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Abstract

U.S. investors allocate 30-40% of their financial asset portfolio in the stock of the
company stock they work for. Such a portfolio flies in the face of standard portfolio
theory, which prescribes that an investor should hold less of a financial asset that is
positively correlated with her undiversified labor income. Nevertheless, we propose a
rational explanation that prescribes a long position in own company stock. Precisely
because the own company stock is positively correlated with the investor’s labor in-
come, any information the investor learns about her earnings is a partial information
advantage in her own company stock. When confronted with a choice of what informa-
tion to acquire, employees may choose to learn about their own firm. Learning lowers
the employee’s risk of holding own-firm equity, which raises its risk-adjusted returns
and makes a long position optimal.
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Conventional wisdom dictates that an employee should take small or negative positions

in her own company’s equity, in order to hedge labor income risk (Baxter and Jermann

(1997)). However, there is another way to reduce that risk: learn about future labor income

realizations and adjust work effort accordingly. Learning is a substitute for hedging. Yet

while hedging motives make own company stock less attractive, learning makes it more

attractive. Learning creates a private information advantage that induces an employee to

hold more company stock, on average. We investigate how the incentives to hedge and to

learn compete, and show that holding own-firm stock may not be so puzzling after all.

U.S. employees hold a large fraction of their portfolio in their own company’s stock.

Mitchell and Utkus (2002) document that 29% of assets in defined contribution plans are

invested in own company stock. When direct and indirect ownership in own company

stock is accounted for, 40% of directly and indirectly held public equity is invested in

own company stock (Moskowitz and Vissing-Jorgensen (2001)). This behavior challenges

standard portfolio theory, because an investor’s human wealth is undiversified and tends to

covary with payoffs to company stock; both depend on company performance. A diversified

portfolio would therefore contain a small long or even short position in company stock.

The fact that labor income is a large risk makes both diversification and learning more

valuable. Each has an opposite effect on her optimal portfolio. We model an investor who

faces uncertainty about the payoffs from work as well as the payoffs from her financial port-

folio. The latter consists of own company stock and other financial assets (‘the market’).

The employee has a fixed capacity to learn about future labor income and/or future income

from the market asset, before choosing her work effort and asset portfolio. We characterize

conditions under which she prefers to use all capacity to reduce uncertainty about labor

income. Income information is particularly valuable because it enables the employee to
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adjust work effort and minimize a large risk in her total wealth portfolio. Because labor

income and the payoff to company stock are positively correlated, the employee who learns

about labor income reduces uncertainty about her company’s stock in the process. This

reduction in risk effectively increases her risk-adjusted own company stock return. Her

optimal portfolio tilts towards a long position in own company stock. We show that inside

information can overwhelm the competing desire to hold a portfolio that insures against

labor income risk.

Modeling learning choices, rather than endowing employees with an information advan-

tage, helps to explain cross-sectional variation in own company stock holdings. Employees

of small and stand alone firms hold more company stock than employees of larger and con-

glomerate firms. If employees move from stand alone firms to conglomerates, they reduce

own company stock (Cohen (2004)). Our model rationalizes these facts. If small firms’

labor income covaries more with stock payoffs, then the ability to make better inference

about company stock makes employees want to hold more of it.

We concur with Massa and Simonov (2005) who argue that loyalty (Cohen (2004)),

familiarity (Huberman (2001), Hong, Kubik and Stein (2004)), and ambiguity (Boyle,

Uppal and Wang (2003)) capture information advantages. They find that familiarity affects

less-informed investors more, diminishes when the profession or location of the investor

changes, and generates higher returns. By explicitly introducing an information choice,

our theory can explain where these information advantages come from.
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1 Model

This is a one-shot decision problem for an employee.1 In period 1, the employee makes her

learning choice. She allocates a fixed amount of precision between two signals: one about

her wage, and one about the payoff of the market asset. In period 2, she observes her

chosen signals and makes her investment choice. In period 3, she receives the asset payoffs

and her wage, and consumes.

Preferences In order to study information acquisition, we want to start with investors

who have a preference for early resolution of uncertainty. Investors, with absolute risk

aversion parameter ρ, maximize their expected certainty equivalent wealth:2

U = E1 {− log (E2[exp(−ρW )])} . (1)

The term − log (E2[exp(−ρW )]) is the level of consumption that makes the investor indif-

ferent between consuming that amount for certain and investing in her optimal portfolio,

in period 2. This certainty equivalent consumption is conditional on the realization of the

employee’s signals. Since these signals are not known in period 1, the investor maximizes

the expected period-2 certainty equivalent, conditioning on information in prior beliefs.

