
MARKETING SCIENCE
Vol. 37, No. 6, November–December 2018, pp. 930–952

http://pubsonline.informs.org/journal/mksc/ ISSN 0732-2399 (print), ISSN 1526-548X (online)

A Semantic Approach for Estimating Consumer Content
Preferences from Online Search Queries
Jia Liu,a Olivier Toubiab

aHong Kong University of Science and Technology, Clear Water Bay, Hong Kong; bColumbia Business School, Columbia University,
New York, New York 10025
Contact: jialiu@ust.hk, http://orcid.org/0000-0002-0279-724X (JL); ot2107@columbia.edu, http://orcid.org/0000-0001-7493-9641 (OT)

Received: December 15, 2015
Revised: February 28, 2017; February 6, 2018;
April 23, 2018
Accepted: May 1, 2018
Published Online in Articles in Advance:
October 16, 2018

https://doi.org/10.1287/mksc.2018.1112

Copyright: © 2018 INFORMS

Abstract. We extend latent Dirichlet allocation by introducing a topic model, hierarchi-
cally dual latent Dirichlet allocation (HDLDA), for contexts in which one type of document
(e.g., search queries) are semantically related to another type of document (e.g., search
results). In the context of online search engines, HDLDA identifies not only topics in short
search queries and web pages, but also how the topics in search queries relate to the topics
in the corresponding top search results. The output of HDLDA provides a basis for es-
timating consumers’ content preferences on the fly from their search queries given a set of
assumptions on how consumers translate their content preferences into search queries. We
apply HDLDA and explore its use in the estimation of content preferences in two studies.
The first is a lab experiment in which we manipulate participants’ content preferences and
observe the queries they formulate and their browsing behavior across different product
categories. The second is a field study, which allows us to explore whether the content
preferences estimated based on HDLDAmay be used to explain and predict click-through
rates in online search advertising.
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1. Introduction
Over the last decade, search engines, such as Google,
have become one of the primary tools consumers use
when searching for products, services, or information.
This trend has given rise to twomajor industries, search
engine optimization (SEO), whose related spending is
expected to reach $80 billion by 2020 in the United
States alone (Borrell 2016), and search engine market-
ing (SEM), whose related spending was estimated at
$92 billion for 2017 (Statista 2017). SEO refers to the
process of tailoring a website’s content to optimize its
organic ranking for a given set of keywords or queries
to improve traffic and lead generation (Amerland 2013).
SEM usually refers to paid advertising on search en-
gines. Success in both of these industries hinges onfirms’
ability to infer the content preferences underlying con-
sumers’ search queries. For example, a firm engaging in
SEM should bid more on keywords/queries that reflect
preferences that are better aligned with its content. In
addition, it should be able to identify search ad copies
that optimally promote this content. Similarly, a firm
engaging in SEO should promote its content, that is,
attempt to have its content appear as a top organic
search result to consumers for whom this content is
more relevant. Hence, firms engaging in SEO should

be able to assess which queries reflect content pref-
erences that are best aligned with their content.
Despite the importance of being able to infer con-

sumers’ content preferences from their queries, very
little research has been done in this area. Some research
(which is reviewed in Section 2.2) has developed tax-
onomies of search queries and search intent. However,
that research does not enable firms to infer content
preferences in a quantified, nuanced, and detailed
manner. Another stream of research in marketing
(which is reviewed in Section 2.3) has quantified con-
sumer preferences from their search behavior. However,
that research has primarily focused on consumer search
behavior that manifests itself via discrete choices (e.g.,
purchasing, clicking). Text-based search behavior (e.g.,
entering a search query), despite being a major way
in which consumers search today, has not received as
much attention in that literature.
Because of the nature of textual data, inferring con-

tent preferences from search queries presents several
challenges. A first challenge is that search terms tend to
be ambiguous; that is, consumers might use the same
term in different ways. This implies that content pref-
erences should be estimated taking into account the
entire content of search queries. A second challenge is
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the curse of dimensionality: the number of possible
keywords or queries available to consumers is very
large. A third challenge is the sparsity of search query:
most search queries contain only up to five words
(Wang et al. 2003, Kamvar and Baluja 2006, Jansen et al.
2009). Fourth, there exist some potentially complex se-
mantic relationships between the content in a search
query and the content in the corresponding search re-
sults. Previous research (also reviewed in Section 2.3)
has suggested that consumers have the ability to le-
verage these semantic relationships when formulating
queries. That is, consumers may not necessarily for-
mulate queries that exactly and directly reflect their
content preferences but rather formulate queries that are
more likely to retrieve the type of content they are
looking for.

The first two challenges may be addressed by simply
describing content as a set of topics rather than indi-
vidual words, following the literature in information
retrieval (Manning et al. 2008). That is, content in queries
and web pages may be described using a small number
of topics, defined as probabilistic combinations ofwords.
In this paper, we define a consumer’s preferences as an
ideal distribution across these topics, which reflects
the content that the consumer wants to consume online.
Such definition is analogous to the ideal-point model
of preferences in which a product is preferred if it is
closer to the consumer’s ideal product profile (Green
and Srinivasan 1978).1

However, addressing the third and fourth challenges
calls for a different type of topic model that (1) is able
to combine information from multiple sparse search
queries and their associated search results and (2) ex-
plicitly quantifies the mapping between queries and
results. We develop such a probabilistic topic model in
this paper: hierarchically dual latent Dirichlet allocation
(HDLDA). HDLDA is built upon latent Dirichlet allo-
cation (LDA) (Blei et al. 2003), an unsupervised Bayesian
learning algorithm that extracts “topics” from text based
on occurrence. HDLDA is specifically designed for
contexts in which one type of document (in our context,
search queries) is semantically related to another type
of document (in our context, web pages). The model is
dual because the two types of document (search queries
and web pages) share the same topic-word distribu-
tions. The model is hierarchical because the topic in-
tensities of a web page are modeled as a function of the
topic intensities of the search query(ies) that retrieve
this page. Such structure alleviates the sparsity of
search queries by allowing the topic intensities in
a search query to be influenced by the information
contained in the web pages that it retrieves as well as
the other search queries that retrieve the same pages.
Such structure also explicitly quantifies the mapping
from search queries to search results. HDLDA can be
estimated on any primary or secondary data set that

contains the text of a set of queries and their results on
a search engine.
HDLDA provides a basis for estimating consumers’

content preferences from their queries. HDLDAmodels
the topics in the web pages retrieved by a search engine
in response to a search query; the model itself is
agnostic as to how consumers translate their content
preferences into search queries. Therefore, the exact
manner in which content preferences are estimated
based on HDLDA depends on the assumption the
analyst is willing to make on how consumers translate
their content preferences into search queries. If con-
sumers are assumed to be strategic and formulate
queries that will reach an ideal topic distribution among
the results, their preferences may be estimated as the
expected topic intensities of the results given their search
queries. On the other hand, if consumers are assumed to
be naive and formulate queries that directly express
their content preferences, then their preferences may be
estimated as the topic intensities of their search queries.
In both cases, estimation may be made on the fly,
making it useful for firms interested in customizing
content (e.g., display or search advertising) based on a
consumer’s query.
We apply HDLDA and explore its use in the esti-

mation of content preferences in two studies. We start
by running a lab experiment that allows us to exoge-
nously manipulate consumers’ preferred content, which
we can compare with estimates of content preferences.
In particular, we provided participantswith search tasks
in various categories (e.g., finding a ski resort with
specific features to recommend to someone) and asked
them to perform a series of searches to find a suitable
URL for each task description. To track user behavior
on the search engine, we built our own search engine,
Hoogle, which technically serves as a filter between
Google and the user. Specifically, Hoogle runs all queries
for all users through the Google application pro-
gram interface (API), showing only the organic Google
search results with no user history being captured
(unlike with regular Google searches). In practice,
marketers/advertisers may use a search engine’s API
to collect data on queries that are relevant for their search
marketing strategies and use these data as input to
HDLDA without running any experiment and without
using a customized search tool, such as Hoogle. This is
the approach we adopt in our second study. We il-
lustrate the practical relevance of our research using
field data collected by a large online travel company
that heavily advertises on Google. We show field
evidence that HDLDA may be used to explain and
predict consumer click-through rate in online search
advertising based on the degree of alignment between
the search ad copy shown on the search engine results
page and the content preferences estimated using
HDLDA.
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Our research has both methodological and mana-
gerial contributions. Methodologically, HDLDA has
a structure that is different from current extensions of
LDA in the marketing and topic-modeling literature.
Managerially, HDLDA can help firms to organize and
understand themeaning of different search queries and
web pages and to estimate consumers’ content prefer-
ences based on their queries. In general, by empow-
ering marketers/advertisers to infer consumers’ content
preferences from queries, our work can help them create
more relevant content and promote that content more
effectively. In the context of SEM, our research can inform
advertisers’ bidding strategies by determining how well
their content matches different queries. Our research can
also help advertisers identify more relevant ad copy for
a given search query, especially when there is not enough
data on the click-through rate of each potential ad copy for
that query or when advertisers have tomanage thousands
of possible ad copies and/or target queries (as is the case of
the company with which we collaborated on our field
study). In the context of SEO, our work can help firms
prioritize their efforts by determining the queries onwhich
it ismore essential to improve organic search rankings, that
is, the queries that reflect content preferences best aligned
with the content they are trying to promote.

The rest of the paper is organized as follows. In
Section 2, we review the related literature. In Section 3,
we introduce the topic model HDLDA. In Section 4, we
describe our experimental design and data. We present
the results from our lab study in Section 5 and our field
application in Section 6. We conclude in Section 7.

2. Relevant Literature
2.1. Natural Language Processing
There has been a stream of recent research in marketing
that applies natural language processing (NLP) to
analyze online user-generated content (Archak et al.
2011, Lee and Bradlow 2011, Ghose et al. 2012, Netzer
et al. 2012). Our research builds upon the literature on
topic modeling within NLP or the so-called LDA (Blei
et al. 2003). LDA is an unsupervised Bayesian learn-
ing algorithm that extracts “topics” from text based on
occurrence. By examining a set of documents, LDA
represents each topic by a probability distribution over
words and each document by a probability distribution
over topics (to which we refer as topic intensities).
Applications of LDA in the marketing literature include
Tirunillai and Tellis (2014), who apply LDA to identify
dimensions of quality and valence expressed in online
reviews;Abhishek et al. (2018),whouseLDAtomeasure the
contextual ambiguity of a search keyword; and Büschken
and Allenby (2017), who propose an extension of LDA in
which words within the same sentence of an online re-
view are constrained to pertain to the same topic.

