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Abstract. We consider the pricing problem faced by a revenue-maximizing platform
matching price-sensitive customers to flexible supply units within a geographic area. This
can be interpreted as the problem faced in the short term by a ride-hailing platform. We
propose a two-dimensional framework in which a platform selects prices for different
locations and drivers respond by choosing where to relocate, in equilibrium, based on
prices, travel costs, and driver congestion levels. The platform’s problem is an infinite-
dimensional optimization problem with equilibrium constraints. We elucidate structural
properties of supply equilibria and the corresponding utilities that emerge and establish a
form of spatial decomposition, which allows us to localize the analysis to regions of
movement. In turn, uncovering an appropriate knapsack structure to the platform’s
problem, we establish a crisp local characterization of the optimal prices and the corre-
sponding supply response. In the optimal solution, the platform applies different treat-
ments to different locations. In some locations, prices are set so that supply and demand are
perfectly matched; overcongestion is induced in other locations, and some less profitable
locations are indirectly priced out. To obtain insights on the global structure of an optimal
solution, we derive in quasi-closed form the optimal solution for a family of models
characterized by a demand shock. The optimal solution, although better balancing supply
and demand around the shock, quite interestingly also ends up inducing movement away
from it.

History: Accepted by David Simchi-Levi, optimization.
Supplemental Material: The online appendices are available at https://doi.org/10.1287/mnsc.2020.3622.

Keywords: spatial pricing • revenue management • ride hailing • strategic supply • market design

1. Introduction
Pricing and revenue management have seen signifi-
cant developments over the years in both practice and
the literature. At a high level, the main focus has been
to investigate tactical pricing decisions given the
dynamic evolution of inventories, with prototypical
examples coming from the airline, hospitality, and
retail industries (Talluri and Van Ryzin 2004). With
the emergence and multiplication of two-sided mar-
ketplaces, a new question has emerged: how to price
when capacity/supply units are strategic and can de-
cide when and where to participate. This is particularly
relevant for ride-hailing platforms such as Uber and
Lyft. In these platforms, drivers are independent con-
tractors who have the ability to relocate strategically
within their cities to boost their own profits. Although
this operating model leads to a more flexible supply, it
also restricts the platform from reallocating supply
across locations at will. Instead, a platform must en-
sure that incentives are in place for drivers to select
to reallocate themselves. Consider the spatial pricing
problemwithin a city faced by a platform that shares its
revenues with drivers. Suppose that there are different

demand and supply conditions across the city. The
platform may want to increase prices at locations with
high demand and low supply. Such an increase would
have two effects. The first effect is a local demand re-
sponse, which pushes the riders who are not willing to
pay a higher price away from the system. The second
effect is global in nature because drivers throughout the
city may find the locations with high prices more at-
tractive than the ones where they are currently located
and may decide to relocate. In turn, this may create a
deficit of drivers at some locations. In other words,
prices set in one region of a city impact demand and
supply in this region but also potentially impact
supply in other regions. This brings to the foreground
the question of how to price in space when supply
units are strategic.
The central focus of this paper is to understand the

interplay between spatial pricing and supply re-
sponse. In particular, we aim to understand how to
optimally set prices across locations in a city andwhat
the impact of those prices is on the strategic reposi-
tioning of drivers. To that end, we consider a short-
term model over a given timeframe where overall
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supply is constant. That is, drivers respond to pricing
and congestion by moving to other locations but not
by entering or exiting the system. In our short-term
framework, the platform’s only tool for increasing the
supply of drivers at a given location is to encourage
drivers to relocate from other places. In turn, this time
scale permits us to isolate the spatial implications on the
different agents’ strategic behavior. In this sense, our
model can be thought of as a building block to better
understand richer temporal-dynamic environments.

In more detail, we consider a revenue-maximizing
platform that sets prices to match price-sensitive
riders (demand) to strategic drivers (supply) who
receive a fixed commission. Inmaking their decisions,
drivers take into account prices, supply levels across
the city, and transportation costs. More formally,
we consider a measure-theoretical Stackelberg game
with three groups of players: a platform, drivers, and
potential customers. Supply and demand are com-
posed of nonatomic agents, who are initially arbi-
trarily positioned throughout the city. We use non-
negative measures to model how these agents are
distributed in the city. The players interact with each
other in a two-dimensional (2D) city. Every location
can admit different levels of supply and demand. For
example, Figure 1 showcases an instance of a rect-
angular city in which the measure or distribution of
supply has two peaks, whereas the distribution of
demand has one peak in the center. The platform
moves first, selecting prices for the different locations
around the city. Once prices are set, the mass of
customers willing to pay such prices is determined.
Then drivers move in equilibrium in a simultaneous-
move game, choosing where to reposition based on
prices, supply levels, and driving costs. In fact, be-
sides prices and transportation costs, supply levels
across the city are a key consideration for drivers
when optimizing their repositioning. If too many
other drivers are at a given location, a driver relo-
cating there will be less likely to bematched to a rider,
negatively affecting that driver’s utility. The platform’s
optimization problem consists of finding prices for all
locations given that drivers move in equilibrium.

1.1. Main Contributions
Our first set of contributions is at the modeling level.
We propose a general measure-theoretical framework
that encompasses a wide range of environments. Our
setup can be used to study spatial interactions in both
discrete- and continuous-location settings.
The platform’s problem is an infinite-dimensional

optimization problem with equilibrium constraints.
This is a notably “hard” class of problems. In our
second set of contributions, we develop a method-
ology to study the platform’s problem. Our main
result provides a structural characterization of the
optimal prices and resulting drivers’ equilibrium in
regions of the city where drivers relocate. Our ap-
proach relies on a series of transformations, locali-
zation, and relaxations. In particular, we first estab-
lish that the platform’s objective can be reformulated
as a function of only the equilibrium utilities of
drivers and their equilibrium postrelocation distri-
bution. In turn, we establish structural properties of
these two objects. We first characterize properties of
the drivers’ equilibrium utilities and prove that the
city admits a form of spatial decomposition into re-
gions where movement may emerge in equilibrium,
“attraction regions,” and the rest of the city. Fur-
thermore, we establish that the equilibrium utility
of drivers and the local equilibrium postrelocation
supply are linked through a congestion bound. The
former admits a fundamental upper bound param-
etrized by the latter. Based on these properties, we
derive a relaxation of the platform’s problem that
takes the form of coupled continuous bounded knapsack
problems. Notably, we establish that this relaxation is
tight and, leveraging the knapsack structure, use it to
obtain a crisp local structural characterization of an
optimal pricing solution and its supply response.
Although this framework provides local structural

properties of optimal pricing policies in arbitrary 2D
regions ofmovement, in our third set of contributions,
we shed light on the scope of prices as an incentive
mechanism and provide insights into the global struc-
ture of an optimal policy. To that end, we focus
on a family of one-dimensional (1D) instances (which
could be interpreted as a cut of a symmetric 2D city)
that are rich enough to capture the core interactions
among supply agents but also confined enough to
derive quasi-closed-form solutions that allow us to
crisply identify some key features of an optimal so-
lution. In particular, we study a family of cases in
whicha central location in the city, theorigin, experiences
a shock of demand.
Leveraging our earlier methodological results in

conjunction with the derivation of new results, we
characterize in quasi-closed form the optimal pric-
ing policy and its corresponding supply response.
Strikingly, the optimal pricing policy inducesmovement

Figure 1. (Color online) Two-Dimensional Setting

Note. Distribution of initial supply and potential demand across
locations.
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toward thedemandshockbutpotentiallyalso away from
the demand shock. The platform may create damaged
regions through both prices and congestion to steer the
flow of drivers toward more profitable regions. Com-
paredwith a heuristic thatwould only adjust the price at
the shock location, the optimal solution incentivizes
more drivers to travel toward the demand shock.

The optimal pricing policy splits the city into multiple
regions around the origin (Figure 2). The mass of
customers needing rides at the location of the shock is
serviced by three subregions around it: the origin, the
inner center, and the outer center. The origin is the
most profitable location, so the platform surges its
price, encouraging the movement of a mass of drivers
to meet its high levels of demand. These drivers come
from both the inner and outer center. In the former,
locations are positively affected by the shock, and
some drivers choose to stay in them, whereas others
travel toward the origin. In the latter, drivers are too
far from the demand shock, so the platform has to
deliberately damage this region through prices to create
incentives for drivers to relocate toward the origin.
However, drivers in this region have an option: In-
stead of driving toward the demand shock at the
origin, they could drive away from it. This gives rise
to the next region, the inner periphery. Consider the
marginal driver, that is, the furthest driver willing to
travel to the origin. To incentivize themarginal driver
to move to the origin, the platform is obligated to also
damage conditions in the inner periphery. The opti-
mal solution creates two subregions within the in-
ner periphery. In the first, conditions are degraded
through prices that make it unattractive for drivers.
Drivers in this region leave toward the second region.
That is, they drive in the direction opposite to the
demand shock. The action of the platform in the
second region is more subtle. Here the platform does
not need to playwith prices. Themere fact that drivers
from the first region run away to this area creates
congestion, and this is sufficient degradation to make
the region unattractive for the marginal driver. The
final region is the outer periphery, which is too far
from the origin to be affected by its demand shock.

We complement our analysis with a set of numerics
that highlights that the optimal policy can generate
significantly more revenues than a heuristic that would
simply respond locally to a shock in demand. In other
words, anticipating the global supply response and
taking advantage of the full flexibility of spatial pricing
play a key role in revenue optimization.