Budget Constraint Let r > 1 be the risk-free return and (qm, qc) and (pm, pc) be the

number of shares the investor chooses to hold and the asset prices of market assets (m)

and company assets (c). Investor’s terminal wealth is then her initial wealth W0, plus the
1See VanNieuwerburgh and Veldkamp (2005b) for how to embed this in a general equilibrium model

with a continuum of atomless investors.
2Utility can instead be defined over consumption by assuming that all wealth is consumed at the end of

period 3. This formulation of utility has the desirable feature that it treats learned information and prior
information as equivalent. It does so without losing the exponential structure of preferences that will keep
the problem tractable.
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profit she earns on her portfolio investments, plus the fixed component of labor income ω̄,

and its variable component which takes the form of a bonus fω (net of the cost of effort),

which the agent will receive if she exerts effort (`):

W = rW0 + qm(fm − pmr) + qc(fc − pcr) + ω̄ + `fω (2)

To keep the model simple, effort is a binary choice ` ∈ {0, 1}.

Initial information The employee is endowed with normally distributed prior beliefs

about the payoff of the market fm ∼ N(µm, σ2
m), the payoff of own company stock fc ∼

N(µc, σ
2
c ) and the amount of her bonus fω ∼ N(µω, σ2

ω). For simplicity, the market payoff

fm is independent of the bonus fω and the own company stock payoff fc.3 This stacks

the deck against us: making market payoffs independent of labor income creates strong

incentives to diversify.

To capture the idea that holding company stock is a bad way to diversify labor income

risk, fω and fc are correlated. Both load on a common factor γ:

fω = µω + βγ + ε and fc = µc + γ. (3)

The bonus contains an idiosyncratic component ε ∼ N(0, σ2
ε), orthogonal to γ ∼ N(0, σ2

γ).

This structure imposes restrictions on the relationships between variances in the model:

σ2
ω = β2σ2

γ + σ2
ε , σ2

c = σ2
γ , and cov(fc, fω) ≡ ξ = βσ2

γ .

3VanNieuwerburgh and Veldkamp (2005a) show how to set up a related problem when payoffs are
correlated.
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Information Acquisition At time 1, the employee chooses how much to learn about the

market payoff and her bonus. She chooses the precision of two signals: ηm ∼ N(fm, σ2
ηm)

and ηω ∼ N(fω, σ2
ηω). Because of Bayes’ law, we can bypass the choice of signals, and

model the choice over the posterior beliefs directly. An investor’s posterior belief about

the payoffs fi, i = m,ω, conditional on a prior belief µi and signal ηi, is formed from:

µ̂i ≡ E[fi|µi, ηi] =
(
σ−2

i + σ−2
ηi

)−1 (
σ−2

i µi + σ−2
ηi ηi

)
(4)

with variance that is a harmonic mean of the signal variances:

σ̂2
i ≡ V [fi|µi, ηi] =

(
σ−2

i + σ−2
ηi

)−1
. (5)

In the appendix we also derive updating formulas for σ̂2
ε and σ̂2

γ using the Kalman filter.

There are 2 constraints governing how the investor can choose her signals about risk

factors. The first is the capacity constraint. Capacity K can then be interpreted as the

percentage by which an investor can decrease the risk she faces, where risk is measured as

the generalized standard deviation of asset payoffs and labor income: σ̂2
mσ̂2

ω ≥ e−2Kσ2
mσ2

ω.

This capacity constraint is one possible description of a learning technology. We think

it is a relevant constraint because it is a commonly-used distance measure in econometrics

(a log likelihood ratio); it has a long history as a quantity measure in information theory

(Shannon (1948)); it is a measure of information complexity (Cover and Thomas (1991)),

and it has been used to describe limited information processing ability in economic settings

(Sims (2003)).

The second constraint is the no negative learning constraint : the investor cannot acquire

signals that transmit negative information. We rule this out by requiring the variance of
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both signals to be positive. This implies that the posterior beliefs have a variance that is

not greater than the prior beliefs: σ̂2
m ≤ σ2

m and σ̂2
ω ≤ σ2

ω.

