, and MVtr, where MVtr is the return a portfolio that goes long in the tenth decile of MV-beta stocks and

short in the first decile of MV-beta stocks. The table reports risk premia and Newey-West standard errors (with one lag) estimated

from a cross-sectional regression of average monthly excess portfolio returns on factor exposures. The third to last row reports the

cross-sectional R2 and the second to last row reports the root mean-squared pricing error, expressed as an annual return. The last row

reports an asymptotic χ2 (Wald) testing whether all pricing errors are jointly zero, statistics with “∗” are significant at 5% and with

“∗∗” are significant at 1%. The market prices of risk b are estimated from a cross-sectional regression of average excess returns on the

test assets on the (univariate) covariances of the returns with the factors.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel A: 10 CIV-beta Panel B: 10 BM Panel C: 10 ME Panel D: All 30 + 4 CB

Constant 0.003 0.010 −0.026 0.009 0.007 0.014 −0.008 −0.005 −0.007 0.003 0.003 0.003
t-stat 0.552 7.306 −2.706 0.971 3.598 2.952 −4.816 −2.670 −6.051 9.368 9.478 26.725
Rm-Rf 0.005 −0.004 0.036 −0.003 −0.002 −0.009 0.013 0.010 0.004 0.003 0.004
t-stat 1.125 −2.709 3.476 −0.280 −1.214 −1.946 8.955 6.002 10.662 8.243 6.529 18.622
CIVtr – −0.005 −0.005 – −0.014 −0.015 – −0.005 −0.010 – −0.005 −0.007
t-stat – −12.607 −23.042 – −23.828 −13.866 – −7.499 −3.883 – −4.815 −10.308
MVtr – – 0.011 – – 0.003 – – 0.005 – – 0.007
t-stat — – 6.844 – – 1.062 – – 1.535 – – 9.168
bMV – – 20.398 – – −7.637 – – 3.839 – – 3.785
t-stat – – 4.072 – – −1.872 – – 2.183 – – 6.854
R2 0.109 0.915 0.971 0.013 0.890 0.920 0.839 0.920 0.938 0.493 0.763 0.898
RMSE 1.759 0.543 0.315 1.886 0.628 0.535 0.543 0.384 0.336 1.653 1.130 0.741
χ2 25.840∗∗ 14.955 3.097 11.579 4.413 3.424 8.019 5.109 4.250 44.783 37.128 32.736
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Table A6: Fama MacBeth Analysis: Campbell-Giglio-Polk-Turley Measure

The set of test assets are decile portfolios sorted on exposure to CIV innovations in columns 1-3, decile portfolios sorted on book-to-

market ratio in columns 4-6, decile portfolios sorted on size (market capitalization) in columns 7-9, and all of these 30 assets plus 4

corporate bond portfolios sorted on credit rating in columns 10-12. The estimation sample is monthly from 1963.01-2010.12 in columns

1-9 and 1980.01-2010.12 in columns 10-12. The model in columns 1, 4, 7, and 10 contains the excess market return as the factor. The

model in columns 2, 5, 8, and 11 contains the excess market return and the return on a portfolio that goes long in the tenth decile of

CIV-beta stocks and short in the first decile of CIV-beta stocks (CIVtr) as factors. The model in columns 3, 6, 9, and 12 contains the

excess market return, CIVtr, and NVtr, where NVtr is the return a portfolio that goes long in the tenth decile of NV -beta stocks and

short in the first decile of NV -beta stocks. NV is the measure of market variance innovations proposed by Campbell et al. (2014). The

table reports risk premia and Newey-West standard errors (with one lag) estimated from a cross-sectional regression of average monthly

excess portfolio returns on factor exposures. The third to last row reports the cross-sectional R2 and the second to last row reports

the root mean-squared pricing error, expressed as an annual return. The last row reports an asymptotic χ2 (Wald) testing whether

all pricing errors are jointly zero, statistics with “∗” are significant at 5% and with “∗∗” are significant at 1%. The market prices of

risk b are estimated from a cross-sectional regression of average excess returns on the test assets on the (univariate) covariances of the

returns with the factors.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Panel A: 10 CIV-beta Panel B: 10 BM Panel C: 10 ME Panel D: All 30 + 4 CB

Constant −0.001 0.012 0.028 0.009 0.006 0.007 −0.008 −0.003 −0.005 0.003 0.003 0.003
t-stat −0.311 5.827 3.779 0.971 4.678 2.333 −4.816 −1.649 −8.727 10.178 9.296 23.725
Rm-Rf 0.008 −0.007 −0.024 −0.003 −0.001 −0.003 0.013 0.008 0.009 0.005 0.003 0.004
t-stat 3.978 −3.516 −3.087 −0.280 −0.973 −0.919 8.955 4.112 16.843 8.717 7.681 22.724
CIVtr – −0.007 −0.007 – −0.016 −0.017 – −0.003 −0.010 – −0.007 −0.008
t-stat – −11.896 −13.125 – −21.479 −6.927 – −4.655 −7.147 – −5.060 −8.027
NVtr – – 0.005 – – −0.002 – – −0.011 – – −0.003
t-stat – – 1.132 – – −1.779 – – −3.908 – – −3.937
bNV – – 10.326 – – 1.131 – – −7.544 – – −2.622
t-stat – – 2.198 – – 0.689 – – −5.759 – – −6.097
R2 0.206 0.902 0.918 0.013 0.958 0.961 0.839 0.817 0.952 0.499 0.806 0.904
RMSE 2.147 0.755 0.688 1.886 0.360 0.348 0.543 0.409 0.209 1.686 1.048 0.739
χ2 34.540∗∗ 22.693∗∗ 12.973 11.579 1.810 1.598 8.019 4.840 2.088 47.714∗ 38.044 36.174

Table A7: Fama MacBeth Analysis: FSD - Anomalies Portfolios

The set of test assets are decile portfolios sorted on exposure to innovations in the dispersion in firm size growth (FSD) in columns 1-3,

decile portfolios sorted on book-to-market ratio in columns 4-6, on size (market capitalization) in columns 7-9, and all of these 30 assets

plus 4 corporate bond portfolios sorted by credit rating in columns 10-12. The estimation sample is 1963.01-2010.12 in columns 1-9 and