2. Related Literature
Several recent papers examine the operations of ride-
hailing platforms from diverse perspectives. We first
review works that do not take spatial considerations
into account. There is a recent but significant body of
work on the impact of incentive schemes on agents’
participation decisions. Gurvich et al. (2016) study the
cost of self-scheduling capacity in a newsvendor-like
model in which the firm chooses the number of agents
it recruits and, in each period, selects a compensation
level as well as a cap on the number of available
workers. Cachon et al. (2017) analyze various com-
pensation schemes in a setting in which the platform
takes into account drivers’ long- and short-term in-
centives. They establish that in high-demand periods,
all stakeholders can benefit from dynamic pricing
and fixed-commission contracts can be nearly opti-
mal. The performance of such contracts in two-sided
markets is analyzedbyHu and Zhou (2017), who derive
performance guarantees. Taylor (2018) considers how
uncertainty affects the price and wage decisions of
on-demand platforms when facing delay-sensitive
customers and autonomous capacity. Nikzad (2018)
focuses on the effect of market thickness and com-
petition onwages, prices, andwelfare and shows that,
in some circumstances, more supply could lead to
higher wages and competition across platforms could
lead to high prices and low consumer welfare.
In the context of matching in ride hailing without

pricing, Feng et al. (2017) compare the waiting-time
performance in a circular city of on-demandmatching
versus traditional street-hailing matching. Hu and
Zhou (2016) analyze a dynamic matching problem
as well as the structure of optimal policies. Relatedly,
Ozkan andWard (2020) develop a heuristic based on a

Figure 2. (Color online) The Optimal Solution Splits the City into Multiple Regions
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continuous linear program to maximize the number
of matches in a network. Afèche et al. (2017) study
demand admission controls and drivers’ reposition-
ing in a two-location network, without pricing, and
show that the value of the controls is large when both
capacity is moderate and demand is imbalanced.

Most closely related to our work are papers that
study pricing with spatial considerations. Castillo
et al. (2017) take space into account but only in re-
duced form through the shape of the supply curve.
This paper points out that surge pricing can help to
avoid an inefficient situation termed the wild goose
chase in which drivers’ earnings are low because of
long pickup times. Banerjee et al. (2015) consider a
queuing network where drivers do not make deci-
sions in the short term (no repositioning decisions),
but they do care about their long-term earnings. They
prove that a localized static policy is optimal as long
as the system parameters are constant but that a
dynamic pricing policy is more robust to changes in
these parameters. Banerjee et al. (2016) find approx-
imation methods to find source-destination prices
in a network to maximize various long-run average
metrics. In Banerjee et al. (2016), customers have a
destination and react to prices, but supply units do
not behave strategically. An important contribution
to the field is that of Bimpikis et al. (2019). They study
pricing under steady-state conditions in a network
in which drivers behave in equilibrium and decide
whether andwhen to provide service as well as where
to reposition. They are able to isolate an interesting
“balance” property of the network and establish its
implications for prices, profits, and consumer sur-
plus. Buchholz (2017) structurally estimates a spatial
model to understand the welfare costs of taxi fare reg-
ulations. These papers investigate long-term implica-
tions of spatial pricing. In contrast, our work examines
how the platform should respond to short-term supply-
demand imbalances given that the supply units are
strategic. Relatedly, Guda and Subramanian (2019)
study a two-location setting and show the benefits
of using strategic pricing in a short-term time scale.
From an empirical perspective, short-term strategic
repositioning decisions of drivers to changes in heat
maps of prices have been demonstrated using Uber
data in Lu et al. (2018). Our work complements such
empirical and theoretical studies by providing a general
multilocation framework for pricing while accounting
for short-term strategic relocation decisions.

From a methodological point of view, our work
borrows tools from the literature on nonatomic con-
gestion games. Our equilibrium concept is similar to the
one used byRoughgarden and Tardos (2002) and Cole
et al. (2003) to analyze selfish routing under conges-
tion in discrete settings: In equilibrium, drivers only
depart for locations that yield the largest earnings.

We consider a more general measure-theoretical en-
vironment that can be traced back to Schmeidler (1973),
Mas-Colell (1984), and, more recently, Blanchet and
Carlier (2015) and Blanchet et al. (2018). The latter two
papers build on the work of Mas-Colell by intro-
ducing an equilibrium notion that accounts for local
congestion effects and relates it to the theory of op-
timal transport (see, e.g., Villani 2008). Moreover,
Blanchet et al. (2018) exploit a regularization tech-
nique to compute equilibria in discrete settings. Our
equilibrium concept relates to the one introduced by
these authors in that it can be applied to general
measure-theoretical frameworks and it captures local
congestion effects. Once the platform sets prices,
drivers must decide where to relocate. This creates a
“flow” or a “transport plan” in the city from initial
supply (initial measure) to postrelocation supply (final
measure). A fundamental difference is that in our case
the final measure is being optimized, and most of our
work is focused on determining this measure with the
goal of maximizing revenue. In particular, in our set-
ting, there is a first-stage optimization of spatial prices,
which is not present in the aforementioned paper.
Finally, some of our insights relate back to the

damaged-goods literature.Deneckere andMcAfee (1996)
explain that a firm can strategically degrade a good
in order to price discriminate. In our setting, the
platform can damage some regions of the city through
prices and congestion to steer drivers toward more
profitable locations and thus increase revenues.

3. Problem Formulation
We will use measure-theoretic objects to represent
supply, demand, and related concepts. This level of
generality will enable us to capture the rich interac-
tions that arise in the system through a spatial model
that subsumes continuous and discrete settings. Our
general framework allows us to focus on the central
“physical” quantities that are not tailored to the na-
ture of the model but also allows for quasi-closed-
form solutions in special cases of interest. We now
introduce some basic preliminaries to make the ex-
position rigorous.

3.1. Preliminaries
For an arbitrary metric set - equipped with a norm
‖ · ‖ and the Borel σ-algebra, we let}(-)denote the set
of nonnegative finite measures on -. The notation
7 � 7′ represents measure 7 being absolutely con-
tinuous with respect to measure 7′. The notation
ess sup@ corresponds to the essential supremum, which
is the measure-theoretical version of a supremum that
does not take into account sets of measure zero. The
notation 7 − a.e. represents “almost everywhere with
respect to measure 7.” For any measure 7 in a
product space@ ×@, 71 and 72 denote, respectively,
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the first and second marginals of 7. We use 1{·} to
denote the indicator function and Sc to represent
the complement of a set S. We denote the closed and
open line segments between any two points by [x, y]
and (x, y), respectively.

3.2. Model Elements
Our model contains four fundamental elements: a
city, a platform, drivers, and potential customers. For
consistency, we use masculine pronouns to refer to
drivers and feminine ones to refer to customers. We
represent the city by a convex, compact subset# ofR2

and a measure Γ in }(#). We refer to this measure as
the “city measure,” and it characterizes the “size” of
every location of the city. For example, if Γ has a point
mass at some location, then that location is large
enough to admit a point mass of supply and demand.
In turn, Γ enables us to capture settings with a con-
tinuum of locations or discrete locations.

Demand (potential customers) and supply (drivers)
are assumed to be infinitesimal—a single agent does
not impact the outcome of the game—and initially
distributed on #. We denote the initial demand mea-
sure byΛ(·) and the supplymeasure byΘ(·), with both
measures belonging to }(#). For example, if Θ is the
Lebesgue measure on #, then drivers are uniformly
distributed over the city. Both the demand and supply
measures are assumed to be absolutely continuous
with respect to the city measure, that is,Λ,Θ � Γ. The
proportion of customers at location y ∈ # with will-
ingness to pay below q is given by Fy(q).1 We let
Fy(q) � 1 − Fy(q). For all y ∈ #, we assume that the
revenue function q �→ q · Fy(q) is continuous and uni-
modal and that Fy is strictly increasing over its sup-
port [0,V] for some finite positive V.

We model the interactions between platform, cus-
tomers, and supply as a game. The first player to act in
this game is the platform. The platform selects fares
across locations and facilitates the matching of drivers
and customers. Specifically, the platform selects a mea-
surable pricemapping p : # → [0,V] so as to maximize
its citywide revenues.

After prices are chosen, drivers select whether to
relocate and where to do so. The relocation of drivers
generates a flow/transport of mass from the initial
measure of drivers Θ to some final endogenous mea-
sure of drivers. This final measure corresponds to the
supply of drivers in the city after they have traveled to
their chosen destinations. The movement of drivers
across the city is modeled as a measure on # × #,
which we denote by 7. Any feasible flow has to
preserve the initial mass of drivers in #. That is, the
first marginal of 7 should equal Θ. Moreover, 7
generates a new (after relocation) distribution of
drivers in the city, which corresponds to the second

marginal of7,72. Formally, the set of feasible flows is
defined as follows:

^ Θ( ) � 7 ∈ } # × #( ) : 71 � Θ, 72 � Γ
{ }

.

The first condition ensures consistencywith the initial
positioning of drivers; the second condition ensures
that there is no mass of relocated supply at locations
where the city itself has measure zero and thus do not
form part of the game. In particular, given the latter,
the Radon–Nikodym derivatives of 72 and Λ with
respect to Γ, d72(y)/dΓ, and dΛ(y)/dΓ are well defined;
for ease of notation, we let, for any y in #,

s7 y
( )

≜
d72

dΓ
y
( )

, and λ y
( )

≜
dΛ
dΓ

y
( )

.