2 Results: Learning and Portfolio Choices

To solve the model, we work backwards. At time 2 the investor chooses her optimal asset

portfolio (qm, qc) and her optimal work effort ` ∈ {0, 1}, taking as given the posterior means

µ̂i and variances σ̂i, where i = {m, c, ω}.

Optimal Portfolio Choice Substituting the budget constraint (2) into the objective

function (1), dropping the constant multiplier (ρrW0 + ρω̄), and taking period-2 expecta-

tions of a log normal variable delivers:

E1

[
ρ {qm(µ̂m − pmr) + qc(µ̂c − pcr) + `µ̂ω} − ρ2

2

{
q2
mσ̂2

m + q2
c σ̂

2
c + `2σ̂2

ω + 2qc`ξ̂
}]

First order conditions with respect to qm and qc of the terms inside the expectation delivers

the optimal portfolio rules:

qm =
1
ρ
σ̂−2

m (µ̂m − pmr) =
1

σmρ

(
µ̂m − pmr

σm

)
ym (6)

qc =
1
ρ
σ̂−2

c (µ̂c − pcr)− σ̂−2
c `ξ̂ =

1
σcρ

(
µ̂c − pcr

σc

)
yc − `β

(
yc

yω

)
(7)

where yi = σ̂−2
i /σ−2

i is the proportional increase in belief precision for i = m, c, ω. The

appendix shows that the covariance between company payoffs and the bonus, conditional

on the signal ηω, is ξ̂ = βσ2
γy−1

ω . Learning about wages (yω > 1) lowers its conditional

covariance with company stock payoffs. This is one reason that the optimal holdings of
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company stock rise.

Optimal Work Effort Choice The employee exerts high effort (` = 1) iff4

µ̂ω − β(µ̂c − pcr)
(

yc

yω

)
− ρ

2

(
σ̂2

ω − σ̂2
γβ2

(
yc

yω

)2
)

> 0. (8)

The term involving posterior beliefs µ̂ω−βµ̂c is the only component of the labor decision not

known at time 1. It is a function of constants and the posterior beliefs βγ̂ (1− yc/yω) + ε̂,

which are determined by the value of the observed signal ηω. Thus, the employee exerts

high effort when her signal about the bonus is above a cutoff. Condition (8) is equivalent

to D(yω)ηω > C(yω), where D(yω) =
(
1− (yc/yω)(β2σ2

γ/σ2
ω)

)
(1 − y−1

ω ), and the cutoff

C(yω) = −µω + σ2
ω(β(µc − pcr) + σ2

ερ/2)/(σ2
εyω + β2σ2

γ).5

Assumption 1. The agent is indifferent between working and not working, given prior

information only: C(1) = 0, or equivalently, µω = β(µc − pcr) + ρ
2σ2

ε .

The assumption equates the prior expected bonus µω with the cost of labor income

risk. When the employee hedges γ-risk by holding less own-company stock, β(µc − pcr) is

the asset payoff she forgoes. The idiosyncratic ε-risk cannot be hedged, and has utility cost

ρ
2σ2

ε . Assumption 1 makes the agent ex-ante uncertain about whether exerting high effort

is optimal. This avoids a situation where information about labor income is not valuable

because the employee is (almost) certain that she will or will not work.
4This result follows from substituting the optimal portfolios back into the utility function:

E1

�
1
2

�
µ̂m−pmr

σm

�2

ym + 1
2

�
µ̂c−pcr

σc

�2

yc + ρ`
�
µ̂ω − (µ̂c − pcr)β

�
yc
yω

��
− ρ2`2

2

�
σ̂2

ω − σ̂2
γβ2

�
yc
yω

�2
��

.

5A technical appendix available on the authors’ and the journal’s websites derives these results and the
propositions that follow.
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Optimal Information Choice At time 1, when information is chosen, signals {ηm, ηω},
and thus labor and portfolio choices are random variables. We define three pieces of new

notation. Let prior Sharpe ratios be θi = µi−pir
σi

for i = m, c. Let the standard deviation

of D(yω)ηω (a mean-zero normal variable) be denoted σD = D(yω)(σ2
ω + σ2

ηω).5. Let the

probability that the high effort is chosen be denoted Π = 1−Φ(C(yω)/σD), where Φ(·) and

φ(·) denote the standard normal c.d.f. and p.d.f.. The time-1 problem then is to choose

{ym, yω} to maximize the expected utility:

EU(yω, ym) =
1
2
ym(1 + θ2

m) +
1
2
yc(1 + θ2

c ) + ρ

(
φ

(
C(yω)

σD

)
σD − C(yω)

)
Π.

subject to the capacity constraint ymyω ≤ e2K and the no-forgetting constraints ym ≥ 1,

yω ≥ 1. The first two terms represent expected portfolio holdings, times payoffs, which are

squared Sharpe ratios, with mean equal to 1+θ2
i . The third term is the posterior expected

value of working hard E1 [` (D(yω)ηω − C(yω))]. We can think of there being one choice

variable yω, the capacity devoted to learning about one’s bonus fω, with ym = e2Ky−1
ω

because the capacity constraint holds with equality.

The marginal value of information about the bonus consists of five terms:

MUω(yω;µω, µc, pc, r, β, ρ, σε, σγ) =

1
2
(1 + θ2

m)
∂ym

∂yω
+

1
2
(1 + θ2

c )
∂yc

∂yω
+ ρ

∂ΠσDφ
(

C(yω)
σD

)

∂yω
− ρC(yω)

∂Π
∂yω

− ρΠ
∂C(yω)

∂yω

The first term represents the foregone benefit of using capacity to reduce uncertainty about

the market asset. The second term shows that the higher the squared Sharpe ratio of the

agent’s own company stock, the more profit she can make by using her inside information
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to take large long or short positions in the stock. The third term captures the benefit of

working hard er when bonuses are larger. The last two terms measure the positive effect of

learning on the probability of working hard. When the agent learns more about her bonus,

working hard becomes less risky, and thus more desirable. (See appendix for proof.)

The next two propositions show when it is optimal to learn about the bonus instead

of the market. This depends on whether the objective function is convex or concave. The

on-line appendix gives the conditions for convexity and concavity. Numerical examples

described below show that the objective function is typically convex.

Proposition 1. If the objective is convex in yω, and if EU(e2K , 1) > EU(1, e2K), then the

optimal strategy is to use all capacity to learn about fω.

Proposition 2. If the objective function is concave and (i) if MU(1; ·) > 0, then the opti-

mal information acquisition strategy uses some capacity to learn about fω; (ii) if MU(e2K ; ·) >

0, then the optimal information acquisition strategy is to use all capacity to learn about fω.

Own Company Stock Bias The optimal portfolio (6) and (7) depends on the ran-

dom signal realization in period two. We therefore characterize own company bias in the

expected portfolios.

Proposition 3. The optimal expected asset portfolio is E1[qm] = ymθm/(ρσm) and E1[qc] =

ycθc/(ρσc)− βΠyc/yω.

For comparison, consider the portfolio allocation in the benchmark model without learn-

ing capacity (K = 0): E1[qno learn
m ] = θm/(ρσm) and E1[qno learn

c ] = θc/(ρσc) − βΠno learn.

When labor income payoffs are positively correlated with own company stock payoffs

(β > 0), the benchmark model prescribes a lower position in the own company stock

(−βΠno learn < 0). This is the hedging effect of Baxter and Jermann (1997).
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When employees can learn (K > 0), and they choose to learn about labor income

(yω > 1), two effects operate on expected portfolios. The first is an information effect:

learning about labor income provides information about company stock. This leads the

employee to tilt her portfolio towards a longer position in own company stock (provided

θc > 0). The largest tilt occurs when all capacity is devoted to learning about labor income:

yω = e2K . Second, learning affects the need to hedge labor income risk. On the one hand,

learning causes the employee to work harder and generates more labor income to hedge, on

average. This decreases E[qc]. On the other hand, hedging is not as useful because some

of that risk is already being resolved through learning. This increases E[qc]. The net effect

on the hedging component of the portfolio is ambiguous. We now illustrate these effects

with a numerical example.

Numerical Example We set the prior mean-to-variance ratio of both assets equal so

that in the benchmark case with riskless labor income and no signals, the investor would

then hold an equal amount of each. We set ρ = 3, σm = .20, β = .8, σγ = σc = .30, σε = .05.