1980.01-2010.12 in columns 10-12. The model in columns 1, 4, 7, and 10 contains the excess market return as the factor. The model in

columns 2, 5, 8, and 11 contains the excess market return and the innovation in the cross-sectional dispersion of firm size growth (FSD)

as factors. The model in columns 3, 6, 9, and 12 contains the excess market return, FSD, and the MV innovation. The table reports

market prices of risk and Newey-West standard errors (with one lag) estimated from a cross-sectional regression of average monthly

excess portfolio returns on factor exposures. The third to last row reports the cross-sectional R2 and the second to last row reports

the root mean-squared pricing error, expressed as an annual return. The last row reports an asymptotic χ2 (Wald) testing whether all

pricing errors are jointly zero, statistics with “∗” are significant at 5% and with “∗∗” are significant at 1%.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
10 FSD-beta 10 BM 10 ME All 30 + 4 CB

Constant 0.011 0.007 0.009 0.009 −0.003 −0.001 −0.008 −0.003 0.006 0.003 0.003 0.003
t-stat 4.798 2.516 3.486 0.971 −0.737 −0.132 −4.816 −0.688 1.968 6.908 13.595 7.871

Rm − Rf −0.003 0.002 −0.003 −0.003 0.008 0.006 0.013 0.008 −0.002 0.004 0.004 0.003
t-stat −1.330 0.586 −0.618 −0.280 1.796 1.156 8.955 1.989 −0.465 6.917 11.094 7.543
FSD – −0.021 −0.016 – −0.024 −0.021 – 0.007 0.002 – −0.008 −0.010
t-stat – −4.204 −3.468 – −4.963 −4.696 – 1.320 0.891 – −4.021 −8.404
MV – – −0.033 – – −0.021 – – −0.024 – – −0.023
t-stat – – −0.952 – – −4.171 – – −5.631 – – −5.522
bMV – – −12.051 – – −4.317 – – −12.222 – – −4.838
t-stat – – −0.675 – – −1.628 – – −5.234 – – −3.954
R2 0.121 0.407 0.450 0.013 0.656 0.669 0.839 0.876 0.957 0.492 0.695 0.812
RMSE 1.241 1.019 0.982 1.886 1.114 1.091 0.543 0.478 0.280 1.509 1.169 0.918
χ2 15.727 6.356 7.004 11.579 3.268 3.568 8.019 7.076 3.988 39.105 30.578 26.128
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Table A8: Fama MacBeth Analysis: Guvenen - Anomalies Portfolios

The set of test assets are decile portfolios sorted on exposure to innovations in the dispersion of household income growth by Guvenen

et al. (2014) (GID) in columns 1-3, decile portfolios sorted on book-to-market ratio in columns 4-6, on size (market capitalization)

in columns 7-9, and all of these 30 assets plus 4 corporate bond portfolios sorted by credit rating in columns 10-12. The GID-beta

sorted portfolios are formed as follows. We estimate multiple regressions of annual excess returns of individual firms on annual GID

innovations and annual MV innovations. Annual MV innovations are formed as the difference between MV in the last month of the

year and MV in the last month of the preceding year. We estimate rolling-window factor betas using 15-year rolling windows. That

implies that only firms with 15 years of return history are included. Once the betas estimated, we sort firms into deciles based on their

GID-betas and calculate equally-weighted portfolio returns. We form a traded risk factor, GIDtr, by going long the highest and short

the lowest GID-beta decile portfolio. This traded risk factor return is available monthly, even though the underlying betas are estimated

at annual frequency. In essence, the composition of the underlying decile portfolios is constant within the year. The estimation sample

is 1978.01-2010.12 in columns 1-9 and 1980.01-2010.12 in columns 10-12. The model in columns 1, 4, 7, and 10 contains the excess

market return as the factor. The model in columns 2, 5, 8, and 11 contains the excess market return and GIDtr as factors. The

model in columns 3, 6, 9, and 12 contains the excess market return, GIDtr, and MVtr, defined in Table A5. The table reports market

prices of risk and Newey-West standard errors (with one lag) estimated from a cross-sectional regression of average monthly excess

portfolio returns on factor exposures. The third to last row reports the cross-sectional R2 and the second to last row reports the root

mean-squared pricing error, expressed as an annual return. The last row reports an asymptotic χ2 (Wald) testing whether all pricing

errors are jointly zero, statistics with “∗” are significant at 5% and with “∗∗” are significant at 1%.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
10 GID-beta 10 BM 10 ME All 30 + 4 CB

Constant 0.003 0.003 0.006 0.009 0.015 0.015 −0.008 0.005 0.006 0.003 0.004 0.003
t-stat 4.841 2.631 2.517 0.971 5.252 2.748 −4.816 2.051 2.825 10.454 8.242 7.961
Rm-Rf 0.007 0.007 0.002 −0.003 −0.008 −0.008 0.013 0.002 −0.000 0.005 0.004 0.004
t-stat 10.058 6.900 0.653 −0.280 −2.787 −1.498 8.955 0.872 −0.058 11.270 7.098 7.349
GIDtr – −0.001 −0.001 – −0.011 −0.011 – −0.004 −0.012 – −0.003 0.000
t-stat – −4.157 −3.053 – −2.959 −2.381 – −8.474 −3.899 – −4.580 0.040
MVtr – – −0.006 – – −0.005 – – 0.005 – – −0.007
t-stat – – −2.244 – – −1.002 – – 1.662 – – −6.601
bMV – – −3.309 – – −0.152 – – 8.698 – – −4.718
t-stat – – −1.540 – – −0.031 – – 2.542 – – −4.747
R2 0.602 0.606 0.652 0.013 0.479 0.480 0.839 0.809 0.874 0.549 0.631 0.719
RMSE 0.788 0.784 0.737 1.886 0.739 0.739 0.543 0.656 0.533 1.678 1.518 1.323
χ2 9.676 9.633 9.269 11.579 2.015 2.009 8.019 5.500 4.198 27.570 27.354 24.745
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Table A9: Fama MacBeth Analysis: Additional Anomalies Portfolios

The set of test assets are the 25 portfolios double sorted on book-to-market ratio and size (market capitalization) in columns 1-3. In

panel B adds 6 risk-sorted portfolios to test assets. We construct the 6 risk-sorted portfolios as follows. In a 60-month trailing window,

we regress stock returns on market return and market variance innovations (MV innovations), and use the coefficients (betas) to form

double sorted portfolios. The 6 risk-sorted portfolios are independently sorted by terciles on the market exposure and into two groups

based on the market variance innovations exposure. Finally, panel C includes 4 corporate bond portfolios sorted by credit rating. The

estimation sample is 1963.01-2010.12 in columns 1-6 and 1980.01-2010.12 in columns 7-9. The model in columns 1, 4, and contains the

excess market return as the factor. The model in columns 2, 5, and 8 contains the excess market return and CIV innovation as factors.