Physically, s7(y) represents the postrelocation supply at
location y normalized by the size of location y, and
λ(y) corresponds to the potential demand at location y
also normalized by the same size of such location.2

Here and in what follows, we will refer to s7(y) and
λ(y) as the postrelocation supply and potential de-
mand at y, respectively. In order to lighten the expo-
sition, and without loss of generality, we assume that
λ(y) > 0 Γ− almost everywhere in #.
Given the prices in place, the effective demand at

a location y is given by λ(y) · Fy(p(y)), because at lo-
cation y, only the fraction Fy(p(y)) is willing to pur-
chase at price p(y). At the same time, the supply at y is
given by s7(y). Therefore, the ratio of effective (as op-
posed to potential) demand to supply at y is given by

λ y
( ) · Fy p y

( )( )
s7 y
( ) ,

assuming s7(y) > 0. Because a driver can pick up at
most one customer within the time frame of our game, a
driver relocating to y will face a utilization rate of
min{1, λ(y) · Fy(p(y))/s7(y)}, again assuming s7(y) > 0.
The effective utilization can be interpreted as the
probability that a driver who relocated to y will be
matched to a customer within the time frame of our
game. In particular, if s7(y) > λ(y) · Fy(p(y)), there is
driver congestion at location y, and not all drivers will
be matched to a customer. If s7(y) � 0 at location y, we
say that the utilization rate is one if the effective demand
at y is positive and zero if the effective demand is zero.
Formally, the utilization rate at location y is given by

R y, p y
( )

, s7 y
( )( )

≜

min 1,
λ y( )·Fy p y( )( )

s7 y( )
{ }

, if s7 y
( )

> 0,

1, if s7 y
( ) � 0, λ y

( )
· Fy p y

( )( )
> 0,

0, if λ y
( ) · Fy p y

( )( ) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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When deciding whether to relocate, drivers take
three effects into account: prices, travel distance, and
congestion. The driver congestion effect (or utiliza-
tion rate) is the one described in the preceding par-
agraph. We assume that the platform uses a com-
missionmodel and transfers a fraction α in (0, 1) of the
fare to the driver. As a result, a driver who starts in
location y and chooses to remain there earns utility
equal to

U y, p y
( )

, s7 y
( )( )

≜α · p y
( ) · R y, p y

( )
, s7 y

( )( )
. (1)

That is, the utility is given by the compensation per
ride times the probability of a match. We model the
cost for drivers of repositioning from location x to
location y through the distance between the locations
‖y − x‖. Therefore, a driver originating in x who re-
positions to y earns utility

Π x, y, p y
( )

, s7 y
( )( )

≜U y, p y
( )

, s7 y
( )( ) − ‖y − x‖. (2)

When clear from context, and with some abuse of
notation, we omit the dependence on price and the
supply-demand ratio, writing U(y) and Π(x, y). Thus
far, we have introduced the objects to study a clas-
sic Cournot–Nash equilibrium (see, e.g., Blanchet and
Carlier 2015). The space of players’ types is # endowed
with the type distribution Θ ∈ }(#). The action space
is the set of possible destinations #, and there is an
action distribution 9 ∈ }(#) with density ν. Given an
action distribution9, an agentwith type x choosing action
y receives a total utility given by Π(x, y, p(y), ν(y)).
We are now ready to define the notion of a supply
equilibrium. An equilibrium specifying type–action
pairs is defined through a flow 7 ∈ }(# × #). This
distribution should be consistent with the type and
action distributions71 � Θ and 72 � 9, and the actions
of agents should be optimal given all other agents’
actions. We next define precisely a supply equilibrium.

Definition 1 (Supply Equilibrium). A flow 7 ∈ ^(Θ) is an
equilibrium if it satisfies

7

({
x, y
( ) ∈ # × # : Π x, y, p y

( )
, s7 y

( )( )
� ess sup

#

Π x, ·, p ·( ), s7 ·( )( )}) � Θ #( ),
where the essential supremum is takenwith respect to
the city measure Γ.

That is, an equilibrium flow of supply is a feasible
flow such that essentially no driver wishes to uni-
laterally change his destination. As a result, the mass
of drivers selecting the best location for themselves
has to equal the original mass of drivers in the system.

The platform’s objective is to maximize the reve-
nues it garners across all locations in #. With the

assumed commission structure in place, from a given
location y, it earns (1−α) ·p(y) ·min{s7(y),λ(y) ·Fy(p(y))}.
The term (1 − α) · p(y) corresponds to the platform’s
share of each fare at location y, and the term min{s7(y),
λ(y) · Fy(p(y))} denotes the quantity of matches of
potential customers to drivers at location y. The
platform’s price-optimization problem can, in turn,
be written as

sup
p ·( ),7∈^ Θ( )

1−α( )
∫
#
p y
( ) ·min s7 y

( )
,λ y
( ) ·Fy(p(y)){ }

dΓ y
( )

1

(s.t.) 7 is a supply equilibrium,

s7 � d72

dΓ
. (31)

Remark 1. Our model may be interpreted as a basic
model to understand the short-term operations of a
ride-hailing company that needs to design a city-wide
pricing policy to properly incentivize drivers. In par-
ticular, each driver completes at most one customer
pickup within the time frame of our game, and there is
not enough time for the entry of new drivers into the
system. In the present model, we do not account ex-
plicitly for the destinations of the rides. We do so in
order to isolate the interplay of supply incentives and
pricing. In that regard, one could view our model as
capturing origin-based pricing, a common practice in
the ride-hailing industry. Note that our framework
could be modified to partially account for origin–
destination pricing by incorporating the fact that dif-
ferent locations lead to different average lengths of
rides (such a factor would multiply the price on the
right-hand side of Equation (1)). With such a mod-
ification, drivers, before repositioning to a location,
would consider the corresponding average price for
the total trip.

3.3. Solution Approach
Problem (31) can be classified as an infinite-dimensional
mathematical program with equilibrium constraints.
This is a notably difficult class of problems to solve in
general, even numerically. For the particular problem
we study, we will show that significant structure exists
and that one can obtain a crisp local characterization of
an optimal solution. We next lay out our approach.
In Section 4, we reformulate the platform’s objec-

tive. The new objective is “well behaved” and show-
cases the fundamental structure of the problem. In
particular, if we relaxed all equilibrium constraints,
the problem would be a continuous knapsack prob-
lem inwhich the limited initial budget of driversΘ(#)
must be allocated across locations. However, the
solution to the knapsack relaxation may not sat-
isfy the equilibrium constraints. To address this, in
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Sections 5 and 6, we derive equilibrium properties
that we later add as constraints to the aforementioned
relaxation. More precisely, in Section 5, we prove a
fundamental upper bound on the amount of post-
relocation supply that there could be at any location in
equilibrium. In Section 6, we identify and localize the
analysis to the regions in the city where drivers move.
We study their properties and show that these re-
gions, subject to appropriate constraints, can be op-
timized in isolation. In Section 7, we add these de-
velopments as constraints to problem (31) and relax
the equilibrium constraints. The resulting problem
is a relaxationof (31) in a region of potentialmovement
that has the structure of a continuous bounded
knapsack problem. We then show that this local re-
laxation is tight, thereby providing a characterization
of the optimal solution within regions of potential
movement. In Section 8, we combine these results,
together with new results and a flow-mimicking
technique (Online Appendix D.2), to solve in quasi-
closed form for the optimal solution in a family of
instances. Figure 3 provides a summary of our so-
lution approach.

4. Structural Properties
and Reformulation

A key challenge in solving the optimization problem
presented in (31) is that the decision variables, the
flow 7 and the price function p(·), are complicated
objects. The flow7, being ameasure over movements
on a 2D space, is obviously a complex object to ma-
nipulate. The price function will turn out to be a difficult
object to manipulate as well. In order to analyze our

problem, we will need to introduce a better-behaved
object. This object,whichwill be central to our analysis, is
the (after movement) driver equilibrium utility.

4.1. Drivers’ Utilities
For a given price function p and flow 7, we denote by
V@(x|p,7) the essential maximum utility that a driver
departing from location x can garner by going any-
where within a measurable region @ ⊆ #. In partic-
ular, the mapping V@(·|p,7) : # → R is defined as

V@ x|p,7( )
≜ ess sup

@

Π x, ·, p ·( ), s7 ·( )
( )

. (3)

When@ � #, we use V instead of V#. Note that in the
essential supremum,@ entersΠwhenwe evaluate the
second argument ofΠ, p(·), and s7(·). By the definition
of a supply equilibrium, essentially all drivers departing
from location x earn V(x|p,7) utility in equilibrium.
We now show that the equilibrium utilityV@(·|p,7)

must be 1-Lipschitz continuous. Intuitively, drivers
from two different locations x and y who consider
relocating see exactly the same potential destinations.
So the largest utility drivers departing from x can
garner must be greater or equal to that of the drivers
departing from yminus the disutility stemming from
relocating from x to y; that is, V@(x) ≥ V@(y) − ‖x − y‖.
Because this argument is symmetric, we deduce the 1-
Lipschitz property.

