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 The authors propose and test a new "polyhedral" choice-based conjoint
 analysis question-design method that adapts each respondent's choice
 sets on the basis of previous answers by that respondent. Polyhedral
 "interior-point" algorithms design questions that quickly reduce the sets of
 partworths that are consistent with the respondent's choices. To identify
 domains in which individual adaptation is promising (and domains in
 which it is not), the authors evaluate the performance of polyhedral
 choice-based conjoint analysis methods with Monte Carlo experiments.
 They vary magnitude (response accuracy), respondent heterogeneity,
 estimation method, and question-design method in a 4 x 23 experiment.
 The estimation methods are hierarchical Bayes and analytic center. The
 latter is a new individual-level estimation procedure that is a by-product
 of polyhedral question design. The benchmarks for individual adaptation
 are random designs, orthogonal designs, and aggregate customization.
 The simulations suggest that polyhedral question design does well in
 many domains, particularly those in which heterogeneity and partworth
 magnitudes are relatively large. The authors test feasibility, test an impor-
 tant design criterion (choice balance), and obtain empirical data on
 convergence by describing an application to the design of executive edu-
 cation programs in which 354 Web-based respondents answered stated-

 choice tasks with four service profiles each.

 Polyhedral Methods for Adaptive Choice-
 Based Conjoint Analysis

 Choice-based conjoint analysis (CBC) describes a class
 of techniques that are among the most widely adopted mar-
 ket research methods. In CBC tasks, respondents are pre-
 sented with two or more product profiles and asked to
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 choose the profile that they prefer (for an example, see Fig-
 ure 1). This contrasts with other conjoint tasks that ask
 respondents to provide preference ratings for product attrib-
 utes or profiles. Because choosing a preferred product pro-
 file is often a natural task for respondents that is consistent
 with marketplace choice, supporters of CBC have argued
 that it yields more accurate responses. In comparison with
 estimates of marketplace demand, CBC methods have been
 shown to perform well (Louviere, Hensher, and Swait
 2000).

 Academic research investigating CBC methods has
 sought to improve the design of the product profiles that are
 shown to each respondent. This has led to efficiency
 improvements, thereby yielding more information from
 fewer responses. Because an increasing amount of market
 research is conducted on the Internet, new opportunities for
 efficiency improvements have arisen. Online processing
 power makes it feasible to adapt questions on the basis of
 prior responses. To date, the research on adaptive question
 design has focused on adapting questions on the basis of
 responses from prior respondents (i.e., aggregate customiza-
 tion). Efficient designs are customized through the use of
 parameters obtained from pretests or from managerial judg-
 ment (for examples of aggregate customization methods, see
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 Figure 1
 EXAMPLE OF A CBC TASK FOR THE REDESIGN OF POLAROID'S I-ZONE CAMERA
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 Arora and Huber 2001; Huber and Zwerina 1996; and San-
 dor and Wedel 2001).

 In this study, we propose a CBC question-design method
 that adapts questions by using the previous answers from
 that respondent (i.e., individual adaptation). The design of
 each choice task varies according to the respondent's selec-
 tion from prior choice tasks. The approach is motivated in
 part by the success of aggregate customization, which uses
 the responses from other respondents to design more effi-
 cient questions. The algorithm that we propose focuses on
 what is not known about partworths (given the respondent's
 answers to prior questions) and seeks to reduce quickly the
 sets of partworths that are consistent with the respondent's
 choices. To achieve this goal, we focus on four design crite-
 ria: (1) nondominance, (2) feasibility, (3) choice balance,
 and (4) symmetry. We also describe an analogy between the
 proposed algorithm and D-efficiency.

 After data are collected with the adaptive questions, part-
 worths can be estimated with standard methods (aggregate
 random utility or hierarchical Bayes [HB] methods). As an
 alternative, we propose and test an individual-level estima-
 tion method that relies on the analytic center of a feasible set
 of parameters.

 Our proposal differs in both format and philosophy from
 the other individual-level adaptive conjoint analysis (ACA)
 methods. We focus on stated-choice data rather than ACA's

 metric paired comparisons, and we focus on analogies to

 efficient design rather than ACA's utility balance subject to
 orthogonality goals. Polyhedral methods are also feasible
 for metric-paired-comparison data (Toubia et al. 2003).
 However, as will become apparent, there are important dif-
 ferences between the metric-paired-comparison algorithm
 and the algorithm we propose.

 The remainder of the article is organized as follows: We
 begin by reviewing existing CBC question-design and esti-
 mation methods. We next propose a polyhedral approach to
 the design of CBC questions. We then evaluate the pro-
 posed polyhedral methods using a series of Monte Carlo
 simulations, in which we hope to demonstrate the domains
 in which the proposed method shows promise (and those in
 which existing methods remain best). We compare per-
 formance to three question-design benchmarks, including
 an aggregate customization method that uses prior data
 from either managerial judgment or pretest respondents.
 Because we expect that individual adaptation is most
 promising when responses are accurate and/or respondents
 are heterogeneous, we compare the four question-design
 methods across a range of customer heterogeneity and
 response-error domains while also varying the estimation
 method. We then describe an empirical application of the
 proposed method to the design of executive education pro-
 grams at a major university. We conclude with a review of
 the findings, limitations, and opportunities for further
 research.
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 EXISTING CBC QUESTION-DESIGN AND ESTIMATION
 METHODS

 To date, most applications of CBC assume that each
 respondent answers the same set of questions or that the
 questions are either blocked across sets of respondents or
 chosen randomly. For these conditions, McFadden (1974)
 shows that the inverse of the covariance matrix, 1, of the
 maximum likelihood estimates is proportional to

 (1) ZikPik),
 where R is the effective number of replicates, Ji is the num-
 ber of profiles in choice set i, q is the number of choice sets,

 zij is a binary vector that describes the jth profile in the ith
 choice set, and Pij is the probability that the respondent
 chooses profile j from the ith choice set. Without loss of gen-
 erality, we use binary vectors in the theoretical development
 to simplify notation and exposition. We use multilevel fea-
 tures in both the simulations and the application.

 Precision can be increased by a decrease in a measure
 (norm) of the covariance matrix, that is, by either an
 increase in the number of replicates or an increase in the
 terms in the summations of Equation 1. Equation 1 also
 demonstrates that the covariance of logit-based estimates
 depends on the choice probabilities, which in turn depend on
 the partworths. In general, the experimental design that pro-
 vides the most precise estimates will depend on the
 parameters.

 Many researchers have addressed choice-set design. A
 common measure is D-efficiency, which attempts to reduce
 the geometric mean of the eigenvalues of E (Kuhfeld,
 Tobias, and Garratt 1994).1 If 5 represents the vector of the
 partworths, the confidence region for maximum likelihood
 estimates fi) is an ellipsoid defined by (ii
 (Greene 1993, p. 190). The lengths of the axes of this ellip-
 soid are given by the eigenvalues of the covariance matrix,
 so that a minimization of the geometric mean of the eigen-
 values shrinks the confidence region around the estimates.

 Because efficiency depends on the partworths, it is com-
 mon to assume a priori that the stated choices are equally
 likely. In this article, we label such designs "orthogonal"
 efficient designs. Arora and Huber (2001), Huber and Zwe-
 rina (1996), and Sandor and Wedel (2001) demonstrate that
 efficiency can be improved with the use of data from either
 pretests or prior managerial judgment. These researchers
 improve D-efficiency by "relabeling," which permutes the
 levels of features across choice sets; by "swapping," which
 switches two feature levels among profiles in a choice set;
 and by "cycling," which is a combination of rotating levels
 of a feature and swapping them. The procedures stop when
 no further improvement is possible.2 Simulations suggest
 that these procedures improve efficiency and thus reduce the

 1This is equivalent to maximization of the pth root of the determinant of
 E-1. Other norms include A-efficiency, which maximizes the trace of /-1/p,
 and G-efficiency, which maximizes the maximum diagonal element of E-1.

 2The Huber-Zwerina (1996) and Arora-Huber (2001) algorithms maxi-
 mize detE-1 on the basis of mean partworths by assuming that the mean is
 known from pretest data (or managerial judgment). Sandor and Wedel
 (2001) also include a prior covariance matrix in their calculations. They
 then maximize the expectation of detI-1, for which the expectation is over
 the prior subjective beliefs.

 number of respondents that are necessary. Following the lit-
 erature, we label these designs "aggregate customization."