For these parameters, the Sharpe ratio on the market θm = .4 and the Sharpe ratio on

own-company stock is θc = .6. We then give the employee enough capacity to eliminate

40% of the volatility in the market asset or in the bonus through learning (K = .4). Figure

1), left panel, shows that it is optimal to specialize in learning about the bonus (illustrates

proposition 1). The right panel compares the expected portfolios across yω (proposition

3). Since the optimal choice is yω = e2K , we read off the optimal portfolios on the right of

the graph. Relative to the benchmark no-learning case (yω = 1), the employee optimally

holds a long position in own-company stock, which is much higher than in the no-learning

economy (57% versus 28%).
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Figure 1: Expected Utility and Portfolio for Various Learning Choices (β = 0.8).
The right panel plots expected holdings of market and own-firm assets held in our model (solid
lines) and a no-learning economy (dashed lines). Since the utility maximizing learning choice is
yω = e2K , the optimal learning portfolio is the amount of each asset at the intersection with the
right axis. The parameters are as in the text. The employee has learning capacity of K = 0.4, so
that the upper bound for yω is e2K = 2.23.

Cross-Sectional Patterns Cohen (2004) documents that employees of conglomerates

allocate a smaller fraction of their discretionary 401(k) contributions to own company stock

than employees of stand-alone firms. He argues this is due to stronger loyalty to stand-alone

firms. Our information-based story rationalizes this fact.

We model conglomerate firms as low-β firms: their employees’ bonus is less correlated

with company stock payoffs. A lower β affects portfolios in three ways. First, a lower β

weakens the information effect: information about the bonus generates less information

about own company stock (∂yc/∂β > 0). More uncertainty makes holding own-company

stock less desirable. Second, a lower β has an ambiguous effect on hedging (−βΠyc/yω).

The lower conditional covariance of stock payoffs and labor income (∂βycy
−1
ω /∂β > 0)

makes the employee want to hedge less. But, when labor income becomes less risky (σ2
ω falls

because β2σ2
γ falls), the employee work harder (∂Π/∂β < 0) and has more expected income
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to hedge. Third, when β declines, the value of information about the bonus may decline

enough so that the optimal learning strategy switches from specialization in learning about

the bonus (yω = e2K) to specialization in learning about the market (yω = 1). Figure 2

illustrates this. When β = .4 instead of .8, it is optimal to learn about the market (yω = 1).

Such a switch discretely reduces own company stock holdings to the same level as in the

no-learning model.
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Figure 2: Expected Utility and Portfolios for Various Learning Choices (β = 0.4).
Since the utility maximizing learning choice is yω = 1, the optimal learning portfolio is the amount
of each asset at the intersection with the left axis.

3 Conclusion

This paper explores learning about risky labor income as a rational explanation for the

own company stock puzzle. It augments VanNieuwerburgh and Veldkamp (2005a) with

labor income risk that can be resolved by hedging (holding less company stock), or by

learning. Learning induces an employee to tilt her portfolio towards own company stock,

while reducing the need to hedge labor income risk. Under conditions described in the

paper, the opportunity to learn makes an own company stock ‘bias’ optimal.
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A Technical Details

Posterior variances and covariances We start by deriving the relationship between precision
ratios yc ≡ σ̂−2

γ /σ−2
γ and yω ≡ σ̂−2

ω /σ−2
ω . The posterior precision about the bonus is the prior precision

plus the signal precision: yω = 1 + σ−2
ηω /σ−2

ω . Therefore σ2
ηω = (yω − 1)−1σ2

ω. The posterior variances σ̂2
ε

and σ̂2
γ are obtained from the Kalman filter:

σ̂2
ε = σ2

ε

�
β2σ2

γ + σ2
ηω

σ2
ε + β2σ2

γ + σ2
ηω

�
= σ2

ε

�
1− σ2

ε

σ2
ω

(1− y−1
ω )

�
, (9)

σ̂2
γ = σ2

γ

�
σ2

ε + σ2
ηω

σ2
ε + β2σ2

γ + σ2
ηω

�
= σ2

γ

�
1− β2σ2

γ

σ2
ω

(1− y−1
ω )

�
(10)

Rearranging (10), the extra precision about the own company stock payoff, inferred from the signal about
the bonus is: yc = (σ2

ε +β2σ2
γ)/(σ2

ε +β2σ2
γy−1

ω ). Note that if yω = 1, then yc = 1. Learning more about the
bonus (yω > 1) increases the posterior precision of the own company stock (yc > 1), but not by the same
amount:

∂yc

∂yω
= β2σ2

γ

σ2
ε + β2σ2

γ

[σ2
ε yω + β2σ2

γ ]2
∈ [0, 1],

Learning more about future labor income increases the own company asset precision at a decreasing rate
(∂2yc/∂y2

ω < 0). Therefore, there are decreasing returns in the expected investment profit to learning about
labor information.