The model in columns 3, 6, and 9 contains the excess market return, the CIV innovation and the MV innovation. The table reports

the risk premia estimates (λ) associated with the factors and their Newey-West standard errors (with one lag) from a cross-sectional

regression of average monthly excess portfolio returns on factor exposures. The third to last row reports the cross-sectional R2 and

the second to last row reports the root mean-squared pricing error, expressed as an annual return. The last row reports an asymptotic

χ2 (Wald) testing whether all pricing errors are jointly zero, statistics with “∗” are significant at 5% and with “∗∗” are significant at

1%. The bottom panel also reports bMV , the market price of risk of MV and its associated t-statistic. The market prices of risk b are

estimated from a cross-sectional regression of average excess returns on the test assets on the (univariate) covariances of the returns

with the factors.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: 25 BM-ME Panel B: 25 BM-ME, 6 risky Panel C: 25 BM-ME, 6 risky, 4 CB

Constant 0.012 0.018 0.020 0.009 0.012 0.012 0.005 0.005 0.005
t-stat 2.926 5.665 9.162 3.560 4.543 4.478 3.516 3.495 3.459
Rm-Rf −0.004 −0.012 −0.015 −0.002 −0.006 −0.007 0.002 0.001 0.001
t-stat −1.238 −4.346 −6.881 −0.776 −2.424 −2.514 1.497 0.831 0.564
CIV – −0.060 −0.065 – −0.042 −0.049 – −0.019 −0.026
t-stat – −4.802 −7.343 – −3.683 −4.790 – −1.654 −2.429
MV – – −0.048 – – −0.031 – – −0.025
t-stat – – −6.678 – – −4.839 – – −3.671
bMV – – −21.273 – – −12.329 – – −8.278
t-stat – – −3.849 – – −2.903 – – −2.389
R2 0.078 0.535 0.727 0.024 0.366 0.456 0.103 0.168 0.233
RMSE 2.691 1.911 1.465 2.541 2.049 1.898 2.791 2.688 2.580
χ2 68.800∗∗ 41.993∗∗ 24.390 94.425∗∗ 75.304∗∗ 59.608∗∗ 148.731∗∗ 141.250∗∗ 119.360∗∗
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Appendix B. Model appendix

This appendix solves the model sketched in the main text. It then discusses the benchmark model
calibration. Next, we test the model’s implication that price-dividend ratios predict CIV in the data.
Finally, it provides sensitivity analysis to the benchmark calibration.

Appendix B.1. Model setup and solution

Appendix B.1.1. Setup

There is a unit mass of atomless agents, each having Epstein-Zin preferences. Let Ut(Ct) denote the utility
derived from consuming Ct. The value function of each agent takes the following recursive form:

Ut(Ct) =

[
(1− δ)C

1−γ
θ

t + δ
(
EtU

1−γ
t+1

) 1
θ

] θ
1−γ

.

where θ ≡ (1 − γ)/(1 − 1
ψ ). The time discount factor is δ, the risk aversion parameter is γ ≥ 0, and the

inter-temporal elasticity of substitution (IES) is ψ ≥ 0. When ψ > 1 and γ > 1, then θ < 0 and agents
prefer early resolution of uncertainty.

Aggregate labor income is defined as It. There is a large number of securities in zero or positive net
supply. The combined total (and per capita) dividends are Dt. Aggregate dividend income plus aggregate
labor income equals aggregate consumption: Ct = It +Dt. Individual consumption is given by SjtCt, where
Sj denotes agent j’s consumption share, and individual labor income is defined by

Ij,t = SjtCt −Dt

All agents can trade in all securities at all times and are endowed with an equal number of all securities
at time zero. Labor income risk is, however, uninsurable. As in Constantinides and Ghosh (2014), given the
symmetric and homogeneous preferences, households choose not to trade away from their initial endowments.
That is, autarky is an equilibrium and individual j’s equilibrium consumption is Cj,t = Ij,t +Dt = SjtCt.

We use lowercase symbols to denote logs. We impose the same idiosyncratic volatility factor struc-
ture on investor consumption growth and firm dividend growth by adopting the following specification for
consumption growth in aggregate and for each agent j:

∆cjt+1 = ∆cat+1 + ∆sjt+1

∆cat+1 = µg + σcηt+1 + φcσgwg,t+1

∆sjt+1 = σg,t+1v
j
t+1 −

1

2
σ2
g,t+1 (B.1)

σ2
g,t+1 = σ2

g + νg
(
σ2
gt − σ2

g

)
+ σwσgwg,t+1. (B.2)

All shocks are i.i.d. standard normal and mutually uncorrelated. While aggregate consumption growth
is homoscedastic, household consumption growth is not. The cross-sectional mean and variance of the
consumption share process are:

Ej
[
∆sjt+1

]
= −1

2
σ2
g,t+1, Vj

[
∆sjt+1

]
= σ2

g,t+1.

where Ej [·] and Vj [·] are expectation and variance operators over the cross-section of households. Thus,
the process σg,t+1 measures the cross-sectional standard deviation of consumption share growth. The mean

consumption share in levels is one (Ej
[
Sjt

]
= 1). As an aside, our results are robust to changes in the timing

of the consumption share growth process in Eq. (B.1). The consumption share growth dispersion could be
modeled either as σg,t or as σg,t+1. This changes the expressions in the model as well as the calibration,
but it doesn’t affect our quantitative results. We prefer the current timing because it allows for shocks to
the σg process that occur between t and t+1 to affect the cross-sectional dispersion of consumption growth
between t and t+1. Because CIV is the state variable that forecasts future dividend growth, σgt shows up
in the dividend growth Eq. (4).
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Dividend growth of firm i is given by:

∆dit+1 = µi + χi
(
σ2
gt − σ2

g

)
+ ϕσcηt+1 + φiσgwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 (B.3)

σ2
i,t+1 = σ2

i + νi
(
σ2
it − σ2

i

)
+ σiwwi,t+1. (B.4)

The firm i’s idiosyncratic dividend growth risk is:

Vt
[
κiσgte

i
t+1 + ζiσitε

i
t+1

]
= κ2

iσ
2
gt + ζ2

i σ
2
it.