 Estimation

 In classical logit analysis, partworths are estimated with
 maximum likelihood techniques. Because it is rare that a
 respondent is asked to make enough choices to estimate
 partworth values for each respondent, the data usually are
 merged across respondents to estimate population-level (or
 segment-level) partworth values. However, managers often
 want estimates for each respondent. Hierarchical Bayes
 methods provide (posterior) estimates of partworths for
 individual respondents by using population-level distribu-
 tions of partworths to inform individual-level estimates
 (Allenby and Rossi 1999; Arora, Allenby, and Ginter 1998;
 Johnson 1999; Lenk et al. 1996). In particular, HB methods
 use data from the full sample to estimate iteratively both the
 posterior means (and distribution) of individual-level part-
 worths and the posterior distribution of the partworths at the
 population level. The HB method is based on Gibbs sam-
 pling and the Metropolis-Hastings algorithm.

 Liechty, Ramaswamy, and Cohen (2001) demonstrate the
 effectiveness of HB methods for choice menus, and Arora
 and Huber (2001) show that it is possible to improve the
 efficiency of HB estimates with choice sets designed on the
 basis of Huber-Zwerina (1996) relabeling and swapping. In
 other research, Andrews, Ainslie, and Currim (2002, p. 479)
 present evidence that HB models and finite mixture models
 estimated from simulated scanner-panel data "recover
 household-level parameter estimates and predict holdout
 choice about equally well except when the number of pur-
 chases per household is small."

 POLYHEDRAL QUESTION-DESIGN METHODS

 We extend the philosophy of customization by developing
 algorithms to adapt questions for each respondent. Stated
 choices from each respondent provide information about
 parameter values for the respondent that can be used to
 select the subsequent questions. In high dimensions (high
 p), this is a difficult dynamic optimization problem. We
 address this problem by making use of extremely fast algo-
 rithms based on projections in the interior of polyhedra
 (much of this research began with that of Karmarkar
 [1984]). In particular, we draw on the properties of bound-
 ing ellipsoids, discovered in theorems by Sonnevend
 (1985a, b) and applied by Freund (1993), Nesterov and
 Nemirovskii (1994), and Vaidj a (1989).

 We begin by illustrating the intuitive ideas in a two-
 dimensional space with two product profiles (Ji = 2) and
 then generalize to a larger number of dimensions and multi-
 chotomous choice (the simulations and the application are
 based on multichotomous choice). The axes of the space
 represent the partworths (utilities) associated with two dif-
 ferent product attributes, u1 and u2. A point in this space has
 a value on each axis and is represented by a vector of the two
 partworths. The ultimate goal is to estimate the point in this
 space (or distribution of points) that best represents each
 respondent. The question-design goal is to focus precision
 toward the points that best represent each respondent. This
 goal is not unlike D-efficiency, which attempts to minimize
 the confidence region for estimated partworths. Without loss
 of generality, we scale all partworths in the figures to be
 nonnegative and bounded from above. Following conven-
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 tion, we arbitrarily set the partworth associated with the
 least-preferred level to zero.3
 Suppose that we have already asked i stated-choice
 questions and that the hexagon (polyhedron) in Figure 2 rep-
 resents the partworth vectors that are consistent with the
 respondent's answers. Suppose also that the ith question
 asks the respondent to choose between two profiles with fea-
 ture levels -in and zit . If there were no response errors, the
 respondent would select Profile 1 whenever (zi11 - zi21)u1 +

 (zi12 zi22)u2 -- 0, where zijf refers to the fth feature of zip,
 and of denotes the partworth associated with the fth feature.
 This inequality constraint defines a separating line or, in
 higher dimensions, a separating hyperplane. In the absence
 of response errors, if the respondent's true partworth vector
 is above the separating hyperplane, the respondent chooses
 Profile 1; if it is below, the respondent chooses Profile 2.
 Thus, the respondent's choice of profiles updates knowledge
 of which partworth vectors are consistent with the respon-
 dent's preferences, thus shrinking the feasible polyhedron.

 Selecting Questions

 Questions are more informative if they reduce the feasible
 region more rapidly. To implement this goal, we adopt four
 criteria. First, neither profile in the choice set should domi-
 nate the other profile. Otherwise, no information is gained
 when the dominating profile is chosen, and the partworth
 space is not reduced. Second, the separating hyperplane
 should intersect with and divide the feasible region derived
 from the first i - 1 questions. Otherwise, there could be an
 answer to the ith question that does not reduce the feasible
 region. A corollary of the criteria is that for each profile,
 there must be a point in the feasible region for which that
 profile is the preferred profile.
 The ith question is more informative if, given the first i -
 1 questions, the respondent is equally likely to select each of
 the Ji profiles. This implies that, a priori, all answers to the

 31n an application we describe subsequently, we use warm-up questions
 to identify the lowest level of each feature (a common solution to the issue).

 Figure 2
 STATED-CHOICE RESPONSES DIVIDE THE FEASIBLE REGION

 U2

 u1

 ith question should be approximately equally likely. This
 leads to the third criterion, which we label "choice balance."
 Choice balance shrinks the feasible region as rapidly as is
 feasible. For example, if the points in the feasible region are
 equally likely (on the basis of i - 1 questions), the predicted

 likelihood, ?tip, of choosing the jth region is proportional to
 the size of the region. The expected size of the region after

 the ith question is then proportional to g inij, which is
 minimized when = /2.4 Arora and Huber (2001, p. 275)
 offer a further motivation for choice balance based on D-

 efficiency. For two product profiles, the inverse covariance

 matrix, 1-1, is proportional to a weighted sum of nip
 which is also maximized for rcii = Y.

 The choice-balance criterion will hold approximately if
 we favor separating hyperplanes that pass through the center
 of the feasible polyhedron and cut the feasible region
 approximately in half. This is illustrated in Figure 3, Panel
 A, where we favor bifurcation cuts relative to "sliver" cuts
 that yield unequally sized regions. If the separating hyper-
 plane is a bifurcation cut, both the nondomination and the
 feasibility criteria are automatically satisfied.

 However, not all bifurcation cuts are equally robust. Sup-
 pose that the current feasible region is elongated, as in Fig-
 ure 3, Panel B, and we must decide among many separating
 hyperplanes, two of which are illustrated. One cuts along the
 long axis and yields long, thin feasible regions, and the other
 cuts along the short axis and yields feasible regions that are
 more symmetric. The long-axis cut focuses precision where
 there already is high precision, whereas the short-axis cut
 focuses precision where there now is less precision. For this
 reason, we prefer short-axis cuts to make the postchoice fea-
 sible regions reasonably symmetric. We can also motivate
 this fourth criterion relative to D-efficiency. D-efficiency
 minimizes the geometric mean of the axes of the confidence
 ellipsoid, a criterion that tends to make the confidence ellip-
 soids more symmetrical.

 For two profiles, we favor the four criteria of nondomi-
 nance, feasibility, choice balance, and postchoice symmetry
 if we select profiles such that the separating hyperplanes (1)
 pass through the center of the feasible region and (2) are per-
 pendicular to the longest "axis" of the feasible polyhedron,
 as defined by the first i - 1 stated choices. To implement
 these criteria, we propose the following heuristic algorithm:

 Step 1. Find the center and the longest axis of the polyhedron on
 the basis of i - 1 questions.

 Step 2. Find the two intersections between the longest axis and
 the boundary of the polyhedron.

 Each intersection point is defined by a partworth vector, and
 the difference between the vectors defines a hyperplane that
 is perpendicular to the longest axis. Because respondents
 choose from profiles rather than partworth vectors, a third
 step is needed to identify profiles that yield this separating
 hyperplane:

 Step 3. Select a profile that corresponds to each intersection
 point such that the separating hyperplane divides the
 region into two approximately equal subregions.

 The basic intuition remains the same when this heuristic

 algorithm is extended to more than two profiles (Ji > 2),

 4For Ji profiles, equally sized regions also maximize entropy, defined as
 -I.n..logn.. Formally, maximum entropy is equal to the total information
 obtainable in a probabilistic model (Hauser 1978, p. 411, Theorem 1).