Lemma 1 (Lipschitz). Consider a measurable set @ ⊆ #
such that Γ(@) > 0. Let p be a measurable mapping
p : @ → R+, and let 7 ∈ ^(Θ). Then the function
V@(·|p,7) is 1-Lipschitz continuous.

Figure 3. Solution Approach

Notes. (a) General solution approach to characterize the optimal solutionwithin regions ofmovement. (b) Application of general results to obtain
optimal solution in a family of instances with a shock of demand in the center of the city (Section 8).
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4.2. Reformulating the Platform’s Problem
Wenow introduce a reformulation of (31) that focuses
on the equilibrium utility V and the postrelocation
supply s7 as the central elements. The next result
plays a key role in our solution approach and is what
later motivates the development of the upper bound
on s7 and the localization of the analysis to regions of
movement (see Figure 3). In what follows, we de-
fine γ≜ (1 − α)/α.
Proposition 1 (Problem Reformulation). The problem

sup
p ·( ),7∈^ Θ( )

γ ·
∫
#
V x|p,7( ) · s7 x( )dΓ x( )

s.t. 7 is an equilibrium flow,

V x|p,7( )� esssup
#

Π x, ·,p ·( ),s7 ·( )( )
,

s7 � d72

dΓ
, (32)

admits the same value as the platform’s optimization
problem (31), and a pair (p,7) that solves (32) also
solves (31).

The first step in the proof of Proposition 1 is to
rewrite the platform’s objective in terms of the post-
relocation supply s7(x) and the premovement utility
function U(x, p(x), s7(x)) (see Equation (1)). We note
that the former step is driven by the commission struc-
ture of the contract offered by the platform, which aligns
in someway the platform’s objectivewith the drivers’
utility. This transformation is not particularly use-
ful per se because the function U(x, p(x), s7(x)) is
not necessarily well behaved. The next step consists
of establishing that U(x, p(x), s7(x)) coincides with
V(x|p,7) whenever a location has positive postmove-
ment equilibrium supply (see Lemma A-2 in Online
Appendix A). Indeed, whenever the equilibrium out-
come is such that a location has positive supply, the
utility generated by staying at that location has to be
equal to the best utility one could obtain by traveling to
any other location. In turn, one can effectively replace
U(x, p(x), s7(x)) with V(x|p,7) in the objective, which
yields the alternative formulation.

The new formulation (32) offers a new perspective
on the platform’s problem. The key objects that drive
the platform’s revenue are s7(·) and V(·|p,7). Intui-
tively, for each unit of supply allocated to some x, the
platform obtainsV(x|p,7). Observe that there is also a
“budget” constraint that limits howmuch s7(·) can be
allocated across locations because the total supply in
the system is Θ(#). In turn, if we relaxed the equi-
librium constraints in (32), the problem would cor-
respond to a knapsack problem. In this case, we would
set s7(·) as high as possible in the location where
V(·|p,7) is the highest.However, doing sowould violate
the equilibrium constraints because that location would

experience high levels of congestion, which, as a result,
would deter drivers from relocating to it in equilibrium.
In order to deal with this, in the next section, we de-
velop a congestion bound that controls for the effect
on drivers’ utilities introduced by congestion.

4.3. Connection to Optimal Transport
Our equilibrium concept is closely related to the
notion of transport plan in the theory of optimal
transport. For example, it is possible to establish that
in any equilibrium 7, the total mass of drivers re-
positions in the most efficient way as to minimize
the total transportation cost (see, e.g., Blanchet and
Carlier 2015 for a related result). In contrast with
optimal transport, in our case, the destination mea-
sure72 is an endogenous object, and one of the central
tasks is to find it via optimization by solving (32).

5. Congestion Bound
We first introduce some quantities that emerge from a
classical capacitated monopoly pricing problem. Let
us consider any location x ∈ # and ignore all other
locations in the city. The problem that a monopolist
faces when supply at x is s and demand is λ(x) can be
cast as

Rloc
x s( )≜ max

q∈ 0,V[ ]
q ·min s, λ x( ) · Fx q

( ){ }
, (4)

with the price ρloc
x (s) being defined as the argu-

ment that maximizes Equation (4). Because q · Fx(q) is
assumed to be unimodular in q, the optimal price
ρloc
x (s) is uniquely determined and is characterized

as follows:

ρloc
x s( ) � max ρbal

x s( ), ρu
x

{ }
,where s � λ x( ) · Fx ρbal

x s( )
( )

,

ρu
x ∈ arg max

ρ∈ 0,V
[ ] ρ · Fx ρ

( ){ }
. (5)

That is, the optimal local price either balances supply
and demand or maximizes the unconstrained local
revenue. For a given local supply s, the maximum
revenue that can be generated at location x is Rloc

x (s),
with a fraction α of that revenue being paid to the
drivers. Therefore,α · Rloc

x (s)/s is themaximumrevenuea
driver staying at this location can earn. To capture this
notion, we introduce for every location x the supply
congestion function ψx : R+ → [0, α · V], which is de-
fined as follows:

ψx s( )≜ α · Rloc
x s( )/s if s > 0,

α · V if s � 0.

{
In line with intuition, more drivers (in a single-
location problem) imply lower revenues per driver;
it is possible to show that the congestion functionψx is
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decreasing (see Lemma A-3 in Online Appendix A).
Crucially, the congestion function ψx yields an upper
bound for the utility of drivers.

Proposition 2 (Congestion Bound). Let (p,7) be a feasible
solution of (32). Then the equilibrium driver utility function
is bounded as follows:

V x|p,7( ) ≤ ψx s7 x( )
( )

, Γ − a.e. x in #.

When there is a single location, this inequality is an
equality by the definition of ψx. For multiple loca-
tions, drivers may travel to any location, and there is
no a priori connection between the utility that drivers
originating from x can garner, V(x|p,7) and ψx(s7(x)).
The preceding result establishes that the latter upper
bounds the former. The bound captures the struc-
tural property that as equilibrium supply increases
at a location, and hence driver congestion increases,
the drivers originating from that location will earn
less utility.

As discussed in the preceding section, (32) admits a
relaxation (not necessarily tight) that can be mapped
to a knapsack problem. Proposition 2 provides a
capacity constraint that can be added to such a re-
laxation. More precisely, because ψx(·) is strictly de-
creasing the congestion-bound delivers,

s7 x( ) ≤ ψ−1
x V x|p,7( )( )

, Γ − a.e. x in #. (6)
That is, givenV(·|p,7), for almost every location in the
city, the amount of postrelocation supply has a struc-
tural upper bound. Equation (6) can be plugged into
the aforementioned relaxation to make it a bounded
knapsack problem. Nevertheless, a solution to this
new problem might still violate the equilibrium con-
straints and not be tight. The reason is that the resulting
allocation may prescribe movement of drivers from
faraway locations. To address this, in the next section,we
localize the analysis to regions to which drivers are
willing to travel and study their properties.

6. Localization to Regions of
Potential Movement

A key feature of the problem at hand is that, in
equilibrium, conditions at different locations are in-
herently linked because drivers select their destina-
tion among all locations. An important object thatwill
help capture the link across various locations is the
indifference region of a driver departing location x. The
indifference region of x represents all the destinations
towhich drivers from x arewilling to travel. Formally,
the indifference region for a driver departing from
x ∈ # under prices p and flow 7 is given by

(5 x|p,7( )
≜ y ∈ # : V y|p,7( ) − ‖y − x‖ � V x|p,7( ){ }

.

Intuitively, the preceding definition says that if
y ∈ (5(x|p,7), then drivers departing from x maxi-
mize their utility by relocating to y. The converse
concept, which will turn out to be fundamental in our
analysis, is the attraction region of a location z. The
attraction region of z represents the set of all possible
sources for which location z is their best option, as we
formally define next.

Definition 2 (Attraction Region). Let (p,7) be a feasible
solution of (32). For any z ∈ #, its attraction region
A(z|p,7) is the set of locations from which drivers are
willing to relocate to z:

A z|p,7( )
≜ x ∈ # : z ∈ (5 x|p,7( ){ }

.

We call a location z ∈ # a sink if its attraction region
A(z|p,7) is nonempty and z /∈ A(z′|p,7) for all z′ �� z.

Note that within an attraction region, the equilib-
rium utility of drivers V(·|p,7) is fully determined up
to its value at the sink V(z|p,7). Importantly, sinks
and corresponding attraction regions emerge as soon
as drivers move in the city, as formalized in the
next proposition.

Proposition 3 (Existence of Attraction Regions). Let (p,7)
be a feasible solution of (32).
a. Any flow in the city gives rise to an associated at-

traction region, that is, for any + ⊆ # × # such that
7(+) > 0, there exists (x, y) ∈ + such that y ∈ (5(x|p,7).
b. Moreover, if y ∈ (5(x|p,7) for some x �� y, then

there exists a sink z ∈ # such that x, y ∈ A(z|p,7) and
x, y, z are collinear points.

6.1. Representation and Properties of an
Attraction Region

We will anchor the coming discussion around Figure 4,
which provides an illustration of an attraction re-
gion (shaded region) as well as its various struc-
tural properties.
In line with the literature on optimal transport (see,

e.g., Ambrosio and Pratelli 2003), it will be useful in

Figure 4. Attraction Region

Notes. Illustration of structural properties of attraction regions. No
flow crosses the boundaries ofA(z|p,7), and there is no flow traveling
from one ray to another ray.
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our analysis to study the behavior of drivers along
rays around a particular location z. We use Rz to
denote the set of all rays originating from z (ex-
cluding z) and index the elements of Rz by a. With
such a representation, for a feasible solution (p,7)
and for any sink z ∈ #, one can derive various struc-
tural properties.