The market portfolio’s dividend growth process is given by:

∆dMt+1 = µM + χM
(
σ2
gt − σ2

g

)
+ ϕσcηt+1 + φmσgwg,t+1 (B.5)

Appendix B.1.2. Claim to Individual Consumption Stream

We start by pricing a claim to individual consumption growth, using the individual’s own intertemporal
marginal rate of substitution. We conjecture that the log wealth-consumption ratio of agent j is linear in the
state variable σ2

gt, and does not depend on any agent-specific characteristics: wcjt = µwc+Wgs

(
σ2
gt − σ2

g

)
. We

verify this conjecture evaluating the Euler equation for the consumption claim of agent j: Et[M
j
t+1R

j
t+1] = 1,

where M j
t+1 is agent j’s stochastic discount factor (SDF). Under symmetric preferences, this conjecture

implies that the individual wealth-consumption ratio does not depend on agent-specific attributes, only on
aggregate objects.

The beginning-of-period (or cum-dividend) total wealth W j
t that is not spent on consumption Cjt earns

a gross return Rjt+1 and leads to beginning-of-next-period total wealth W j
t+1. The return on a claim to

consumption, the total wealth return, can be written as

Rjt+1 =
W j
t+1

W j
t − C

j
t

=
Cjt+1

Cjt

WCjt+1

WCjt − 1
.

We use the Campbell (1991) approximation of the log total wealth return rjt = log(Rjt ) around the long-run
average log wealth-consumption ratio µwc ≡ E[wjt − c

j
t ]:

rjt+1 = κc0 + ∆cjt+1 + wcjt+1 − κc1wc
j
t ,

where the linearization constants κc0 and κc1 are non-linear functions of the unconditional mean log wealth-
consumption ratio µwc:

κc1 =
eµwc

eµwc − 1
> 1 and κc0 = − log (eµwc − 1) +

eµwc

eµwc − 1
µwc.

The return on a claim to the consumption stream of agent j, Rj , satisfies the Euler equation under her
stochastic discount factor:

1 = Et
[
M j
t+1R

j
t+1

]
1 = Et

[
Ej
[
M j
t+1R

j
t+1

]]
1 = Et

[
Ej
[
exp{mj

t+1 + rjt+1}
]]

1 = Et
[
exp{Ej

(
mj
t+1 + rjt+1

)
+

1

2
Vj
(
mj
t+1 + rjt+1

)
}
]

(B.6)

where the second equality applies the law of iterated expectations, and the last equality applies the cross-
sectional normality of consumption share growth.

We combine the approximation of the log total wealth return with our conjecture for the wealth-
consumption ratio of agent j, wcjt = µwc + Wgs

(
σ2
gt − σ2

g

)
, and solve for the coefficients µwc and Wgs

by imposing the Euler equation for the consumption claim.

45



First, using the conjecture, we compute the individual log total wealth return rjt+1:

rjt+1 = κc0 + ∆cjt+1 + wcjt+1 − κc1wc
j
t

= rc0 +

[
Wgs (νg − κc1)− 1

2
νg

] (
σ2
gt − σ2

g

)
+ σcηt+1 + (φc +Wgsσw −

1

2
σw)σgwg,t+1 + σg,t+1v

j
t+1

where rc0 = κc0 + µg + (1− κc1)µwc − 1
2σ

2
g .

Second, Epstein and Zin (1989) show that the log real stochastic discount factor is

mj
t+1 = θ log δ − θ

ψ
∆cjt+1 + (θ − 1) rjt+1

= µs +

[
(θ − 1)Wgs (νg − κc1) + γ

1

2
νg

] (
σ2
gt − σ2

g

)
−γσcηt+1 − γσg,t+1v

j
t+1 +

[
(θ − 1)Wgsσw − γφc +

1

2
γσw

]
σgwg,t+1

where µs = θ log δ − γµg + (θ − 1)[κc0 + (1− κc1)µwc] + γ 1
2σ

2
g is the unconditional mean log SDF.

Third, using the individual stochastic discount factor and total wealth return expressions, we can compute
elements of Eq. (B.6). Specifically, we have that:

Ej
(
mj
t+1

)
= µs +

[
(θ − 1)Wgs (νg − κc1) + γ

1

2
νg

] (
σ2
gt − σ2

g

)
−γσcηt+1 +

[
(θ − 1)Wgsσw − γφc +

1

2
γσw

]
σgwg,t+1

Ej
(
rjt+1

)
= rc0 +

[
Wgs (νg − κc1)− 1

2
νg

] (
σ2
gt − σ2

g

)
+σcηt+1 + (φc +Wgsσw −

1

2
σw)σgwg,t+1

Vj
[
mj
t+1 + rjt+1

]
= (1− γ)

2 (
σ2
g + νg

(
σ2
gt − σ2

g

)
+ σwσgwg,t+1

)
Finally, we can use the above equations to solve the Euler equation (B.6). Using log normal properties,

we can take the expected value conditional on time t information and compute the Euler equation. Applying
method of undetermined coefficients, the following equalities hold:

0 = µs + rc0 +
1

2
(1− γ)

2
σ2
g +

1

2
(1− γ)

2
σ2
c +

1

2

[
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

]2

σ2
g , (B.7)

and

Wgs =
νgγ(γ − 1)

2θ(κc1 − νg)
= −

γνg

(
1− 1

ψ

)
2 (κc1 − νg)

.

If the IES ψ exceeds 1, then Wgs < 0. Plugging the Wgs expression as well as κc0 and κc1 back into Eq.
(B.7) implicitly defines a nonlinear equation in one unknown (µwc), which can be solved for numerically,
characterizing the average log wealth-consumption ratio.