 Hexagon represents
 current feasible set

 Separating hyperplane

 Choose Profile 1

 Choose Profile 2
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 Figure 3
 COMPARING CUTS AND THE RESULTING FEASIBLE REGIONS

 A: Bifurcation Cuts  B: Short- Versus Long-Axis Cuts

 U2  U2
 Less robust

 sliver cut

 Feasible region

 More robust

 bifurcation cut

 Elongated feasible region

 More robust short-axis cut

 Long-axis
 cut

 U1  UI

 though the geometry becomes more difficult to visualize
 (some hyperplanes become oblique, but the regions remain
 equally probable). We address this generalization and then
 describe several implementation issues, including how we
 use utility maximization to select the profiles in Step 3.

 Selecting More Than Two Profiles

 In a choice task with more than two profiles, the respon-
 dent's choice defines more than one separating hyperplane.
 The hyperplanes that define the ith feasible region depend
 on the profile chosen by the respondent. For example, con-
 sider a choice task with four product profiles, labeled 1, 2,
 3, and 4. If the respondent selects Profile 1, the respondent
 prefers Profile 1 to Profile 2, Profile 1 to Profile 3, and Pro-
 file 1 to Profile 4. This defines three separating hyperplanes:
 The resulting polyhedron of feasible partworths is the inter-
 section of the associated regions and the prior feasible poly-
 hedron. In general, Ji profiles yield Ji(Ji - 1)/2 possible
 hyperplanes. For each of the Ji choices available to the
 respondent, Ji - 1 hyperplanes contribute to the definition of
 the new polyhedron. The full set of hyperplanes and their
 association with stated choices define a set of Ji convex
 regions, one associated with each answer to the stated-
 choice question.

 We extend Steps 1 to 3 as follows: Rather than find the
 longest axis, we find the (Ji/2) longest axes and identify the
 Ji points at which the (J112) longest axes intersect the poly-
 hedron. If Ji is odd, we select randomly among the vectors
 that intersect the (Ji/2)th longest axis. We associate profiles
 with each of the Ji partworth vectors by solving the respon-
 dent's maximization problem for each vector (as we
 describe next). Our solution to the maximization problem
 ensures that the hyperplanes pass (approximately) through
 the center of the polyhedron. The approximation arises
 because we design the profiles from a discrete attribute
 space. They would pass exactly through the analytic center
 if the attribute space were continuous.

 It is easy to show that such hyperplanes divide the feasible
 region into Ji collectively exhaustive and mutually exclusive

 convex subregions of approximately equal size (except for
 the regions' "indifference" borders, which have zero meas-
 ure). Nondominance and feasibility remain satisfied, and the
 resulting regions tend toward symmetry. Because the sepa-
 rating hyperplanes are defined by the profiles associated with
 the partworth vectors (Step 3), not the partworth vectors
 themselves (Step 2), some of the hyperplanes do not line up
 with the axes. For Ji > 2, the stated properties remain approx-
 imately satisfied on the basis of "wedges" formed by the Ji -
 1 hyperplanes. We subsequently examine the effectiveness of
 the proposed heuristic for Ji = 4. Simulations examine over-
 all accuracy, and an empirical test examines whether feasi-
 bility and choice balance are achieved for real respondents.

 Implementation

 Implementation of this heuristic raises challenges.
 Although it is easy to visualize (and implement) the heuris-
 tic with two profiles in two dimensions, practical CBC prob-
 lems require implementation with Ji profiles in large p-
 dimensional spaces with p-dimensional polyhedra and (p -
 1)-dimensional hyperplane cuts. Furthermore, the algorithm
 should run sufficiently fast so that there is little noticeable
 delay between questions.

 The first challenge is finding the center of the current
 polyhedron and the Ji/2 longest axes (Step 1). If the longest
 axis of a polyhedron is defined as the longest line segment
 in the polyhedron, it is necessary to enumerate all vertices of
 the polyhedron and to compute the distances between the
 vertices. Unfortunately, for large p, this problem is compu-
 tationally intractable (Gritzmann and Klee 1993); its solu-
 tion would lead to lengthy delays between questions for
 each respondent. Furthermore, this definition of the longest
 axes of a polyhedron may not capture the intuitive concepts
 that we used to motivate the algorithm.

 Instead, we turn to Sonnevend's (1985a, b) theorems,
 which state that the shape of polyhedra can be approximated
 with bounding ellipsoids centered at the "analytic center" of
 the polyhedron. The analytic center is the point that maxi-
 mizes the geometric mean of the distances to the boundaries.
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 Freund (1993) provides efficient algorithms to find the ana-
 lytic centers of polyhedra. When the analytic center has
 been found, Sonnevend's results provide analytic expres-
 sions for the ellipsoids. The axes of ellipsoids are well
 defined and capture the intuitive concepts in the algorithm.
 The longest axes are found with straightforward eigenvalue
 computations, for which there are many efficient algorithms.
 With well-defined axes, it is simple to find the partworth
 vectors on the boundaries of the feasible set that intersect the

 axes (Step 2). We provide technical details in the Appendix.
 To implement Step 3, we must define the respondent's

 utility maximization problem. We do so in an analogy to
 economic theory. For each of the Ji utility vectors on the

 boundary of the polyhedron, we obtain the jth profile, zip, by
 solving

 (OPT1) subject

 where u is the utility vector chosen in Step 2, e' are costs
 of the features, and M is a budget constraint. We implement
 (approximate) choice balance by setting c equal to the ana-
 lytic center of the feasible polyhedron (Tii_i) computed after
 the first i - 1 questions. At optimality, the constraint in
 OPT1 will be approximately binding, which implies that
 M for all k # j. (This may be approxi-
 mate because of the integrality constraints in OPT1 [ele-

 ments of zipE {0, 1}].) This ensures that the Ji(Ji - 1)/2 sepa-
 rating hyperplanes pass (approximately) through the
 analytic center. The binding constraints are all bifurcations,
 which tend to make the regions approximately equal in size.
 Finally, we also know that the solution to OPT1 ensures that
 each separating hyperplane passes through the feasible poly-
 hedron because each profile is preferred at the utility vector
 to which it corresponds.

 Solving OPT1 for profile selection (Step 3) is a knapsack
 problem that is well studied and for which efficient algo-
 rithms exist. We randomly draw the arbitrary constant M
 from a compact set (up to m times) until all profiles in a
 stated-choice task are distinct. If the profiles are not distinct,
 we use those that are distinct. If none of the profiles are dis-
 tinct, we ask no further questions (in practice, this is a rare
 occurrence in both simulation and empirical situations).

 OPT1 also illustrates the relationship between choice bal-
 ance and utility balance, a criterion in aggregate customiza-
 tion. In our algorithm, the Ji profiles are chosen to be equally
 likely on the basis of data from the first i - 1 questions. In
 addition, for the partworths at the analytic center of the fea-
 sible region, the utilities of all profiles are approximately
 equal. However, utility balance only holds at the analytic
 center, not throughout the feasible region. Thus, although, a
 priori, the profiles are equally likely to be chosen, it is rare
 that the respondent is indifferent among the profiles. Thus,
 choice balance is unlikely to lead to respondent fatigue, and
 we observed none in our empirical application.

 We illustrate the algorithm for Ji = 4 with the two-
 dimensional example in Figure 4. We begin with the current
 polyhedron of feasible partworth vectors (Figure 4, Panel
 A). We then use Freund's (1993) algorithm to find the ana-
 lytic center of the polyhedron, as illustrated by the black dot
 in Figure 4, Panel A. We next use Sonnevend's (1985a, b)
 formulas to find the equation of the approximating ellipsoid
 and to obtain the Ji/2 longest axes (Figure 4, Panel B), which
 correspond to the Ji/2 smallest eigenvalues of the matrix that

 defines the ellipsoid. We then identify Ji target partworth
 vectors by finding the intersections of the Ji/2 axes with the
 boundaries of the current polyhedron (Figure 4, Panel C).
 Finally, for each target utility vector, we solve OPT1 to iden-
 tify Ji product profiles. The Ji product profiles each imply
 Ji - 1 hyperplanes (illustrated for Profile 1 in Figure 4, Panel
 D). A respondent's choice of Profile 1 implies a new smaller
 polyhedron defined by the separating hyperplanes. As drawn
 in Figure 4, Panel D, one of the hyperplanes is redundant,
 which is less likely in higher dimensions. Were we to draw
 all Ji(Ji - 1)/2 = 6 hyperplanes, they would divide the poly-
 hedron into mutually exclusive and collectively exhaustive
 convex regions of approximately equal size. We continue for
 q questions or until OPT1 no longer yields distinct profiles.