Property 1 (Closed Attraction Region). The attraction re-
gion A(z|p,7) is closed and can be represented as a collection
of segments of the form [z,Xa(z|p,7)], where Xa(z|p,7) is
the last point in the attraction region on ray a (see Figure 4).
We provide a formal statement in Lemma B-1 in Online
Appendix B.

Property 2 (Flow Separation). An attraction region does
not receive external supply, and supply units within such a
region do not travel outside. Furthermore, any movement
takes place along the rays originating from the sink z. We
provide a formal statement in Proposition B-1 in Online
Appendix B.

Property 3 (Pasting). Informally, this result states the
following pasting property. Suppose that we start from a
price-equilibrium pair (p,7) and a sink z and its attraction
region A(z|p,7). Then we can replace the price flow within
A(z|p,7) with any other local price equilibrium, say (p̃, 7̃),
within that attraction region as long as we do not change
V(x|p,7) for x ∈ A(z|p,7) that have initial supply. One can
obtain a new feasible solution (p̂, 7̂) in # by merging the old
solution (p,7) in the complement of A(z|p,7) with the
modified solution (p̃, 7̃) in the attraction region A(z|p,7).
We illustrate this property in Figure 5. We provide a formal
statement in Proposition B-2 in Online Appendix B.

These properties have important implications. At-
traction regions lead to a natural decoupling of the
platform’s problem, providing a way of segmenting
the city. These regions can be optimized in isolation,

and the new solution within these regions can then be
pasted to the old solution outside these regions to
obtain a new global feasible solution to the platform’s
problem. In the next section, we introduce a local
relaxation of (32), derive its solution, and prove its
tightness. We construct this relaxation by leveraging
our reformulation, congestion bound, and localiza-
tion results.

7. Structure of Optimal Solution Within an
Attraction Region

In this section, we leverage our previous results to
derive a structural characterization of the optimal
prices and postrelocation supply of drivers within
any attraction region.
Consider an arbitrary feasible solution (p,7) of (32).

Let z ∈ # be a sink and A(z|p,7) its corresponding
attraction region. The next result establishes that one
can construct a second feasible solution of (32) with
(weakly) greater revenue and, in turn, uncover the
structure of prices and supply in an optimal solution.

Theorem 1 (Optimal Supply and PricesWithin an Attraction
Region). Consider a feasible solution (p,7) of (32), and let
z ∈ # be a sink. Then there exists another feasible solution
(p̂, 7̂) that weakly revenue dominates (p,7) and is such that
its supply s7̂ in A(z|p,7) is given by

s7̂ x( )

�
ψ−1
x

(
V z|p,7( ) − ‖x − z‖

)
if x ∈

⋃
a∈Rz

z, ra[ ),
sa if x � ra, a ∈ Rz,

0 otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
for a set of values {ra} such that ra ∈ [z,Xa(z|p,7)] and
sa ≥ 0, a ∈ Rz. Furthermore,

p̂ x( ) � ρloc
x s7̂ x( )
( )

if x ∈ A z|p,7( ) \⋃a∈Rz
ra{ },

pa if x � ra, a ∈ Rz,

{

where pa is such that U(ra, pa, sa) � V(ra|p,7) for a ∈ Rz.

Theorem 1 characterizes the structure of an optimal
solution, including both prices and flows, within an
attraction region.

7.1. Illustration of Theorem 1
It is useful to consider aprototypical example to illustrate
the structure of an optimal solution. In Figure 6, we
consider a disk-shaped attraction regionwith a sink at
its center z. We assume that the demand density is a
cone centered at z that flattens out after a certain
distance from z (see Figure 6(a)). Given that the region
plotted is an attraction region, the equilibrium utility
must be a cone centered at z (see Figure 6(b)).

Figure 5. (Color online) Illustration of the Pasting
Property (Property 3)

Notes. In A(z|p,7), we can modify flows, postrelocation supply, and
prices in a feasible manner. We show the pre- and postmodification
supplies along a line segment. The initial supply corresponds to s7(x)
(solid shaded). The supply after modification is s7̃(x) inside A(z|p,7)
(striped) and coincides with s7(x) outside A(z|p,7).
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In Figure 7, we display the structure of an opti-
mal solution within this attraction region. Figure 7
depicts (a) the optimal prices, (b) the effective de-
mand, and (c) the postrelocation equilibrium supply.
Three subregions emerge. In the central subregion
(subregion (iii)), the optimal prices correspond to the
prices that balance induced supply and demand;
that is, s7̂(x) � λ(x) · (1 − p̂(x)). In this subregion, there
is positive supply; thus, from the equilibrium con-
dition, we must have that Π(x, x) � V(x). In turn,
because the utilization is one, αp̂(x) � V(x), which
implies prices grow linearly toward the sink. In this
subregion, drivers in locations that are further from
the sink earn lower profits as prices decrease. In the
middle subregion (subregion (ii)), prices all equal
the unconstrained optimal price. Here there is more
supply than effective demand. In this subregion,
drivers’ utility decreases as we move away from the
sink because of congestion rather than price changes.
Finally, in the outer subregion (subregion (i)), there is
nopostrelocation supply. In this subregion,prices are set

in such a way that drivers are better off repositioning
toward the sink rather than staying in subregion (i).
Theorem 1 establishes the general structure of an

optimal solution within regions of movement. It also
showcases the rich behavior that emerges, in the form
of a menu of subregions, within an attraction region.
In some locations, supply and demand are perfectly
matched, other locations are overcongested, and some
less profitable locations are priced out. We will exploit
Theorem 1 in Section 8 to study a prototypical family
of instances, where we will characterize all attraction
regions and, in turn, the optimal solution across the
city in quasi-closed form. Before doing so, we discuss
the main ideas that lead to the characterization of the
optimal solution within attraction regions.

7.2. Key Ideas for Theorem 1
The key idea underlying the proof of the result is
based on optimizing the contribution of the attraction
regionA(z|p,7) to the overall objective by reallocating
the supply around the sink and then showing that
this reallocation of supply constitutes an equilibrium
flow in the original problem. In order to optimize the
supply around the sink, we consider the following
optimization problem, which, as explained later, is a
relaxation of (32) within A(z|p,7):

max
s̃ ·( )≥0

∫
A z|p,7( )

V x|p,7( ) · s̃ x( )dΓ x( ) (3KP(z))

s.t s̃ x( ) ≤ ψ−1
x V x( )( ), Γ− a.e. x in #,

(Congestion Bound)∫
A(z|p,7)

s̃(x)dΓ(x) � 7c, (Flow Conservation)∫
z,Xa z|p,7( )( ]

s̃ x( )dΓa x( ) ≤ 7a, Γ − a.e. a ∈ Rz,

(No Flow Crossing Rays)

Figure 7. (Color online) Illustration of Theorem 1’s Solution

Notes. Given A(z|p, τ), the figure depicts the structure of an optimal solution for the conditions associated with Figure 6. There are three
subregions that emerge. (a) The optimal prices. In (iii), optimal prices perfectly match supply and demand ρbalx . In (ii), optimal prices correspond
to the unconstrained optimal price ρux . In (i), prices are such that demand is shutdown. (b) The effective demand λ(x) · F̄x(p(x)). (c) The
postrelocation supply. There is no supply in (i); in (ii), there is more supply than effective demand; and in (iii), supply and demand are matched.
We consider ra � 0.25 for all a ∈ Rz and Fx(q) � q for all x.

Figure 6. (Color online) Illustration of Inputs for Theorem 1

Notes. We consider a disk-shaped attraction region with sink z (light-
gray region). In panel (b), we plot the potential demand for rides λ(x).
It increases toward the sink, and it is positive but constant in the
region between the dashed and solid lines. In panel (a), we depict the
equilibrium utility of drivers V(x|p, τ) � V(z|p, τ) − ‖z − x‖. We
consider α � 0.8,V(z|p, τ) � 0.56, Xa(z|p, τ) � 0.35 for all a ∈ Rz, and
λ(x) � max{0.9 − 4‖z − x‖, 0.3}. The norm is the Euclidean distance.
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where 7c corresponds to the total flow that 7 trans-
ports from A(z|p,7) to A(z|p,7), and 7a correspond to
the total flow in A(z|p,7) that is transported along
ray a, excluding z. The measures Γa correspond to the
contribution of rays indexed by a on the total city
measure, and Γp is a measure over rays that allows
us to integrate the contribution of the measures Γa to Γ
(for more details, see the proof of Theorem 1 in Online
Appendix C). Recall that given the postrelocation
supply s̃, the quantity

∫
@
s̃(x)dΓ(x) represents the post-

relocation supply induced by s̃ in @. Thus, the last
two constraints in (3KP(z)) stand for consistency of the
total postrelocation supply in each one of the relevant
subregions of A(z|p,7). The key is to observe that this
is a relaxation of the original problem in the attrac-
tion region. In particular, the equilibrium constraint
implies the conservation constraint (see Proposition
B-1(i) in Online Appendix B) and the no-flow-crossing
constraints (see Proposition B-1(ii) inOnlineAppendix B).
The congestion bound is also a consequence of the
equilibrium constraint (see Proposition 2). In words,
in this formulation, we relax the equilibrium con-
straint but impose the implications of it. We constrain
the amount of mass that we can allocate in each di-
rection around z, but we fix the total amount of mass
in A(z|p,7).