Our proposed topic model, HDLDA, has a struc-
ture that differs from other extensions of LDA. We

highlight three extensions related to ours: the corre-
lated topic model (Blei and Lafferty 2007), the hierar-
chical topic model (Blei et al. 2003), and the relational
topic model (Chang and Blei 2009). The correlated topic
model allows correlation between documents in the
occurrence of topics. In contrast, HDLDA focuses on the
correlation between different types of document, for
example, web pages and queries. The hierarchical topic
model aims to learn a hierarchy of topics, that is, which
topics are more general versus specific. In contrast,
HDLDA defines hierarchy over documents; for ex-
ample, topics in web pages are related to the topics in
queries. The relational topic model studies document
networks (e.g., whether two research papers tend to be
cited by the same authors), whereas HDLDA leverages
the observed hierarchy between different types of doc-
uments to infer their topics and semantic relationships.

2.2. Online Search Queries
Our topic model, HDLDA, captures the mapping be-
tween search queries submitted by users and search
results provided by a search engine. This topic model
allows researchers and practitioners to specify as-
sumptions on how users translate their content pref-
erences into search queries and develop methods for
inferring content preferences from search queries given
these assumptions and themapping from search queries
to search results provided by HDLDA. Hence, our work
is relevant to the literature on understanding users’
intent behind their search queries from the computer
science and information systems literature. This
research has primarily focused on classifying con-
sumers’ search intent into some discrete categories
(Broder 2002, Jansen et al. 2007, Sanasam et al. 2008,
Shen et al. 2011). The first and most popular catego-
rization was proposed by Broder (2002), who defined
three very broad classes: informational, navigational,
and transactional. Informational search involves looking
for a specific fact or topic, navigational search seeks to
locate a specificwebsite, and transactional search usually
involves looking for information related to a particular
product or service. Jansen et al. (2008) showed that about
80% of queries are informational, about 10% are naviga-
tional, and less than 10% are transactional.
Such empirical study of search logs provides valu-

able insights into what people search for and how they
search for content. However, these types of analysis do
not quantify users’ content preferences, which HDLDA
enables. This is managerially important to help website
owners or advertisers improve the fit between their
content and consumers’ preferences.

2.3. Search Models
Consumer search behavior is often modeled within
a utility maximization framework. Applications of this
framework to online search have focused on discrete
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search behavior, such as which links or products con-
sumers decide to view/click. This was done either using
static models or dynamic models in which users search
sequentially and stop searchingwhen themarginal cost of
search exceeds the marginal gains (Jeziorski and Segal
2010,Kimet al. 2010,Dzyabura 2013,Ghose et al. 2013, Shi
and Trusov 2013, Yang et al. 2015).

However, text-based search behavior, such as en-
tering a search query, has been largely ignored. En-
tering a query is a first-order user behavior on most
search platforms, and queries contain valuable infor-
mation about user preferences (Pirolli 2007). Yet the
field is lacking tools to leverage query data and in
particular to extend search models based on utility
maximization to the context of online search queries.
Such extension requires specifying assumptions on
how consumers formulate search queries given their
content preferences. One such assumption was for-
mulated by Liu and Toubia (2018), who argue that
a query is not a direct representation of users’ content
preferences, but rather a tool to retrieve content that
matches their preferences. These authors give the ex-
ample of a consumer entering the following query: “af-
fordable sedan made in America.” It is possible that the
most important attributes for this consumer are in fact
safety, comfort, and made in America and that afford-
ability is of lesser importance. This consumer might have
decided to use this query because the consumer believes
that cars made in America are generally safe and
comfortable but not necessarily affordable. In that
case, the consumer anticipated finding relevant search
results efficiently (i.e., with short queries) by only in-
cluding “made inAmerica” and “affordable” in the queries
but not “safe” or “comfortable” although these are im-
portant attributes. In other words, the consumer may
have strategically leveraged the semantic relationships
between queries and resultswhen formulating the query.
Liu and Toubia (2018) illustrate using field data that
consumers stand to benefit from being strategic in query
formation, and they present the results of an incentive-
aligned lab experiment that suggests consumers have at
least some ability to be strategic in query formation.
Assuming that consumers are strategic in query formation
leads to one particular way in which content preferences
may be estimated from search queries, using the output
of HDLDA. In this paper, we are agnostic ex ante as to
how consumers translate content preferences into search
queries. We empirically compare content preferences
estimated using a strategic assumption to preferences
estimated using a naive assumption that consumers
formulate search queries that directly reflect their content
preferences.

3. The Model
In this section, we first describe our proposed topic
model, HDLDA, followed by its inference algorithm.

Then, we show how the output from HDLDA can be
used to estimate consumer content preferences based
on search queries. We also present some benchmark
approaches, which we compare with HDLDA in our
empirical studies.

3.1. HDLDA
HDLDA is a model for bag-of-word data with which
one type of document—in our case, search queries—is
semantically related to a different type of document—
in our case, web pages. We assume that there is one
LDA process for each type of document. The two
processes share the same topic-word distributions,
and they are hierarchical in the sense that the topic
intensities in each web page are related to the topic
intensities in the query(ies) that retrieve the page.
HDLDA can be applied to any corpus that has such
hierarchically dual structure. We focus here on an ap-
plication to search engines and set the notations within
this context.
Suppose there is a collection ofQ different queries for

a particular search domain, and these queries retrieve
a collection of P different web pages on a search engine.
Let lpq ∈ {0, 1} indicate whether web page p is retrieved
by query q; that is, it appears in the top search results
for query q. Let J denote the total number of different
words in the vocabulary, and words are indexed by
j∈ {1, 2, . . . , J}. Let wqj denote the jth word in query q
and wq denote the vector of Jq words associated with
that query, where Jq is the number of words in the
query. Similarly, let wpi denote the ith word in web
page p and wp denote the vector of Jp words associated
with that web page, where Jp is the number of words in
the page. The set of relationships between the data and
the model parameters is described by the graphical
model in Figure 1. Note that we treat the labels {lpq} as
exogenously given by the search engine; that is, we do
not model their generating process.

Topics. We let K denote the number of different topics
in the domain. Search queries and web pages in the
collection are assumed to share the same set of topics,
but each document exhibits these topics with different
intensities. These topic intensities are reflected by the
words present in the documents. Similarly to an LDA,
we model each topic k ∈ {1, 2, . . . ,K} as a vector φk,
which follows a Dirichlet distribution over the J words
in the vocabulary:

φk ~DirichletJ(η). (1)

The hyper-parameter η is a scalar that we estimate,
which controls the sparsity of the word distribution.

Queries. To model the observed jth word wqj in each
query q, we need to model the query’s topic intensities,
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captured by the vector θq and the latent topic assign-
ment zqj ∈ {1, 2, . . . ,K} for that word. Following LDA,
we assume for q � 1, 2, . . . ,Q and j � 1, 2, . . , Jq

θq ~DirichletK(α), zqj ~Category(θq), wqj ~Category(φzqj).
(2)

The hyper-parameter α is a scalar that controls the prior
on the topic intensities in the queries, which we set to
a fixed value in this paper.

Web Pages. Web pages are semantically related with
the set of queries that can retrieve them. HDLDA
captures such a relationship by incorporating a hier-
archical structure. Specifically, we model the prior on
the topic intensities for web page p, θp, as a function
of the topic intensities of the queries that retrieve this
web page. The mapping between queries and results
is specified at the topic level, using a K×K matrix R.
In this matrix, each element rkk′ indicates the effect
of topic k in the retrieving queries on topic k′ in the
corresponding search results. As multiple queries
may retrieve the same web page, we use the aver-
age topic intensities across these queries, which is
denoted as θq(p) � ∑

qθqlpq
/∑

qlpq in the following
equation.2 Following the Dirichlet-multinomial re-
gression topic model (Mimno and McCallum 2008),
we assume that

θp ~DirichletK(exp(RT
1θq(p)), . . . , exp(RT

Kθq(p))). (3)

The exponential of the product between the kth column
of R and θq(p) is proportional to the expected intensity
of topic k in the search results. That is, the intensity of
each topic in each document is related to the intensities
of all topics in the labeling query(ies). Given θp, the

observed jth word in web page p is then modeled in
a standard manner

zpj ~Category(θp), wpj ~Category(φzpj) (4)

for p � 1, 2, . . . ,P and j � 1, 2, . . , Jp.

3.2. Inference Algorithm
Given the content of all queries and web pages and the
labeling of web pages by queries, our goal is to estimate
Θ � {{φk}, {zp}, {zq}, {θp}, {θq},R}. We use a combina-
tion of Markov chain Monte Carlo (MCMC) and opti-
mization, that is, a stochastic expectation maximization
(EM) sampling scheme (Diebolt and Ip 1995, Nielsen
2000, Mimno and McCallum 2008). Specifically, we
apply aGibbs sampler to draw {φk}, {zp}, {zq}, {θp} from
their posterior distributions, which are all conjugate; we
use the Metropolis–Hastings algorithm to sample {θq},
which are not conjugate; and we estimate R by maxi-
mizing its likelihood function given {θq} and {θp}.
Therefore, over the MCMC iterations, we alternate be-
tween sampling {{φk}, {zp}, {zq}, {θp}, {θq}} and nu-
merically optimizing R given the other parameters.3 The
details of our inference algorithm are presented in
Appendix A. In Appendix B, we report a simulation
study that explores the performance of this algorithm.

Hyper-Parameters. The extant literature suggests that
optimizing the hyper-parameters may improve the
performance of a topic model (Wallach et al. 2009a, b).
We tried to estimate both α and η using the previously
stated algorithm by optimizing their likelihood functions,
respectively. However, we found consistently across
multiple corpora that these two hyper-parameters can-
not be jointly estimated in this application, which we
find is due to the sparsity of search queries. Therefore,we

Figure 1. The Graphical Model of HDLDA
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set α � 0.1, and we estimate η by maximizing its like-
lihood function given {φ}. We treat η as a scalar (giving
rise to a symmetric prior) asWallach et al. (2009a, b) find
that an asymmetric prior over the topic-word distribu-
tions provides no real benefit.4

3.3. Estimating Content Preferences Based
on Queries

HDLDA is a topic model that relates the content in
search queries to the content in the web pages retrieved
by a search engine in response to these queries. This
model in itself is agnostic as to how consumers translate
their content preferences into search queries. Nevertheless,
HDLDA allows practitioners and researchers to specify
an assumption on how users translate their content
preferences into search queries and then use the model
to infer or reverse engineer content preferences from
search queries. In this paper, we consider two alter-
native assumptions on how users translate their content
preferences into search queries, which give rise to two
alternative estimation approaches.

The first assumption (consistent with Liu and Toubia
2018) is that consumers anticipate the types of results
that will be retrieved by their query and that they
formulate queries that will retrieve results that match
their preferred content in expectation. We label this
assumption “strategic” because it assumes that users
strategically leverage semantic relationships in query
formation. Under this assumption, a consumer’s pref-
erences may be estimated as the expected topic in-
tensities in the search results given their query.