 Incorporating Managerial Constraints and Other Prior
 Information

 Previous research suggests that prior constraints enhance
 estimation (Johnson 1999; Srinivasan and Shocker 1973).
 For example, self-explicated data might constrain the rank
 order of partworth values across features. Such constraints
 are easy to incorporate and shrink the feasible polyhedron.
 Most conjoint analysis studies use multilevel features, some
 of which are ordinal scaled (e.g., picture quality). For exam-
 ple, if ufm and ufh are the medium and high levels of feature
 f, we add the constraint ufm to the feasible polyhedron.5
 We similarly incorporate information from managerial pri-
 ors or pretest studies.

 Response Errors

 In real questionnaires, there are likely response errors in
 stated choices. When there are response errors, the separat-
 ing hyperplanes are approximations rather than determinis-
 tic cuts. For this and other reasons, we distinguish question
 selection and estimation. The algorithm we propose is a
 question-selection algorithm. After we collect the data, we
 can estimate the respondents' partworths with most estab-
 lished methods, which address response error formally. For
 example, polyhedral questions can be used with classical
 random-utility models or HB estimation. It remains an
 empirical question as to whether response errors counteract
 the potential gains in question selection due to individual-
 level adaptation. Although we hypothesize that the criteria
 of choice balance and symmetry lead to robust stated-choice
 questions, we also hypothesize that individual-level adapta-
 tion works better when response errors are smaller. We
 examine these issues in the next section.

 Analytic Center (AC) Estimation

 The analytic center of the ith feasible polyhedron pro-
 vides a natural summary of the information in the first i
 stated-choice responses. This summary measure is a good
 working estimate of the respondent's partworth vector. It is
 a natural by-product of the question-selection algorithm and
 is available as soon as each respondent completes the ith
 stated-choice question. Such estimates might also be used as
 starting values in HB estimation, as estimates in classical
 Bayes updating, and as priors for aggregate customization.

 51n the theoretical derivation, we used binary features without loss of
 generality for notational simplicity. An ordinal multilevel feature constraint
 is mathematically equivalent to a constraint that links two binary features.
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 Figure 4
 BOUNDING ELLIPSOIDS AND THE ANALYTIC CENTER OF THE POLYHEDRA

 A: Find the Analytic Center  B: Find Sonnevend's Ellipsoid and Axes

 U2  U2

 U2  U2
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 ellipsoid

 Second longest axis
 of the ellipsoid

 Longest axis
 of the ellipsoid

 U1  U1

 Analytic
 center

 Analytic
 center

 Analytic
 center

 C: Partworth Values on Boundary of Polyhedron  D: Cuts Imply Region Associated with Profile

 Cut Profile 1
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 Cut Profile 1

 4- u1 versus Profile 2

 Cut Profile 1
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 The AC estimates also provide a means to test the ability
 of the polyhedral algorithm to implement the feasibility and
 choice-balance criteria. Specifically, if the ith AC estimate is
 used to forecast choices for q > i choice sets, it should pre-
 dict 100% of the first i choices (feasibility) and (15i) percent
 of the last q -- i choices (choice balance). When Ji does not
 vary with i, the internal predictive percentage should
 approximately equal [i + (1/J1)(q -- ON. We examine this
 statistic in the empirical application in a subsequent section.

 The AC estimate can be given a statistical interpretation if
 we assume that the probability of a feasible point is propor-
 tional to its distance to the boundary of the feasible polyhe-
 dron. In this case, the analytic center maximizes the likeli-
 hood of the point (geometric mean of the distances to the
 boundary).

 Analytic center estimates each respondent's partworth
 vectors on the basis of data from only that respondent. This

 advantage is also a disadvantage because, unlike HB esti-
 mation, AC estimation does not use information from other
 respondents. This suggests an opportunity to improve the
 accuracy of AC estimates through the use of data from the
 population distribution of partworths. Although the full
 development of such an analytic center algorithm is beyond
 the scope of this article, we can test its potential by using the
 (known) population distribution as a Bayesian prior to
 update AC estimates. We hypothesize that AC estimates are
 less accurate than HB estimates when the respondents are
 homogeneous but that this disadvantage can be offset with
 the development of an AC--Bayesian hybrid.

 Incorporating Null Profiles

 Many researchers prefer to include a null profile as an
 additional profile in the choice set (as in Figure 1). Polyhe-
 dral concepts generalize readily to include null profiles. If
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 the null profile is selected from choice set i, we add the fol-
 lowing constraints: 2)*, u Vj, k# i, where 21 denotes
 the profile chosen from choice set k (given that the null pro-
 file was not chosen in choice set k). Intuitively, the con-
 straints recognize that if the null profile is selected in one
 choice set, all of the alternatives in that choice set have a
 lower utility than do the profiles selected in other choice sets
 (excluding other choice sets in which the null was chosen).
 We also can expand the parameter set to include the part-
 worth of an outside option and write the appropriate con-
 straints. After incorporation of the constraints, the question-
 design heuristic (and AC estimation) proceed as we
 previously described. We leave practical implementation,
 Monte Carlo testing, and empirical applications with null
 profiles to further research.

 Metric-Paired-Comparison Questions

 Polyhedral methods are also feasible for metric-paired-
 comparison questions. In particular, Toubia and colleagues
 (2003) propose a polyhedral method for metric-paired-
 comparison data that also uses Sonnevend's (1985a, b) ellip-
 soids. However, metric-pair and the CBC formats present
 fundamentally different challenges that result in different
 polyhedral algorithms. For example, each metric-pair ques-
 tion defines equality constraints, which reduce the dimen-
 sionality of the feasible polyhedron. In the CBC algorithm,
 the inequality constraints do not reduce the dimensionality
 of the feasible polyhedron. Furthermore, the metric-pairs
 polyhedron becomes empty after sufficient questions. The
 metric-pairs algorithm must revert to an alternative
 question-selection method and the metric-pairs AC algo-
 rithm must address infeasibility. In the CBC algorithm, the
 polyhedron always remains feasible. Moreover, because the
 metric-pairs algorithm identifies the partial profiles directly,
 the utility-maximization knapsack algorithm is new to the
 CBC algorithm.

 Summary

 Polyhedral (ellipsoid) algorithms provide a means to
 adapt stated-choice questions for each respondent on the
 basis of the respondent's answers to the first i 1 questions.
 The algorithms are based on the intuitive criteria of non-
 dominance, feasibility, choice balance, and symmetry, and
 they represent an individual-level analogy to D-efficiency.
 Specifically, the polyhedral algorithm focuses questions on
 what is not known about the partworth vectors, and it does
 so by seeking a small feasible region. Choice balance, sym-
 metry, and the shrinking ellipsoid regions provide analogies
 to D-efficiency, which seeks questions to minimize the con-
 fidence ellipsoid for maximum likelihood estimates.

 Although both polyhedral question design and aggregate
 customization are compatible with most estimation meth-
 ods, including AC estimation, the two methods represent a
 key trade-off. Polyhedral question design adapts questions
 for each respondent but may be sensitive to response errors.
 Aggregate customization uses the same design for all
 respondents but is based on prior statistical estimates that
 take response errors into account. This leads us to hypothe-
 size that polyhedral methods have their greatest advantages
 over existing methods (question design and/or estimation)
 when responses are more accurate and/or when respondents'
 partworths are more heterogeneous. We next examine

 individual-level adaptation and AC estimation with Monte
 Carlo experiments.

 MONTE CARLO EXPERIMENTS

 We use Monte Carlo experiments to investigate whether
 polyhedral methods show sufficient promise to justify fur-
 ther development and to identify the empirical domains in
 which the potential is greatest. Monte Carlo experiments are
 widely used to evaluate conjoint analysis methods, includ-
 ing studies of interactions, robustness, continuity, attribute
 correlation, segmentation, new estimation methods, and new
 data-collection methods. In particular, they have proved par-
 ticularly useful in the first tests of aggregate customization
 and in establishing domains in which aggregate customiza-
 tion is preferred to orthogonal designs. Monte Carlo experi-
 ments offer several advantages for an initial test of new
 methods. First, as with any heuristic, computational feasi-
 bility needs to be established. Second, Monte Carlo experi-
 ments enable the exploration of many domains and the con-
 trol of the parameters that define those domains. Third, other
 researchers can readily replicate and extend Monte Carlo
 experiments, thereby facilitating further exploration and
 development. Finally, Monte Carlo experiments enable the
 control of the "true" partworth values, which are unobserved
 in studies with actual consumers.