Conditional on seeing the signal ηω, the (posterior) covariance between fc and fω is ξ̂ = βσ̂2
γ +

Cov(γ, ε|ηω). Combining yω, (9), and (10) and the formula for the variance of a sum, yields ξ̂ = βσ2
γy−1

ω .

Work Effort Choice Using expressions in (3), condition (8) can be written as βγ̂(1− yc/yω) + ε̂ >
C(yω), where

C(yω) =
ρ

2

 
σ̂2

ω − β2σ̂2
γ

�
yc

yω

�2
!
− µω + β(µc − pcr)

�
yc

yω

�
.

C(yω) can then be manipulated to yield the expression in the text. We posit βγ̂(1− yc/yω) + ε̂ = D(yω)ηω

and use the Kalman filtering formulas ε̂ = (σ2
εηω)/(σ2

ω +σ2
ηω) and γ̂ = (β2σ2

γηω)/(σ2
ω+σ2

ηω) to solve for D(yω).

The standard deviation of D(yω)η is σD = D(yω)(σ2
ω + σ2

ηω).5 = (σωσ2
ε(y2

ω − yω).5)/(σ2
εyω + β2σ2

γ).

Evaluating derivatives Two key derivatives needed to evaluate the marginal utility w.r.t. yω are:

∂C(yω)

∂yω
= − σ2

ωσ2
ε

(σ2
εyω + β2σ2

γ)2

�
β(µc − pcr) +

ρ

2
σ2

ε

�
< 0

∂σD

∂yω
=

σωσ2
ε(.5σ2

εyω + β2σ2
γ(yω − .5))

(y2
ω − yω).5(σ2

εyω + β2σ2
γ)2

> 0

Define x ≡ C(yω)/σD < 0, negative by assumption 1. Combining all terms of the marginal utility of yω:

MUω(yω; µω, µc, pc, r, β, ρ, σε, σγ) =
1

2
(1 + θ2

c)
∂yc

∂yω
+ ρφ (x)

∂σD

∂yω
− ρΠ

∂C(yω)

∂yω
> 0 (11)

where

∂x

∂yω
=

1

σD

�
∂C(yω)

∂yω
− x

∂σD

∂yω

�

∂Π

∂yω
= −φ (x)

∂x

∂yω

∂ΠE[D(yω)ηω|D(yω)ηω ≥ C(yω)]

∂yω
= φ (x)

��
1 + x2� ∂σD

∂yω
− x

∂C(yω)

∂yω

�
.
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Since ∂C(yω)/∂yω < 0, MU(yω) is always positive. The total marginal utility w.r.t. yω also contains
the term − 1

2
(1 + θ2

m)e2Ky−2
ω , which measures how ym changes as the employee increases yω, through the

capacity constraint ymyω = e2K .

Concavity, convexity and optimal yω The objective function is convex when the following
second derivative of utility w.r.t yω is positive, and concave when it is negative. The expression is a long,
but straightforward function of yω and parameters only.

1

2
(1 + θ2

c)
∂2ym

∂y2
ω

+
1

2
(1 + θ2

c)
∂2yc

∂y2
ω

+ ρφ(x)
∂2σD

∂y2
ω

− ρΠ
∂2C(yω)

∂y2
ω

+ ρφ(x)
1

σD

�
∂C(yω)

∂yω
− x

∂σD

∂yω

�2
.

The first term is positive: ∂2yc/∂y2
ω = 2e2Ky−3

ω . We already showed that yc is concave in yω: ∂2yc/∂y2
ω < 0

and the second term is negative. It can be shown that ∂2σD/∂y2
ω < 0 and ∂2C(yω)/∂y2

ω > 0, so that the
third and fourth terms are negative as well. The last term is clearly positive.

If the objective function is convex ∀yω ∈ (1, e2K), full specialization always arises. It is optimal to learn
about the bonus if the objective is higher at yω = e2K then at ym = e2K (proposition 1). If the objective is
concave, and MUω(1; ·) > 0, then it is optimal to allocate the first increment of capacity towards learning
about the bonus instead of the market (proposition 2, first part). If also MUω(e2K ; ·) > 0, then allocating
the last increment of capacity to learning about the bonus is still more valuable than allocating it to learning
about the market, and full specialization in learning about the bonus takes place (proposition, second part).
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