The alternative assumption we consider is that users
do not leverage the semantic relationship between
queries and results when formulating their queries.
That is, users formulate queries that directly reflect
their content preferences rather than formulating queries
that will retrieve results that reflect these preferences.
We label this assumption “naive” because it assumes
consumers ignore the mapping between queries and
results. Under this assumption, a consumer’s prefer-
ences may be estimated directly as the topic intensities
in the search queries. We note that these two as-
sumptions constitute the two ends of a continuum of
possible assumptions that would allow users to have
only approximate beliefs on the relevant semantic
relationships and/or an imperfect ability to leverage
these relationships. We leave the testing of such as-
sumptions to future research.

We define consumer i’s content preferences as an
ideal distribution over topics on web pages. This dis-
tribution is captured by a vector of weights across K
topics, denoted as βi. Suppose we observe query q from
consumer i. Given the topics {φ} already estimated
from HDLDA, we run an LDA to obtain an estimate
of the topic intensities of query q, denoted as θ̂q.
According to HDLDA, the search engine will retrieve

web pages whose topic intensities are drawn from the
following distribution: θp ~ DirichletK(exp(RT

1 θ̂q), . . . ,
exp(RT

Kθ̂q)). Accordingly, under the strategic assump-
tion, βi may be estimated as the mean of the expected
topic intensities in search results:5

β̂i
HDLDAstrategic

�E(θp | θ̂q)

≜
exp(RT

1 θ̂q)∑
k exp(RT

k θ̂q)
,

exp(RT
2 θ̂q)∑

k exp(RT
k θ̂q)

, . . . ,
exp(RT

Kθ̂q)∑
k exp(RT

k θ̂q)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠. (5)

In contrast, under the naive assumption, βi may be
estimated as the topic intensities of the search query
itself:

β̂HDLDAnaive
i � θ̂q. (6)

Benchmark. We compare the estimation of content
preferences using the output of HDLDA to a bench-
mark in which content preferences are estimated based
on LDA, which treats queries and web pages as
independent documents. We ensure that the compar-
isons of LDA to HDLDA not be driven by HDLDA
having a flexible prior distribution on θp. Specifi-
cally, we allow LDA to also have a flexible prior,
θp~DirichletK(αpage), and we estimate the 1×K vector
of asymmetric hyper-parameters αpage. Similarly to
HDLDA, we set θq~DirichletK(α) as the prior on the
topic intensities in queries, where α � 0.1, and φ~
DirichletJ(η) as the prior on the topic distributions,
where η is a scalar that we estimate. In this case, as
semantic relationships are not captured, content pref-
erences are estimated as the estimated topic intensities of
the query:

β̂LDA
i � θ̂q. (7)

This benchmark is nested within HDLDA in which we
assume all the topics in a query have the same effect on
each topic in the results; that is, R � (r1lK, r2lK, . . . ,
rKlK), where lK denotes a K-dimensional vector of
ones and {rk}k�1,. . . ,K are all scalars. This reduces
the mean of the Dirichlet distribution in Equation (3)
to αpage � (exp(r1), exp(r2), . . . , exp(rK)). Similarly to
HDLDA, we estimate this benchmark with a stochastic
EM algorithm in which we alternate between sampling
{{φk}, {zp}, {zq}, {θp}, {θq}} from the Gibbs sampler
and numerically optimizing the prior parameters αpage

and η given the other parameters.

4. Lab Experiment
Researchers and practitioners may run HDLDA on any
primary or secondary data set that contains the text of
a set of queries and their corresponding search results
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from a search engine. However, in this paper, our ob-
jective is not only to show howHDLDAmay be applied,
but also to test the model’s usefulness as a basis for
inferring consumers’ content preferences from their
search queries. Accordingly, our first data set was col-
lected experimentally, which enabled us to manipulate
the content preferences underlying users’ search be-
havior and measure (albeit imperfectly) the users’
“true” content preferences, which we then compared
with various estimates. To track user behavior on the
search engine, we built our own search engine,
Hoogle, which technically serves as a filter between
Google and the user. Hoogle has the additional benefit
of removing the influence of advertising and custom-
ization on user search behavior, therefore providing
clean comparisons between benchmarks. In this section,
we describe this data set in detail.

4.1. Experimental Design
We conducted a lab experiment in which N � 197
participants performed a series of online search tasks
using our custom-built search engine Hoogle, which
we introduce in Section 4.2. The participants’ objective
was to make purchase recommendations. Our search
tasks were designed based on five product cate-
gories about which consumers commonly acquire in-
formation on the internet before purchase: ski resorts,
printers, cars, laptops, and cameras.6 We manipulated
content preferences exogenously by giving partici-
pants specific search tasks, that is, descriptions of what
they should search for. Each participant was asked to
submit one URL of their chosen web page that they
believed best matched the given task description. To
ensure that participants’ preferences were aligned with
the task descriptions and their corresponding chosen
web pages, our study was incentive-aligned. Partici-
pants were told that all submitted links would be
evaluated by the researchers based on relevance and
usefulness. In addition to a $7 participation fee, we
gave a $100 cash bonus to the participant whose chosen
web page best matched with the corresponding task
description. Participants were informed of this in-
centive before the experiment, and we notified the
winner within two weeks of the experiment.

We introduced some heterogeneity in content pref-
erences by designing two task descriptions reflecting
different preferences within each category as displayed
in Table 1. For example, task 1 asked participants to
search for a family-friendly ski resort, and task 2 asked
them to search for an exclusive ski resort.7 We used
a between-subjects design in which each participant
was randomly assigned to one version of the two tasks
in each category. The order of the categories was
randomized for each participant. We find participants
spent, on average, 20 minutes to finish all the tasks,
which suggests that our incentives worked well.

4.2. Data Collection
As mentioned previously, in addition to applying
HDLDA in various domains, our objective with the
present experiment is also to explore its use for infer-
ring a user’s preferences based on their search queries.
To track user behavior on the search engine while
ensuring that our comparison of various benchmarks
not be influenced by unobserved factors, such as the
user’s browsing history or the customization of content
by the search engine, we built our own search engine
called Hoogle and used it to collect search queries from
consumers. Hoogle retrieves all the organic search
results for each search query with no user history being
captured, using the Google customer engine API. That
is, for any search query, Hoogle retrieves a similar set
of search results as Google with the only differences
that search results are not personalized based on past
search history and there is no sponsored search result.
A screenshot from the Hoogle interface is presented in
Figure 2. Each result page shows 10 links with their
titles and snippets. The font, color, and size are the
same as Google.
The search logs from Hoogle include the following

information for each participant and for each task:
the query(ies) submitted by the participant, the search
results seen by the participant on each page, and the
links clicked by the participants. Immediately after we
finished collecting data in the lab experiment, we also
used Python scripts to automatically download all the
content of the web pages in the participants’ search
results (i.e., the actual content of the web pages cor-
responding to all the links in the result pages viewed by
participants).
We note again that Hoogle is not necessary to run

HDLDA. In practice, most firms have a set of keywords/
queries that they think are most relevant and valuable
for their SEO/SEM strategies. For example, in our field
application, the set of consumer queries was collected
based on a subset of the keywords on which the firm
frequently advertises. We also note that Hoogle is based
on the Google API; that is, the organic results associated
with each search query come directly and only from
Google even though the set of queries comes from the
interaction of consumers with Hoogle.

4.3. Descriptive Statistics
Table 2 reports descriptive statistics on the search data
collected from this lab experiment for each category,
including the number of unique queries, the number of
different words among all the queries, the variation
across users’ queries, users’ query usage, the number of
words per query, and the average proportion of the
words in a query that come from the task description.
First of all, there exists some heterogeneity across users’
queries. Such variation is measured by the edit distance
(Jurafsky and Martin 2000), which is a way to quantify
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how dissimilar two strings are to one another.8 We
compute the edit distance between all possible pairs
of queries from users in the same task and report the
sample average and standard deviation. In addition,
users’ query usage varies across categories, but on av-
erage, they tend to form few queries in a session and use
few words in a query, which is consistent with the
existing empirical studies on search queries (Jansen et al.
2000, Kamvar and Baluja 2006, Wu et al. 2014). Finally,
the average proportion of words in users’ search queries
that are from the task description ranges from 0.40 to
0.75. Hence, users form queries that combine words in
the task description with other words.

We now turn to descriptive statistics related to po-
sition effects. Previous research has shown that position
could affect behavioral outcomes, such as consumer

click-through, conversion rate, and sales (Kihlstrom and
Riordan 1984, Hotchkiss et al. 2005, Varian 2007). In our
data, we find that the majority of users limit their
browsing to the links on the first page of results (i.e., the
top 10 organic links retrieved by Google). Therefore, we
treat every page of results as starting from the first
position. We plot the click-through rate (CTR) against
the top 10 positions in Figure 3. TheCTR at each position
is calculated as the percentage of clicks at this position
across all the clicks from the 10 positions, and hence, the
CTR sums to one across positions. Consistent with
previous research, we see a quasi-exponential decrease
in CTR as a function of position (Narayanan and
Kalyanam 2015, Abhishek et al. 2018).
Finally, we study whether there exists some agree-

ment on the best web page among users assigned to the

Table 1. Search Tasks

Task number Task description

Ski
1 A family is planing to take a vacation at a ski resort in Vermont. They are looking for a small resort that is suitable for family

and children. The resort should have plenty of trails for beginner skiers and also a ski school for kids. There should be lesson
package deals including all-day lift tickets, ski rental, lessons, and so on. At the minimum, the resort should have an on-site
ski rental shop and offer some kind of discounts.

2 David, a banker, is planning to take a vacation at a ski resort in Vermont. He is looking for an exclusive resort that could offer
a variety of terrains for intermediate and advanced skiers. Specifically, the mountain should be large, and the slopes should
be somewhat difficult. In addition, the resort should offer other activities, such as snow tubing, and amenities, such as
a lounge and spa treatments.

Printer
3 Jessica, a college student, wants to purchase a budget printer for school work. The printer should be able to print, copy, and

scan. Double-sided printingwould also be attractive to her. Color printing is not required as she will mostly print black and
white. In addition, the printer should print fast with low noise and the running cost should be low.

4 A family wants to purchase a small printer designed for home users who want lab-quality photos. They want to be able to
connect the printer to wi-fi and smart phones, and it should also be able to print photos without the topic of a computer. As
the printer will be used very frequently, the family is willing to pay slightly more for a printer that is cheaper to run in the
long term.

Car
5 A family wants to buy a new car that could provide more generous space for seating and cargo than their old compact sedan.