Appendix B.1.3. Aggregate SDF

Since all agents can invest in all risky assets, the Euler equation has to be satisfied for any two agents j
and j′ and for every stock i. This implies that the average SDF must also price all financial assets i:

1 = Et
[
M j
t+1R

i
t+1

]
,∀i, j ⇒ 1 = Et

[
Ej
(
M j
t+1R

i
t+1

)]
= Et

[
Ej
(
M j
t+1

)
Rit+1

]
= Et

[
Ma
t+1R

i
t+1

]
,∀i.
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Once we have solved for the individual stochastic discount factors, the common log real stochastic discount
factor can be derived:

ma
t+1 = Ej

[
mj
t+1

]
+

1

2
Vj
[
mj
t+1

]
= µs +

1

2
γ2σ2

g + sgs
(
σ2
gt − σ2

g

)
− λησcηt+1 − λwσgwg,t+1

where the loadings are given by:

sgs ≡ (θ − 1)Wgs (νg − κc1) +
1

2
γ(1 + γ)νg =

1

2
γνg

(
1

ψ
+ 1

)
,

λη ≡ γ,

λw ≡ (1− θ)Wgsσw + γφc −
1

2
γ(1 + γ)σw =

γνg

(
1
ψ − γ

)
2 (κc1 − νg)

σw + γφc −
1

2
γ(1 + γ)σw.

The risk-free rate is given by:

rft = −Et[ma
t+1]− 1

2
Vt[ma

t+1],

= −µs −
1

2
γ2σ2

g −
1

2
λ2
ησ

2
c −

1

2
λ2
wσ

2
g − sgs

(
σ2
gt − σ2

g

)
.

Interest rates contain the usual impatience and intertemporal substitution terms. They also capture the
precautionary savings motive: when idiosyncratic risk is high, agents increase savings thereby lowering
interest rates.

The maximum Sharpe ratio in the economy is:

maxSRt =
√
λ2
ησ

2
c + λ2

wσ
2
g .

It is larger when these risk prices are higher and shocks more volatile.

Appendix B.1.4. Firm Stock Return

Turning to the pricing of the dividend claim defined by Eq. (B.3), we guess and verify that its log
price-dividend ratio is affine in the common and idiosyncratic variance terms:

pdit = µpdi +Aigs
(
σ2
gt − σ2

g

)
+Aiis

(
σ2
it − σ2

i

)
. (B.8)

As usual, returns are approximated as:

rit+1 = ∆dit+1 + ki0 + ki1pd
i
t+1 − pdit

where ki1 =
exp(µpdi)

1+exp(µpdi)
and ki0 = log(1 + exp(µpdi)) − ki1µpdi are approximation constants. Plugging in the

dividend growth equation as well as the price dividend expression, we get:

rit+1 = ri0 +
[
χi −Aigs

(
1− ki1νg

)] (
σ2
gt − σ2

g

)
−Aiis

(
1− ki1νi

) (
σ2
it − σ2

i

)
+ϕσcηt+1 +

(
φi +Aigsk

i
1σw

)
σgwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 +Aiisk

i
1σiwwi,t+1

where ri0 = µi + ki0 + (ki1 − 1)µpdi.
Innovations in individual stock market return and individual return variance reflect the additional sources

of idiosyncratic risk:

rit+1 − Et
[
rit+1

]
= βη,iσcηt+1 + βgs,iσgwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 + ki1A

i
isσiwwi,t+1

Vt
[
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2
c + β2
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2
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(
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i
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)2
σ2
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2
gt + ζ2

i σ
2
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where

βη,i ≡ ϕ,

βgs,i ≡ ki1A
i
gsσw + φi,

The expression for the equity risk premium on an individual stock is:

Et
[
rit+1 − r

f
t

]
+ .5Vt[rit+1] = βη,iλησ

2
c + βgs,iλwσ

2
g .

The coefficients of the price-dividend equation are obtained from the Euler equation:

Aigs =
2sgs + 2χi + κ2

i

2
(
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) =
2χi + κ2

i +
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1 + 1
ψ

)
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2
(
1− ki1νg

)
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ζ2
i

2(1− ki1νi)

and the constant µpdi is the mean log pd ratio which solves the following non-linear equation:
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The equity risk premium on the market portfolio is derived using the same procedure. It is given by:

Et
[
rMt+1 − r

f
t

]
+ .5Vt[rMt+1] = βη,Mλησ

2
c + βgs,Mλwσ

2
g (B.9)

where

βη,M ≡ ϕ,

βgs,M ≡ κM1 AMgsσw + φm

AMgs =
2sgs + 2χM

2
(
1− κM1 νg

) =
2χM +

(
1 + 1

ψ

)
γνg

2
(
1− κM1 νg

)
Appendix B.2. Calibration

Table 5 shows our benchmark parameter choices; the model is calibrated to match moments of the data
for the 1963-2010 period and simulated at an annual frequency. Risk aversion γ is set to 15 and the inter-
temporal elasticity of substitution ψ is set to 2. The high value for γ is needed to generate a high equity
risk premium for the market portfolio. A richer model with time variation in market variance and/or with a
slow-moving component in expected consumption growth as in Bansal and Yaron (2004) would allow us to
match the equity risk premium with lower risk aversion, but at the expense of higher model complexity. We
perform sensitivity with respect to the parameter γ. The time discount factor δ = 0.875 is set to produce
a mean real risk-free rate of 1.5% per year, given all other parameters. The model produces a risk-free
rate with modest volatility of 1.25% per year due to the high elasticity of intertemporal substitution. Mean
consumption growth µg is 2% per year and σc is 0.0247 per year. We set φc equal to −0.04 to capture the
negative correlation between aggregate consumption growth and the cross-sectional volatility of consumption
growth. Aggregate consumption growth volatility is modest at 2.5% per year.

We set the mean of the cross-sectional dispersion in consumption growth, σg, to 10%. One valid inter-
pretation of σg in the model is as the mean dispersion of those household income growth shocks that are
uninsurable and that end up in household consumption growth. The labor economics literature has found
that transitory income shocks are more easily insured than permanent shocks (Blundell, Pistaferri, and
Preston 2008). In the same vein, Heathcote, Storesletten, and Violante (2014) find that 40% of persistent
wage fluctuations end up in consumption, while the rest are effectively smoothed. Incomplete pass-through
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of income shocks to consumption therefore motivates values for σg that are lower than household income
growth dispersion of 53%. Our approach is to consider two extreme cases. In our benchmark case, we assume
that all but one-fifth of the income growth shocks are insurable. In our sensitivity analysis below, we assume
that none of the income growth shocks are insurable. We find that the asset pricing implications are very
similar for both extreme cases and for the intermediate cases we studied as well.