 However, Monte Carlo experiments are but the first step
 in a stream of research. Assumptions must be made about
 characteristics that are not varied, and the assumptions rep-
 resent limitations. In this article, we explore domains that
 vary in terms of respondent heterogeneity, response accu-
 racy (magnitude), estimation method, and question-design
 method. This establishes a 4 x 23 experimental design. We
 encourage subsequent researchers to vary other characteris-
 tics of the experiments.

 Structure of the Simulations

 For consistency with prior simulations, we adopt the basic
 simulation structure of Arora and Huber (2001), who varied
 response accuracy, heterogeneity, and question-design
 method in a 23 experiment that used HB estimation. Huber
 and Zwerina (1996) previously used the same structure to
 vary response accuracy and question design with classical
 estimation, and more recently Sandor and Wedel (2001)
 used a similar structure to compare the impact of prior
 beliefs.

 The Huber-Zwerina (1996) and Arora-Huber (2001)
 algorithms were aggregate customization methods based on
 relabeling and swapping. The algorithms work best for
 stated-choice problems in which relabeling and swapping
 are well defined. We expand Arora and Huber's design to
 include four levels of four features for four profiles, which
 ensures that complete aggregate customization and orthogo-
 nal designs are possible. Sandor and Wedel (2001) include
 cycling, though they note that cycling is less important in
 designs in which the number of profiles equals the number
 of feature levels.6

 Within a feature, Arora and Huber (2001) choose part-
 worths symmetrically with expected magnitudes of 0,
 and +i3. They vary response accuracy by varying 13. Larger

 6In the designs we use, the efficiency of Sandor and Wedel's (2001) algo-
 rithm is approximately equal to the efficiency of Huber and Zwerina's
 (1996) algorithm.
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 is imply higher response accuracy because the variance of
 the Gumbel distribution, which defines the logit model, is
 inversely proportional to the squared magnitude of the part-
 worths (Ben-Akiva and Lerman 1985, p. 105, Property 3).
 For four levels we retain the symmetric design with magni-
 tudes of -13, -Y313, V, and p. Arora and Huber model hetero-
 geneity by allowing partworths to vary among respondents

 according to normal distributions with variance, 4 They
 specify a coefficient of heterogeneity as the ratio of the vari-
 ance to the mean. Specifically, they manipulate low
 response accuracy with 13 = .5 and high response accuracy
 with p = 1.5. They manipulate high heterogeneity with
 G4/11 = 2.0 and low heterogeneity with o23/13 = .5. Given
 these values, they draw each respondent's partworths from a
 normal distribution with a diagonal covariance matrix. Each
 respondent then answers the stated-choice questions, and
 probabilities are determined by a logit model based on the
 respondent's partworths. Arora and Huber compare question
 selection using root mean square error (RMSE). For compa-
 rability, we adopt the same criterion and report three more
 intuitive metrics.

 We selected magnitudes and heterogeneity that represent
 the range of average partworths and heterogeneity that
 might be found empirically. Although we could find no
 meta-analyses for the values, we had data available to us
 from a proprietary CBC application (D-efficient design, HB
 estimation) in the software market. The study included data
 from approximately 1200 home consumers and more than
 600 business customers. In both data sets, f3 ranged from
 approximately -3.0 to +2.4. We chose our high magnitude
 (3.0) from this study, recognizing that other studies might
 have even higher magnitudes. For example, Louviere, Hen-
 sher, and Swait (2000) report stated-choice estimates (logit
 analysis) in the range of 3.0 and higher.
 After selecting p for high magnitudes, we set the low

 magnitude p to the level Arora and Huber (2001) chose. In
 the empirical data, the estimated variances ranged from .1 to
 6.9, and the heterogeneity coefficient varied from .3 to 3.6.7
 To approximate this range and to provide symmetry with the
 magnitude coefficient, we manipulated high heterogeneity
 with a coefficient of three times the mean. Following Arora
 and Huber, we manipulated low heterogeneity as half the
 mean. We believe that these values are representative of
 those that might be obtained in practice. Recall that as a first
 test of polyhedral methods, we seek to identify domains that
 can occur in practice and for which polyhedral methods
 show promise. More important, these levels illustrate the
 directional differences among methods and thus provide
 insight for further development.

 Experimental Design

 In addition to manipulating magnitude (two levels) and
 heterogeneity (two levels), we manipulated estimation
 method (two levels) and question-design method (four lev-
 els). The estimation methods we used are HB and AC esti-

 7There was also an outlier with a mean of .021 and a variance of .188,
 implying a heterogeneity coefficient of 9.0. Such cases are possible, but
 they are less likely to represent typical empirical situations. Researchers
 who prefer a unitless metric for heterogeneity can rescale using the stan-
 dard deviation rather than the variance. For our two-level manipulation,
 directional differences are the same.

 mation. The former is well established and incorporates
 information from other respondents in each individual esti-
 mate; the latter is the only feasible method, of which we are
 aware, that provides individual-level estimates using infor-
 mation only from that respondent. The question-design
 methods are random, orthogonal designs with equally likely
 priors, aggregate customization (Arora and Huber 2001),
 and polyhedral methods. To simulate aggregate customiza-
 tion, we assumed that the pretest data were obtained without
 cost, and on the basis of this data, we applied the Arora-
 Huber algorithm. Specifically, we simulated an orthogonal
 "pretest" that used the same number of respondents as in the
 actual study. For the orthogonal design, we adopted the
 Arora-Huber methods as detailed by Huber and Zwerina
 (1996, pp. 310-12).

 We set q = 16 so that orthogonal designs, relabeling, and
 swapping are well defined. Exploratory simulations suggest
 that the estimates become more accurate as we increase the

 number of questions, but the relative comparisons of ques-
 tion design and estimation for q = 8 and q = 24 provide sim-
 ilar qualitative insights.8 For each combination of question-
 design method, estimation method, heterogeneity level, and
 magnitude level, we simulated 1000 respondents.9

 Practical Implementation Issues

 To implement the polyhedral algorithm, we made two
 implementation decisions: First, we randomly drew M up to
 thirty times (m = 30) for the simulations. We believe that the
 accuracy of the method is relatively insensitive to this deci-
 sion. Second, because the polyhedron is symmetrical before
 the first question, we selected the first question by randomly
 choosing from among the axes.

 Other decisions may yield greater (or lesser) accuracy;
 thus, the performance of the polyhedral methods tested in
 this article should be considered a lower bound on what is

 possible with further improvement. For example, further
 research might use aggregate customization to select the
 first question. We describe all polyhedral optimization,
 question selection, and estimation algorithms in the Appen-
 dix, and they are implemented in Matlab code. The Web-
 based application we describe subsequently uses PERL and
 HTML for Web page presentation.10

 Comparative Results of the Monte Carlo Experiments

 Table 1 reports four metrics that describe the simulation
 results in a format similar to that of Arora and Huber (2001):
 RMSE, the percentage of respondents for whom each
 question-design method has the lowest RMSE, the hit rate,
 and the average correlation between the true and estimated
 partworths. The hit rate measures the percentage of times
 each method predicts the most-preferred profile and is based
 on 1000 sets of holdout profiles. Tables 2 and 3 summarize
 the best question-design method and the best estimation
 method, respectively, for each metric in each domain. The

 8The estimates at q = 16 are approximately 25% more accurate than
 those at q = 8, and the estimates at q = 24 are approximately 12% more
 accurate than those at q = 16.

 9The simulations are based on ten sets of 100 respondents (details are
 available from the authors). To reduce unnecessary variance, we used the
 same true partworths for each of the 1000 respondents for each question-
 design method.