The family’s budget is $25,000. Theywant the new car to be safe, reliable, economic, and fuel efficient. It should have a four-
cylinder engine and a high EPA mileage. The car should also handle snow and ice well.

6 Catherine wants to buy a small car to save money on gas, insurance, and maintenance. She also wants to be able to park more
easily in a big city. Her price range is between $10,000 and $14,000. She wants the car to be attractive, stylish, fun, and
practical. Despite its small size, the car should still be safe and should offer a comfortable ride.

Laptop
7 Mike, a college student, wants to buy a new laptop. In addition to school work, the laptop should provide good performance

for playing games. It should have at least an Intel Core i5 CPU, 8 GB of RAM, a good graphics card, and a larger screen.Mike
prefers windows and Linus systems because of their flexibility and wide options for programs. Mike’s price range is
between $800 and $1,000.

8 Mike, a consultant, wants to buy a laptop for work and traveling. Mike’s budget is $600. He will mostly use the laptop for
internet, Word, PowerPoint, and email. He needs a laptop with enough speed, good display, very long battery life, small
size, and light weight. Also the laptop should be durable enough to handle pressure or dropping that may often happen
during traveling.

Camera
9 A couple wants to buy a camera for their nine-year-old son. The camera should be simple to use and easy to carry anywhere.

The camera should have a large viewing screen or touchscreen. Its picture quality should be very good. More importantly,
the camera should be sturdy and be able to withstand falls. And it should also be waterproof, so that it can be used
underwater. The couple prefers a camera in the price range of $100–$200.

10 Kevin, a beginner photographer, wants to buy his first digital SLR camera. Kevin is looking for a model in the midprice range
or alternatively a package kit that includes the body, lenses, and tripod. The camera should be able to shoot both jpeg and
raw files. And it should also come with a wi-fi adapter, which makes it easier to quickly share images through a laptop or
phone.
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same task. For each task and for each URL that was
chosen at least once, we define the agreement level as
the proportion of users who picked that URL as their
chosen link for that task. Overall, the distribution of
the agreement level is long-tailed; that is, the majority
of users tend to choose different URLs. We report in
Figure 4 the agreement levels for the top five most
chosen links for each task. We see that a few links show
some level of consensus among users, and there exists
heterogeneity across tasks.

4.4. Data Preprocessing
Given that most advertisers or firms do business in
certain domains and design web page content and
keyword lists within that, we run HDLDA separately
for each product category. Accordingly, we combine

all the queries and web pages from the two search tasks
in the same category as one corpus. We preprocess the
text in each corpus based on standard practice in text
mining. We remove any delimiting character, includ-
ing hyphens; we eliminate punctuation, non-English
characters, and a standard list of English stop words;
no stemming is performed. We form the vocabulary for
each corpus using the standard term frequency-inverse
document frequencymetric (Jurafsky andMartin 2009).9

The descriptive statistics of the resulting corpora are
summarized in Table 3. The first row is the number of
words that are selected as the vocabulary for each
corpus. The number of words in each query or web
page is calculated based on the selected vocabulary
rather than the original content. Hence, one may notice
that these numbers are smaller than those in Table 2.

Figure 2. (Color online) The Interface of Hoogle
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On average, each query contains about four words, and
each web page contains 250–600 words. The last part of
the table concerns the observed labels between queries
and web pages. On average, each query retrieves about
10 web pages.10 Web pages can be retrieved by very
different numbers of queries.

5. Lab Experiment Results
In this section, we first describe model estimation.
Next, we present the results of the posterior estimates
from HDLDA. Finally, we proceed to the individual-
level estimation of content preferences as described in
Section 3.3.

5.1. Model Estimation
One key decision in topic modeling is choosing the
number of topics for a corpus if this parameter is not
specified a priori (Blei and Lafferty 2009). Depending
on the goals and available means, a researcher may

apply a variety of performance metrics (Griffiths and
Steyvers 2004; Chang and Blei 2009; Wallach et al.
2009a, b). In our case, we initially intended to use the
number of topics determined by evaluation on hold-
out documents for the benchmark model LDA de-
scribed in Section 3.3 as the number of topics for
HDLDA. However, we found that LDA prefers very
large K.11 This issue has been documented in other
empirical applications in marketing (Trusov et al.
2016, Zhang et al. 2017). Moreover, Chang et al.
(2009) found that topic models that perform better
on held out likelihood (e.g., measured by perplexity)
may infer less semantically meaningful topics. There-
fore, we set K ∈ {2, 3, 4} for each corpus based on in-
terpretability. We also estimate all the benchmark
models for K ∈ {2, 3, 4} to evaluate the robustness of
our results to different choices of K.12 We hope that
future research will propose more effective, objec-
tive, and systematic methods for determining the
optimal number of topics in HDLDA and other topic
models. We compare the model fit of HDLDA and
LDA based on the deviance information criterion
(DIC) (Spiegelhalter et al. 2002). The results are re-
ported in Table 4. We find consistently, across all the
categories and K, that HDLDA achieves a much
lower DIC compared with LDA. This suggests that it
is reasonable to explicitly model the mapping be-
tween search queries and search results.

5.2. Posterior Estimates
We now interpret the topics generated by HDLDA in
each corpus. To ease interpretation, we focus on the
most relevant words in each topic. The relevance of
word w to topic k is measured as follows (Bischof and
Airoldi 2012, Sievert and Shirley 2014):

r(w, k |λ) � λ log (φkw) + (1 − λ)log φkw

pw

( )
, (8)

Table 2. Descriptive Statistics of Users’ Search Queries

Task
Number
of users

Number of
unique queries

Number of
unique words

Edit
distance

Number of queries
per user

Number of words
per query

Overlap with
description

Ski 1 99 173 111 31.41 (21.35) 2.13 (1.56) 5.36 (2.62) 0.76 (0.25)
2 97 187 118 33.26 (26.52) 2.54 (1.94) 5.22 (3.14) 0.75 (0.28)

Printer 3 97 295 183 32.56 (14.73) 3.47 (2.93) 5.93 (3.14) 0.57 (0.32)
4 97 204 162 30.82 (25.94) 2.51 (2.02) 4.67 (2.19) 0.53 (0.30)

Car 5 97 375 262 35.71 (20.61) 4.68 (2.93) 5.91 (3.31) 0.56 (0.36)
6 99 368 244 24.53 (16.86) 2.51 (2.02) 4.15 (1.88) 0.42 (0.36)

Laptop 7 98 338 243 32.12 (15.36) 4.06 (4.17) 6.43 (3.29) 0.58 (0.36)
8 95 292 250 30.54 (26.90) 3.67 (3.03) 4.34 (2.27) 0.43 (0.37)

Camera 9 98 243 214 31.13 (18.89) 2.95 (2.51) 4.71 (2.22) 0.44 (0.29)
10 95 271 141 28.65 (16.61) 3.66 (2.78) 5.28 (2.81) 0.68 (0.34)

Notes. We report the sample average with the standard deviation in parentheses. The edit distance is the minimum number of operations
required to transform one query into the other. Larger values indicate lower similarity. We compute the edit distance between all pairs of queries
(queries are pooled together across users) for the same task. The last column reports the proportion of words in a user’s query that appear in the
task description.

Figure 3. CTR as a Function of Position

Note. CTR is normalized to sum to one across positions.
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where φkw is the posterior estimate of the probability of
seeing word w given topic k, pw is the empirical dis-
tribution of wordw in the corpus, and λ determines the
weight given to the probability of wordw under topic k
relative to its lift φkw

pw
, both measured on the log scale.

Setting λ � 1 results in the familiar ranking of words in
decreasing order of their topic-specific probabilities,
and setting λ � 0 ranks words solely based on lift. We
set λ � 0.6, following the empirical studies conducted
by Sievert and Shirley (2014).

For ease of interpretation, we simulate the content of
each topic using the exponential of relevance. That is,
we generate sets of words for each topic, in which the
probability of occurrence of each word is proportional

to the exponential of its relevance. We use word clouds
to visualize the simulated sets of words. As an example,
in Figure 5, we report the word clouds for the four
topics extracted from the laptop categorywhen setting
K � 4. Words with larger font size have higher rele-
vance. Based on the word clouds in Figure 5, one may
label topic 1 as “shopping for laptops,” topic 2 as
“Lenovo related,” topic 3 as “performance,” and topic 4
as “configuration.”
After examining all the extracted topics, we set K � 2

for ski and camera, K � 3 for printer and car, and K � 4
for laptop. Table 5 displays some of the most rele-
vant words for each topic in each category along with
examples of queries and web pages with very high

Figure 4. (Color online) Agreement Level of the Top Five Most Chosen Links for Each Task

Note. For each URL, its agreement level is defined as the proportion of users who picked that URL as their chosen link for the same task.

Table 3. Descriptive Statistics of the Corpora

Ski Printer Car Laptop Camera

Vocabulary size 1,709 3,258 3,128 3,321 3,309
Unique queries 351 495 749 631 515
Words per query 4.62 (2.31) 3.84 (2.01) 3.83 (2.14) 4.50 (2.87) 4.14 (2.03)
Unique web pages 1,167 1,984 4,253 3,042 2,238
Words per web page 258 (278) 366 (341) 559 (697) 736 (1862) 444 (525)
Query–page pairs 3,636 4,928 7,851 6,454 5,049
Web pages per query 10.36 (1.89) 9.96 (2.00) 10.48 (5.61) 10.23 (2.82) 9.80 (2.96)
Queries per web page 3.12 (6.51) 2.48 (4.41) 1.85 (2.72) 2.12 (4.22) 2.26 (3.84)

Note. We report the average across all participants with standard deviations in parentheses.
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weights on each topic. Although we only present five
sample words per topic for space reasons, as one may
see in Figure 5, this is not enough to define or capture
a topic completely. We observe that the recovered topic
intensities of web pages in general seem to be consis-
tent with their actual content. Table 6 reports the av-
erage of the posterior estimates of the topic intensities
of all queries and web pages in each category. We see
that the average θq may not necessarily be similar to
the average θp.