The persistence of the cross-sectional dispersion process, νg, is set to 0.6 per year, a value equal to the
annual persistence of the CIV factor in the data. This choice implies that our main state variable moves at
business cycle rather than at much lower frequencies. We set σw to 1.47%. This ensures that σ2

gt remains
positive. The time series standard deviation of σgt is 0.94%.

The model results in a market price of CIV risk of −4.82. This market price of risk is completely pinned
down by the preference parameters and the dynamics of CIV. The first component of λw contributes -1.77,
the second one -0.59, and the Epstein-Zin term -2.46. The model has a substantial maximum conditional
Sharpe ratio of 0.61 per year.

To represent the typical stock in each of the CIV-beta sorted quintile portfolios, we solve our model for
five assets that differ in terms of their cash-flow growth process (Eq. B.3). We also consider the market
portfolio, which is an asset whose cash flow growth has no idiosyncratic shocks. We set mean dividend
growth µi equal to the values observed for the CIV-beta sorted portfolios and the market portfolio in the
data.

We set the consumption leverage parameter ϕ equal to 5.69 for all portfolios. By setting this parameter
equal for all portfolios, we impose that all differences in risk premia across portfolios arise from differences
in exposure to the wg,t+1 shocks. The choice is such that the model matches the equity risk premium for the
market portfolio of 5.50% exactly, given all other parameters. The contribution to the equity risk premium
from the η-term is 5.21% per year.

The other parameters that we hold fixed across portfolios are the parameters governing the σit process
in Eq. (B.4). We set σi to 0.4%, νi to 0.15, and σiw to 1.5e-6. The persistence of σit is much lower than
that of σgt, consistent with the data. We choose σiw such that σit never becomes negative in simulations.
Finally, the value for σi is chosen to match the mean of the observed annual CIV process of 0.254, given all
other parameters.

The four key cash flow parameters for each quintile portfolio are φi, χi, κi, and ζi. We pin down these
four parameters to match four moments. The first is the CIV beta, βgs,i, in Eq. (8). The second is the slope
of a regression of dividend growth on lagged CIV, ensuring that the model respects the dividend growth
predictability patterns observed in the data. The third and fourth moments are the slope and the R2 from
a regression of idiosyncratic stock return variance on the CIV factor:

Vt
[
ridio,it+1

]
= ai + biCIVt + νit . (B.10)

While these are four simultaneous equations, χi mostly affects the dividend growth predictability slope, κi
governs the portfolios’ return variance exposure to CIV, ζi affects the R2 of the regression in (B.10), while
φi is chosen to match βgs,i given the other three parameters. The last four rows of Table 5 show the chosen
values for these four parameters for each portfolio.

Appendix B.3. Stock prices predict CIV

In the spirit of Beeler and Campbell (2012), we test whether the price-dividend ratio on stocks predicts
CIV or idiosyncratic household risk. Indeed, in the structural model the log price-dividend ratio on a stock
of firm i, pdit is linear in the cross-sectional dispersion in idiosyncratic income growth σ2

gt as well as in the

firm-specific idiosyncratic variance σ2
it (Eq. B.8). Since σ2

gt is persistent the pdit ratio today should forecast

future σ2
g,t+1. In the model, the relationship between pdit and σ2

gt is given by Aigs. Since Aigs is positive, we
expect a positive sign in the predictive relationship. Finally, because the log price-dividend ratio also depends
on the firm-specific idiosyncratic variance σ2

it, the regression should control for idiosyncratic variance.
To implement this test, we start by constructing the log price-dividend ratio for each CIV beta-sorted

quintile portfolio from cum-dividend and ex-dividend portfolio returns, aggregated up from cum- and ex-
dividend returns of the stocks in the portfolio. The dividend is a cumulative twelve-month dividend, and
monthly dividends are not reinvested. We calculate the return variance of each stock in the portfolio and
orthogonalize it to CIV to obtain a measure of σ2

it. We average this residual variance across the stocks in
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Table A10: Predictability Analysis

The table reports results from predictive regressions of the log price-dividend ratio for future values of CIV (Panels A and D), MV

(Panels B and E), and employment growth dispersion (Panels C and F). The sample is 1964-2010 in Panels A, B, and C, 1926-2010 in

Panels D and E, and 1950-2010 in Panel F. CIV and MV are the levels (not the innovations) of the common idiosyncratic stock return

variance and market return variance. The regressions predict one month ahead in panels A, B, D, and E, and one year ahead in Panels

C and F. The Compustat data used to construct the employment growth dispersion are only available annually from 1950 until 2010.

The columns Q1 to Q5 refer to the five CIV-beta sorted quintile portfolios. For each portfolio, we calculate the log price-dividend

ratio from the cum-dividend and ex-dividend portfolio returns, which are constructed from the cum-dividend and ex-dividend returns

of the individual stocks in that portfolio. Dividends are summed over twelve months (no reinvestment within the year). The regression

controls for the idiosyncratic variance of the portfolio return. This idiosyncratic variance is constructed by regressing each individual

stock’s variance on CIV, and averaging the residual among all the stocks in the portfolio. The t-statistics in panels A, B, D, and E (C

and F) use Newey-West standard errors with 12 (1) lags.

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5
Panel A: Predicting CIV (1964-2010) Panel D: Predicting CIV (1926-2010)

Coeff. 0.131 0.207 0.222 0.177 0.058 0.172 0.249 0.227 0.176 0.079
t-stat 5.02 5.61 4.02 2.92 1.16 6.18 7.32 4.85 2.97 1.49
R2 0.29 0.26 0.20 0.11 0.04 0.37 0.32 0.15 0.09 0.09

Panel B: Predicting MV (1964-2010) Panel E: Predicting MV (1926-2010)
Coeff. 0.004 0.010 0.014 0.015 0.010 0.011 0.017 0.012 0.012 0.003
t-stat 1.18 2.34 1.89 2.18 2.22 2.62 2.90 1.50 1.65 0.43
R2 0.04 0.02 0.04 0.04 0.13 0.05 0.06 0.02 0.08 0.01

Panel C: Predicting Empl. gr. disp. (1964-2010) Panel F: Predicting Empl. gr. disp. (1950-2010)
Coeff. 0.031 0.038 0.048 0.043 0.022 0.039 0.051 0.063 0.059 0.039
t-stat 5.03 4.24 3.97 3.21 2.09 8.39 6.66 6.12 5.35 4.39
R2 0.37 0.38 0.29 0.21 0.11 0.55 0.52 0.44 0.39 0.30

each portfolio. We use this residual variance as a control in the predictive regression, as suggested by the
theory. Omitting this control has little effect on the results. Panel A of Table A10 shows the results of
predicting CIV one-month ahead. The sample is 1963-2010, for consistency with the other asset pricing
results. We find that the log price-dividend ratio on all portfolios predicts CIV with a positive slope and
the point estimate is significant for quintiles 1-4. For those portfolios, the predictive R2 ranges from 11% to
29%, which is substantial. Panel D shows that the predictive ability is even stronger in the full 1926-2010
sample with higher point estimates, t-statistics, and R2 values.