In (3KP(z)), we fix the driver utilities and ask what
should be the optimal allocation of drivers while
satisfying flow balance in the regions {[z,Xa]}z∈Rz

and
imposing the congestion bound. Clearly, selecting s̃ � s7

is feasible for the preceding problem, and hence the
optimal value upper bounds the value generated by
the initial price-equilibrium pair (p,7) in the region
A(z|p,7). In the proof, we show that this relaxation is
tight. That is, it is possible to construct prices and
equilibrium flows achieving the value of Problem
(3KP(z)). The proof consists of two main steps: (1) ver-
ifying the structure of the optimal s̃ and (2) showing that
the postrelocation supply that solves the relaxation
can actually be obtained from appropriate prices and
flows. For step 1, the main idea relies on recognizing
that Problem (3KP(z)) is a measure-theoretical in-
stance of a coupled collection of continuous bounded
knapsack problems. The solution to (3KP(z)) is obtained
by allocating as much as possible at locations where
we can make the most revenue per unit of volume;
that is, we would like to make s̃(x) as large as possible
at locations where V(x|p,7) is the largest. For step 2,
we explicitly construct prices and flows that yield the
same postrelocation supply and objective as the so-
lution to (3KP(z)). The optimal prices correspond
to the optimal local prices ρloc

x (s7̂(x)). We obtain the
optimal flows by constructing a transport plan with
two components. The first transports drivers from
all locations in A(z|p,7) to z; the second transports

drivers within rays, excluding z. To obtain the latter
flows along each segment (z,Xa], we solve an optimal
transport problem with cost function equal to the
distance between any two points, initial measure
equal to the reminder mass that was not sent to z, and
final measure equal to the restriction of the solution
of Problem (3KP(z)) in (z,Xa]. Finally, we apply the
pasting result (Proposition B-2 in Online Appendix B)
to obtain a feasible price equilibrium in the whole
city #.

8. A 1D Family of Instances: Global
Optimal Solution and Insights

The results derived in previous sections characterize
the structure of an optimal pricing policy and the
corresponding supply response locally in attraction
regions for general demand and supply conditions in
two dimensions. In this section, to further understand
the interplay of spatial supply incentives and spatial
pricing, we aim to develop insights into the global
optimal policy and the interactions across attraction
regions. To that end, we focus on a family of instances
that will be rich enough to capture spatial supply
demand imbalances while isolating the interplay above.
Leveraging previous results for the local form of optimal
solutions but also developing new results to characterize
attraction regions, we determine the global optimal so-
lution for this family of instances in quasi-closed form.
We will see how the optimal solution creates a spatial
menu of prices to incentivize but also to discourage
supply movement.
In particular, we focus on a 1D city and a family of

models that captures a potential local surge in de-
mand. The restriction to a 1D setting is for simplicity
and exposition. The results in this section can be
viewed as the 1D cut of the solution to a disk-shaped
city in which the conditions along diameters are
symmetric. (That is, exhibiting the 1D solution is
enough to characterize the 2D solution in this special
case.) More precisely, we specialize the model to the
case where the city measure is supported on the interval
# � [−H,H] and is given by3

Γ(@) � 1{0∈@} +
∫
@
dx, for any measurable set@⊆#;

that is, the origin may admit point masses of supply
and demand, whereas the rest of the locations in #
only admit infinitesimal amounts of supply and de-
mand. We fix the city measure throughout, but we
parametrize the supply and demand measures. Supply
is initially evenly distributed throughout the city, with
a density of drivers equal to θ1 everywhere. Potential
demand will also be assumed to have a uniform density
on the line interval, except potentially at the origin.
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We analyze what happens when a potential de-
mand shock at the origin (the potential high-demand
location) materializes, and in particular, we investigate
the optimal pricing policy in response to such a shock.
We represent the demand shock by a Dirac delta at
this location. Therefore, for any measurable set B ⊆ #,
the potential demand measure (after the shock) is
given by

Λ @( ) � λ0 · 1{0∈@} +
∫
@
λ1dx,

where λ0 ≥ 0 and λ1 > 0. In particular, we refer to the
case λ0 � 0 as the predemand shock environment and the
case λ0 > 0 as the demand shock environment. For this
family of models, we assume that customer willingness-
to-pay distribution is location independent and denoted
by F(·). This special structure will enable us to elu-
cidate the spatial supply response induced by surge
pricing and the structural insights on the optimal
policies that emerge.

Throughout this section, we will use short-hand
notation to present the optimal solution in a streamlined
fashion. Let (p,7) be a price-equilibrium pair; we use
A(0),Xl and Xr to denote A(0|p,7) and the end points
of the left and right rays around z, respectively.
Moreover, when clear from context, we write V(·)
instead of V(·|p,7).

8.1. The Predemand Shock Environment
We start by analyzing the preshock environment.
Both demand and supply are uniformly distributed
along the city, with respective densities λ1 and θ1. In
line with intuition, in this highly symmetric setting,
one can show that the optimal price policy does not
induce any movement of supply, and the optimal
price at each location is the same and simply that of a
single-location-capacitated pricing problem. We denote
the predemand shock optimal price by ρ1 � ρloc

x (θ1) (not
location dependent) and use ψ1 to denote ψx(θ1) (also
not location dependent). For completeness, this is
formalized in Proposition D-1 in Online Appendix D.

8.2. Benchmark: Myopic Price Response to a
Demand Shock

We next start our analysis of the demand shock en-
vironment. Before turning our attention to an optimal
policy in Section 8.2, we first focus on a simple type of
pricing heuristic that responds to changes in demand
conditions through changes in prices onlywhere these
changes occur. In particular, in the context of the
demand shockmodel, this corresponds to responding
to a shock in demand at the origin by only adjusting
the price at the origin; we call this policy the myopic
price response. This provides a benchmark to better
understand the structure and performance of an

optimal policy. We next characterize the optimal
myopic price response.

Proposition 4 (Myopic Price Response to a Demand
Shock). Fix λ0 > 0. Suppose that p(x) � ρ1 for all x in
#\{0} and that the firm optimizes the price p(0). Then
a. (Prices) The optimal price at the origin is given by

p(0) � ρloc
0 (s7(0)) and p(0) ≥ ρ1.

b. (Movement) There exists two thresholds Xr ≥ X0
r ≥ 0

such that Xr > 0 and
• For all x in [−X0

r ,X
0
r ], all the supply units move to

the origin.
• For all x in [−Xr,−X0

r ] and all x in [X0
r ,Xr], a

fraction of the supply units moves to the origin, and the
other fraction does not move.

• For all x in # \ [−Xr,Xr], no supply unit moves.
Furthermore, the platform’s revenue is strictly larger than
in the predemand shock environment.

This result characterizes the structure of a myopic
price response as well as the structure of the supply
movement it induces. Figure 8 depicts the structure of
the supply response. In particular, the myopic price
response leads to a higher price at the origin to re-
spond to the surge in demand at that location. In turn,
this higher price attracts drivers from a symmetric
region around the origin. In that region, for locations
close to the origin, all supply units move to the origin.
After a given threshold X0

r , only a fraction of the
drivers will move to the origin. Intuitvely, as one gets
further from the origin, traveling to it becomes a less
attractive option comparedwith staying put or traveling
elsewhere, and an increasingly smaller fraction of units
travels to the origin. We also establish that supply units
have no incentive to travel anywhere else in the city. As a
result, units that do not travel to the origin stay put and
serve local demand. Beyond the thresholdXr, no supply
units move in the equilibrium induced by the myo-
pic price response. In a supply-constrained regime
θ1 ≤ λ1 · F(ρu), all drivers within [−Xr,Xr] drive to
the origin; that is, X0

r � Xr. However, in a supply-
unconstrained regime θ1 > λ1 · F(ρu), the two thresh-
olds are different, X0

r < Xr, as depicted in Figure 8.
This occurs because in locations further from the
origin but still within [−Xr,Xr] because underutilized
drivers drive toward the origin, conditions at the
departing point improve, and in equilibrium, staying
put becomes competitive with driving to the origin.

Figure 8. (Color online) Myopic Price Response: Induced
Supply Response for a Case with θ1 > λ1 · F(ρu)
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8.3. Optimal Solution
In this section, we focus on the optimal global price
response across all locations in the city. To that end,
we will first develop results to identify the attraction
regions in the city and then leverage the results de-
veloped for the general model to ultimately obtain a
quasi-closed-form solution to the platform’s problem
in this specialized setting. Our first result demon-
strates that we can focus on price-equilibrium pairs
such that the high-demand location is a sink.

Lemma 2 (Origin Is a Sink). Without loss of optimality, one
can restrict attention to price-equilibrium pairs (p,7) such
that the origin is a sink such that Xl < 0 < Xr.