5.3. Content Preference Estimation
Measures of “True” Content Preferences. One of the
appeals of our experimental design is that we can
manipulate content preferences exogenously by ex-
plicitly instructing participants to search for certain
content. We do not claim to be able to measure with
certainty how participants interpreted the task and,
therefore, what their true underlying content prefer-
ences were during the experiment. Nevertheless, our
experimental design provides us with some (imperfect)
measures of participants’ true content preferences,
which we may then compare with the content pref-
erences estimated from participants’ queries based on
various approaches. Our first measure of “truth” is the
set of topic intensities of the actual web page chosen
by the participant.13 This measure has the benefit of
reflecting the actual behavior of participants. However,
one limitation of thismeasure is that a particular page is
more likely to be chosen if it is one of the top search
results, and HDLDA precisely models the expected
distribution of topics across top search results given
a query. That is, the chosen web page is not only
influenced by content preferences (i.e., the demand
side), but also by the options presented by the search
engine (i.e., the supply side), and hence, this measure
partly reflects how well the various models capture the
supply side. So we complement this with a second
measure of true preferences: the set of topic intensities
of the task description given to the participant. This
measure offers the benefit of being unaffected by the
options presented to the participants by the search en-
gine.However, one possible drawback of thismeasure is
that there might be variations in how participants in-
terpret the task description. Note that the data used to
train HDLDA contains neither the text of the task

descriptions nor the knowledge of which web page was
selected by each participant. Therefore, both our truth
measures may be viewed as external validations.
Before comparing performance across benchmarks,

we provide some additional statistics on our truth
measures. The estimated topic intensities of all the task
descriptions are presented in Table 7.14 We see that
each task description may have large intensities on
multiple topics. However, when comparing the in-
tensities of the same topic across the two task de-
scriptions in the same category, the topic with the
relatively larger intensity is consistent with our ex-
pectation. For example, in the ski resort category, task 1
(respectively, task 2) was designed to correspond to
a family-friendly resort (respectively, a luxury resort).
Consistent with this, we find that task 1 has a larger
intensity on topic 1 compared with task 2, and the
opposite is true for topic 2. Note however that the
intensities on topic 1 are larger overall compared with
the intensities on topic 2, reflecting the fact that
family-friendliness is a more common/popular theme
in this category compared with luxury.
Finally, for each subject in each task, we compare

the topic intensities of the web page chosen by the
subject with the topic intensities of the links that the
subject clicked on but did not choose and of all links
displayed on the search engine result page for that
subject. The similarity of two sets of topic intensities is
measured using cosine similarity (i.e., inner product
between two vectors),15 which is commonly used in
topic modeling to understand the similarity between
documents. In our case, it ranges from zero, indicat-
ing complete orthogonality, to one, meaning perfect
alignment. We report the results across all K and
product categories separately for different topic
models in Appendix C. We see that the similarity
between the content that participants end up choosing
and the content onwhich they tend to click is greater than
the similarity between the content they end up choosing
and the content on any search engine result page.

Performance Metric. As a performance metric, we
compute the perplexity score of the true description
of each participant’s content preferences (i.e., task
description or chosen web page) given the estimated
content preferences. Perplexity is monotonically
decreasing in the likelihood of the data and is equivalent

Table 4. DIC

Model K Ski Printer Car Laptop Camera

HDLDA 2 3,122,672 8,236,674 27,683,535 25,298,079 11,261,204
3 2,973,582 7,893,707 26,529,830 24,384,996 10,855,606
4 2,849,094 7,650,230 25,744,413 23,963,219 10,456,815

LDA 2 3,165,124 8,352,227 28,017,795 25,825,592 11,375,783
3 3,031,919 8,081,503 27,298,308 25,080,194 11,084,656
4 2,924,902 7,867,257 26,704,227 24,665,402 10,792,368
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to the inverse of the geometric mean of the per-word
likelihood (Blei et al. 2003). A lower perplexity score
indicates better model performance. Let Li denote the
content (i.e., set of words) of the true description of
user i’s preferences and |Li | denote its length. The per-
plexity score of Li given a vector of estimated content
preferences β̂i is calculated as

perplexity(Li | β̂i) � exp −
∑

w∈Li log (∑kφkwβ̂ik)
|Li |

)
,

(
(9)

where φ is the estimated topic-word distribution from
the topic model under consideration.

Results. We compare the various benchmarks based
on both truth measures, using perplexity score. For
each benchmark, we compute the performance of the
estimates based on each query from each participant
in each category separately. We then compute the
average performance over the queries submitted by
each participant in each category. We report the av-
erage performance across all participants in Table 8,

Figure 5. (Color online) Word Cloud of Four Topics in Laptop

Notes. Panels (a)–(d) are the simulated content for topics 1–4 in the laptop category. The size of eachword is proportional to the exponential of its
relevance.
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where K for each category is set to be the same as that
in Section 5.2 (i.e., the most interpretable set of topics).
For robustness, we replicate Table 8 while setting K to
be the same across product categories for K ∈ {2, 3, 4}
in Appendix D.16

Taking the average performance across categories
gives us an average performance for each participant. In
the last column of Table 8, we report the average per-
formance across participants. We compare all the
benchmarks using paired two-sample t-tests. We first
consider the results when the truth measure is based on
the chosenwebpage.We can see thatHDLDA (strategic),
which leverages the output of HDLDA and assumes
that users leverage semantic relationships when forming
queries, provides significantly better perplexity than
the other benchmarks that assume users do not leverage
these relationships. Both naive benchmarks, HDLDA
(naive) and LDA, perform similarly to one another
overall. When the truth measure is based on the task
description, the comparisons are, in general, consis-
tent with those using the other truth metric with the
exception of the camera category. The average pattern
also holds when setting different values of K (see
Appendix D).

In conclusion, our results suggest that the output of
HDLDA may be used as a basis for estimating content
preferences from queries and that the assumption
that users strategically leverage semantic relationships
when formulating queries leads to estimates that are
more accurate than those reached under the assump-
tion that users naively formulate queries that directly
reflect their content preferences.

6. Field Application
Our lab experiment provided us with some (imperfect)
measure of consumers’ actual content preferences. In
this section, we illustrate the use of HDLDA in practice,
using field data from a company that heavily relies on
search advertising on Google. In particular, we ex-
plore whether the content preferences estimated from
HDLDA may be used to explain and predict con-
sumer click-through behavior. A sponsored search ad
usually contains a heading, a link, and ad copy (a short
description/preview of the landing page, shown to the
user on the search engine results page). Figure 6 shows
four examples of search ads that may appear on Google
when searching for “vacation package Florida.” One
can see that the search ads shown in response to a given
search query may contain very different headings and
descriptions. One key performance metric of a search

Table 5. Topics Extracted from HDLDA

Topic Examples of relevant words Example of query Example of web page

Ski
1 Family, lesson, kids, rental, beginner “Vermont family friendly

ski resort”
Home page of the ski resort Mad River Mountain

2 Hotel, spa, reviews, luxury, exclusive “Ski Vermont spa” Exclusive ski package from Killington on tripadvisor
Printer
1 Wireless, buy, shipping, black, scan “Cheap printer copier

scanner”
Brother wireless all-in-one printer on Amazon

2 Photo, ink, quality, pro, wifi “Home lab quality printer” PIXMA iP4000R photo printer on U.S.A. Canon
3 Printing, student, campus, double, duration “Student printer” On-campus student printing service info

Car
1 Miles, mpg, price, dealer, fuel “Used car Prius” A used Honda Accord on Cargurus.com
2 Honda, Toyota, Nissan, Volkswagen, safety “Big fuel efficient cars” A list of luxury crossover SUVs on USNews
3 Electric, play, insurance, small, home “best small city car” Blog on whether to lease or buy a new car

Laptop
1 Amazon, shipping, accessories, customer, buy “Buy Windows laptop” Best laptops of 2015 on CNET.com
2 Business, play, Lenovo, thinkpad, ideapad “Lenovo y50” Laptop reviews on lenovo.com
3 Battery, gaming, performance, display, dell “Laptop long battery life” Gaming laptop guide on tomsguide.com
4 Intel, CPU, core, ram, mainboard “Intel core i5 CPU” Intel core and AMD comparison on cpuboss.com

Camera
1 Waterproof, kids, screen, touch, tablet “kid friendly waterproof

camera”
Polaroid waterproof digital camera on Kmart

2 Lens, DSLR, ISO, compact, shot “Nikon d3200 bundle” Nikon D5300 review on Camera Labs

Table 6. Mean and Standard Deviation of θq and θp Within
Each Category

Category Parameter Topic 1 Topic 2 Topic 3 Topic 4

Ski θq 0.55 (0.50) 0.45 (0.50)
θp 0.62 (0.31) 0.38 (0.31)

Printer θq 0.46 (0.41) 0.35 (0.39) 0.18 (0.29)
θp 0.33 (0.30) 0.41 (0.30) 0.26 (0.28)

Car θq 0.20 (0.31) 0.45 (0.40) 0.35 (0.39)
θp 0.19 (0.19) 0.52 (0.28) 0.30 (0.29)

Laptop θq 0.21 (0.28) 0.17 (0.24) 0.36 (0.33) 0.25 (0.30)
θp 0.30 (0.27) 0.19 (0.20) 0.43 (0.27) 0.08 (0.13)

Camera θq 0.43 (0.49) 0.57 (0.49)
θp 0.49 (0.32) 0.51 (0.32)

Note. Standard deviations are in parentheses.
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ad campaign is CTR. It is well known by practitioners
and academics that position influences CTR signifi-
cantly (Kihlstrom and Riordan 1984, Hotchkiss et al.
2005, Varian 2007, Agarwal et al. 2011). However, there
has been very little academic research investigating the
impact of the copy of an online ad on CTR.

All else equal, CTR should be higher for a sponsored
search ad whose copy is better aligned with the content
preferences of consumers who type the corresponding
query. If this is the case, the degree of alignment be-
tween content preferences estimated based on HDLDA
and the copy of the ad should be predictive of CTR. We
test whether this is the case, using sponsored search
data from an advertiser on Google. First, we estimate
HDLDA from a subset of the queries on which the firm
advertises on Google and the corresponding organic
search results. Then, following the procedure given in
Section 3.3, we use the output from HDLDA to estimate
content preferences underlying each search query on
which the firm advertises and the topic intensities of each
ad copy used by the firm. Finally, we test whether the
CTR for a (search query, ad copy) pair is linked to the
degree to which the topic intensities of the ad copy
shown on the search engine results page match with

the content preferences estimated based on the query,
controlling for various factors, such as quality score and
position.

6.1. Data
Our data came from a large global online portal, on
which consumers can book airline tickets, hotel rooms,
and rental cars. We only consider search queries that
were matched based on either “exact” or “phrase”
keyword match.17 We focus on queries that are more
relevant for the advertiser by only including queries
that received at least eight impressions over the entire
time window. Each observation in our data set concerns
a combination of one search query and one ad copy. For
each observation, we have access to the following in-
formation based on the firm’s campaigns running from
2013 to 2016: total number of impressions, total number
of clicks, text of the ad copy shown on the search engine
results page, average position of the ad, and the quality
score assigned by Google.18 Our final data set consists of
13,069 (search query, ad copy) pairs with 12,856 unique
search queries and 633 unique ad copies. We find that
98.65% of queries are matched to only one ad copy, and
on average, each ad copy is matched to 20.65 queries with
a standard deviation of 147.49. Table 9 provides summary
statistics of all the variables.