 1 All code (and the orthogonal design) is available at http://mitsloan.mit.
 edu/vc and is open source.
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 Table 1

 MONTE CARLO SIMULATION RESULTS

 Magnitude  Heterogeneity
 Question
 Design

 RMSE  Percentage Best  Hit Rates  Correlations

 HB  AC  HB  AC  HB  AC  HB  AC

 Low  High  Random  .892*  1.116  26.9*  17.2  .538  .508  .656*  .506

 Orthogonal  .904  .950  21.7  22.1  .540  .526  .651*  .569

 Customized  .883*  .993  27.6*  26.9  .548*  .539*  .660*  .553

 Polyhedral  .928  .880*  23.8*  33.8*  .527  .538*  .632  .609*

 Low  Low  Random  1.027  1.206  21.9  16.5  .421  .403  .589  .446

 Orthogonal  .964*  1.012*  29.6*  28.9  .438*  .425  .629*  .535*

 Customized  1.018  1.086  28.7*  37.9*  .423  .436*  .589  .523*

 Polyhedral  1.033  1.103  19.6  16.7  .418  .403  .587  .509

 High  High  Random  .595  .812  23.5  15.0  .627*  .584  .813  .666

 Orthogonal  .815  .871  4.3  5.8  .590  .581  .715  .646

 Customized  .611  .891  31.9  10.0  .630*  .581  .802  .626

 Polyhedral  .570*  .542*  40.3*  69.2*  .626*  .636*  .819*  .760*

 High  Low  Random  .446  .856  31.8  16.3  .750  .632  .903  .676

 Orthogonal  .692  .824  2.8  11.7  .668  .626  .804  .680
 Customized  .769  1.012  18.8  10.1  .612  .558  .698  .570

 Polyhedral  .418*  .571*  46.6*  61.9*  .761*  .704*  .912*  .798*

 *Best or not significantly different from best at p < .05.
 Notes: Lower values of RMSE reflect increased accuracy, and higher values on percentage best, hit rates, and correlations reflect increased accuracy. Text

 in italic bold indicates the best question-design method for each estimation method within an experimental domain (and any other methods that are not sta-
 tistically different from the best method).

 Table 2

 COMPARISON SUMMARY FOR QUESTION DESIGN

 Magnitude  Heterogeneity  RMSE  Percentage Best  Hit Rates  Correlations

 Low  High  Random  Polyhedral  Customized  Random

 Customized  Orthogonal
 Polyhedral  Customized

 Low  Low  Orthogonal  Orthogonal  Orthogonal  Orthogonal
 Customized  Customized

 High  High  Polyhedral  Polyhedral  Polyhedral  Polyhedral
 High  Low  Polyhedral  Polyhedral  Polyhedral  Polyhedral

 Table 3

 COMPARISON SUMMARY FOR ESTIMATION

 Magnitude  Heterogeneity  RMSE  Percentage Best  Hit Rates  Correlations

 Low  High  AC  AC  HB  HB

 HB

 Low  Low  HB  AC  AC  HB
 HB  HB

 High  High  AC  AC  AC  HB

 High  Low  HB  HB  HB  HB

 entries in Tables 2 and 3 correspond to the best overall
 method (question design x estimation) for each domain.

 For comparability between estimation methods, we first
 normalized the partworths to a constant scale. Specifically,
 for each respondent, we normalized both the true partworths
 and the estimated partworths so that their absolute values
 summed to the number of parameters and their values
 summed to zero for each feature. In this manner, the RMSEs
 can be interpreted as a percentage of the mean partworths.
 Within an estimation method, subject to statistical confi-
 dence, this scaling does not change the relative comparisons
 among question-design methods, and it has the additional

 advantage of making the results roughly comparable in units
 for the different manipulations of magnitude (response
 accuracy) and heterogeneity. This scaling addresses two
 issues. First, AC estimation is unique to a positive linear
 transformation and thus focuses on the relative values of the

 partworths, as many managerial applications require. Sec-
 ond, unscaled logit analyses confound the magnitude of the
 stochasticity of observed choice behavior with the magni-
 tude of the partworths. Our scaling enables us to focus on
 the relative partworths. For volumetric forecasts, we recom-
 mend the methods that Louviere, Hensher, and Swait (2000)
 propose and validate; these methods are well documented
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 and reliable and have proved appropriate for matching dis-
 parate scales.

 Question-Design Methods

 As we hypothesized, polyhedral question design performs
 well in the high-magnitude (high-response-accuracy)
 domains. For these domains, polyhedral question design is
 best, or tied for best, for all metrics and for both estimation
 methods. These domains favor individual-level adaptation
 because the design of subsequent questions is based on
 more-accurate information from previous answers. When
 magnitudes are low, the greater response error works against
 individual adaptation, and polyhedral question design does
 not do as well.

 The impact of heterogeneity is more complex. We expect
 that individual-level adaptation performs well when respon-
 dents are heterogeneous. When both magnitudes and hetero-
 geneity are high, conditions favor polyhedral question
 design, and it performs well. In this domain, the accuracy of
 the data enables individual-level adaptation to be efficient.
 However, for low magnitudes, the disadvantages of high
 response errors appear to offset the need for customization
 (high heterogeneity). In this domain, polyhedral question
 design is best only for AC estimation, perhaps because the
 two polyhedral methods are complementary: Polyhedral
 question design shrinks the feasible region rapidly, thereby
 making AC estimation more accurate. We expect low het-
 erogeneity to reduce the need for customization and low
 response accuracy (low magnitude) to work against deter-
 ministic customization. In this domain, as we predicted,
 polyhedral methods do not perform as well as orthogonal
 and aggregate customized designs.
 Perhaps a surprise in Table 1 is the strong performance of

 random designs compared with orthogonal designs, espe-
 cially for HB estimation and when either magnitudes or het-
 erogeneity are high. We believe that two phenomena explain
 this relative performance. First, orthogonal designs are opti-
 mal only when the partworths are zero. For higher magni-
 tudes, orthogonal designs are farther from optimal (Arora and
 Huber 2001; Huber and Zwerina 1996). For example, when
 we compute D-errors for orthogonal and random designs in
 the high-magnitude domains, the D-errors are higher for
 orthogonal questions than for random questions. Second, HB
 uses interrespondent information effectively. As Sandor and
 Wedel (2003) illustrate, multiple designs are more likely to
 contribute incremental information about the population. The
 accuracy of random designs compared with that of fixed,
 orthogonal designs is consistent with simulations of differen-
 tiated designs as proposed by Sandor and Wedel (2003).
 Finally, we note three aspects of Table 1. First, Table 1

 replicates the Arora-Huber (2001) simulations when the
 domains and metric are matched: Arora and Huber use HB

 methods and report RMSE. In the Arora-Huber simulations,
 aggregate customization is superior to orthogonal designs
 when magnitudes are high and when heterogeneity is high.
 Second, there are ties in Table 1, especially for the low-
 magnitude and high-heterogeneity domain, perhaps because
 high heterogeneity favors customization whereas low mag-
 nitudes make customization more sensitive to errors. Even

 when we increase the sample size to 1500 (for RMSE), we
 are unable to break the ties. In this domain, for most practi-
 cal problems, question design appears less critical. Third,

 performance varies slightly by metric, especially when there
 are ties and especially for low magnitudes.

 Estimation Methods

 The findings in Table 1 also facilitate the comparison of
 estimation methods. We already noted that AC performs
 well when matched with polyhedral questions for high het-
 erogeneity. In most other domains (and for most metrics),
 HB is more accurate. In theory, the advantages of HB derive
 from several properties, one of which is the use of
 population-level data to moderate individual-level estimates
 (shrinkage). We expect that this is particularly beneficial
 when the population is homogeneous, because the
 population-level data provide more information about indi-
 vidual preferences in these domains. This is consistent with
 Table 1 and may help explain why the relative performance
 of AC improves when the population is more heterogeneous.

 Before we reject AC estimation for the domains in which
 HB is superior, we investigate the theoretical potential to
 improve AC by replacing the AC estimate with a convex
 combination of the AC estimate and the population mean
 (shrinkage). If the population mean ((3), its variance (6/23),
 and the accuracy of AC (RMSE) are known, classical Bayes
 updating provides a formula with which to implement
 shrinkage. To test shrinkage, we used the known population
 mean, its variance, and the RMSE from Table 1. With these
 values, we computed a single parameter for each domain, a,
 with which we weighed the population mean. Using these
 theoretical as, a convex combination of AC and the popula-
 tion mean provides the best overall estimate in all four
 domains: RMSEs of .863, .871, .510, and .403, respectively,
 and the last three are significantly best at the .05 level. In
 practice, a is unknown, so it must be estimated from the
 data. Optimal estimation is beyond the scope of this article,
 but surrogates, such as use of either HB or classical logit
 analysis to estimate a, should perform well. We conclude
 that AC shows sufficient promise to justify further
 development.