It is instructive to compare the predictability of CIV to the predictability of MV. The evidence is reported
in Panels B and E. We find some evidence for predictability of MV by the log pd ratio in portfolios 2, 4, and
5 in Panel B, but the t-statistics and R2 values are substantially lower than for CIV. The same is true for
the longer sample in panel E.

Finally, we look at whether the log pd ratio also forecasts employment growth dispersion. This is the
series with the longest available sample: annual data from 1950 until 2010. Panels C and F show that pdit
significantly predicts employment growth dispersion with t-statistics ranging from 2.1 to 5.0 in the shorter
sample and 4.4-8.4 in the longer sample. The R-squared values range from 11% to 38% in the shorter
sample and 30% to 55% in the longer sample. This predictability evidence provides further support for the
mechanism and the model we propose.

Appendix B.4. Sensitivity analysis

The first robustness exercise is with respect to the parameters of the key state variable σ2
gt, which is

proportional to CIV. We explore increasing the mean of this process, σg to 0.42. This value is implied
by the cross-sectional labor income growth dispersion in Guvenen et al. (2014) and a labor income share
of 80% (Lustig et al., 2013). When labor income makes up 80% of total income, log consumption growth
dispersion equals log labor income growth dispersion divided by 1.25. This results in a cross-sectional
consumption growth dispersion of 0.424. This 42% is close to the 38% value for the cross-sectional dispersion
in consumption growth we measure in the Consumption Expenditure Data (CEX) for the period 1984-2011.
The quantitative results are similar if we calibrate to a value of 38%. However, we prefer not to rely on the
CEX due to the measurement error issues discussed above.

When increasing σg, we lower the innovation volatility σw to keep the risk premium λw associated with
wg shocks unchanged. This change lowers the volatility of the model-implied CIV process. We also change
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Table A11: Calibration Parameters: Higher σg
This table lists the parameter values for a calibration using a higher σg , the average of the cross-sectional variance of the
individual log consumption growth process. The preferences parameters include intertemporal discount (δ), risk aversion (γ),
and intertemporal elasticity of substitution (ψ). The aggregate consumption growth process, the consumption share process
and the dividend growth process are described by Eq. (2), (3), and (4). Finally, the bottom panel presents the calibration of
the portfolios sorted from lowest CIV-beta (Q1) to highest CIV-beta (Q5), and the market portfolio calibration in reported in
the last column (M).

Preferences
δ 0.12974 γ 15 ψ 2

Aggregate Consumption Growth Process
µg 0.02 σc 0.01856 φc -0.0395

Consumption Share Process
σg 0.424 νg 0.6 σw 0.002841

Dividend Growth Process
σi 0.004 νi 0.15 σiw 1.5e-06

Parameter Q1 Q2 Q3 Q4 Q5 M
µi 6.58 % 5.81 % 4.92 % 5.74 % 4.55 % 5.20 %
ϕdi 10.07 10.07 10.07 10.07 10.07 10.07
φi −0.26 −0.14 −0.08 −0.03 0.07 −0.06

χi −0.23 −0.06 0.01 −0.10 −0.35 −0.16
κi 1.37 1.03 0.93 0.93 1.12 ×
ζi 63.24 47.83 43.45 43.58 53.29 ×

the time discount factor δ in order to continue to match the observed mean risk-free rate. Higher values for
σg results in lower values for δ. The market price of CIV risk of −1.41. The first component of λw contributes
-0.34, the second one -0.59, and the Epstein-Zin term -0.48. The model has a maximum conditional Sharpe
ratio of 0.66 per year. We recalibrate the cash-flow parameters (ϕdi, φi, χi, κi, ζi) following the same procedure
outlined in the main text. The parameters are listed in Table A11.

The results are reported in Table A12. This calibration generates the same CIV-beta return spread as
in the benchmark case, and continues to match the CIV betas and the moments in rows 14-19 relating
to regressions of idiosyncratic return volatility on CIV and the regression slope of a dividend growth pre-
dictability regression on CIV. The only difference with the benchmark model is in the return volatilities
of the portfolios. The overall volatilities are very similar (about 1-2% difference on a baseline volatility of
45-65%). A larger fraction of the return volatility now comes from the common idiosyncratic risk term (ei)
and a smaller fraction from the firm-specific idiosyncratic risk term (εi). The model continues to match the
observed mean CIV by virtue of a higher κ̄. Therefore, this exercise shows the same asset pricing performance
for a calibration where the average amount of idiosyncratic household risk is higher but its innovations are
less volatile.

Our second robustness exercise is with respect to the coefficient of relative risk aversion γ. We explore
lowering it from 15 to 8. We keep the consumption leverage parameter and the aggregate consumption
growth process the same as in the benchmark model. As a result, the equity risk premium on the market
portfolio drops from 5.5% to 1.2%. We keep the average consumption growth dispersion at σg = .42,
and keep the innovation volatility at the benchmark value of σw = 1.47%. The parameters are listed in
Table A13 while the calibration results are in Table A14. While the model no longer matches the equity
risk premium, it still generates a large spread of -5.23% between the high and the low CIV-beta quintile
portfolio. It also continues to match return volatilities, dividend growth predictability slopes, and slopes and
R2 of idiosyncratic volatilities of the quintile portfolios on CIV.
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Table A12: Calibration Results: Higher σg

This table reports moments from the model calibrated with higher σg according to Table A11 and compares them to the data.