6.2. HDLDA
To explore the ability of content preferences estimated
based on HDLDA to predict CTR out of sample, we
randomly select 3,000 unique queries from our data as
training queries for HDLDA and set the others aside for
out-of-sample validation. We again use Google cus-
tomer search API to collect the top 10 organic search
results for these queries in the training data and use
a Python script to download the web page content
of all the associated organic search results. This results
in 6,578 unique URLs. We process all the textual

Table 7. Posterior Estimates of the Topic Intensities of Task
Descriptions

Task Topic 1 Topic 2 Topic 3 Topic 4

Ski 1 0.85 0.14
2 0.69 0.31

Printer 3 0.14 0.66 0.20
4 0.01 0.98 0.01

Car 5 0.06 0.16 0.78
6 0.06 0.02 0.92

Laptop 7 0.02 0.03 0.90 0.05
8 0.01 0.30 0.68 0.01

Camera 9 0.99 0.01
10 0.22 0.78

Table 8. Estimating Content Preferences from Queries

Ski Printer Car Laptop Camera

K � 2 K � 3 K � 3 K � 4 K � 2 Average

Chosen web page
HDLDA (strategic) 187∗ 364 378∗ 453∗ 351∗ 346∗
HDLDA (naive) 205 366 508 704 589 475
LDA 202 368 461 658 551 448

Task description
HDLDA (strategic) 275∗ 167 394∗ 614∗ 294 348∗
HDLDA (naive) 318 151∗ 420 712 267∗ 373
LDA 308 161 409 700 270∗ 369

Notes. We compute the perplexity score of the “true” description of each participant’s content preferences
(i.e., task description or chosen web page) given the estimated content preferences. Smaller perplexity
indicates better performance. The last column is the average of the average performance for each
participant across all the tasks.

*Model is best or tied for best at p< 0.05.
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information in the search queries and the web page
content, following the procedure described in Section 4.4.
The vocabulary consists of 11,421 unique terms. Given
that the vocabulary is much larger in this field study
compared with the lab experiment, the number of
topics required for HDLDA is also higher. We select
the number of topics K based on trading off fit, in-
terpretability, and computational considerations and
set K � 20. Because all the sampling is independent
across web pages and across queries, we use parallel
computing to speed up the estimation.19

6.3. Regression Analysis
Given the estimated topics φ from HDLDA, we then
estimate the topic intensities of all the search queries
(including the out-of-sample queries) and ad copies.
Next, we estimate content preferences for each query
based on HDLDA (strategic), HDLDA (naive), and
LDA, using the approach described in Section 3.3. Fi-
nally, we compute the similarity between the estimated
topic intensities of a given ad copy a, θ̂a, and the es-
timated consumer content preferences behind query
q, β̂q, using cosine similarity: cos(θ̂a, β̂q). This variable
measures the extent to which a given ad copy matches
with the estimate of content preferences based on the
corresponding query.

We use a logit function to link CTR for the (search
query, ad copy) pair (q,a) to the independent variables:

CTRqa � exp(Uqa)
1 + exp(Uqa), (10)

where

Uqa � δa + µ1Cos(θ̂a, β̂q) + µ2Positionqa

+ µ3AdQualityqa + µ4Lengthq + µ5Lengtha (11)

and δa denotes random effects for ad copy. That is, we
study whether the similarity between the estimated
content preferences and the topic intensities of the ad
copy shown on the search engine results page predicts
CTR, controlling for position effects, ad quality score,
the lengths of the query and the ad copy, and ad copy
random effects. Only cosine similarity differs across
benchmarks.
We estimate this regression model with the cosine

similarity computed from each of the three approaches,
using maximum likelihood. We also estimate this
model without cosine similarity, which we label as “No
Content.” Table 10 reports the results. We find that the
cosine similarity between the content of the ad copy
and the content preferences estimated based on the
query using HDLDA (strategic) is significantly posi-
tively related to CTR (p< 0.05) even when controlling
for ad copy random effects, quality score, position, and
other covariates. In contrast, when content preferences
are estimated based on HDLDA (naive) or LDA, cosine
similarity is not significant. The effect of the other var-
iables is as expected with CTR significantly decreasing
with position and increasing with quality score.
To test predictive validity, we reestimate these re-

gression models only based on the 3,000 queries that
were used to train HDLDA and use the regression

Figure 6. (Color online) Search Ad Example

Table 9. Summary Statistics of Field Data

Variable Mean Standard deviation Minimum Maximum

Number of impressions 454 10,621 8 726,943
Number of clicks 131 4999 1 500,190
CTR 0.365 0.214 0.002 1
Average position 1.824 0.824 1 12.200
Ad quality score 8.914 0.833 5 10
Length of query 3.927 1.389 1 22
Length of ad copy 13.584 0.621 12 16

Notes. The unit of observation is a (search query, ad copy) pair. Our data set contains 13,069 such
observations with 12,856 unique search queries and 633 unique ad copies. The length of a query or an ad
copy is computed based on the original number of terms, not the words in the vocabulary.

Liu and Toubia: Estimating Consumer Preferences from Online Search Queries
Marketing Science, 2018, vol. 37, no. 6, pp. 930–952, © 2018 INFORMS 945



estimates to predict consumer CTR on the remaining
queries, which were not used to train HDLDA or the
regression model. We report the mean absolute error
(MAE) as our metric for prediction accuracy in Table 10.
For in-sample prediction accuracy, we find that the
absolute error from HDLDA (strategic) is significantly
lower than that of the other three models (p< 0.05). For
out-of-sample prediction, HDLDA (strategic) is sig-
nificantly better than any of the other three models
(p< 0.01). Although the improvement in prediction is
relatively modest, given that online search advertising
is a $90 billion industry (Statista 2017), it still has the
potential to have significant financial impact.

To sum up, the field study illustrated one potential
practical application of HDLDA. We find that content
preferences estimated based on HDLDA may be used
by firms to improve their predictions of CTR for
sponsored ads even after controlling for traditional
predictors, such as position and quality score. Such
predictive ability is critical to improve the effectiveness
of SEM campaigns. For instance, the cosine similarity
computed from HDLDA could be useful in identifying
more relevant ad copy for a given search query without
spending time and resources testing experimentally
each potential (ad copy, search query) pair. The firm
with which we collaborated on this study is currently
exploring using our approach to improve the selection
of ad copies from thousands of available designs for
thousands of their target queries.

7. Discussion and Conclusion
In this paper, we develop a new topic model, HDLDA,
that jointly estimates the topic intensities in queries and
web pages as well as the mapping between queries and
their results. In our domain of application, HDLDA
captures the facts that a web page is retrieved by certain
queries and that topics in queries are semantically related
to topics in search results. More generally, HDLDA is

a model for bag-of-word data that can be applied to any
context in which one type of documents are semantically
related to another type of documents. HDLDAhas a new
structure within the broad literature of topic modeling,
and our paper provides amethodological contribution to
the probabilistic topic-modeling literature.
Using the output of HDLDA, it is possible to estimate

a consumer’s content preferences on the fly based on
each query. For example, if we make the assumption
that consumers strategically formulate queries that will
retrieve content that matches their preferences in ex-
pectation, we can estimate a consumer’s content pref-
erences as the expected topic intensities in the search
results given the topic intensities in the search query.
Alternatively, if we make the assumption that con-
sumers naively formulate search queries that directly
reflect their preferences, content preferences may be
estimated as the expected topic intensities in the search
query itself. Our data suggest that content preferences
estimated based onHDLDAand assuming that consumers
are strategic are more accurate than content preferences
estimated under the naive assumption based on either
HDLDA or a standard LDA model.
From a managerial perspective, HDLDA can auto-

matically extract, understand, and organize themeaning
of queries andweb pageswithin a search domainwithout
human intervention. We illustrate one practical man-
agerial application of HDLDA to the prediction of CTR
in sponsored search advertising. As another illus-
tration, consider a tech product review website, such
as CNET.com, which produces content related to
laptops, one of the categories featured in our lab
experiment. The website could use HDLDA to estimate
the content preferences associated with any query and
then compute the fit (measured by the cosine similarity)
between these preferences and different web pages. For
example, suppose CNET.com wanted to promote a web
page about getting a Lenovo Y50 touch gaming laptop.20

Table 10. Field Study: Regression Results

HDLDA (strategic) HDLDA (naive) LDA No content

Copy random effect −0.642 (0.176) 0.104 (0.185) 0.096 (0.186) 0.113 (0.187)
Position −0.500*** −0.499*** −0.498*** −0.500***
Ad quality score 0.082*** 0.085*** 0.085*** 0.089***
Length of query 0.016 0.019 0.019 0.019
Length of ad copy −0.032 −0.053 −0.053 −0.053
Cosine similarity 0.817** 0.069 0.070
Number of observations 13,069 13,069 13,069 13,069
AIC 2,314 2,319 2,319 2,319
MAE (in-sample) 0.141 0.143 0.145 0.143
MAE (out-of-sample) 0.155 0.157 0.159 0.158

Notes. For copy random effect, mean is reported with standard deviation in parentheses. Based on
paired two-sample t-tests, both the out-of-sample and in-sample MAE from HDLDA (strategic) are
significantly smaller than the other models (p< 0.05).

***p< 0.01; **p< 0.05; *p< 0.01 (for regression estimates).

Liu and Toubia: Estimating Consumer Preferences from Online Search Queries
946 Marketing Science, 2018, vol. 37, no. 6, pp. 930–952, © 2018 INFORMS

http://CNET.com
http://CNET.com


The firm would be able to infer, for instance, that the
query “student personal laptops” is more relevant to
this web page compared with the query “durable light-
weight laptop” (cosine similarity of 0.96 versus 0.52
based on the estimates from our lab study and the
actual content of the web page). In the context of SEO,
such information could help the website decide that it
should attempt to improve the organic search ranking
of this web page for the more relevant query. In the
context of SEM, this information would help the firm
decide to have that web page appear as a sponsored ad
for the more relevant query. More generally, the output
of HDLDA can guide firms’ SEO and SEM strategies by
helping them quantify how well their content (web
page or ad copy)matches the content preferences captured
by various queries and focus their efforts on promoting
their content for those queries with better fit in an efficient
and interpretable manner.