The intuition behind this lemma harks back to the
fact that the performance of the preshock environ-
ment is dominated by that of the myopic price re-
sponse solution. Solutions for which the origin is not
a sink have revenues capped by that of the predemand
shock environment. At a high level, in those solutions,
there is no positive mass of drivers willing to travel
to the demand-shock location, and thus the city
resembles a city without a demand shock. However,
the myopic price response solution incentivizes drivers
from both sides to travel to the demand shock and has a
strictly larger revenue. This implies that at optimality
we must have drivers coming from both sides to the
origin; that is, Xl < 0 < Xr. An important consequence
of Lemma 2 is that the attraction region A(0) is a well-
defined nonempty set.We thus could apply Theorem 1
to obtain a local characterization of the optimal so-
lution within A(0). However, our goal in this section
is to obtain the full global optimal solution as op-
posed to just a solution in A(0). Hence, before we use
Theorem 1, in what follows we characterize all at-
traction regions in #. To make our exposition clear
and highlight the solution’s spatial aspects, we call
the interval [Xl,Xr] the center region; the region out-
side of it will be referred to as the periphery.

8.3.1. Equilibrium Utilities and Attraction Regions. In
this section, we characterize V(·) throughout #. This
characterization is key because it will enable us to
identify all the attraction regions in #.

Theorem 2 (Equilibrium Utilities). Under an optimal price-
equilibrium pair (p,7), the equilibrium utility function V(·)
is fully parametrized by the three values V(0) and Xl,Xr

as follows:

V x( ) �
V 0( ) − |x|, if x ∈ Xl,Xr[ ],
min V 0( ) − 2Xr + x, ψ1

{ }
, if x > Xr,

min V 0( ) − 2|Xl| + |x|, ψ1
{ }

, if x < Xl.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Moreover, V(0) > ψ1 and V(Xl),V(Xr) ≤ ψ1.

The first main implication of this result is that we
know, up to V(0), Xl, and Xr, how much utility each
supply unit garners under optimal prices throughout
the entire city. Quite strikingly, the characterization
of V(·) is “independent” of the flows. That is, in order
to characterize the equilibrium utility, we did not
need to pin down the distribution of postmove-
ment supply.
The second implication is that the city has at most

three types of regions. Figure 9 depicts the equilib-
rium utility function. The center [Xl,Xr] is by defi-
nition an attraction region. LetWr andYr be defined as
the points to the left and right ofXr, where the driver’s
equilibrium utility function equals the preshock utility
levelψ1. To the right of the origin (and similarly to the
left), we can observe threemain regions.We first have
the interval [0,Wr], where drivers’ utilities are above
the preshock level. Drivers in this region are posi-
tively impacted by the shock of demand at the origin
(and the global optimal prices). The second region
[Wr,Yr] is notable. Here drivers garner strictly less
utility compared with the preshock environment. In
[Wr,Xr], drivers are “too far” from the origin, so their
utilities are negatively affected by the cost of driving
to the origin. Drivers in [Xr,Yr] are outside the origin’s
attraction region and thus do not relocate to the
origin. This interval forms an attraction region with
sink Yr; that is,Yr belongs to the indifference region of
any location in the interval, and Yr does not belong
to the indifference region of any other location. In
turn, besides A(0), there are two other attraction re-
gions, A(Yl) and A(Yr), in #. Interestingly, drivers in
[Xr,Yr] suffer because the platform has to make sure
that the drivers in [0,Xr] stay within the attraction
region of the origin. For the marginal drivers at Xr to
be willing to travel to the origin, the conditions to the
right of Xr should not be too attractive. The final
region corresponds to [Yr,H]; this region is not af-
fected by the shock of demand because it is far from
the origin.

Figure 9. Drivers’ Equilibrium Utility Under an Optimal
Pricing Policy

Note. The equilibriumutility is fully characterizedup toV(0),Xl, andXr;
the intervals [Yl,Xl], [Xr,Yr] and [Xl,Xr] are attraction regions.
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8.3.1.1. Key Ideas for the Proof of Theorem 2. The
proof relies on leveraging structural properties of the
equilibrium utility function, the congestion bound,
and a novel flow-mimicking technique. At a high
level, we focus on and solve for V(·) in each region
separately, center and periphery.

We start by considering the center region, which
is easy to analyze. Lemma 2 establishes that we
can focus on solutions such that A(0) � [Xl,Xr] is a
nonempty interval that strictly contains the origin.
Then, by definition of A(0), V(x) � V(0) − |x|, for all
x ∈ [Xl,Xr]. Importantly, the characterization of V(·)
in this region only depends on three parameters,
namely V(0), Xl, and Xr.

Switching attention to the periphery, consider the
right periphery (Xr,H] (the treatment for the left
periphery is analogous). We first argue that in this
region, the drivers’ equilibrium utility has a non-
trivial upper bound

V x( ) ≤ min V Xr( ) + x − Xr, ψ1
{ }

,

for all x ∈ (Xr,H]. (7)
This upper bound follows from two bounds. A first
upper bound can be derived using the 1-Lipschitz
property ofV (Lemma 1), which limits the growth rate
of V. Thus, V(x) is bounded by V(Xr) + x − Xr. A
second bound may be obtained by leveraging the
congestion bound (Proposition 2). Onemay show that
drivers from almost any location who do not have an
incentive to travel to the origin have their utilities
capped by the predemand shock utility level ψ1.

The core of the argument toward characterizing
the equilibrium utilities in the periphery resides in
establishing that the upper bound in Equation (7) is
always binding. We show this in two steps. We first
establish that the value function has to be nonde-
creasing in [Xr,H] (see Proposition D-2 in Online
Appendix D); this implies that drivers only move
right (or do not move) in the right peripheral region.
Then, exploiting the monotonicity, we use a flow-
mimicking argument to establish that the upper bound is
achieved under an optimal pricing policy (Proposition
D-3 in Online Appendix D).

8.3.2. From Equilibrium Utilities to Supply Distribution
and Optimal Prices. Given that we pinned down the
equilibrium utility function across the city and all
attraction regions, we next solve for prices and supply
through the problem reformulation in Proposition 1.
Leveraging Theorem 1 and a symmetry argument, we
can solve for the optimal s7 and the corresponding
prices in each attraction region. The solution for the
no-movement regions reduces to the preshock envi-
ronment. Then we use the pasting property (compare
Property 3 in Section 6) to paste the solution from each

region and, in turn, obtain a quasi-closed-form charac-
terization of the optimal solution to the platform’s
problem as presented in Theorem 3.

Theorem 3 (Optimal Prices and Flows). An optimal price-
equilibrium pair (p,7) is such that V(·) is as in Theorem 2,
Xr � −Xl, and prices and flows are characterized as follows:
1. (Prices)The optimal prices are givenbyp(x) � ρloc

x (s7(x)),
where s7(x) is as below.
2. (Postrelocation supply) There exists unique βc ∈ [0,Wr]

and βp ∈ [Xr,Yr] such that∫ βc

−βc
ψ−1
x V x( )( )dΓ x( ) � θ1 · 2 · Xr and∫ Yr

βp

ψ−1
x V x( )( )dΓ x( ) � θ1 · Yr − Xr( ),

and the optimal postrelocation supply is given by

s7 x( ) � 0, if x ∈ βc, βp
( ) ∪ −βp, βc( )

,

ψ−1
x V x( )( ), s otherwise.

{

3. (Movement)
• For all x in [−βc, βc], drivers move in the direction

of the origin.
• For all x in [−Xr,−βc) ∪ (βc,Xr], all drivers move

to [−βc, βc].
• For all x in [Xr, βp) (respectively (−βp,−Xr]), all

drivers move to [βp,Yr] (respectively [−Yr,−βp]).
• For all x in [βp,Yr] (respectively [−Yr, −βp]),

drivers move in the direction of Yr (respectively −Yr).
• For all x in [−H, −Yr) ∪ (Yr, H], drivers do

not relocate.

In other words, we have fully characterized the
optimal solution across the city, and it is fully pa-
rametrized by only on two values, V(0) and Xr.

8.3.2.1. Discussion. We depict in Figure 10 the struc-
ture of the solution obtained in Theorem 3. The main
feature of the optimal solution is that it separates each
side of the city with respect to the origin into multiple
regions. For clarity, we focus our discussion on the
right side of the city.
The origin receives a mass of supply equal to

ψ−1
0 (V(0)). This mass of drivers comes from two re-

gions, the inner and the outer center, which we now
define. The first corresponds to the interval (0, βc].
Some drivers in this region choose to stay put, whereas
others, attracted by the favorable conditions at the center
of the city, choose to drive to the origin. In equilibrium,
drivers staying or traveling to the origin garner the same
utility. The outer center is the interval (βc,Xr]. Here the
platform sets prices to V (or 0), and therefore, supply
is equal to zero. That is, the platform chooses prices to
shut down demand, giving no incentive for drivers to
stay there (or, alternatively, sets prices at zero to again
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give no incentive for drivers to stay there). In turn, this
incentivizes all drivers in this region to move some-
where else. In order to incentivize these drivers to
move toward the origin, the platform creates one
more region: the inner periphery.

The inner periphery corresponds to the interval
(Xr,Yr]. The platform “artificially” degrades the con-
ditions for drivers in this interval in two different
ways, leading to the two subregions, (i) and (ii) in
Figure 10. In region (i), the platform sets prices equal
to V (or 0) in (Xr, βp], shutting down demand, so no
drivers want to either travel to or stay in this region.
As a result, the interval (βp,Yr] receives all drivers
from (Xr, βp]. This creates driver congestion and thus
endogenously worsens driver conditions in the in-
terval (βp,Yr]. The reason the platform selects these
inner periphery prices is to discourage drivers in the
outer center fromdriving toward the periphery.Quite
strikingly, the optimal global price response to a
demand shock at the origin induces supply move-
ment away from the origin in the inner periphery. The
final region is the outer periphery. All drivers in this
region stay put, leading to s7(x) � θ1. Here drivers
collect the same utility they would if there was no
demand shock at the origin.