 Summary of Monte Carlo Experiments

 We summarize the results of the Monte Carlo experiments
 as follows:

 .Polyhedral question design shows the most promise when mag-
 nitudes are high (response errors are low).
 .If magnitudes are low (response errors are high), it may be best
 not to customize designs; fixed orthogonal questions appear to
 be more accurate than polyhedral or customized methods.
 .The HB estimation method performs well in all domains.
 .The AC estimation method performs well when matched with
 polyhedral question design and when heterogeneity is high.
 .The AC estimation method shows sufficient promise to justify
 further development. Preliminary analysis suggests that a mod-
 ified Bayesian AC estimate is particularly promising if an opti-
 mal means can be found to estimate a single parameter, a.

 As for many new technologies, we hope that polyhedral
 question design and AC estimation will improve further with
 use, experimentation, and evolution (Christensen 1998).

 APPLICATION TO THE DESIGN OF EXECUTIVE
 EDUCATION PROGRAMS

 Polyhedral methods for CBC have been implemented in
 at least one empirical application. We describe this applica-
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 tion briefly as evidence that it is feasible to implement the
 proposed methods with actual respondents. Furthermore, the
 data provide empirical estimates of magnitude and hetero-
 geneity, enable us to test the feasibility and choice-balance
 criteria, and provide insight on the convergence of AC and
 HB estimates. Because the managerial environment required
 that we implement a single question-design method, we
 could not compare question-design methods in this first
 proof-of-concept application.

 Feature Design and Sample Selection for the Polyhedral
 CBC Study

 The application supported the design of new executive
 education programs for a business school at a major univer-
 sity. The school was the leader in 12-month executive
 advanced-degree programs and had a 50-year track record
 that has produced alumni who include chief executive offi-
 cers, prime ministers, and a secretary general of the United
 Nations. However, the demand for 12-month programs was
 shrinking because it has become increasingly difficult for
 executives to be away from their companies for 12 months.
 The senior leadership of the school was considering a radi-
 cal redesign of its programs. As part of the effort, the lead-
 ership sought input from potential students. On the basis of
 two qualitative studies and detailed internal discussions, the
 senior leadership of the school identified eight program fea-
 tures that were to be tested with conjoint analysis. The fea-
 tures included program focus (three levels), format (four
 levels), class composition (three levels of interest focus, four
 age categories, and three types of geographic focus), spon-

 sorship strategy (three levels), company focus (three levels),
 and tuition (three levels). This 42 x 36 design is relatively
 large for CBC applications (e.g., Huber 1997; Orme 1999)
 but proved feasible with professional Web design. We pro-
 vide an example screenshot in Figure 5 (the university logo
 and tuition levels are redacted). Before respondents
 answered the stated-choice questions, they reviewed
 detailed descriptions of the levels of each feature and could
 access the descriptions at any time by clicking the feature's
 logo.

 After wording and layout were refined in pretests, poten-
 tial respondents were obtained from the Graduate Manage-
 ment Admissions Council through its Graduate Manage-
 ment Admissions Search Service. Potential respondents
 were selected on the basis of their age, geographic location,
 educational goals, and Graduate Management Admission
 Test (commonly referred to as "GMAT") scores. Random
 samples were chosen from three strata: respondents who
 lived within (1) driving distance of the university, (2) a short
 airplane flight, and (3) a moderate airplane flight. Respon-
 dents were invited to participate by e-mail from the director
 of executive education. As an incentive, respondents were
 entered in a lottery in which they had a one-in-ten chance of
 receiving a university-logo gift worth approximately $100.

 Pretests confirmed that respondents could comfortably
 answer 12 stated-choice questions (recall that respondents
 were experienced executives who received minimal response
 incentives). Of the respondents who began the CBC section
 of the survey, 95% completed the section. The overall
 response rate was within ranges that are expected for both

 Figure 5
 EXAMPLE OF WEB-BASED STATED-CHOICE TASK FOR EXECUTIVE EDUCATION STUDY

 EP  EXECUTIVE PROGRAMS

 Please choose
 Please examine the following four programs, each described by their features and tuition. Of these four programs, which do you prefer? Click
 on the circle below the program you would MOST prefer. Click the 'Next' button to continue to the next question.

 NEST:.

 PROGRAM A  PROGRAM B  PROGRAM C  PROGRAM D

 Tech-Driven Enterprise
 On-line

 Global Enterprise  Innovative Enterprise Tech-Driven Enterprise

 Full-Time Residential  Flexible  Weekend

 General Management  Tech. Management  50 - 50 mix  General Management

 30 - 35 years  35 - 40 years  30-40 years  35 - 45 years

 75% North American  75% International  50 - 50 mix  75% North American

 Company Sponsored  Self Sponsored  50 - 50 mix  Company Sponsored

 Small Companies  Large Companies  Mix of large and small  Small Companies

 FEATURES

 Ffii Program Focus

 Program Format

 1 Classmates' Background

 Classmates' Age

 Classmates' Geographic Comp.

 Classmates' Org, Sponsorship.

 [Cil Classmates' Company Size

 El..; Program Tuition
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 proprietary and academic Web-based studies (Couper 2000;
 De Angelis 2001; Dillman et al. 2001; Sheehan 2001).11 We
 found no significant differences between the partworths esti-
 mated for early responders and those estimated for later
 responders. The committee judged the results intuitive, but
 enlightening, and adequate for managerial decision making.
 On the basis of the conjoint study results and internal discus-
 sions, the school redesigned and retargeted its 12-month pro-
 grams with a focus both on global leadership and on innova-
 tion and entrepreneurship. Beginning with the class of 2004,
 it will add a new, flexible format to its traditional offerings.

 Technical Results

 The data provide an opportunity to examine several tech-
 nical issues. We estimated the magnitude and heterogeneity
 parameters using HB methods. We obtained estimates of
 magnitude (p) that ranged from 1.0 to 3.4, with an average
 of 1.5. The heterogeneity coefficient ranged from .9 to 3.2,
 with an average of 1.9. The observed magnitude and the
 observed heterogeneity coefficients span the ranges
 addressed in the Monte Carlo simulations.

 Hit rates are more complex. By design, polyhedral ques-
 tions select the choice sets that provide maximum informa-
 tion about the feasible set of partworths. If the AC estimates
 remain feasible through the 12th question, they obtain an
 internal hit rate of 100% (by design). They remained feasi-
 ble, and we achieved this internal hit rate. This hit rate is not

 guaranteed for HB estimates, which nonetheless perform
 quite well, with internal hit rates of 94%. As we described

 11Couper (2000, p. 384) estimates a 10% response rate for open-invita-
 tion studies and a 20%-25% response rate for studies with prerecruited
 respondents. De Angelis (2001) reports click-through rates of 3%-8% from
 an e-mail list of eight million records. In a study designed to optimize
 response rates, Dillman and colleagues (2001) compare mail, telephone,
 and Web-based surveys. They obtain a response rate of 13% for the Web-
 based survey. Sheehan (2001) reviews all published studies cited in Acade-
 mic Search Elite, Expanded Academic Index, ArticleFirst, Lexis-Nexis,
 Psychlit, Sociological Abstracts, ABI-Inform, and ERIC and finds that
 response rates are dropping at 4% per year. Sheehan's data suggest an aver-
 age response rate for 2002 of 15.5%. The response rate in the executive
 education study was 16%.

 previously, we can examine internal consistency by compar-
 ing the hit rates based on AC estimates from the first i ques-
 tions with their theoretical value, [i + 1/4(12 - i)]112. The fit
 is almost perfect (adjusted R2 = .9973), suggesting that
 polyhedral question design was able to achieve excellent
 choice balance for the respondents in this study. Because the
 internal hit rates are not guaranteed for HB, we plot the hit
 rates for both estimation methods in Figure 6, Panel A. On
 this metric, HB is more concave than AC; it performs better
 for low i but not as well for high i.

 To gain further insight, we adopt an evaluation method
 Kamakura and Wedel (1995, p. 316) use to examine how
 rapidly estimates converge to their final values. Following
 their structure, we compute the convergence rates as a func-
 tion of the number of stated-choice tasks (i) by using scaled
 RMSE to maintain consistency with both Arora and Huber
 (2001) and the Monte Carlo simulations. From the third
 question onward, AC and HB are quite close, achieving
 roughly equal convergence. The HB method does not per-
 form as well for i 1 and 2, most likely because individual-
 level variation (in a population with moderately high het-
 erogeneity) counterbalances the benefit to HB of the
 population-level data.