The first two rows report the average excess return. The next two rows split out the equity risk premium into a contribution

representing compensation for η risk and a compensation for wg risk. Rows 5 and 6 report CIV-betas, where model betas

have been scaled to ensure that the innovation volatility of CIV is the same in model and data. Rows 7 and 8 report stock

return volatilities, followed by a breakdown of volatility into its five components in rows 9-13 (see Eq. 6). Since the variance

but not the volatility components are additive, we calculate the square root of each variance component, and then rescale all

components so they sum to total volatility. Rows 14 and 15 report the slope of a regression of Vt

[
ridio,it+1

]
on CIV, multiplied by

100. Rows 16 and 17 report the R-squared of this regression, multiplied by 100. Rows 18 and 19 report the slope of a predictive

regression of annual dividend growth on one-year lagged CIV. The model is simulated at annual frequency for 60,000 periods.

All moments in the data are expressed as annual quantities and computed from the 1963.01 to 2010.12 sample.

Moment Q1 Q2 Q3 Q4 Q5 M
1 Excess Ret Data 12.08 10.88 9.96 8.70 6.68 5.50
2 Model 8.65 6.65 5.74 4.89 3.25 5.50
3 η risk 5.21 5.21 5.21 5.21 5.21 5.21
4 wg risk 3.45 1.44 0.53 −0.31 −1.96 0.29
5 Beta βgs,i Data −0.50 −0.21 −0.08 0.05 0.28 −0.04
6 Model −0.50 −0.21 −0.08 0.05 0.28 −0.04
7 Return Vol. Data 66.89 52.17 47.20 46.70 54.45 15.65
8 Model 66.50 51.16 46.97 47.09 55.67 18.71
9 η risk 11.21 11.24 11.41 11.49 11.22 18.01
10 wg risk 5.15 2.16 0.81 0.48 2.93 0.70
11 ei risk 34.74 26.13 24.04 24.30 28.59 ×
12 εi risk 15.18 11.50 10.60 10.71 12.79 ×
13 wi risk 0.21 0.12 0.10 0.10 0.15 ×
14 Eq. (B.10) slope Data 1.54 0.87 0.71 0.72 1.04 ×
15 Model 1.58 0.89 0.73 0.74 1.07 ×
16 Eq. (B.10) R2 Data 17.69 17.21 17.10 17.11 16.31 ×
17 Model 17.69 17.21 17.10 17.11 16.31 ×
18 Div. predict Data −0.20 −0.05 0.01 −0.08 −0.29 −0.13
19 Model −0.20 −0.05 0.01 −0.08 −0.29 −0.13

Table A13: Calibration Parameters: Lower γ
This table lists the parameter values for a calibration using a lower risk aversion (γ). The preferences parameters include intertemporal
discount (δ), risk aversion (γ), and intertemporal elasticity of substitution (ψ). The aggregate consumption growth process, the
consumption share process and the dividend growth process are described by Eq. (2), (3), and (4). Finally, the bottom panel presents
the calibration of the portfolios sorted from lowest CIV-beta (Q1) to highest CIV-beta (Q5), and the market portfolio calibration in
reported in the last column (M).

Preferences
δ 0.33086 γ 8 ψ 2

Aggregate Consumption Growth Process
µg 0.02 σc 0.01856 φc -0.0395

Consumption Share Process
σg 0.424 νg 0.6 σw 0.01472

Dividend Growth Process
σi 0.004 νi 0.15 σiw 1.5e-06

Parameter Q1 Q2 Q3 Q4 Q5 M
µi 6.58 % 5.81 % 4.92 % 5.74 % 4.55 % 5.20 %
ϕdi 5.69 5.69 5.69 5.69 5.69 5.69
φi −0.35 −0.23 −0.17 −0.12 −0.02 −0.15

χi −0.14 −0.04 0.01 −0.06 −0.21 −0.09
κi 1.05 0.79 0.72 0.72 0.87 ×
ζi 111.04 83.98 76.28 76.52 93.57 ×

52



Table A14: Calibration Results: Lower γ

This table reports moments from the model calibrated with higher γ according to Table A13 and compares them to the data.

The first two rows report the average excess return. The next two rows split out the equity risk premium into a contribution

representing compensation for η risk and a compensation for wg risk. Rows 5 and 6 report CIV-betas, where model betas

have been scaled to ensure that the innovation volatility of CIV is the same in model and data. Rows 7 and 8 report stock

return volatilities, followed by a breakdown of volatility into its five components in rows 9-13 (see Eq. 6). Since the variance

but not the volatility components are additive, we calculate the square root of each variance component, and then rescale all

components so they sum to total volatility. Rows 14 and 15 report the slope of a regression of Vt

[
ridio,it+1

]
on CIV, multiplied by

100. Rows 16 and 17 report the R-squared of this regression, multiplied by 100. Rows 18 and 19 report the slope of a predictive

regression of annual dividend growth on one-year lagged CIV. The model is simulated at annual frequency for 60,000 periods.

All moments in the data are expressed as annual quantities and computed from the 1963.01 to 2010.12 sample.

Moment Q1 Q2 Q3 Q4 Q5 M
1 Excess Ret Data 12.08 10.88 9.96 8.70 6.68 5.50
2 Model 4.91 2.97 2.09 1.27 −0.33 1.85
3 η risk 1.57 1.57 1.57 1.57 1.57 1.57
4 wg risk 3.34 1.40 0.52 −0.30 −1.90 0.28
5 Beta βgs,i Data −0.50 −0.21 −0.08 0.05 0.28 −0.04
6 Model −0.50 −0.21 −0.08 0.05 0.28 −0.04
7 Return Vol. Data 66.89 52.17 47.20 46.70 54.45 15.65
8 Model 64.50 48.76 44.37 44.49 53.75 10.59
9 η risk 6.23 6.29 6.40 6.44 6.28 9.92
10 wg risk 5.07 2.14 0.80 0.48 2.90 0.68
11 ei risk 26.35 19.96 18.39 18.60 21.85 ×
12 εi risk 26.20 20.00 18.47 18.66 22.25 ×
13 wi risk 0.64 0.37 0.31 0.32 0.46 ×
14 Eq. (B.10) slope Data 1.54 0.87 0.71 0.72 1.04 ×
15 Model 1.58 0.89 0.73 0.74 1.07 ×
16 Eq. (B.10) R2 Data 17.69 17.21 17.10 17.11 16.31 ×
17 Model 17.69 17.21 17.10 17.11 16.31 ×
18 Div. predict Data −0.20 −0.05 0.01 −0.08 −0.29 −0.13
19 Model −0.20 −0.05 0.01 −0.08 −0.29 −0.13
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