We close by highlighting additional areas for future
research. First, to validate our approach for estimat-
ing content preferences, we developed our own search
engine. By allowing the removal of variations in organic
and sponsored search results from customization, this
tool offers opportunities to shed new light on important
research questions in consumer search and search
advertising, such as position effects and advertising
effects. Indeed, although we did not do this in the
current paper, this tool allows varying the order of
organic and sponsored search results, moving organic
results to the sponsored section, etc. Second, future
research might explore alternative assumptions on the
way consumers translate their preferences into search
queries and on their beliefs and knowledge of the se-
mantic relationships between queries and results. Fi-
nally, future research may combine information on
queries with information on clickstream behavior to
provide a more extensive set of observations based on
which content preferences may be estimated. Recent
developments in collaborative topic modeling (Wang
and Blei 2011)might provide the foundation formodels
that would formulate both query formation and
clicking behavior as functions of content preferences.
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Appendix A. Inference Algorithm for HDLDA
This appendix describes the inference algorithm for HDLDA.
Across the collection ofQ queries, let nkq, j be the number of word
tokens in the qth query that are the jth word in the vocabu-
lary and are assigned to the kth topic. Mathematically,
nkq, j � ∑Jq

i�1I(zqi � k∧wqi � j). Hence, nkq, j is three-dimensional:
query, word, and topic. By summing the counts across different
words within a query, we getNk

q, which denotes the number of
words that are assigned to topic k in query q. By summing the

counts across different queries, we get Nk
j , which denotes the

number of queries that have the jth word in the vocabulary and
are also assigned to the kth topic. Across the collection of Pweb
pages, we definedmk

p, j as the number of word tokens in the pth
web page that are the jth word in the vocabulary and that are
assigned to the kth topic; that is,mk

p, j � ∑Jp
i�1I(zpi � k∧wpi � j).

We similarly define the summation across words and web
pages, respectively, which are denoted as Mk

p and Mk
j .

Gibbs Sampler for Assignments zp and zq
Given the topic intensities θq and the word distribution φ, the
posterior distribution of each zq j is

Pr(zqj � k |wqj,θq, {φk}) �
Pr(wqj | zqj � k,φk)Pr

(
zqj � k |θq

)∑K
i�1Pr(wqj | zqj � i,φi)Pr

(
zqj � i |θq

)
� φk,wqj

θqk∑K
i�1φi,wqj

θqi
.

(A.1)

Similarly, the posterior distribution of the assignment zpi
depends on the data wpi and the latent distributions φ and θp.
The posterior distribution of each zpi is

Pr(zpi � k |wpi,θp, {φk}) �
φk,wpi

θpk∑K
j�1φj,wpi

θpj
. (A.2)

Gibbs Sampler for φ and θp
The posterior of the topic distributionφ in the collection is still
a Dirichlet and only depends on the latent assignment and the
data including both queries and web pages:

Pr(φk | {zp}, {zq}, {wq}, {wp},η) � DirJ(η +Nk
1 +Mk

1, . . . ,η

+Nk
J +Mk

J ).
(A.3)

The posterior distribution of the topic intensities θp for each
web page p only depends on its latent assignment and its
prior. This distribution is also given in closed form, condi-
tional on the semantic relationship matrix R and {θq}:

Pr(θp | zp,R, {θq}, lp) � DirK(exp(RT
1θq(p))

+M1
p, . . . , exp(RT

Kθq(p)) +MK
p ). (A.4)

Metropolis–Hastings Algorithm for θq
The posterior distribution of the topic intensities θq for each
query q is nonconjugate. Indeed, it depends not only on the
latent assignment zq, but also on the topic intensities of the web
pages that can be retrieved by query q. We use Metropolis-
within-Gibbs and apply the iteration sequentially to
each q:

Pr(θq | zq, {θp}, {θ−q},R, {lpq},α)
} Pr

({θp} |θq,θ−q,R, {lpq})Pr(zq |θq)Pr(θq |α)

} ∏
p,lpq�1

DirK θp |
{
exp RT

k

∑
q∈Qθqlpq∑
q∈Qlpq

( )}( )
·DirK(θq |α +N1

q , . . . ,α +NK
q ). (A.5)
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Here, we apply an adaptive proposal distribution (with van-
ishing adaptation) for a random walk Metropolis–Hastings
algorithm to sample each θq (Andrieu and Thoms 2008). The
proposal distribution is Dirichlet, θ(t)

q ~Dir(σq,tθ(t−1)
q ). We

adaptively choose σq,t for each θq to attain a target acceptance
rate while preserving the convergence of theMarkov chain by
the Robbin–Monro algorithm:

σq,t � σq,t−1 exp ((a∗ − aq,t−1)/tδ),
where aq,t−1 is the acceptance rate at iteration t − 1 for θq; a∗ is
the optimal acceptance rate, which usually is set to 0.23 for
large problems (Gelman and Meng 1996); and δ∈ (0, 1]
controls the decay rate of the adaption. Basically, the pre-
cision will increase if the current acceptance rate is below the
target rate. Note that, because the proposal distribution is
asymmetric, the acceptance ratio for θq at each iteration t
should be obtained as

rqt � min
L(θ(t)

q ) f (θ(t−1)
q |σq,tθ(t)

q )
L(θ(t−1)

q ) f (θ(t)
q |σq,tθ(t−1)

q ) , 1
{ }

,

where f (x|y) denotes the density of the Dirichlet distribution
Dir(y) at x. Based on our empirical study,wefind that, for a small
corpus, even a random walk Metropolis–Hastings (without
adaptation) algorithm converges quite well for sampling θq.

Maximizing R from a Dirichlet-Multinomial
Regression Model
The parameter R controls the relationship between θq and θp,
which is captured by a Dirichlet-multinomial regression model
in Equation (3). We estimate R by optimizing the full log-
likelihood of the model (Mimno and McCallum 2008):

l(R) �∑P
p�1

logΓ
∑
k
exp(RT

k θq(p))
( )(

−∑
k
[logΓ(exp(RT

k θq(p)))− (exp(RT
k θq(p))−1) log(θpk)]

)
.

The derivative of this log-likelihood with respect to rtk is

∂l(R)
∂rtk

�∑P
p�1

θqt(p) exp(RT
k θq(p)) Ψ

∑
j
exp(RT

j θq(p))
)((

−Ψ exp(RT
k θq(p))

( )
+ log(θpk)

)
,

where Ψ(·) denotes the digamma function that is defined as
the logarithmic derivative of the gamma function, Ψ(x) �
d
dx logΓ(x). The optimization problem could be difficult if K is
large. Our implementation is mainly based on the standard
Broyden–Fletcher–Goldfarb–Shanno optimization because
this method has been shown to be fast, robust, and reliable in
practice.

(Optional) Maximizing η from Its Likelihood Function
The symmetric prior parameter η controls the prior ofφ. Similar
to before, we estimate η by optimizing the joint-likelihood of
φv ~DirichletK(η) for v � 1, 2, . . . , J.

Appendix B. Simulation Study
This appendix presents a synthetic data analysis of HDLDA.
We first describe the data-generation process of the model
and the parameterization of our simulation study. Then we
summarize the estimation results based on the inference al-
gorithm presented in Appendix A.

Data Generation
For a given set of parameters {K,Q,P, J, {Jq}q, {Jp}p, {lpq}p,q,η,
α,R}, the following procedure describes the data-generative
process for HDLDA:

1. For each topic k � 1, 2, . . . ,K, draw a distribution over
words: φk |η~DirichletJ(η)

2. For each query q � 1, 2, . . . ,Q,
(a) Draw topic intensities θq |α~DirichletK(α)
(b) For j � 1, 2, . . . , Jq,

i. Draw topic assignment zqj |θq ~Category(θq)
ii. Draw word wqj|(zqj, {φk})~Category(φzqj)

3. For each web page p � 1, 2, . . . ,P,
(a) Calculate the average topic intensities among its

labeling queries: θq(p) �
∑

qθqlpq∑
qlpq

(b) Draw topic intensities θp|(R,θq(p))~
DirichletK(exp(RT

1 θq(p)), . . . , exp(RT
Kθq(p)))

(c) For i � 1, 2, . . . , Jp,
i. Draw topic assignment zpi |θp ~Category(θp)
ii. Draw word wpi | (zpi, {φk})~Category(φzpi)

We simulate a data set with a structure similar to real
search data that we collected from the experimental study
described in Section 4. Specifically, we set K � 3, Q � 800,
P � 4,000, and J � 2,000. For q� 1,2, . . . ,Q, we draw the integer
Jq randomly (uniformly) from [2,20]; for p� 1,2, . . . ,P, we
draw the integer Jp randomly (uniformly) from [300,600]. We
draw {lpq} so that each query can retrieve 10 pages, and each
page can be retrieved by at least one query (the mean is 2.00
with a standard deviation 1.02). For the mapping matrix R,
we set all the diagonal elements to be 0.8 and set all the off-
diagonal elements to be 0.4. We set α� 1 and η� 0.01. All
other parameters are generated according to the process
described previously.

We calibrate HDLDA on this simulated data set using
the inference algorithm described in Appendix A. The
model parameters include about 1.79 million latent word
assignments z, 6,000 parameters in {φk}, 12,000 parameters
in {θp}, 2,400 parameters in {θq}, and nine parameters in R.
We run 10,000 MCMC iterations and use the first 5,000 as
burn-in.

Simulation Results
Before presenting the estimation results, we provide some
background on the identification of topic models (especially
LDA) in general. This is important in forming reasonable
expectations on what and how much can be recovered in
HDLDA. Although topic modeling is an approach that has
proved successful in automatic comprehension and classifi-
cation of data, only recent work has attempted to give
provable guarantees for the problem of learning the model
parameters (Anandkumar et al. 2012, Arora et al. 2012). The
problem of recovering nonnegative matrices φ (topics) and θ
(topic intensities) with small inner-dimension K (number of
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topics), is NP hard (Arora et al. 2012). As a solution, recent
work has relied on very strong assumptions about the corpus,
for example, restricting one topic per document or assuming
each topic has words that appear only in that topic. At best, φ
could only be recovered up to permutations (Anandkumar
et al. 2012). In addition, according to Arora et al. (2012), it is
impossible to learn the topic intensities matrix θ to within
arbitrary accuracy, and this is theoretically impossible even if
we knew φ and the distribution from which θ is generated.

Given this background, empirically one should not ex-
pect all parameters in topic models to be recovered. As
an example, we test the well-known Gibbs sampler algo-
rithm on a basic LDA, using multiple simulated corpora
that have similar size as the one described herein. We find
that about 90% of the topics φ are covered by the 95%
credible interval (CI), and about 80% of the topic pro-
portions θ are covered by the 95% CI. Given the complexity
of the inference algorithm for HDLDA, one should not
expect its recovery to be better than the Gibbs sampler for
a LDA.