 On the basis of this initial application, we conclude that
 adaptive polyhedral choice-based questions are practical
 and achieve both feasibility and choice balance. The AC
 estimation method appears to be comparable to the HB esti-
 mation method and deserves further study, perhaps with the
 Bayesian hybrids we suggested previously.

 CONCLUSIONS AND RESEARCH OPPORTUNITIES

 Research on stated-choice question design suggests that
 careful selection of choice sets has the potential to increase
 accuracy and to reduce costs because it requires fewer
 respondents, fewer questions, or both. This is particularly
 true in CBC, because the most efficient design depends on
 the true partworth values. In this article, we explore whether
 the success of aggregate customization can be extended to
 individual-level adaptive question design. We propose
 heuristics for designing profiles for each choice set. We then
 rely on new developments in dynamic optimization to

 Figure 6
 EMPIRICAL HIT RATES AND RMSE CONVERGENCE FOR EXECUTIVE EDUCATION STUDY
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 implement the heuristics. As a first test, we seek to identify
 whether the proposed methods show promise in at least
 some domains. It appears that such domains exist. As with
 many proposed methods, we do not expect polyhedral meth-
 ods to dominate in all domains, and indeed they do not.
 However, we hope that by identifying promising domains
 we can inspire other researchers to explore hybrid methods
 and/or to improve the heuristics.
 Although polyhedral methods are feasible empirically
 and show promise, many challenges remain. For example,
 we might allow fuzzy constraints for the polyhedra. Such
 constraints might provide greater robustness at the expense
 of precision. Future simulations might explore other
 domains, including nondiagonal covariance structures,
 probit-based random-utility models, mixtures of distribu-
 tions, and finite mixture models. Recently, ter Hofstede,
 Kim, and Wedel (2002) demonstrated that self-explicated
 data can improve HB estimation for full-profile conjoint
 analysis. Polyhedral estimation handles such data readily;
 hybrids might be explored that incorporate both self-
 explicated and stated-choice data. Future developments in
 dynamic optimization might enable polyhedral algorithms
 that look several steps ahead. We close by recognizing
 research on other optimization algorithms for conjoint
 analysis. Evgeniou, Boussios, and Zacharia (2003) propose
 support vector machines to balance complexity of interac-
 tions with fit. They are currently exploring hybrids based on
 support vector machines and polyhedral methods.

 APPENDIX

 MATHEMATICS OF POLYHEDRAL METHODS FOR
 CBC

 We designed this appendix to be self-contained. In their
 metric-pairs algorithm, Toubia and colleagues (2003) pres-
 ent related math programming that is involved in finding an
 interior point, the analytic center, and the Sonnevend
 (1985a, b) ellipsoid in detail. We include the modified math
 programming formulations here for completeness. We cau-
 tion readers that there are important differences between the
 stated-choice formulations as we detail in this article and the

 metric-pair formulations that Toubia and colleagues present.
 The stated-choice algorithm and the knapsack problem do
 not arise in the metric-pairs setting.

 Definitions and Assumptions

 It is helpful to begin with several definitions:

 uf = the fth parameter of the respondent's partworth
 function, where uf 0 is the high level of the fth
 feature (we assume that there are binary features
 without loss of generality) and IF.= uf = 100;

 p = the number of (binary) features;
 p = the p x 1 vector of parameters;

 r = the number of externally imposed constraints, of
 which r' are inequality constraints;

 z = the 1 x p vector that describes the jth profile in the
 ith choice set, where j indexes the respon-
 dent's choice from each set; and

 X = the q(J - 1) x p matrix of Kij = zi1 - Zip for i
 to q and for j = 2 to J (to simplify notation, we
 drop the i subscript from Ji).

 We incorporate inequality constraints by adding slack vari-
 ables. For example, if there are multiple levels and um
 then uh = um + vh., and vhm If there are no errors, the
 respondent's choices would imply 0, where 0 is a vec-
 tor of zeros. We add slack variables and augment II such that
 Xa = 0. We incorporate the additional constraints by aug-
 menting these equations so that u and X include r' additional
 slack variables and r additional equations. This forms a
 polyhedron PcBc
 where a contains nonzero elements because of the external

 constraints. We begin by assuming that PcBc is nonempty,
 that X is full rank, and that no j exists such that uf = 0 for all
 d in PCBC.

 Interior-Point Math Program

 To find a feasible interior point, we solve the following
 linear program (see Freund, Roundy, and Todd 1985):

 (Al) max
 where 6 is a vector of ones. Let (ii*, 0* ) denote a solu-
 tion. If y- > 0 , then 0*-1 re is an interior point of PcBc. If
 yf = 0, then uf = 0 for all u E PcBc. If the linear program
 is infeasible, PCBC is empty.

 Analytic Center Math Program

 We solve the following math program:

 (A2) max
 We solve the program using an algorithm developed by Fre-
 und (1993), which begins with the feasible point u that was
 found previously. At each iteration, we set iit+1= a t + atdt,
 where we find dt using the following quadratic approxima-
 tion of the objective function:

 (A3) In
 If Ut is a diagonal matrix of the utf's, then dt solves

 (A4) (1dT(ut)-2d,
 Using the Karush-Kuhn-Tucker conditions, we determine
 that (ut)2xT[x(ut)2xTp-a. If 11 (ut )-idt II < .25,
 then at is already close to optimal, and we set at = 1. Other-
 wise, we find the optimal at with a line search. The program
 continues to convergence at u

 If PCBC is empty, we employ the error modeling proce-
 dure that Toubia and colleagues (2003) present. However,
 note that PcBc will not be empty if CBC questions are cho-
 sen with the polyhedral algorithm. If X is not full rank,
 X(Ut)2XT might not invert. There are two practical solu-
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 tions: (1) Select questions such that X is full rank, or (2)
 make X full rank by removing redundant rows (see Toubia
 et al. 2003). If, when searching for feasibility, we identify
 some f's for which uf = 0 for all 11 E PcBc, we can find the
 analytic center of the remaining polyhedron by removing
 those f's and by setting of = 0 for those indexes.

 The Longest Axes of the Sonnevend Ellipsoid

 If u is the analytic center and U is the corresponding diag-
 onal matrix, Sonnevend (1985a, b) demonstrates that E C_

 PCBC where E
 (ii and Ep is constructed propor-
 tional to E by replacing 1 with [p Because
 we are interested only in the direction of the longest axes of
 the ellipsoids, we can work with the simpler of the propor-
 tional ellipsoids, E. Let g such that the longest axis
 is a solution to

 (A5) max pg, subject to -gT17-2g<_1, and Vg =

 Under the Karush-Kuhn-Tucker conditions, the solution to
 this problem is the eigenvector of the matrix, [U-2 -
 XT associated with its smallest positive
 eigenvalue. The direction of the next longest axis is given by
 the eigenvector associated with the second smallest eigen-
 value, and so on.

 Profile Selection for Target Partworth Values

 We select the values of the ails for the subsequent ques-
 tion (i = q + 1) on the basis of the longest axes. Each axis
 provides two target values. For odd J, we randomly select
 from target values derived from the [(J + 1)/2]th eigenvector.
 To find the extreme estimates of the parameters,
 solve for the points at which ui1
 a3g+2, and a4g2 intersect PCBs
 (the generalization to J # 4 is straightforward). For each a,
 we increase a until the first constraint in PcBc is violated.
 To find the profiles in the choice set, we select feature costs,
 and a budget, M, as researcher-determined parameters.
 Without such constraints, the best profile is trivially the pro-
 file in which all features are set to their high levels. Subject
 to this budget constraint, we solve the following knapsack
 problem with dynamic programming:

 (OPT1) max zljulj, subject to M, elements of E {OM

 For multilevel features, we impose constraints on OPT1,
 such that only one level of each feature is chosen. In the
 algorithms we have implemented to date, we have set "6
 and drawn M from a uniform distribution on [0, 50], redraw-

 ing M (up to 30 times) until all four profiles are distinct. If
 distinct profiles cannot be identified, it is likely that PcBc
 has shrunk sufficiently for the managerial problem. For null
 profiles, constraints should be extended accordingly, as we
 describe in text.
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