In sum, the optimal global price response to a demand
shock, while correcting the supply demand imbalance at
the origin, also creates significant imbalances across the
city. This is driven by the self-interested nature of ca-
pacity units and the need to incentivize them through
spatial pricing. See Proposition 4 for how the optimal
policy differs from the myopic best response.

8.4. Myopic Price Response vs. the
Optimal Solution

In this section, we will use the myopic price response
solution as a benchmark for comparison and put the
optimal solution into perspective. The objective is to
illustrate through several metrics the different features
of the optimal solution as well as its performance
in terms of revenue maximization (we complement
the comparison, including welfare performance, in
Online Appendix E). Throughout this section, we use

superscripts to label relevant quantities associated
with the myopic price response and optimal solution,
respectively (except when obvious from context).
We first observe that the attraction region around

the origin of the demand-shock location is always
wider under the optimal solution than under the local
best response. That is, Amy(0) ⊂ Aopt(0). In particular,
this means that more locations are affected by a de-
mand shock in the optimal solution than under
the myopic price response. Hence, the largest inter-
val in which both solutions differ corresponds to
[−Yopt

r ,Yopt
r ]. We denote this interval by #diff.

Next, we illustrate and discuss through a set of
numerics the differences between the two policies. In
order to obtain numerical solutions for the global
optimal policy, we rely on Theorems 2 and 3. From
Theorem 2, we know that V(x) is characterized by
three values: V(0),Xr,Xl. In Theorem 3, given V(·), we
provide a full characterization of the optimal solu-
tion. Also, we establish that Xl � −Xr. In turn, to find
the optimal solution, we perform a grid search over
[0,H] × [0,V]. For the myopic price response, we
proceed in a similar fashion by making use of the
closed-form expressions developed in the proof, in
Online Appendix D, of Proposition 4. We consider a
range of instances that includes various levels of
supply availability. We fix the city to be characterized
by H � 1 and assume that the demand is uniformly
distributed across locations with λ1 � 4. The origin
experiences a shock of demand ranging from low to
high: λ0 ∈ {3, 6, 9}. We vary the initial supply
θ1 ∈ {1, 1.5, 2, . . . , 4.5, 5} so that when it is low, the city
(excluding the origin) is supply constrained, and
when it is high, the city is supply unconstrained.
Consumer valuation is uniformly distributed in
the unit interval. Note that the city (excluding the
origin) is supply constrained whenever θ1 < λ1·
F(pu) � 2. To eliminate any strong dependence on the
choice ofH, for each instance, we compare themyopic
price response performance and optimal solution
performances within the subregion of the city cor-
responding to the largest interval in which both so-
lutions differ #diff.

Figure 10. (Color online) Supply Response (Solid Line) Induced by Optimal Prices (Dashed Line)
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8.4.1. Revenue Improvement. The revenue perfor-
mance of the optimal solution with respect to our
benchmark in #diff is shown in Table 1. For any level
of demand shock, we observe that the revenue im-
provement reaches its maximum value for medium to
high levels of supply and can be significant (>10%). In
order to appreciate where the revenue gains stem
from, consider Table 2, which summarizes some key
quantities for the case θ1 � 3, λ0 � 9 (so thatψ1 = 0.27).

Let us analyze the various contributions to reve-
nues under both policies. We start by noticing that the
drivers’ equilibrium utility at the shock location is
lower under the optimal solution than under the
myopicprice response,Vopt(0) � 0.62 andVmy(0) � 0.65.
However, because Xopt

r � 0.46 and Xmy
r � 0.38, the

optimal solution is able to incentivize the movement
of a larger mass of drivers toward the demand shock,
leading to a mass sopt(0) � 1.97 versus smy(0) � 1.66.
Focusing on the objective reformulation in Proposi-
tion 1, this extra mass of drivers delivers 0.14 units
(0.62 × 1.97 − 0.65 × 1.66) of extra revenue to the plat-
form. The revenue difference is further increased by the
fact that the remaining 0.79 units of drivers in the at-
traction region of zero (2 × 3 × 0.46 − 1.97) in the opti-
mal solution travel to locations nearby the demand
shock, where V(·) is close to 0.62. In contrast, the
benchmark solution has the remainder 0.62 drivers
(2 × 3 × 0.38 − 1.66) staying within [X0,my

r ,Xmy
r ] where

V(·) is below 0.37 (Vmy(0) − X0,my
r ). Through these two

mechanisms, the optimal policy garners more revenue
than the benchmark solution in the region [−Xopt

r ,Xopt
r ].

However, the benefits come at a cost. To induce
the “right” incentives in the shock’s attraction region,
the platform has to alter conditions to the right of the
attraction region. In order to incentivize the move-
ment of drivers in [−Xopt

r ,Xopt
r ] toward the de-

mand shock, the region [Xopt
r ,Yopt

r ] is damaged by
having the 0.22 units of drivers in it (2 × (0.57 − 0.46))
contributing values strictly below ψ1 � 0.27 to the
platform’s objective. The same units of drivers in the
benchmark solution contribute exactly 0.27 per unit
to the platform’s revenue. This cost is offset by the

proceeds that incentivizing the movement of a larger
amount of drivers toward the demand shock generates.

9. Conclusion
This study analyzes the short-term pricing problem
faced by a platform matching spatially distributed
demand to strategic supply units. Given supply and
demand conditions across a 2D region, the platform
sets prices at every location, and supply units select
where to reposition in equilibrium. To analyze this
problem, we employ a measure-theoretic framework
that subsumes both discrete and continuous settings.
The resulting problem is a mathematical program
with equilibrium constraints for which no standard
solution approach is readily available. We provide
two main contributions. First, we establish a char-
acterization of the optimal solution, prices and flows,
within regions of potential movement (attraction re-
gions). Our approach consists of relaxing some of the
equilibrium constraints and identifying that our relax-
ation, localized to attraction regions, is tight and leads to
coupled continuousboundedknapsackproblems,which
we solve to optimality. Our second contribution is in
terms of managerial insights. Our results highlight how
the optimal solution may employ both positive and
negative incentives to induce the right movement of
drivers, raising prices in profitable undersupplied re-
gions but also potentially damaging (using prices) less
profitable regions, thus incentivizing the relocation of
drivers toward regions that are more beneficial for
the platform.
There are several potential directions for future

work. Our results may be used to study possible
heuristics that approximate the global optimal solu-
tion in arbitrary instances. A direction would be to
develop two-stage heuristics that first set candidate
locations and shapes for attraction regions and then
leverage the results developed to optimize within
those. One approach is to first parametrize their
shape, for example, using circles or hexagons, and
then do a search for regions of large supply-demand
imbalances in order to identify sink locations. Each
region thenwould be parametrized by the shape of its
border and the utility at the sink location.We can then
solve for the optimal solutionwithin each of them and
paste to obtain a candidate solution. A master global
optimization would follow to tune the shape and the
utilities at the sink locations across the city. That is,
the general methodology we developed may be lev-
eraged to compute parametric global solutions to the

Table 1. Revenue Improvement (in %) of Optimal Solution
over Myopic Price Response in #diff

θ1 1 1.5 2 2.5 3 3.5 4 4.5 5

λ0 � 3 2.05 4.64 9.59 13.02 13.87 12.92 11.00 8.60 5.91
λ0 � 6 2.17 3.11 4.99 8.73 9.96 10.01 9.56 8.92 8.21
λ0 � 9 2.69 3.51 4.69 8.75 10.16 10.30 9.81 9.10 8.29

Table 2. Metrics for the Local Response and Optimal Solution for the Case θ1 � 3, λ0 � 9

Vopt.(0) sopt(0) popt(0) Xopt
r Yopt

r Vmy(0) smy(0) pmy(0) Xmy
r X0,my

r

0.62 1.97 0.78 0.46 0.57 0.65 1.66 0.81 0.38 0.25
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platform’s problem. Another important extension is
the incorporation of dynamics. The model studied in
this paper can be regarded as a two-stage model. In
the first stage, drivers are initially positioned. In the
second stage, they reposition in equilibrium given
prices and demand conditions. This does not consider
that drivers who are closer to a given location might
be more likely to be matched to riders in such a lo-
cation (they can get to that location faster than other
drivers). It also does not consider the continuation
game that emerges after drivers are matched. Studying
these different settings and their variations constitute
interesting avenues of future inquiry.

Finally, the framework and ideas developed here
could be leveraged in settings beyond ride hailing.
Given the generality of our framework, all results
before Section 8 can be extended to higher-dimensional
settings. One could use our framework to study prob-
lems in which agents have different types characterized
by high-dimensional vectors. Agents can modify their
types by exerting some costly effort, but their potential
earning when doing so will depend on howmany other
agents end up being of the same type.

Endnotes
1 In precise terms, the mass of customers with willingness to pay
below q in a measurable region @ ⊆ # is given by

∫
@
Fy(q)dΛ(y). We

assume that y �→ Fy(q) is a measurable mapping for any q.
2The Radon–Nikodym derivate can also be interpreted as a measure
of the units of demand or supply per unit of area (e.g., square mile).
3Observe that, thanks to the generality of our measure-theoretic
framework, all the structural results developed thus far apply to
this 1D setting.
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