As measures of recovery performance, we report the pro-
portion of the parameters that are recovered by the pos-
terior 95% CI and the mean square error (MSE) between the
true and the estimated parameters. The details are given in
Table B.1 for {φk}, {θp}, and {θq}, respectively. One can see
that the recovery for both {φk} and {θp} is pretty good, and it
is decent for {θq}. Finally, we report the posterior estimates
and the 95% CI for all the parameters in R, which are given in
Table B.2. Note that, because the maximum likelihood esti-
mation (MLE) for the Dirichlet-multinomial regression has
significant bias if the sample size is not large enough,21 we
would not expect the estimators of R from the stochastic EM
algorithm to do better than the MLE of R using the true data
(Nielsen 2000). That is, the best that the inference algorithm
can achieve in estimating R is recovering its MLE, denoted as
RMLE, that is estimated using the true {θp} and {θq} and also
reported in Table B.2. We can see for the true R, six out of nine
parameters are covered by the 95% CI. This is increased to
eight in recovering RMLE.

Appendix C. Lab Study—Statistics About Users’
Chosen Web Pages

Table C.1 provides the average cosine similarity in the topic
intensities between the chosen web page and any clicked but
nonchosen web page within each category and under each K
for each benchmark. Similarly, Table C.2 provides the av-
erage cosine similarity between the chosen web page and all
search results shown by the search engine to the participant in
response to that query.

Appendix D. Lab Study—Model Evaluation for K ∈ {2, 3, 4}
We replicate the analysis in Table 8 while setting K to be the
same across all the product categories for K ∈ {2, 3, 4}. Smaller
perplexity indicates better performance. The asterisk means
that a model is best or tied for best at p< 0.05. Results are
presented in Tables D.1 (K = 2), D.2 (K = 3), and D.3 (K = 4).

Table B.1. Simulation Results for {φk,θp,θq}
Parameters Coverage Mean squared error

{φk} 90.12% 1.06e-09
{θp} 89.77% 0.0006
{θq} 74.67% 0.0563

Table B.2. Simulation Results for R

Parameters R RMLE Posterior estimate 95% CI

r11 0.8 0.841 0.622 [0.547, 0.723]
r21 0.4 0.337 0.410 [0.307, 0.487]
r31 0.4 0.369 0.442 [0.349, 0.537]
r12 0.4 0.439 0.403 [0.339, 0.463]
r22 0.8 0.810 0.780 [0.685, 0.839]
r32 0.4 0.338 0.351 [0.293, 0.426]
r13 0.4 0.413 0.365 [0.262, 0.389]
r23 0.4 0.429 0.583 [0.510, 0.672]
r33 0.8 0.722 0.698 [0.584, 0.798]

Table C.1. Average Cosine Similarity in Topic Intensities
Between Chosen Web Page and Clicked (Nonchosen) Web
Pages

K � 2 K � 3 K � 4

HDLDA LDA HDLDA LDA HDLDA LDA

Ski 0.899 0.859 0.877 0.870 0.771 0.766
Printer 0.842 0.812 0.732 0.745 0.666 0.592
Car 0.875 0.853 0.798 0.818 0.719 0.701
Laptop 0.955 0.962 0.802 0.735 0.705 0.631
Camera 0.827 0.778 0.745 0.689 0.608 0.517

Table C.2. Average Cosine Similarity in Topic Intensities
Between Chosen Web Page and All Search Results

K � 2 K � 3 K � 4

HDLDA LDA HDLDA LDA HDLDA LDA

Ski 0.875 0.837 0.842 0.829 0.721 0.723
Printer 0.784 0.750 0.697 0.675 0.588 0.501
Car 0.823 0.789 0.744 0.750 0.651 0.638
Laptop 0.950 0.959 0.778 0.695 0.691 0.612
Camera 0.801 0.746 0.716 0.656 0.583 0.485

Table D.1. Estimating Content Preferences from Queries:
K � 2

Model Ski Printer Car Laptop Camera Average

Chosen web page
HDLDA

(strategic)
187∗ 362∗ 382∗ 448∗ 351∗ 346∗

HDLDA (naive) 205 451 476 876 589 519
LDA 202 416 430 800 551 480

Task description
HDLDA

(strategic)
275∗ 212∗ 387∗ 627∗ 294 359∗

HDLDA (naive) 318 218 424 997 267∗ 445
LDA 308 233 412 918 270∗ 428

*Model is best or tied for best at p< 0.05.
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Endnotes
1We acknowledge that topic proportions only refer to the distribution
of information within a document, not the absolute volume of in-
formation. Some pages might have a topic distribution that is further
away from the consumer’s “ideal point” and yet preferred because
there is just more information overall on this page.
2One may suggest to use the summation over all the θq’s rather than
their average in this regression model. However, this would artifi-
cially decrease the variance of the Dirichlet distribution for web pages
that are retrieved by more queries.
3Although one can also estimate these parameters using an addi-
tional Metropolis–Hastings step, Mimno and McCallum (2008) have
suggested that a stochastic EM sampling approach works very ef-
ficiently for topic models. Because the R matrix is estimated by
maximization rather than simulation, we admit that this may un-
derestimate the variance of the elements in R.
4Another option would be to estimate a different symmetric pa-
rameter ηk for each topic.
5Note that in Equations (5)–(7), βi is estimated without observing the
actual search results corresponding to the query.
6These were relevant categories for our participants who are mostly
undergraduate and graduate students. We ran the lab experiment in
the winter on the east coast of the United States, so ski resorts were
also relevant.
7Note that we designed these task descriptions before acquiring and
analyzing any web page content; that is, our task descriptions were
not designed to be aligned with or map onto the set of topics from
HDLDA. Hence, we should expect each task description to have
positive intensities on multiple topics.

8 In our case, the edit distance counts the minimumpossible weighted
number of character operations (including insertions, deletions, and
substitutions) required to transform one query into the other. For
example, the edit distance between “best school laptop” and “school
laptop” is five (five characters need to be deleted: b, e, s, t, space).
9We first select words that appear at least n times in total (n is be-
tween 10 and 20 depending on the corpus based on inspection—the
selection of n was finalized before running HDLDA). This helps
eliminate a fair amount ofmeaningless words that cannot be removed
in preprocessing. Then,we calculate themean term frequency-inverse
document frequency (t f -id f ) for the remaining words. The t f -id f is
commonly used to select vocabulary in topic modeling and is
computed as t f -id f (w) � fw × log N

nw

( )
, where fw is the average number

of times word w occurs in each document in the corpus and nw is the
number of documents containing word w. We keep words whose
t f -id f is above the median, which allows omitting words that have
low frequency as well as those occurring in too many documents
(Hornik and Grün 2011).
10 In some cases, the total number of links could be smaller than 10 for
a query if the query either cannot be understood by Google or has
very few relevant results or if scripting the content of a web page is
prohibited by the website.
11We also tried other potential evaluation metrics for Bayesian
models, such as DIC and Watanabe–Akaike information criterion
(Gelman et al. 2014). However, they all favor unreasonably large K.
12For each corpus and a givenK, we run 6,000MCMC iterations using
the fist 4,000 as burn-in, saving every fifth iteration. We evaluate the
convergence of the MCMC sequence by plotting the time series and
conducting Geweke convergence diagnostics (Geweke 1991).
13 In the data, we find some participants did not follow the in-
structions correctly (e.g., participants submitted some random text
without actually conducting the search on Hoogle or found their
chosen link on other search engines). We drop these observations in
our analysis. The proportion of observations dropped is 2% for the ski
category, 2% for printer, 10% for car, 12% for laptop, and 6% for
camera. As a result, there are 195 participants who submitted a valid
chosen web page for at least one task.
14We estimate the topic intensities of the task descriptions using the
same procedure as we use to estimate θ̂q based on the output of
HDLDA. We report the posterior mean over 2,000 MCMC iterations.
15The cosine similarity between two vectors a and b is f (a, b) �
a · b

| |a| | | |b| | �
∑

kakbk������∑
ka

2
k

√ ������∑
kb

2
k

√ .

16We also replicate all the tables in Appendix Dwhile fixing the hyper-
parameter for the topic distribution of queries α to be 0.01 or one
(rather than 0.1). We find that the overall pattern of results is robust to
these different values of α. Results are available from the authors.
17An exact or a phrase match ensures that the actual search query
typed by consumers contains the keywords in the same order.
18We only have the quality score at the time when the company
pulled this data set for us, not its entire history. This should not
reduce the predictive validity of quality score relative to cos(θ̂a, β̂q)
(described in Section 6.3) as the latter is also based on data collected
around the same time.
19The R matrix contains K2 unknown parameters. It becomes com-
putationally costly when K is more than 20 as the algorithm needs to
solve an optimization problem with hundreds of parameters for
everyMCMC iteration. We used R programming language to run the
estimation on a server with an Intel® Xeon® E7 processor using four
physical cores. Each MCMC iteration takes around 60 seconds,
depending on the choice of K. We run 5,000 iterations, using the first
3,000 as burn-in, and save every fifth iteration.
20The URL of this web page is http://www.cnet.com/news/get-a
-lenovo-y50-touch-4k-gaming-laptop-for-999-99.

Table D.2. Estimating Content Preferences from Queries:
K � 3

Model Ski Printer Car Laptop Camera Average

Chosen web page
HDLDA

(strategic)
193 364 378∗ 449∗ 357∗ 348∗

HDLDA (naive) 159∗ 366 509 776 563 475
LDA 159∗ 368 461 710 476 435

Task description
HDLDA

(strategic)
112 168 394∗ 620∗ 299 318∗

HDLDA (naive) 105∗ 151∗ 420 765 260 340
LDA 102∗ 161 409 749 251∗ 334

*Model is best or tied for best at p< 0.05.

Table D.3. Estimating Content Preferences from Queries:
K � 4

Model Ski Printer Car Laptop Camera Average

Chosen web page
HDLDA

(strategic)
191 367∗ 376∗ 454∗ 346∗ 347∗

HDLDA (naive) 173 478 516 704 356 445
LDA 166∗ 440 459 658 492 443

Task description
HDLDA

(strategic)
115∗ 171 399∗ 614∗ 296 319∗

HDLDA (naive) 125 152∗ 457 712 290∗ 347
LDA 113∗ 157 424 700 294∗ 337

*Model is best or tied for best at p< 0.05.

Liu and Toubia: Estimating Consumer Preferences from Online Search Queries
950 Marketing Science, 2018, vol. 37, no. 6, pp. 930–952, © 2018 INFORMS

http://www.cnet.com/news/get-a-lenovo-y50-touch-4k-gaming-laptop-for-999-99
http://www.cnet.com/news/get-a-lenovo-y50-touch-4k-gaming-laptop-for-999-99


21 For example, when we increase the number of web pages from
4,000 to 40,000, theMLE of R for the Dirichlet-multinomial regression
model using the true {θp} and {θq} has much smaller bias. Specifi-
cally, the MSE is decreased from 0.0111 to 0.0006.
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